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Z-critical equations for holomorphic

vector bundles on Kähler surfaces

Julien Keller and Carlo Scarpa

We prove that the existence of a Z-positive and Z-critical Hermitian metric
on a rank 2 holomorphic vector bundle over a compact Kähler surface implies
that the bundle is Z-stable. As particular cases, we obtain stability results
for the deformed Hermitian Yang-Mills equation and the almost Hermite-
Einstein equation for rank 2 bundles over surfaces. We show examples of
Z-unstable bundles and Z-critical metrics away from the large volume limit.
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1 Introduction

Let E → X be a holomorphic vector bundle over the compact complex manifold X ,
and assume that ω is a Kähler form on X . We consider a class of partial differential
equations, called Z-critical equations, to be solved for a Hermitian metric h on E, that
take the form

Im(e−iϑEZ(h)) = 0. (1.1)
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The equation depends on ω and the choice of a polynomial central charge as defined
by Bayer [Bay09]. Briefly, a polynomial central charge Z is defined by a vector of
complex numbers ρ ∈ (C∗)n and a unitary class U ∈ H•(X,R), and associates to any
subvariety V ⊂ X and any sheaf S → V a complex number ZV (S). We refer to Section 2
for the precise definition.

The Z-critical equations have been introduced by Dervan, McCarthy, and Sektnan
in [DMS24] as a possible differential-geometric counterpart to Bridgeland stability con-
ditions; it is conjectured that the existence of solutions of (1.1) should be equivalent
to an algebraic stability condition on the bundle E, at least in certain regimes. This
expectation has already been partially confirmed in various interesting cases. For a line
bundle and a particular choice of central charge, (1.1) becomes the deformed Hermi-
tian Yang-Mills equation (dHYM equation), for which it is known that the existence
of solutions is equivalent to an algebraic positivity condition that is reminiscent of the
Nakai-Moishezon criterion. This correspondence for the deformed Hermitian Yang-Mills
equation has attracted a lot of attention in recent years; for the sake of brevity, we
refer the reader to [CJY20], [Che21], [CLT21] for an in-depth treatment of the subjects.
On higher-rank bundles, one of the main results of [DMS24] is that one has a corre-
spondence between the existence of solutions of (1.1) and the Z-stability of E in an
asymptotic regime known as the large volume limit.

Establishing the existence of solutions of (1.1) poses in general exceptional difficulties,
and most of the few results that are known are limited to low-rank and low-dimensional
situations, where Z-critical equations simplify substantially. A possible exception is
given by the examples of dHYM connections over a Fano threefold appearing in the recent
paper [Cor23]. If X is a curve, the Z-critical equation reduces to the Hermite-Einstein
problem, for E of any rank. If insteadX is a complex surface and rk(E) = 1, the problem
of the existence of solutions for any Z-critical equation is essentially settled in [DMS24,
§2.3.3], at least under a mild positivity assumption called the volume form hypothesis.
For rk(E) = 1, it seems likely that one can approach the Z-critical equation following the
study of the deformed Hermitian Yang-Mills equation. The possible presence of a non-
vanishing unitary class (see Section 2 for the definition) however greatly complicates the
analysis even in the rank-1 case: it might not be possible to write the Z-critical equation
as a PDE for the eigenvalues of a Hermitian matrix, a feature of the dHYM equation
that was crucial to develop the PDE theory of [Che21] to link the existence of solutions
with an algebraic stability condition conjectured in [CJY20].

In this paper we focus instead on the case when the base manifold X is a complex
surface, and E is a vector bundle of arbitrary rank. Our main goal is to refine the
conjectural correspondence proposed in [DMS24] between the existence of Z-critical
metrics h ∈ H+(E) and algebraic stability conditions on the pair (X,E). In particular,
we show evidence in support of such a correspondence in non-asymptotic regimes, at
least for bundles of rank 2. We also highlight an algebro-geometric consequence of the
existence of a Z-positive metric h ∈ H+(E), due to [McC23]. This essentially is a notion
of subsolution for the Z-critical equation, see Section 2.1 for the precise definition.
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Theorem 1.1. Let E → X be vector bundle on the compact Kähler surface X, and fix a
polynomial central charge Z. If there exists a Z-positive metric h ∈ H+(E) in the sense
of Definition 2.6, then

1. Im
(

ZV (E↾V )

ZX(E)

)

> 0 for any 1-dimensional analytic subvariety V ⊂ X.

Moreover, for E simple and of rank 2, if h ∈ H+(E) is Z-positive and solves the Z-
critical equation,

2. Im
(

ZX(S)
ZX(E)

)

< 0 for any sub-bundle S ⊂ E such that 0 < rk(S) < rk(E),

and if the bundle is in addition strongly Z-positive (see Definition 1.2 below) the inequal-
ity in 2 holds for any coherent saturated subsheaf S ⊂ E of rank 0 < rk(S) < rk(E).

The second part of Theorem 1.1 is the first stability result for the existence of solutions
to the Z-critical equation, and the dHYM equation in particular, for bundles of rank
greater than 1 in a non-asymptotic regime.
Note that we can rephrase the statements in Theorem 1.1 in a more symmetric fashion

by considering quotients of E, instead of sub-sheaves. Indeed, the second conclusion of
Theorem 1.1 is equivalent to

2 ′. Im
(

ZX(Q)
ZX(E)

)

> 0 for every quotient Q of E such that 0 < rk(Q) < rk(E).

Theorem 1.1 gives strong additional evidence for an algebraic characterisation of the
existence of solutions to the Z-critical equation, along the lines of [DMS24, Conjec-
ture 1.6]. The positivity part of Theorem 1.1 is due to McCarthy, who showed the
inequality for codimension 1 analytic submanifolds of a Kähler manifold of arbitrary
dimension, see [McC23, Theorem 1.6]. The proof we present here is essentially the same
as in [McC23, Theorem 4.3.13]. We remark however that Theorem 1.1, as stated, might
not be sharp, since the Z-positivity condition is a priori stronger than the positivity
condition we need to obtain each part of the statement, see Section 3.1 below. Still,
our computations and some simple examples make it natural to propose the following
refinement of the conjectural stability picture of [DMS24] for the existence of Z-critical
metrics, at least on surfaces.

Definition 1.2. Given a polynomial central charge Z, a holomorphic vector bundle E
over X is said to be Z-positive if, for any analytic sub-variety V ⊂ X of dimension
0 < dimV < dimX ,

Im

(
ZV (E↾V )

ZX(E)

)

> 0 (1.2)

and E is strongly Z-positive if in addition (1.2) holds also for 0-dimensional analytic
subvarieties V ⊂ X (i.e. finite collections of points). We say instead that E is Z-stable
if, for any coherent torsion-free quotient Q of E of rank 0 < rk(Q) < rk(E),

Im

(
ZX(Q)

ZX(E)

)

> 0. (1.3)
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Remark 1.3. The Z-positivity condition can be interpreted as a Z-stability condi-
tion for certain rank-0 quotients: if V ⊂ X , then we have a surjective morphism of
sheaves E → E ⊗ ι∗OV → 0, and ZX(E ⊗ ι∗OV ) = ZV (E↾V ). This interpretation of
Z-positivity was first noted for divisors implicitly in [McC23, Theorem 4.3.13].

Conjecture 1.4. For any polynomial central charge Z and any simple holomorphic
vector bundle E on a compact Kähler surface X, there exists a Z-positive metric h ∈
H+(E) if and only if E is Z-positive. Moreover, there exists a Z-positive solution of the
Z-critical equation if and only if E is Z-positive and Z-stable.

It is likely that this conjectural correspondence between the existence of (sub)solutions
to the Z-critical equation and Z-stability will need some refinement, probably in the form
of a “supercritical phase condition”. Indeed, such a condition is crucial in the stability
characterisation for the existence of solutions of the dHYM equation. For general central
charges on line bundles over complex surfaces, we also know from [DMS24, Theorem 2.27]
that Conjecture 1.4 holds under an additional positivity condition called the volume
form hypothesis. We will briefly discuss in Section 4 why a similar hypothesis might in
fact be part of the appropriate condition to establish our Conjecture. We also propose a
generalisation of Conjecture 1.4 that includes decomposable bundles, leading to a notion
of Z-polystability.
The main observation leading to Theorem 1.1 is that the Z-critical equation on a sur-

face can be recast as a vector bundle Monge-Ampère equation, an equation that coincides
with the usual complex Monge-Ampère equation in the case when the bundle has rank 1.
This property was first noted for the deformed Hermitian Yang-Mills equation in rank 1
in [CJY20], and was then exploited in [DMS24] to show that a Nakai-Moishezon-type
criterion characterises the existence of solutions to the Z-critical equations in rank 1. In
higher rank, a particular case of this phenomenon was noted by Takahashi in [Tak24]
for the J-equation, which is the small radius limit of the deformed Hermitian Yang-Mills
equation. It is important to mention that [Tak24] established a result similar to 1.1 for
the J-equation, again on rank 2 bundles.
The vector bundle Monge-Ampère equation was first introduced by Pingali in [Pin20].

He showed that, under some positivity assumptions, the existence of solutions of the
vector bundle Monge-Ampère equation implies a condition called Monge-Ampère stabil-
ity, see Section 2 for the definition. Theorem 1.1 will follow from a slight modification
of Pingali’s stability result:

Theorem 1.5 ( [Pin20], Proposition 3.1). Assume that E → X is a simple rank 2
holomorphic vector bundle over a compact Kähler surface, and that h ∈ H+(E) is a
solution of

F(h)2 = η ⊗ 1E (1.4)

for a volume form η on X. If TrF(h) > 0, then E is Monge-Ampère stable in the sense
of Definition 2.4.

The paper is organised as follows: in Section 2 we collect the definitions and some
background on the Z-critical and the Monge-Ampère vector bundle equations. Section 3

4



is the heart of the paper and contains the proof of Theorem 1.1. We also comment on
other stability notions that are closely related to Z-stability, and show an openness result
for the existence of Z-critical metrics that allows to obtain many new examples starting
from Mumford stable bundles. Section 4 contains some (non-)examples of Z-positive
and Z-critical metrics on bundles of rank 2 and 3 on P2. We also formulate a version
of Conjecture 1.4 for decomposable bundles and we prove it for decomposable rank 2
bundles over surfaces. Finally, we show that our results can be used to deduce stability
results for the almost Hermite-Einstein equation in non-asymptotic cases, showing that
there is a non-asymptotic analogue of Gieseker stability.

Acknowledgements. The authors wish to thank Ruadháı Dervan, Annamaria Ortu,
Vamsi Pingali, Lars Martin Sektnan, and Sohaib Khalid for some helpful remarks and
discussions related to the present work, and we thank Gonçalo Oliveira for a useful
conversation regarding Remark 3.11 and for pointing out Remark 1.3. The second author
would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge,
for support and hospitality during the programme “New equivariant methods in algebraic
and differential geometry” where work on this paper was undertaken. This work was
supported by EPSRC grant no EP/R014604/1 and by an NSERC Discovery Grant.

2 The Z-critical and vector bundle Monge-Ampère

equations

In this section we recall the definitions and some basic properties of the Z-critical and
vector bundle Monge-Ampère equations. We refer the reader to [DMS24] and [McC23]
for a more in-depth discussion of the former equation, and to [Pin20] for the latter.
Let E → X be a holomorphic vector bundle over a compact complex manifold X of

complex dimension n, and assume that X carries a Kähler metric ω. Given any affine
connection D on E, we denote the (1, 0) and (0, 1) parts of the connection by D′ and D′′

respectively, and the curvature by F (D) ∈ A1,1(EndE). It will also be convenient to
also define the normalised curvature form of D as

F(D) :=
i

2π
F (D).

Given a Hermitian metric h on E, we will also denote by F(h) the normalised curvature
of the Chern connection defined by h and the holomorphic structure of E, which is
a (1, 1)-form on X with values in the self-adjoint (with respect to h) endormorphisms
of E. This normalisation is chosen so that the differential form

Tr eF(h) := Tr





rk(E)
∑

j=0

1

j!
F(h)j





represents the total Chern character of E, ch(E). We denote by chd(E) the degree-2d
component of ch(E), which is represented by the (2d, 2d)-form TrFd/d!.
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The Z-critical equation (1.1) as defined in [DMS24] depends on the choice of:

• a stability vector ρ ∈ Cn+1, i.e. n + 1 nonzero complex numbers (ρ0, . . . , ρn) such
that Im(ρj/ρj+1) > 0 for 0 ≤ j < n;

• the representative u ∈ A•(X,R) of a unipotent class U = 1 +
∑

j Uj ∈ H•(X,R)

such that Uj ∈ Hj,j(X,R) for each j.

Given these objects, Dervan-McCarthy-Sektnan [DMS24] define a An,n(EndE)-valued
differential operator,

Z(h) =

[(
n∑

j=0

ρjω
j

)

∧ u ∧ eF(h)

]top

, (2.1)

where [. . . ]top indicates that one only has to consider the maximal-degree part of a
differential form. This data also defines a polynomial central charge as in [Bay09]

ZX(E) =

∫

X

TrZ(h),

that does not depend on the choices of u ∈ U and h ∈ H+(E). Assuming that Z(E) is
nonzero, the Z-critical equation for a Hermitian metric h ∈ H+(E) (or the associated
Chern connection D) is

Im(e−iϑEZ(D)) = 0

where the phase angle ϑE is determined modulo 2π through integration, i.e.

Z(E) = eiϑER>0.

Remark 2.1. There are some minor differences between how the Z-critical equation
was introduced in [DMS24] and the one presented here, mainly due to the fact that
in the original paper the authors focus on an asymptotic regime known as the large
volume limit. In that context, one rescales the Kähler form by ω 7→ k ω and is interested
in the properties of the Z-critical equation (1.1) for k ≫ 0. The stability vectors
in [DMS24] then are required to satisfy different conditions than the ones we consider:
they impose Imρn > 0 and Im(ρn−1/ρn) > 0, rather than Im(ρj/ρj+1) > 0 for 0 ≤ j < n.
The condition Imρn > 0 however is just a choice of normalisation, one can ensure this
by rotating the whole stability vector without affecting the stability of the bundle nor
the existence of critical metrics. The reason why in [DMS24] only the last condition
of Im(ρj/ρj+1) > 0 is required, is that this is the minimum necessary to guarantee that
any asymptotically Z-stable bundle (see Section 3.2) is Mumford semistable. From our
point of view however, it is more natural to have the same assumptions as in the original
definition of a polynomial stability condition, see [Bay09].

Remark 2.2. Here, as in [DMS24], by “imaginary part” Im(A) of an endomorphism-
valued form A ∈ A•(X,EndE) we mean (−i times) the anti-self-adjoint component of
the endomorphism, Im(A) = 1

2i
(A−A∗) with respect to the Hermitian metric on E.
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Similarly, the “real part” indicates the self-adjoint component. When the Hermitian
bundle has rank one, these indeed coincide with the real and imaginary parts of a
complex-valued 1-form. With this convention then, if D is the Chern connection of a
Hermitian bundle (E, h), one has Im(F(D)) = 0 and Re(F(D)) = F(D).

When X is a complex surface, the general Z-critical operator is, for h ∈ H+(E),

Z(h) =

[

(ρ0 + ρ1ω + ρ2ω
2) ∧ (1 + u1 + u2) ∧

(

1E + F(h) +
1

2
F(h)2

)]top

=ρ0u2 + ρ1ω ∧ u1 + ρ2ω
2 + (ρ0u1 + ρ1ω) ∧ F(h) +

1

2
ρ0F(h)2

(2.2)

and the corresponding Z-charge is given by integrating the trace of (2.2) on X :

ZX(E) =
(
ρ0U2 + ρ1U1.[ω] + ρ2[ω]

2
)
rk(E) + (ρ0U1 + ρ1[ω]) .ch1(E) + ρ0ch2(E). (2.3)

As F(h) is self-adjoint with respect to the metric h and U is a real class, the Z-critical
equation can be written as

αF(h)2 + β ∧ F(h) + γ ⊗ 1E = 0 (2.4)

where α ∈ R, β ∈ A1,1(X,R) and γ ∈ A2,2(X,R) are defined as







α =
1

2
Im
(
e−iϑEρ0

)

β = Im
(
e−iϑE (ρ0u1 + ρ1ω)

)

γ = Im
(
e−iϑE

(
ρ0u2 + ρ1ω ∧ u1 + ρ2ω

2
))

.

(2.5)

Note that the coefficients β and γ are ∧-commuting with F(h), so the Z-critical equa-
tion (2.4) is equivalent to

(

F(h) +
β

2α
⊗ 1E

)2

=

((
β

2α

)2

−
γ

α

)

⊗ 1E. (2.6)

We are assuming here that α 6= 0, the case α = 0 essentially reduces to the Hermite-
Einstein problem and will be treated separately in Section 3.3.
This simple observation shows

Lemma 2.3. With the previous notation, let η := (β/2α)2 − γ/α. Then, the Z-critical
equation is equivalent to the twisted vector bundle Monge-Ampère equation

(

F(h) +
β

2α
⊗ 1E

)2

= η ⊗ 1E. (2.7)

When η is a volume form and β = 0 (or β/2α ∈ c1(N) for a line bundle N), this
equation was introduced and studied by Pingali in [Pin20]. As we mentioned in the
Introduction, the existence of solutions of (1.4) is tied to the Monge-Ampère stability of
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the bundle, at least in certain regimes, see Theorem 1.5. We introduce a version of this
condition that takes into account the possible presence of a non-vanishing form β. It
will be useful in what follows to let

Fα,β(h) := F(h) +
β

2α
⊗ 1E .

Generalising Pingali’s Monge-Ampère slope, we define for ϑ := [β/2α] ∈ H1,1(X,R)

µMA,ϑ(E) :=
ch2(E)

rkE
+

ch1(E).ϑ

rk(E)
= µMA(E) + µϑ(E)

where the Chern characters of S are defined through a vector bundle resolution of S,
and µMA denotes the original Monge-Ampère slope of [Pin20].

Definition 2.4 ([Pin20]). For a real (1, 1)-class ϑ and a vector bundle E on a Kähler
surfaceX , we say that E is ϑ-Monge-Ampère stable with respect to ϑ if for every coherent
saturated subsheaf S ⊂ E such that 0 < rk(S) < rk(E) we have

µMA,ϑ(S) < µMA,ϑ(E). (2.8)

In the next section, we will show that this twisted Monge-Ampère stability is in fact
equivalent to Z-stability under the correspondence of Lemma 2.3, at least when α > 0.
This shows that the (twisted) vector bundle Monge-Ampère equation is, in some sense,
the main equation of interest for vector bundles on Kähler surfaces. The Z-critical
equation and the vector bundle Monge-Ampère equation seem otherwise unrelated on
higher dimensional manifolds, but we hope this work will stimulate further research on
the vector bundle Monge-Ampère equation.

Remark 2.5. The condition α > 0 can also be rephrased as Im
(

ZX(E)ρ0

)

> 0, or

Im

(
rk(E) ρ0
ZX(E)

)

> 0.

Note that Zx(E) = rk(E)ρ0 for any point x ∈ X , hence a Z-positive bundle is strongly
Z-positive if and only if α > 0.

2.1 Some positivity conditions for Hermitian metrics

A problematic feature of both (1.1) and (1.4) is that they might fail to be elliptic. To
characterise the situations in which the Z-critical equation is elliptic at least near a
solution, we can consider either the linearisation of the operator D 7→ eF(D), defined
on the space of affine connections compatible with a fixed Hermitian metric h0, or
the linearisation of h 7→ eF(h) defined on H+(E). When we take a path of Hermitian
metrics ht or a path of connections Dt and consider the variation of eFt , one finds over
a complex dimension n manifold,

∂t=0e
Ft = ∂t=0

n∑

j=1

1

j!
F j

t =
n∑

j=1

1

j!

j
∑

p=1

Fp−1
0 (∂t=0Ft)F

j−p
0 .
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We introduce a multilinear product on A•(EndE) as

[A1 ∧ · · · ∧Aj ]sym :=
1

j!

∑

σ∈Sj

(−1)gr sgn(σ)Aσ(1) ∧ · · · ∧ Aσ(j)

where the graded sign of a permutation, gr sgn(σ), is defined as the sign obtained by
permuting A1 ∧ . . . Aj to Aσ(1) ∧ · · · ∧ Aσ(j) as differential forms (so, ignoring EndE
factors). Then the derivative of eFt can be rewritten as

∂t=0e
Ft =

n∑

j=1

1

(j − 1)!

[
F0 ∧ · · · ∧ F0
︸ ︷︷ ︸

j−1 times

∧∂t=0Ft

]

sym
=
[
eFt ∧ ∂t=0Ft

]

sym

so that the derivative of Z, say along a path of connections Dt, can be written as

∂t=0Z(Dt) =

[[(∑

j
ρjω

j
)

∧ u ∧ eF(ht)
]n−1,n−1

∧ ∂t=0F(Dt)

]

sym

.

It seems reasonable then to let Z ′(D) :=
[(
∑

j ρjω
j
)

∧ u ∧ eF(D)
]n−1,n−1

. The differen-

tial of Z along a path of holomorphic structures D′′
t on E generated by the action of an

element of the complexified gauge group V ∈ iA0(X,End(E, h)) then becomes

∂t=0Z(D(h,D′′
t )) =

i

2π
[Z(D)′ ∧ (D′′D′ −D′D′′)V ]sym . (2.9)

This discussion suggests to impose an additional positivity condition on Hermitian met-
rics on E to guarantee the ellipticity of the equation.

Definition 2.6. Given a polynomial central charge Z on a holomorphic vector bundle E,
we say that a Hermitian metric h (or its Chern connection) is Z-positive (also called
(strong) Z-subsolution in [DMS24]) if the 2(n− 1) End(E)-valued form Im(e−iϑEZ ′(h))
is positive definite; i.e. for any x ∈ X and any ξ ∈ T 0,1

x
∗X × End(Ex)

i Tr
[
Im
(
e−iϑEZ ′(h)

)
∧ ξ∗ ∧ ξ

]

sym
> 0 (2.10)

where Z ′(h) is the formal derivative of Z(h) with respect to F(h).

This subsolution condition is crucial for the moment map interpretation of the Z-
critical equation in [DMS24]; indeed, the equation can be shown to be coming from a
Hamiltonian action on the space of connections that are unitary with respect to a fixed
Hermitian metric h0 and satisfy the subsolution condition; the symplectic form on this
space is given by the Hermitian pairing

〈a, b〉 = −i

∫

X

Tr
[
Im
(
e−iϑEZ ′(h)

)
∧ a ∧ b∗

]

sym
> 0 (2.11)

for a, b ∈ A0,1EndE, which is positive provided that the Chern connection of h is a
Z-subsolution: this also partially motivates our alternative naming of Z-positive metric
for h ∈ H+(E) satisfying (2.10).
There is a similar positivity notion for the vector bundle Monge-Ampère equation,

that we adapt from [Pin20] to include the possible presence of a nontrivial twist.
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Definition 2.7. Given a nonzero α ∈ R and a (1, 1)-form β, a metric h ∈ H+(E)
is said to be Monge-Ampère positive with respect to α and β if for any x ∈ X and
any ξ ∈ T 0,1

x
∗X × End(Ep)

n−1∑

k=0

i Tr
[
ξ∗ ∧ Fα,β(h)

k ∧ ξ ∧ Fα,β(h)
n−k−1

]
> 0.

The direct computation shows that in the 2-dimensional case, Z-positivity and Monge-
Ampère positivity are equivalent under the correspondence of Lemma 2.3, if α > 0.
Indeed, on a complex surface we have, with the notation of (2.5),

Im
(
e−iϑEZ ′

)
= Im

(
e−iϑE (ρ0F + (ρ0u1 + ρ1ω)⊗ 1E)

)
= 2αF + β ⊗ 1E

so that

i Tr
[
Im
(
e−iϑEZ ′(h)

)
∧ ξ∗ ∧ ξ

]

sym
=i Tr [(2αF(h) + β ⊗ 1E) ∧ ξ∗ ∧ ξ]sym

=αi Tr [ξ∗ ∧ ξ ∧ Fα,β(h) + ξ∗ ∧ Fα,β(h) ∧ ξ] .
(2.12)

If instead α < 0, then h is Z-positive if and only if it is Monge-Ampère negative, i.e. for
any x ∈ X and any nonzero ξ ∈ T 0,1

x
∗X × End(Ep)

i Tr [ξ∗ ∧ ξ ∧ Fα,β(h) + ξ∗ ∧ Fα,β(h) ∧ ξ] < 0.

3 Z-stability and Monge-Ampère stability

Our first result allows us to compare the inequalities (2.8) and (1.3). As a corollary, we
see that Z-stability and twisted Monge-Ampère stability are equivalent. All the results
in this section hold under the assumption that X is a surface.

Proposition 3.1. For any subsheaf S ⊂ E, under the correspondence of Lemma 2.3 we
have

Im
(

ZX(S)ZX(E)
)

= 2α rk(S)|ZX(E)|
(
µMA,ϑ(S)− µMA,ϑ(E)

)
.

Proof. It is just a matter of carefully computing each term. To start, recall from the
definition that

µMA,ϑ(S)− µMA,ϑ(E) =
ch2(S)

rk(S)
−

ch2(E)

rk(E)
+

(
ch1(S)

rk(S)
−

ch1(E)

rk(E)

)

.
[β]

2α
.

Note from (2.5) that the class of β is

[β] = Im
(
e−iϑE (ρ0U1 + ρ1[ω])

)
= |ZX(E)|−1Im

(

ZX(E)(ρ0U1 + ρ1[ω])
)

.

We proceed to the computation of Im
(

ZX(S)ZX(E)
)

. By definition, we have

ZX(E) =
(
ρ0U2 + ρ1U1.[ω] + ρ2[ω]

2
)
rk(E) + (ρ0U1 + ρ1[ω]) .ch1(E) + ρ0ch2(E),

ZX(S) =
(
ρ0U2 + ρ1U1.[ω] + ρ2[ω]

2
)
rk(S) + (ρ0U1 + ρ1[ω]) .ch1(S) + ρ0ch2(S).
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The direct computation gives

Im
(

ZX(S)ZX(E)
)

=Im
[

ZX(E)
(
ρ0U2 + ρ1U1.[ω] + ρ2[ω]

2
)]

rk(S)+

+ Im
[

ZX(E) (ρ0U1 + ρ1[ω])
]

.ch1(S) + Im
[

ZX(E)ρ0

]

ch2(S).

(3.1)

As the only non-real quantities in ZX(E) are the coefficients ρi, one finds

Im
[

ZX(E)
(
ρ0U2 + ρ1U1.[ω] + ρ2[ω]

2
)]

=

=
1

rk(E)
Im
[

ZX(E)ZX(E)
]

−
1

rk(E)
Im
[

ZX(E)
(

(ρ0U1 + ρ1[ω]) .ch1(E) + ρ0ch2(E)
)]

=

=−
1

rk(E)
Im
[

ZX(E) (ρ0U1 + ρ1[ω]) .ch1(E) + ZX(E)ρ0ch2(E)
]

=

=−
1

rk(E)
Im
[

ZX(E) (ρ0U1 + ρ1[ω])
]

.ch1(E)−
1

rk(E)
Im
[

ZX(E)ρ0

]

ch2(E).

We substitute this into (3.1) to obtain

Im
(

ZX(S)ZX(E)
)

=Im
[

ZX(E) (ρ0U1 + ρ1[ω])
]

.

(

−
rk(S)

rk(E)
ch1(E) + ch1(S)

)

+ Im
[

ZX(E)ρ0

](

−
rk(S)

rk(E)
ch2(E) + ch2(S)

) (3.2)

and the right-hand side can be rewritten as

rk(S)|ZX(E)|

(
ch1(S)

rk(S)
−

ch1(E)

rk(E)

)

.[β] + rk(S)|ZX(E)|2α

(
ch2(S)

rk(S)
−

ch2(E)

rk(E)

)

.

Pingali’s Theorem 1.5 holds assuming that η > 0, β = 0 and TrF(h) > 0. In
the case when β/2α ∈ c1(N) for a line bundle N , we can reduce to this situation by
considering the bundle E ′ = E ⊗ N , since there is a solution of the twisted vector
bundle Monge-Ampère equation on E if and only if there is a solution of the usual
vector bundle Monge-Ampère equation on E ′. In our setting however the “rationality
assumption” β ∈ c1(N) is not very natural, as it is not satisfied by many important
charges, and we will show that indeed this hypothesis is not necessary.
Still, in view of Theorem 1.5, it is natural to consider the condition

2αTrF(h) + rk(E)β > 0. (3.3)

We will prove shortly that any Z-positive metric, not necessarily solving the Z-critical
equation, satisfies (3.3). An interesting phenomenon is that the existence of some h ∈
H+(E) satisfying (3.3) is guaranteed by the inequality (1.2).
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Lemma 3.2 ([McC23]). Let Z be a polynomial central charge, and let E → X be a
holomorphic vector bundle on the Kähler surface X. With the notation of (2.5), the
cohomology class 2α ch1(E) + rk(E)[β] is positive if and only if for every curve V ⊂ X

Im

(
ZV (E↾V )

ZX(E)

)

> 0,

i.e. if and only if E is Z-positive.

Proof. Recall that the Demailly-Păun extension of the Nakai-Moishezon criterion [DP04]
(see also [Buc99] for the case of surfaces) implies that a class [χ] is positive if and only
if [χ].[V ] > 0 for every curve V ⊂ X . Hence, 2α ch1(E) + rk(E)[β] > 0 if and only if for
every V ⊂ X

(2α ch1(E) + rk(E)[β]) .[V ] > 0

which translates to, by definition of β
(

2α ch1(E) +
rk(E)

|ZX(E)|
Im
(

ZX(E) (ρ0U1 + ρ1[ω])
))

.[V ] > 0.

On the other hand, having fixed a curve V , Im (ZV (E)ZX(E)−1) > 0 is equivalent to

Im
(

ZX(E)ZV (E)
)

> 0

and ZX(E) is given by (2.3), while integrating the charge over V we find

ZV (E) =
(
ρ0 ch1(E) + rk(E) (ρ0U1 + ρ1[ω])

)
.[V ].

Hence, Im
(

ZX(E)ZV (E)
)

equals

Im
(

ZX(E)ρ0 ch1(E)
)

.[V ] + rk(E)Im
(

ZX(E) (ρ0U1 + ρ1[ω])
)

.[V ]

= |ZX(E)| 2α ch1(E).[V ] + rk(E)Im
(

ZX(E) (ρ0U1 + ρ1[ω])
)

.[V ].

So, Im
(

ZX(E)ZV (E)
)

> 0 is equivalent to

2α ch1(E).[V ] +
rk(E)

|ZX(E)|
Im
(

ZX(E) (ρ0U1 + ρ1[ω])
)

.[V ] > 0.

Lemma 3.3. If h ∈ H+(E) is Z-positive, then 2αTrF(h) + rk(E)β > 0.

Proof. Recall that a metric h ∈ H+(E) is Z-positive if for any x ∈ X and any ξ ∈
T 0,1
x

∗X × End(Ep)

i Tr [ξ∗ ∧ ξ ∧ (2αF + β ⊗ 1E) + ξ∗ ∧ (2αF + β ⊗ 1E) ∧ ξ] > 0.

Hence, if we choose ξ = v ⊗ 1E for some v ∈ T 0,1
x

∗X we get

iv̄ ∧ v ∧ Tr [2αF + β ⊗ 1E ] > 0

and as this holds for any choice of v, 2αTrF(h) + rk(E)β is a positive (1, 1)-form.
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Putting together Proposition 3.1, Lemma 3.2, and Lemma 3.3 with Pingali’s stability
result (Theorem 1.5) will prove Theorem 1.1 in the case α > 0, except for the possible
non-rationality of β and the fact that the statement of Theorem 1.5 in [Pin20] requires
that the form η in (1.4) is a positive top-degree form. We can translate this through the
correspondence in Lemma 2.3 to obtain a condition for a general Z-critical metric: with
the notation of (2.5),

η > 0 ⇐⇒ β2 − 4αγ > 0. (3.4)

We call (3.4) the volume form hypothesis. This hypothesis is in fact not necessary for
Theorem 1.5 to hold, as we show in Section 3.1.

Example 3.4. It is easy to construct rank 2 bundles over a surface which are Monge-
Ampère stable, Z-stable, Z-positive but are not Mumford stable. For a positive integer r,
let’s consider a non-split extension

0 → Lr → E → OX → 0

over X , the blow-up of P2 at one point. Denote H is the hyperplane section and E1

is the exceptional divisor. We consider [ω] = pH − qE1 with positive integers p, q such
that p > q. Now we choose Lr = r(qH − pE1), r ∈ N∗ so that

ch1(Lr).[ω] = 0 = ch1(E).[ω], (3.5)

and this implies that E is strictly Mumford semi-stable with respect to the positive
class ω. Moreover,

ch2(Lr) =
r2

2
(q2 − p2) < 0. (3.6)

Thus, for large r ≫ 1 the extension is non trivial as h1(X,Lr) 6= 0. This can be deduced
from the Hirzebruch-Riemann-Roch formula, since h0(X,Lr)− h1(X,Lr) + h2(X,Lr) =
r2

2
(q2 − p2) +O(r) is negative for large r.
Now, let’s consider a polynomial central charge Z for which U1 is proportional to [ω].

From (2.5), a computation shows that

|ZX(E)|α = U1.[ω]Im(ρ0ρ1) + [ω]2Im(ρ0ρ2)

which is independent of r and will be positive if U1 is well-chosen. Furthermore,

|ZX(E)|β =ch2(E)Im(ρ0ρ1)ω + 2Im((ρ0u1 + ρ1ω)(ρ0u2 + ρ1u1.[ω] + ρ2[ω]
2))

=r2
(
q2 − p2

2

)

Im(ρ0ρ1)ω + 2Im(ρ0ρ1u1.[ω] + ρ0ρ2[ω
2])u1 + 2Im(ρ1ρ2)[ω

2]ω

+ 2Im(ρ0ρ1)U2ω.

Since Im(ρ1ρ0) < 0, we can choose U2 proportional to [ω]2 and independent of r such
that β = κω with κ > 0 possibly very large.
We want to show that E is Monge-Ampère stable with respect to ϑ = [β/2α]. Firstly,

we note that ch2(Lr) = µMA,ϑ(Lr) < µMA,ϑ(OX) using (3.5) and (3.6). If not, there will
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be a rank 1 torsion free susbheaf L′ that will destabilize E with respect to the Monge-
Ampère slope µMA,ϑ. In the above exact sequence, let us denote the maps θ1 : E → OX

and θ2 : L
′ → E. Since L′ has rank one, it is Monge-Ampère stable and so the map θ1◦θ2

is either trivial or an isomorphism. In the first case, we get a new map L′ → L and since L
is Monge-Ampère stable, this implies µMA,ϑ(L

′) < µMA,ϑ(L). But this contradicts the
assumption that L′ destabilizes E. In the second case, the isomorphisms gives L′ = OX

and the extension splits which contradicts our construction. Eventually, this shows
that E is Monge-Ampère stable.
Under the above assumptions, E is Z-stable by Proposition 3.1. Moreover, it is easy to

check directly that E is Z-positive. Actually, |ZX(E)|(2αch1(E) + [β]rk(E)) is positive
for large κ and thus one can apply Lemma 3.2. We investigate the existence of Z-critical
metrics for this bundle in Example 4.12. Note that the choices of r and U1, U2 can be
done effectively.

Polynomial central charges are additive on short exact sequences, and this implies in
particular that

Lemma 3.5 ([DMS24]). If E → X is a Z-stable vector bundle for some polynomial
central charge Z, then E is simple.

Proof. As the Chern character ch(E) is additive on short exact sequences, if E is Z-
stable any vector bundle morphism φ : E → E is either 0 or an isomorphism. Indeed,
considering the kernel and range of φ we obtain

Im

(
ZX(ker φ)

ZX(E)

)

+ Im

(
ZX(ranφ)

ZX(E)

)

= Im

(
ZX(E)

ZX(E)

)

= 0.

However kerφ and ranφ are subsheaves of E, and if 0 < rk(kerφ) < rk(E) the Z-stability
of E would imply

Im

(
ZX(ker φ)

ZX(E)

)

< 0 or Im

(
ZX(ranφ)

ZX(E)

)

< 0,

which is a contradiction. But then φ must be the multiplication by a scalar: let λ
be any eigenvalue of φ on a fibre Ex, and apply the previous result to the morphism
φ̂ = φ− λ1E. As it is not invertible, it must be identically zero.

3.1 Consequences of Monge-Ampère positivity

This Section rephrases and expands the proof of [Pin20, Lemma 3.1]. We write the details
both for completeness and to highlight the importance of the Monge-Ampère positivity
of a solution of (2.7), which is stronger than the positivity assumption in [Pin20] but is
more natural from our point of view. We also highlight the fact that it is not necessary to
assume the volume form hypothesis, and we take into account a non-vanishing twist β/2α
in (2.7). Most of the computation will be done for vector bundles of arbitrary rank, as
we hope that our approach can be used to establish Theorem 1.1 for higher rank bundles.
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Consider a short exact sequence of vector bundles over the compact Kähler surface X

0 → S → E → Q → 0. (3.7)

Fix a Hermitian metric h on E, and let A ∈ A0,1(Hom(Q, S)) be the second fundamental
form of (3.7). Then the curvature forms of h, its restriction hS on S and the induced
metric hQ on Q are related by

Fα,β(h) =

(
FS,α,β −

i
2π
A ∧A∗ i

2π
D′A

− i
2π
D′′A∗ FQ,α,β −

i
2π
A∗ ∧ A

)

(3.8)

where we denote by FS and FQ the curvature forms of hS and hQ respectively, and
following the previous notation we set FS,α,β = FS + β

2α
⊗ 1S. Note also that (3.8)

depends on the decomposition β ⊗ 1E = β ⊗ 1S ⊕ β ⊗ 1Q.
Squaring (3.8) we obtain

Fα,β(h)
2 =

=

((
FS,β −

i
2π
A ∧A∗

)2
−
(

i
2π

)2
D′A ∧D′′A∗ (. . . )

(. . . )
(
FQ,α,β −

i
2π
A∗ ∧ A

)2
−
(

i
2π

)2
D′′A∗ ∧D′A

)

.

Assume that h is a solution of Fα,β(h)
2 = η ⊗ 1E ; then, we must have







(

FS,α,β −
i

2π
A ∧A∗

)2

−

(
i

2π

)2

D′A ∧D′′A∗ = η ⊗ 1S

(

FQ,α,β −
i

2π
A∗ ∧A

)2

−

(
i

2π

)2

D′′A∗ ∧D′A = η ⊗ 1Q.

Taking the traces and integrating, we find two equations relating ch2(S), ch2(Q), and A
to rk(S), rk(Q), and ϑ = [β]/2α, with some spurious terms. More precisely, for S we get

rk(S) [η].X =2 rk(S)µMA,ϑ(S) + rk(S)ϑ2 −
2i

2π

∫

X

Tr (FS,α,β ∧A ∧ A∗)

+

(
i

2π

)2 ∫

X

Tr
(
(A ∧ A∗)2

)
−

(
i

2π

)2 ∫

X

Tr (D′A ∧D′′A∗)

(3.9)

while for Q

rk(Q) [η].X =2 rk(Q)µMA,ϑ(Q) + rk(Q)ϑ2 −
2i

2π

∫

X

Tr (FQ,α,β ∧ A∗ ∧A)

+

(
i

2π

)2 ∫

X

Tr
(
(A∗ ∧ A)2

)
−

(
i

2π

)2 ∫

X

Tr (D′′A∗ ∧D′A) .

(3.10)

Note now that (1.4) implies

2 rk(E)µMA,ϑ(E) + rk(E)ϑ2 = rk(E) [η].X = (rk(S) + rk(Q))[η].X
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and from the exact sequence we get

2 rk(E)µMA,ϑ(E) + rk(E)ϑ2 =

=2 rk(S)µMA,ϑ(S) + rk(S)ϑ2 + 2 rk(Q)µMA,ϑ(Q) + rk(Q)ϑ2.

Hence, adding (3.9) and (3.10) we obtain

−
2i

2π

∫

X

Tr (FS,α,β ∧A ∧A∗)−
2i

2π

∫

X

Tr (FQ,α,β ∧A∗ ∧A)

+

(
i

2π

)2 ∫

X

Tr
(
(A ∧ A∗)2

)
+

(
i

2π

)2 ∫

X

Tr
(
(A∗ ∧ A)2

)

−

(
i

2π

)2 ∫

X

Tr (D′A ∧D′′A∗)−

(
i

2π

)2 ∫

X

Tr (D′′A∗ ∧D′A) = 0.

(3.11)

Lemma 3.6. With the previous notation, we have

Tr
(
(A∗ ∧ A)2

)
+ Tr

(
(A ∧A∗)2

)
= 0,

Tr (D′A ∧D′′A∗) = Tr (D′′A∗ ∧D′A) .

Proof. This is a consequence of the general fact that for any C ∈ Ak(End(E)) and
B ∈ Al(End(E)), Tr(C∧B) = (−1)kl Tr(B∧C). More explicitly, if B and C are End(E)-
valued 1-forms, we have

Tr(C ∧B ∧ C ∧ B) = Tr (CiBjCkBl) dx
i ∧ dxj ∧ dxk ∧ dxl =

= −Tr (BjCkBlCi) dx
j ∧ dxk ∧ dxl ∧ dxi = −Tr (B ∧ C ∧ B ∧ C) .

This proves the first identity, identifying A with the End(E)-valued differential form
(
0 A
0 0

)

in the matrix-block notation corresponding to the decomposition E = S +Q as smooth
vector bundles. The other identity is proved in the same way.

Hence (3.11) becomes

i

2π

∫

X

Tr (FS,α,β ∧ A ∧ A∗) +
i

2π

∫

X

Tr (FQ,α,β ∧A∗ ∧ A) =

= −

(
i

2π

)2 ∫

X

Tr
(
D′′A∗ ∧D′A

)
.

Substitute this expression for
∫
Tr (D′′A∗ ∧D′A) in (3.9)

rk(S) [η].X =2 rk(S)µMA,ϑ(S) + rk(S)ϑ2 −
i

2π

∫

X

Tr (FS,α,β ∧ A ∧ A∗) +

+
i

2π

∫

X

Tr (FQ,α,β ∧ A∗ ∧A) +

(
i

2π

)2 ∫

X

Tr
(
(A ∧A∗)2

)
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As 2µMA,ϑ(E) + ϑ2 = [η].X , the inequality of Monge-Ampère slopes

µMA,ϑ(S) < µMA,ϑ(E)

is equivalent to

−
i

2π

∫

X

Tr (FS,α,β ∧ A ∧A∗)+
i

2π

∫

X

Tr (FQ,α,β ∧ A∗ ∧ A) >

(
i

2π

)2 ∫

X

Tr
(
(A∗ ∧ A)2

)
.

(3.12)

Lemma 3.7. Assume that h ∈ H+(E) is Monge-Ampère positive. Then,

i

2π

∫

X

Tr (FQ,α,β ∧ A∗ ∧ A)−
i

2π

∫

X

Tr (FS,α,β ∧ A ∧ A∗) ≥ 2

(
i

2π

)2 ∫

X

Tr
(
(A∗ ∧ A)2

)

with equality if and only if A = 0. If instead h ∈ H+(E) is Monge-Ampère negative then

i

2π

∫

X

Tr (FQ,α,β ∧ A∗ ∧ A)−
i

2π

∫

X

Tr (FS,α,β ∧ A ∧ A∗) ≤ 2

(
i

2π

)2 ∫

X

Tr
(
(A∗ ∧ A)2

)

with equality if and only if A = 0.

Note that this inequality (in the positive case, say) is quite similar to (3.12), the only
difference is a factor of 2. Still, Lemma 3.7 implies (3.12) if (i)2Tr ((A∗ ∧ A)2) > 0, but
this last inequality might not be true in general.

Proof of Lemma 3.7. The two cases are symmetrical, so we focus on the positive one.

Choose ξ to be

(
0 A
0 0

)

. From (3.8) we have

ξ∗ ∧ ξ ∧ Fα,β(h) =

(
0 0
A∗ 0

)

∧

(
0 A
0 0

)

∧

(
FS,α,β −

i
2π
A ∧ A∗ i

2π
D′A

− i
2π
D′′A∗ FQ,α,β −

i
2π
A∗ ∧A

)

=

=

(
0 0
0 A∗ ∧A

)

∧

(
FS,α,β −

i
2π
A ∧A∗ i

2π
D′A

− i
2π
D′′A∗ FQ,α,β −

i
2π
A∗ ∧ A

)

=

=

(
0 0

(. . . ) A∗ ∧A ∧ FQ,α,β −
i
2π
(A∗ ∧A)2

)

while for the other factor we get

ξ∗ ∧ Fα,β(h) ∧ ξ =

(
0 0
A∗ 0

)

∧

(
FS,α,β −

i
2π
A ∧ A∗ i

2π
D′A

− i
2π
D′′A∗ FQ,α,β −

i
2π
A∗ ∧A

)

∧

(
0 A
0 0

)

=

=

(
0 0

A∗ ∧ FS,α,β −
i
2π
A∗ ∧ A ∧A∗ (. . . )

)

∧

(
0 A
0 0

)

=

=

(
0 0
0 A∗ ∧ FS,α,β ∧ A− i

2π
(A∗ ∧A)2

)
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Taking the trace, we see that the subsolution condition implies

i Tr

(

A∗ ∧ A ∧ FQ,α,β −
i

2π
(A∗ ∧ A)2

)

+ i Tr

(

A∗ ∧ FS,α,β ∧ A−
i

2π
(A∗ ∧ A)2

)

≥ 0

with equality if and only if A = 0. We rewrite this as

i

2π
Tr (FQ,α,β ∧ A∗ ∧A)−

i

2π
Tr (FS,α,β ∧ A ∧ A∗)− 2

(
i

2π

)2

Tr
(
(A∗ ∧A)2

)
≥ 0

which gives the thesis.

As a corollary, we obtain an extension of Theorem 1.5.

Corollary 3.8. Assume that E is a simple rank-2 vector bundle on a compact com-
plex surface X. If there exist a Hermitian metric on E that is both a solution and
a subsolution of the ϑ-twisted vector bundle Monge-Ampère equation (2.7), then E is
Monge-Ampère stable with respect to ϑ.

Proof. Assume that 0 → S → E → Q → 0 is a proper short exact sequence of holomor-
phic vector bundles on X . Since E has rank 2, the sub-bundle S and the quotient Q
have rank 1. Hence the second fundamental form A in (3.8) is in fact a 1-form with
values in Hom(S,Q) = C∞(X,C). But then Tr((A∗ ∧ A)2) = 0, and Lemma 3.7 im-
plies (3.12) which in turn guarantees µMA,ϑ(S) ≤ µMA,ϑ(E). Moreover, by Lemma 3.7
we know that equality holds if and only if the second fundamental form vanishes,
i.e. E = S ⊕ Q as a holomorphic vector bundle. As we are assuming that E is sim-
ple, we must have µMA(S) < µMA(E). The inequality for general subsheaves follows as
in the proof of [Pin20, Proposition 3.1].

Proof of Theorem 1.1. The positivity statement is given by Lemma 3.2 and Lemma 3.3,
which are a special case of [McC23, Theorem 1.6]. For the stability part, assume that h ∈
H+(E) is Z-positive and Z-critical and that S ⊂ E is a sub-bundle. Proposition 3.1
tells us that we want to establish

α (µMA,ϑ(S)− µMA,ϑ(E)) < 0.

First assume that E is strongly Z-positive, so that the inequality amounts to µMA,ϑ(S) <
µMA,ϑ(E), i.e. Monge-Ampère stability. But in this case h is Z-positive if and only if
it is Monge-Ampère positive, so Corollary 3.8 allows to conclude, even if S is just a
saturated subsheaf of E.
If instead α < 0, we must prove that µMA,ϑ(S) > µMA,ϑ(E). As h is Z-positive and α <

0, h is Monge-Ampère negative, and by Lemma 3.7 then we deduce that µMA,ϑ(S) >
µMA,ϑ(E) arguing as in Corollary 3.8. Note however that the proof of [Pin20, Proposi-
tion 3.1] does not allow us to extend this last inequality to also consider subsheaves of E
when α < 0.
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3.2 Other stability conditions

The main result of [DMS24] is the proof of a correspondence between the existence of
solutions of (1.1) and Z-stability in an asymptotic regime known as the large volume
limit, over Kähler manifolds of arbitrary dimension. More precisely, they prove

Theorem 3.9 ([DMS24]). Let Z be a polynomial central charge, and assume that E
is simple and sufficiently smooth. Then E admits a family {hk} of uniformly bounded
(in the C2-norm) Zk-critical metrics for all k ≫ 0 if and only if E is asymptotically
Z-stable, i.e. it is Zk-stable with respect to sub-bundles for all k ≫ 0.

A few comments about this result and how it relates to our Conjecture 1.4 are in order.
A difference between [DMS24] and the present work is that Z-stability in [DMS24] is
stated in terms of the arguments of ZX,k(S) and ZX,k(E), rather than the imaginary
part of the ratio of these two complex numbers, for any subbundle S ⊂ E. However, the
assumption Im(ρn) > 0 implies that, for k sufficiently large, Zk(N) lies in the upper-half
plane for any vector bundle N → X . Hence, the two inequalities

arg(ZX,k(S)) < arg(ZX,k(E)),

Im

(
ZX,k(S)

ZX,k(E)

)

< 0,

are actually equivalent, for k ≫ 0. Also, any Hermitian metric is Zk-positive for k
very large, so that Theorem 3.9 can be seen as a confirmation of the second part of
Conjecture 1.4. Note however that a bundle that is asymptotically Z-stable in the sense
of Theorem 3.9, i.e. Zk-stable for all k ≫ 0, is not necessarily Zk-positive for all k ≫ 0:

it is however true that Im
(

ZV,k(E↾V )ZX,k(E)
)

> 0 for any codimension 1 analytic

subvariety V ⊂ X , and in particular any bundle over a surface is asymptotically Z-
positive, see Lemma 3.10 below. This apparent discrepancy with Conjecture 1.4 may be
considered as further evidence for the fact that Conjecture 1.4 should only be expected
to hold under some critical phase condition for the charge. Note that it is likely that
this critical phase condition will likely not be satisfied in the large volume limit, i.e.
for a very large scale parameter k, as this is not the case for the deformed Hermitian
Yang-Mills equation in rank 1, which is essentially the only situation where the phase
condition is well-understood.

Lemma 3.10. Fix a polynomial central charge Z and a bundle E → X over a Kähler
manifold of dimension n. If {ρ1, . . . , ρn} all lie in the same half plane, for any analytic
subset V ⊂ X with 0 < dim(V ) < dim(X) there is k0 such that for every k > k0

Im

(
ZV,k(E↾V )

ZX,k(E)

)

> 0,

that is, E is asymptotically Z-positive. In particular, any vector bundle on a Kähler
surface is asymptotically Z-positive for any polynomial central charge.
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Proof. Assume that V ⊂ X has dimension p > 0. By definition of a polynomial central
charge, we have

ZX,k(E) =rk(E) kn ρn[ω]
n +O(kn−1)

ZV,k(E↾V ) =rk(E) kpρp [ω]
p.[V ] +O(kp−1).

The imaginary part of the ratio has the same sign as Im
(

ZX,k(E)ZV,k(E↾V )
)

, and we

can expand this as

Im
(

ZX,k(E)ZV,k(E↾V )
)

= rk(E)2kn+p[ω]n [ω]p.[V ] Im (ρ̄nρp) + O(kn+p−1).

If Im (ρ̄nρp) > 0, the leading order term in this expression is positive. This condition is
always true for p = n − 1 (by definition of a polynomial central charge) but might fail
if V has higher codimension. Assume now that ρ1, . . . , ρn all lie in the same half plane.
Up to rotating the stability vector ρ, we can assume that they all lie in the upper half
plane. Since Z is a polynomial central charge, Im (ρ̄jρj−1) > 0 for all j = 1, . . . , n. In
other words, using the principal value of the argument function,

π > arg(ρ1) > arg(ρ2) > · · · > arg(ρn−1) > arg(ρn) > 0,

so that Im (ρj ρ̄i) > 0 whenever i > j > 0.

Remark 3.11. With the notation of Lemma 3.10, it is clear that if the components of
the stability vector ρi do not lie all in the same half-plane, the inequality Im (ρjρ̄i) > 0
might fail for some i > j > 0. It is however true that, for very large k and any p-
dimensional subvariety V ⊂ X ,

Im

(
ρp
ρn

)

Im

(
ZV,k(E↾V )

ZX,k(E)

)

> 0 (3.13)

provided that Im (ρpρ̄n) 6= 0. Outside of the (hypothetical) supercritical range then one
should not expect that the existence of a Z-positive metric implies Z-positivity of the
bundle when the dimension of the manifold is greater than 2. If the existence of Z-
positive metrics implies any inequalities between the charges of E↾V and E, these must
depend on the codimension of V ⊂ X , as in (3.13), see also [McC23, Remark 4.3.18].

One could wonder if, instead of Conjecture 1.4, we should also consider stability
conditions that take into account possible subsheaves of E↾V for subvarieties V ⊂ X ,
as is conjectured in [DMS24]. More precisely, [DMS24, Conjecture 1.6] states that E
should admit a Z-critical connection if and only if the following condition holds:

Definition 3.12. A bundle E → X is Z-stable over subvarieties if for any V ⊂ X and
any proper short exact sequence 0 → S → E↾V → Q → 0 of coherent sheaves over V ,

Im

(
ZV (Q)

ZV (E↾V )

)

> 0.
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The following result shows that, at least in our simple setting of bundles over surfaces,
this condition is probably too strong.

Lemma 3.13. A bundle E on a compact Kähler surface X is Z-stable over subvarieties
if and only if E is Mumford stable when restricted to any curve in X.

Proof. Recall first that on a curve V ⊂ X it is sufficient to check Mumford stability over
sub-bundles rather than subsheaves, so we will assume that S is a sub-bundle of E↾V .
We will also stop explicitly indicating the restriction of E to V .
The inequality Im (ZV (Q)ZV (E)−1) > 0 is equivalent to

Im

(

ZV (Q)

rk(Q)

ZV (E)

rk(E)

)

> 0. (3.14)

By definition of the central charge, we have

ZV (E)

rk(E)
=

(

ρ0 U1 + ρ0
ch1(E)

rk(E)
+ ρ1[ω]

)

.[V ] = ρ0
(
µV (E) + U1.[V ]

)
+ ρ1µV ([ω])

where µV denotes the slopes of sheaves on V . Similarly, for Q we have

ZV (Q)

rk(Q)
= ρ0(µV (Q) + U1.[V ]) + ρ1µV ([ω]),

so we can compute the left hand-side of (3.14) as

Im
(

|ρ0|
2(µV (Q) + U1.[V ])(µV (E) + U1.[V ]) + |ρ1|

2µV ([ω])
2

+ ρ1ρ0µV ([ω])(µV (E) + U1.[V ]) + ρ0ρ1µV ([ω])(µV (Q) + U1.[V ])
)

= Im(ρ0ρ1)µV ([ω])
(

(µV (Q) + U1.[V ])− (µV (E) + U1.[V ])
)

= Im(ρ0ρ1)µV ([ω])(µV (Q)− µV (E)).

The central charge condition requires Im(ρ0ρ1) > 0, so (3.14) is equivalent to µV (Q) >
µV (E), i.e. E must be Mumford stable when restricted to V .

Remark 3.14. We can use Lemma 3.13 to exhibit examples of Z-stable bundles that
are not Z-stable over subvarieties, see Examples 3.15 and 4.2 below. This is part of the
motivation for formulating Conjecture 1.4 as a combination of a stability over subvarieties
characterising the existence of Z-positive metrics (i.e. subsolutions) and an additional
stability over subsheaves that should allow to pass from subsolutions to actual solutions.

Example 3.15. Consider an asymptotically Z-stable bundle E over the projective sur-
face X polarized by an ample line bundle L. Assume that E is not Mumford stable with
respect to L. Then, from [DMS24], it is known that E is Mumford semi-stable and there
exists a coherent subsheaf F of E for which the slope satisfies the equality µ(F ) = µ(E).
Moreover, the restriction of E over a generic curve C taken in the linear system of Lm

(for m large enough) is semistable by the Mehta-Ramanathan theorem for semistable
bundles. But this restriction E↾C cannot be Mumford stable as its degree can be com-
puted using the restriction to such generic curve: µ(F↾C) = µ(E↾C). Consequently,
Lemma 3.13 shows that E can never be Zk-stable over subvarieties for large k.
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3.3 Small variations of the charge and Mumford stability

We highlight a consequence of Theorem 1.1 that can be useful to provide new examples
of Z-critical metrics starting from known ones. First, the of Z-positivity of a Z-critical
metric implies an openness result, analogously to [Tak24, Lemma 3.4].

Proposition 3.16. If E → X is a simple bundle, the set of polynomial central charges
Z for which there exists a Z-positive and Z-critical metric h ∈ H+(E) is open.

Proof. We claim that the linearisation of the Z-critical equation at a Z-positive and
Z-critical metric h is a self-adjoint elliptic operator, and its kernel are the holomorphic
endomorphisms of E.
To prove this, we can reason as in [Tak24, Lemma 3.4] starting from the expression

of the linearisation in (2.9). First of all, it is equivalent to linearise the operator with
respect to a path of Hermitian metrics on E or along the action of a one-parameter
subgroup of the complex gauge group, say generated by V ∈ iA0(X,End(E, h)). Then
the linearised operator is

P : V 7→
i

2π

[
Im
(
e−iϑEZk(D)′

)
∧ (D′′D′ −D′D′′)V

]

sym

and it is elliptic as h is Z-positive by [DMS24, Lemma 2.36]. The Bianchi identity then
shows that P is self-adjoint with respect to the pairing on endomorphisms of E given
by trace and integration, see [DMS24, §2.3.4].
If we assume that P(V ) = 0, then taking the trace of P(V ) against V and integrating

by parts we obtain
〈D′′V,D′′V 〉 = 0

for the pairing defined in (2.11). So V must be a holomorphic endomorphism of E,
proving the claim.
In our case, since E is simple the kernel of the linearisation is 1E ·C. The image of the

Z-critical operator h 7→ Z is orthogonal to this set, so the Implicit Function Theorem
will give the desired h′.

From Theorem 1.1 and Lemma 3.5 then we obtain

Corollary 3.17. Let Z be a polynomial central charge. If E is a strongly Z-positive
bundle over a Kähler surface and h ∈ H+(E) is Z-positive and Z-critical for some central
charge Z, for any other central charge Z ′ sufficiently close to Z there is h′ ∈ H+(E) that
is Z ′-positive and Z ′-critical.

We can use Proposition 3.16 to construct examples of Z-critical metrics starting from
Mumford-stable bundles of arbitrary rank on a Kähler surface.
First, note that in the case α = 0 the Z-critical equation (2.4) simplifies substantially:

it essentially reduces to the Hermite-Einstein equation. It is possible then to establish
a stronger result than Theorem 1.1, for bundles of arbitrary rank.

22



Proposition 3.18. Fix a polynomial central charge Z, and assume that E → X is a
bundle on a Kähler surface such that α = 0, with the notation of (2.5). Then there is
a Z-positive and Z-critical Hermitian metric h ∈ H+(E) if and only if E is Z-positive
and Z-stable.

Proof. When α = 0, from (2.4) we see that the Z-critical equation becomes the weak
Hermite-Einstein equation

F(h) ∧ β + γ ⊗ 1E = 0. (3.15)

Moreover the expressions for β and γ simplify:
{

β = Im
(
e−iϑEρ1

)
ω

γ = Im
(
e−iϑE

(
ρ1ω ∧ u1 + ρ2ω

2
))

.

The key observation is that in the present situation the Z-positivity condition for any
metric h ∈ H+(E) is actually independent on h, and becomes just a condition on the
bundle. More precisely, from (2.12) we see that Z-positivity of a metric is equivalent
to β > 0, while by Lemma 3.2 the bundle E is Z-stable if and only if [β] > 0. Both
conditions are equivalent to Im

(
e−iϑEρ1

)
> 0, as ω is Kähler.

Assuming now that β is a Kähler form, (3.15) has a solution if and only if E is
Mumford stable with respect to β; to prove our claim, it will be sufficient to show that
if α = 0 Z-stability and Mumford stability coincide. As α = 0, (3.2) gives, for any
subsheaf S ⊂ E,

Im
(

ZX(S)ZX(E)
)

= rk(S) Im
(

ZX(E)ρ1

) (
− µL(E) + µL(S)

)
.

As β > 0 is equivalent to Im
(

ZX(E)ρ1

)

> 0, we see that Im
(

ZX(S)ZX(E)
)

< 0 if

and only if µL(S) < µL(E).

The condition α = 0 is realised precisely when

Im

(

ρ̄1ρ0U1.[ω] + ρ̄2ρ0[ω]
2 + ρ̄1ρ0

ch1(E).[ω]

rk(E)

)

= 0

which we rewrite as

U1.[ω] +
Im(ρ̄2ρ0)

Im(ρ̄1ρ0)
[ω]2 = −

ch1(E).[ω]

rk(E)
. (3.16)

Under this assumption, the positivity condition β > 0, i.e. Im
(

ZX(E)ρ1

)

> 0, becomes

Im(ρ1ρ̄2)rk(E)[ω]2 > Im(ρ0ρ̄1)
(
rk(E)U2 + U1.ch1(E) + ch2(E)

)
(3.17)

It is relatively easy to find examples of situations where (3.16) and (3.17) are satisfied;
for example, consider a Mumford stable rank 2 bundle on a surface of degree zero as in
Example 3.4. Then (3.16) can be satisfied by Im(ρ̄1ρ0)U1 + Im(ρ̄2ρ0)[ω] = 0, and (3.17)
becomes

Im(ρ1ρ̄2)[ω]
2 > Im(ρ0ρ̄1)

(

U2 −
1

4
c2(E)

)
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which is satisfied for example if 4U2 − c2(E) < 0.
Returning to the search for examples, we can deduce that Mumford stable bundles

are Z-stable with respect to many polynomial central charges, by considering small
variations around particular charges. More explicitly, for a small parameter t, assume
that Zt is a family of polynomial central charges depending on stability vectors ρt and
unitary charges U t, and assume that E → X is a Mumford stable bundle (with respect
to [ω]) such that

Im
(

Zt(E)ρt0

)

|t=0
= 0

Im
(

Zt(E)ρt1

)

|t=0
> 0.

Then by Proposition 3.18 we can Proposition 3.16 to conclude that for every small t
there is a Zt-critical metric on E.

4 Z-polystability, Gieseker stability, and some examples

We start this Section by discussing an example showing that Z-positivity might fail even
in very simple situations. Drawing from the rank-1 theories of the J-equation and the
dHYM equation, we expect that the most difficult part of establishing Conjecture 1.4
on surfaces or higher-dimensional subvarieties will be addressing when a bundle admits
a Z-positive metric. On the other hand, we expect that it should be relatively easy to
check the Z-positivity of a vector bundle, at least over a surface. For example, in the
rank 1 case it has been shown in [KSD24] that one just needs to check the inequality on
a finite number of curves to ensure Z-positivity.

Example 4.1. We consider polynomial central charges on X = P2 defined by a unitary
class of the form

U = eλ[ωFS ] = 1 + λ[ωFS] +
λ2

2
[ωFS]

2

for some real number λ. We claim that the Fubini-Study Hermitian metric hFS on the
bundle E = TP2 → X is Z-critical for any choice of stability vector. To see this, note
that the curvature of the Fubini-Study metric hFS on E solves

F(hFS) ∧ ωFS =
3

2
ω2
FS ⊗ 1E

F(hFS)
2 =

3

2
ω2
FS ⊗ 1E .

In particular, hFS is a solution of the vector bundle Monge-Ampère equation (as noted
in [Pin20]), and it is also easily checked to be Monge-Ampère positive. Then the Z-
critical operator will satisfy Z(hFS) ∈ C · ω2 and the definition of the phase eiϑE guar-
antees that for any choice of the coefficients ρi and λ we will get Im(e−iϑZ(hFS)) = 0.
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However, for many values of these coefficients E is not Z-positive. As an example,
consider ρ = (1,−i/3,−1 + i). We compute

ZX(E) =2

(

ρ0
λ2

2
+ ρ1λ+ ρ2

)

+ 3 (ρ0λ+ ρ1) +
3

2
ρ0 = λ2 + λ

(

3−
2

3
i

)

−
1

2
+ i

and if H ⊂ X is a hyperplane we have instead

ZH(E↾H) = 3 + 2 λ−
2

3
i.

If E were Z-positive, by Lemma 3.3 we should find Im
(

ZX(E)ZH(E↾H)
)

> 0. However,

we get Im
(

ZX(E)ZH(E↾H)
)

= 2
3
(λ2 − 3λ− 4), which is negative for −1 < λ < 4.

We can use this observation on TP2 to also show an example of a polynomial central
charge Z and a bundle that has a Z-positive and Z-critical metric, but is not Z-stable
over subvarieties (c.f. Definition 3.12).

Example 4.2. Consider again the bundle E = TP2 over P2 and a polynomial central
charge Z as in Example 4.1, i.e. U = eλωFS , so that the Fubini-Study Hermitian metric
on E is Z-critical. Lemma 3.13 shows that E is not Z-stable over subvarieties: its
restriction to a hyperplane H is not even semistable, as it splits as TH ⊕OH(1), see for
example [OSS11, pag. 14].
It remains to show that hFS is Z-positive for some central charge over P2. We choose

the dHYM charge, defined by the weights ρ = (−i,−1, i/2), and set λ = 0 (so, the
unitary class is trivial). Then, the charge is

ZX(E) = −3−
1

2
i

and the coefficients of (2.5) can be computed from the identities

|ZX(E)|α =
3

2
, |ZX(E)| β = −

1

2
ω, |ZX(E)| γ = −

3

2
ω2.

Note that the volume form hypothesis (3.4) is satisfied:

(
β

2α

)2

−
γ

α
=

1

36
ω2 + ω2.

As for Z-positivity, we should check that

i Tr
[

ξ∗ ∧ ξ ∧ (2αF(hFS) + β ⊗ 1E) + ξ∗ ∧ (2αF(hFS) + β ⊗ 1E) ∧ ξ
]

> 0

for any p ∈ X and any nonzero ξ ∈ T 0,1
p

∗X × End(Ep). In our particular case, this is
equivalent to

3i Tr
[

ξ∗ ∧ ξ ∧ F(hFS) + ξ∗ ∧ F(hFS) ∧ ξ
]

> ωFS ∧ i Tr [ξ∗ ∧ ξ] . (4.1)
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It is sufficient to check this at a single point, as the action of the unitary automorphisms
is transitive. So we can perform the computation at the point 0 ∈ U0 ⊂ P2. At this
point ωFS is the canonical symplectic form, and the Fubini-Study curvature is (up to a
multiple of 2π)

F(hFS) =

(
2 0
0 1

)

idz1∧dz̄1+

(
0 1
0 0

)

idz1∧dz̄2+

(
0 0
1 0

)

idz2∧dz̄1+

(
1 0
0 2

)

idz2∧dz̄2.

If we let ξ = Udz̄1 + V dz̄2 for two matrices U and V , we find

i Tr
[

ξ∗ ∧ ξ ∧ F(hFS) + ξ∗ ∧ F(hFS) ∧ ξ
]

=

=
[

3
(
|u1

1|
2 + |u1

2|
2 + |v11|

2 + |v21|
2
)
+ |u2

1|
2 + |u2

2|
2 + |v12|

2 + |v22|
2+

+ |u1
1 − v12|

2 + |u2
1 − v22|

2 + |v11 − u2
1|

2 + |v12 − u2
2|

2
]

ω2
FS

while for Tr [ξ∗ ∧ ξ] we have

ωFS ∧ i Tr [ξ∗ ∧ ξ] =
(
|u1

1|
2 + |u1

2|
2 + |u2

1|
2 + |u2

2|
2 + |v11|

2 + |v12|
2 + |v21|

2 + |v22|
2
)
ω2
FS

and clearly (4.1) is satisfied.

Example 4.3. We consider now a slight modification of [DMS24, Example 2.20], to see
what our conjecture predicts for a rank 3 bundle over X = P2. Take a Mumford stable
bundle S → X of rank 2 such that there exists a nonzero τ ∈ H1(X,S). This class τ
defines a non-split extension of OX by S that we denote by

0 → S → E → OX → 0.

It is easy to check that, in this situation, E and S satisfy

ch(S) = ch(E)

and the Bogomolov inequality implies 4ch2(S)
2 ≤ ch1(S)

2.
As in [DMS24], we choose the Fubini-Study form on P

2, ω ∈ H := c1 (O(1)) and we
consider the deformed Hermitian Yang-Mills charge for some B-field class B ∈ H2(X,R),
obtained by the choice of weights ρ = (−i,−1, i/2)

ZdHYM(E) = −i

∫

X

e−iHe−Bch(E).

More explicitly, for the dHYM charge we have

ZdHYM
X (E) =− i

(

1− iH −
1

2
H2

)

.

(

1−B +
1

2
B2

)

. (rk(E) + ch1(E) + ch2(E))

=rk(E)

(

H.B −
i

2
B2 +

i

2

)

− (H − iB) ch1(E)− ich2(E).
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We proceed to examine the Z-stability and Z-positivity of E. For the stability part it is
sufficient to check the ratio of ZX(S) and ZX(E), which is a positive multiple of (using
that ch(E) = ch(S))

Im
(

ZX(S)ZX(E)
)

=

(

H.B B −
1

2
(B2 − 1)H

)

.ch1(S)− ch2(S)H.B

If ch1(S) = 0, which is the case considered in [DMS24, Example 2.20], we see that E
is Z-stable if and only if ch2(S)H.B > 0. As ch2(E) ≤ 0, we see that E is Z-stable
when ch2(E) 6= 0 and H.B < 0.

As for the Z-positivity, it is sufficient to check when Im
(

ZH(E↾H)ZP2(E)
)

> 0 for a

hyperplane H ⊂ P2. The direct computation gives

ZH(E↾H) =− i (1− iH) . (1−B) . (rk(E) + ch1(E))

=3 (iB.H − 1)− ich1(E).H.

so that

Im
(

ZH(E↾H)ZX(E)
)

=
(
3B.H − ch1(E).H

)2
+ 3B.ch1(E)− 3ch2(E)−

9

2
(B2 − 1) =

=
1

9

[

(B.H − µH(E))2 + µB(E)−
ch2(E)

3
−

1

2
(B2 − 1)

]

.

Assume that B = xH for some real number x. Then, E is Z-positive if and only if

(x− µH(E))2 + µH(E)2 + 1 >
2

3
ch2(E)

while it is Z-stable if and only if
(
x2 + 1

)
H.ch1(S)− 2x ch2(S) < 0

So our conjecture predicts that, if ch1(S) = 0 and ch2(S) 6= 0 (so that ch2(E) < 0),
there is a positive solution h ∈ H+(E) of the dHYM equation for every x < 0. If x ≥ 0
instead we can not apply Theorem 1.1 directly to deduce that there is no dHYM-positive
solution of the dHYM equation, as that result applies only to rank 2 bundles.

Example 4.4. As a particular case of the construction in Example 4.3, we take S =
TP2 ⊗KP2. Of course S is stable, as TP2 is stable. Moreover, H1(X,S) ∼= H1,1(X)∨ by
Serre duality, so we can define a nontrivial extension E by using the Fubini-Study form.
The components of the Chern character are

c1(E) =c1(TP
2) + 2c1(KP2) = −3H

ch2(E) =c1(KP2)2 + c1(TP
2).c1(KP2) + ch2(TP

2) =
3

2

(4.2)

while the Z-positivity and Z-stability conditions become, respectively,
{

(x+ 1)2 + 2 > 1

− (x2 + 1)− x < 0
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so the bundle is Z-positive and Z-stable for every choice of x, and there should be a
Z-positive solution of the dHYM equation.
The dHYM charge of E as a function of x is

ZdHYM
X (E) = 3 x+ 3−

3

2
i (x+ 2)x.

To write the dHYM equation we choose xω as a representative of the class B = xH ,
and the coefficients of the equation are determined by







|ZX(E)|α =
1

2
Im
(

ZX(E)(−i)
)

= −
3

2
(1 + x)

|ZX(E)| β = Im
(

ZX(E) (i x− 1)
)

ω =
3

2
x2ω

|ZX(E)| γ =
1

2
Im
(

ZX(E)(i(1− x2) + 2x)
)

ω2 =
3

2

(
1 + x+ x2

)
ω2.

Hence, the dHYM equation is equivalent to

−(1 + x)F(h)2 + x2ω ∧ F(h) +
(
1 + x+ x2

)
ω2 ⊗ 1E = 0 (4.3)

which we could rewrite as a Monge-Ampère type condition (assuming x 6= −1) as

(

F −
x2

2(1 + x)
ω ⊗ 1E

)2

=
(x2 + 2(1 + x))

2

4(1 + x)2
ω2 ⊗ 1E

and the volume form hypothesis is always satisfied.
Take h = hS + hO

P2
where hO

P2
is the flat metric on OP2, and hS is the product of

the Fubini-Study Hermitian metrics on TP2 and KP2. Then, letting A be the second
fundamental form of S ⊂ E,

F(h) =

(
FS − i

2π
A ∧ A∗ i

2π
D′A

− i
2π
D′′A∗ − i

2π
A∗ ∧A

)

and FS satisfies

FS = FTP2 ⊗ 1KX
+ 1TP2 ⊗FKX

= FTP2 ⊗ 1KX
− 3ω ⊗ 1S.

The dHYM equation (4.3) can be seen as a system of equations for

A ∈ A0,1(X,Hom(OX , S)) = A0,1(X,S).

Explicitly, in the usual local coordinate system over U0 ⊂ P2, we can locally trivialise S
by the local frame ∂zb ⊗ dzc ∧ dzd, and any such A can be written as

A =
(
A b

ā cddz̄
a
)
⊗ ∂zb ⊗ dzc ∧ dzd

where we added the parenthesis to highlight the distinction between the form and the
bundle parts. We choose the coefficients of A as the unique solutions of A b

ā bc = −(gFS)cā.
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To ease the notation, we denote by ea = ∂za ⊗dz1 ∧dz2 the local frame for S, with dual
co-frame εa = dza ⊗ ∂z1 ∧ ∂z2 . We also let r2 := |z1|2 + |z2|2, and so

A =
1

(1 + r2)2

(

z1z̄2dz̄1 − (1 + |z1|2)dz̄2
)

⊗ e1

+
1

(1 + r2)2

(

− z̄1z2dz̄2 + (1 + |z2|2)dz̄1
)

⊗ e2.
(4.4)

Then for its adjoint A∗ we have

A∗ =
(

A b
ā 12(gFS)cb̄ det(gFS)

−1dza
)

⊗ εc

=
(
−(1 + r2)dz2

)
⊗ ε1 +

(
(1 + r2)dz1

)
⊗ ε2.

We claim that this choice of A satisfies (4.3). As each piece is equivariant with respect
to the unitary action on P2 and its lift to E, it will be sufficient to check that over the
point p = {z1 = z2 = 0}, for which we have

A =− dz̄2 ⊗ e1 + dz̄1 ⊗ e2,

A∗ =− dz2 ⊗ ε1 + dz1 ⊗ ε2.

We claim that D′A vanishes at p. To prove this, we express D′A in the usual local frame
for S:

D′A = ∂
(
A i

ā dz̄
a
)
⊗ ei +

(
A i

ā dz̄
a
)
∧D′ei.

Note first that, at the point p, ∂(A i
ā dz̄

a) = 0 for all indices a, i, from (4.4). So it remains
to show that (D′ei)|p = 0. Recall that ei = ∂zi ⊗dz1 ∧dz2, and that D′ is the (1, 0)-part
of the Chern connection of the Fubini-Study metric on TP2 ⊗KP2, so D′ei is a sum of
Christoffel symbols of the Fubini-Study metric, and they all vanish at p.
This observation already shows that the off-diagonal components ofF(h)2 and F(h)∧ω

with respect to the decomposition E = S + OX vanish. We proceed to compute the
other components of F(h)2 and ω ∧F(h). The direct computation gives, at the point p

i

2π
A∗ ∧ A =

1

2π

(
idz2 ∧ dz̄2 + idz1 ∧ dz̄1

)
= ω;

A ∧A∗ =− dz2 ∧ dz̄2 ⊗ e1 ⊗ ε1 + dz2 ∧ dz̄1 ⊗ e2 ⊗ ε1

+ dz1 ∧ dz̄2 ⊗ e1 ⊗ ε2 − dz1 ∧ dz̄1 ⊗ e2 ⊗ ε2

=

(
−dz2 ∧ dz̄2 dz1 ∧ dz̄2

dz2 ∧ dz̄1 −dz1 ∧ dz̄1

)

;

(
i

2π

)2

(A ∧ A∗)2 =−
1

2
ω2 ⊗ 1S;

FTP2 =

(
1

2π

)(
2idz1 ∧ dz̄1 + idz2 ∧ dz̄2 idz1 ∧ dz̄2

idz2 ∧ dz̄1 idz1 ∧ dz̄1 + 2idz2 ∧ dz̄2

)

.
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We put together these forms to get

FTP2 ∧
i

2π
A ∧A∗ =−

3

2
ω2 ⊗ 1S;

i

2π
A ∧ A∗ ∧ FTP2 =−

3

2
ω2 ⊗ 1S;

ω ∧
i

2π
A ∧A∗ =

1

2π
ω ∧

(
−idz2 ∧ dz̄2 idz1 ∧ dz̄2

idz2 ∧ dz̄1 −idz1 ∧ dz̄1

)

= −
1

2
ω2 ⊗ 1S.

Using these identities, the End(S) part of F2 at the point p becomes

(

FS −
i

2π
A ∧A∗

)2

−

(
i

2π

)2

D′A ∧D′′A∗ =

=
3

2
ω2 ⊗ 1S − 3ω ⊗ 1S + 3ω2 ⊗ 1S −

1

2
ω2 ⊗ 1S = ω2 ⊗ 1S,

so the End(S) part of (4.3) is

−(1 + x)
(
ω2 ⊗ 1S

)
+ x2

(
−ω2 ⊗ 1S

)
+
(
1 + x+ x2

)
ω2 ⊗ 1S = 0,

which is clearly always satisfied. For the End(OX) part of (4.3) instead we have

−(1 + x)
(
ω2
)
− x2ω2 +

(
1 + x+ x2

)
ω2 = 0

that again is always true.

Our computations in Section 3.1 can be used to establish that:

Lemma 4.5. Let E be a vector bundle over a Kähler surface. For any polynomial central
charge Z such that Im(ZX(E) ρ0) > 0, if S ⊂ E is a sub-bundle of rank rk(E) − 1
and h ∈ H+(E) is a Z-positive Z-critical metric, then

Im

(
ZX(S)

ZX(E)

)

≤ 0, (4.5)

with equality if and only if E splits. The same conclusion applies if instead Im(ZX(E) ρ0)
is negative and rk(S) = 1.

Proof. We prove this only in the positive case, that is when Im(ZX(E) ρ0) > 0, as
the same argument with opposite inequalities applies to the negative case. Assuming
that Im(ZX(E) ρ0) > 0 and that the second fundamental form A satisfies i2Tr((A∗ ∧
A)2) ≥ 0, the first inequality in Lemma 3.7 is stronger than (3.12), so Lemma 3.7 will
imply the inequality (4.5) under these assumptions.
We prove that i2Tr((A∗ ∧ A)2) ≥ 0 if rk(S) = rk(E) − 1. Note first that in this

case A∗ ∧A is just a (1, 1)-form. Moreover, in an orthonormal frame for S +Q = E, we
can write A = Aādz̄

a for matrices Aā, and A∗ = A∗
ādz

a; hence,

(i A∗ ∧ A)2 = 2 (A∗
1̄A1̄A

∗
2̄A2̄ − A∗

1̄A2̄A2̄A
∗
1̄) idz

1 ∧ dz̄1 ∧ idz2 ∧ dz̄2,
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so it will be sufficient to show that A∗
1̄A1̄A

∗
2̄A2̄ − A∗

1̄A2̄A2̄A
∗
1̄ ≥ 0. If we write A1̄ =

(x1, . . . , xs)⊺ and A2̄ = (y1, . . . , ys)⊺ we get

∑

i,j

|xi|2|yj|2 −
∑

i,j

x̄iyixj ȳj =
∑

i 6=j

|xi|2|yj|2 −
∑

i 6=j

x̄iyixj ȳj =
∑

i 6=j

|x̄iyi − xj ȳj|2 > 0.

This can be used to exhibit examples of central charges and higher-rank bundles that
do not admit a Z-positive Z-critical metric. In particular, one might wonder if the same
phenomenon observed for TP2, i.e. that it admits Z-critical metrics for many central
charges, holds for the bundle considered in Example 4.4. Using Lemma 4.5, we show
that the answer is negative.

Example 4.6. Consider a polynomial central charge Z given by a vector ρ = (ρ0, ρ1, ρ2)
and the short exact sequence over X = P2

0 → S → E → OX → 0

of Example 4.4. For simplicity, we assume that the unitary class U is trivial, U = 1.
Then the charges of E and S are, using (4.2),

ZX(E) =3 ρ2 − 3 ρ1 +
3

2
ρ0

ZX(S) =2 ρ2 − 3 ρ1 +
3

2
ρ0 = ZX(E)− ρ2

hence we find
Im
(

ZX(E)ρ0

)

= 3 Im (ρ̄2ρ0)− 3 Im (ρ̄1ρ0)

and so Im
(

ZX(E)ρ0

)

> 0 if and only if Im (ρ̄2ρ0) > Im (ρ̄1ρ0). Instead, to check

Z-stability we first compute

Im
(

ZX(E)ZX(S)
)

=Im (ρ̄2 ZX(S)) = Im

(

ρ̄2

(

2 ρ2 − 3 ρ1 +
3

2
ρ0

))

=− 3 Im(ρ̄2 ρ1) +
3

2
Im(ρ̄2 ρ0)

and we conclude that if E is Z-stable, then it must be

Im(ρ̄2 ρ0) < 2 Im(ρ̄2 ρ1).

By Lemma 4.5 we deduce that E can not admit any Z-positive and Z-critical metric if

{

Im (ρ̄2ρ0) > Im (ρ̄1ρ0)

Im(ρ̄2 ρ0) > 2 Im(ρ̄2 ρ1).

Many charges satisfy this, an example is ρ = (1,−i,−1− 3i).
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4.1 Z-polystability

Consider the case of a decomposable rank 2 bundle E = L1 ⊕ L2 → X . If hi ∈ H+(Li)
for i = 1, 2, then we get a metric h = h1 ⊕ h2 on E, and

F(h) =

(
F(h1) 0

0 F(h2)

)

under the decomposition End(E) = End(L1) + Hom(L1, L2) + Hom(L2, L1) + End(L2).
Hence, for this metric, (2.6) splits as the system

{

(2αF(h1) + β)2 = β2 − 4αγ

(2αF(h2) + β)2 = β2 − 4αγ.
(4.6)

Under the volume form hypothesis β2 − 4αγ > 0, by Yau’s solution of the Calabi
conjecture, the system (4.6) has solutions under the following conditions:

{

2αLi + [β] has a sign for i = 1, 2

(2αLi + [β])2 = [β2 − 4αγ] for i = 1, 2.
(4.7)

As the bundle E is decomposable, by Lemma 3.5 it is not Z-stable. However, we have

Lemma 4.7. The following are equivalent:

1. Im
(

ZX(S)
ZX(E)

)

≤ 0 for any proper sub-bundle S ⊂ E;

2. Im
(

ZX(L1)
ZX(L2)

)

= 0;

3. (2αL1 + [β])2 = (2αL2 + [β])2 = [β2 − 4αγ].

Proof. The equivalence between 1 and 2 is a direct consequence of the fact that each Li

is a line bundle, and that the sequence 0 → L1 → E → L2 → 0 splits, so that ZX(E) =

ZX(L1)+ZX(L2). Note also that each condition is in turn equivalent to Im
(

ZX(Li)
ZX(E)

)

= 0

for i = 1, 2. From Proposition 3.1 we know that Im
(

ZX(Li)
ZX(E)

)

= 0 is equivalent to the

equality of Monge-Ampère slopes µMA,ϑ(Li) = µMA,ϑ(E). By definition of the Monge-
Ampère slope we get, for ϑ := [β/2α],

µMA,ϑ(Li) =ch2(Li) + ch1(Li).ϑ

µMA,ϑ(E) =
ch2(E)

2
+

ch1(L1).ϑ+ ch1(L2).ϑ

2

hence the Monge-Ampère slopes are equal if and only if

(2αL1 + [β])2 = (2αL2 + [β])2

and they must each equal [β2 − 4αγ] since ch2(E) + ch1(E).ϑ+ ϑ2 = ϑ2 − γ/α.

32



The conditions in (4.7) imply the existence of solutions of the Z-critical equation, so
they must be part of a hypothetical Z-polystability condition on E = L1 ⊕ L2. From
(the proof of) [DMS24, Theorem 1.4] we know that, if β2 − 4αγ is a volume form, then
the following conditions are equivalent for each i = 1, 2:

1. Li admits a Z-critical metric;

2. Li admits a Z-positive metric;

3. 2αLi + [β] > 0.

In particular, under the volume form hypothesis, [DMS24, Theorem 1.4] implies Conjec-
ture 1.4 for line bundles over surfaces. Looking at the conditions in (4.7) and Lemma 4.7,

it is then natural to interpret the equation Im
(

ZX(L1)
ZX(L2)

)

= 0 as part of a hypothetical

polystability condition for E = L1 ⊕ L2, which motivates an extension of Definition 1.2
and Conjecture 1.4 to the case of decomposable bundles.

Definition 4.8. Given a polynomial central charge Z, we say that a vector bundle E is
Z-polystable if it is a direct sum E =

⊕
Ei of bundles that are Z-stable, such that for

every i, j

Im

(
ZX(Ei)

ZX(Ej)

)

= 0. (4.8)

Conjecture 4.9. For any polynomial central charge Z and any holomorphic vector
bundle E on a compact Kähler surface, there exists a Z-positive solution h ∈ H+(E)
of the Z-critical equation if and only if E is a direct sum of vector bundles that are
Z-positive, Z-stable, and satisfy (4.8).

Again, it is clear that this conjecture can only hold under some additional assumption,
a supercritical phase condition that is yet to be understood. For the toy example we are
examining, i.e. E = L1⊕L2, we know that we should impose the volume form hypothesis

β2 − 4αγ > 0.

We have already proven that, under the volume form hypothesis, if L1 and L2 are Z-
positive and satisfy (4.8), then there is a Z-positive solution of the Z-critical equation
on E. Our results in Section 3.1 give us the converse implication as well.

Lemma 4.10. Let Z be a polynomial central charge over a Kähler surface that satisfies
the volume form hypothesis. Then Conjecture 4.9 holds for any rank 2 decomposable
vector bundle E = L1 ⊕ L2.

Proof. It remains to show that if E = L1⊕L2 has a Z-positive solution of the Z-critical
equation then the two bundles Li are themselves Z-positive and satisfy (4.8), as Z-
stability is a void condition for line bundles. We prove this by rephrasing it through the
correspondence with the Monge-Ampère equation of Lemma 2.3. We consider only the
case when α > 0, the other situation is completely symmetrical.
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Assume that E = L1 ⊕ L2 has a Monge-Ampère–positive metric h ∈ H+(E) (with
respect to β) that solves the twisted vector bundle Monge-Ampère equation (2.7). By
(the proof of) Corollary 3.8 then µMA,ϑ(Li) ≤ µMA,ϑ(E) for i = 1, 2. However E =
L1⊕L2 as a holomorphic vector bundle, so µMA,ϑ(Li) = µMA,ϑ(E) and this implies that
the second fundamental form of h with respect to the inclusion L1 ⊂ E vanishes (c.f.
proof of Corollary 3.8). From (3.8) the curvature of h satisfies

Fα,β(h) =

(
Fα,β(hL1

) 0
0 Fα,β(hL2

)

)

(4.9)

where hLi
denotes the restriction of h to L1 and L2 respectively. Hence hLi

satisfy

Fα,β(hL1
)2 = η = Fα,β(hL2

)2

so (4.8) holds. As we are assuming that h is Monge-Ampère positive, from (4.9) it also
easily follows that each hLi

must be Monge-Ampère positive.

Remark 4.11. Not every pair of solutions (h1, h2) of (4.6) gives a Z-critical metric h =
h1 + h2 that is also Z-positive, as the signs of 2αLi + [β] might not be the same.

4.2 Z-stability and Gieseker stability

In his PhD thesis [Leu93], Leung introduced the notion of almost Hermitian-Einstein
metric. For a given holomorphic vector bundle E over a polarised compact complex
manifold L → X and k sufficiently large, a metric hk is said to be almost Hermitian-
Einstein if its Chern connection satisfies

[exp (F(hk) + k ω ⊗ 1E) ∧ ToddX ]
top = ck

ωn

n!
⊗ 1E (4.10)

where ω is a Kähler metric in c1(L) and ToddX is the ω-harmonic representative of
the Todd class of X . This equation has been introduced as an analytic counterpart to
Gieseker stability.
Note that F(hk) + k ω ⊗ 1E is the curvature form of a connection on E ⊗ Lk; then,

by Hirzebruch-Riemann-Roch we have
∫

X

Tr [exp (F(hk) + k ω ⊗ 1E) ∧ ToddX ]
top = ch(E ⊗ Lk).ToddX = χ(E ⊗ Lk),

where χ(E ⊗ Lk) denotes the Euler Characteristic of the product bundle, so the con-
stant ck in (4.10) must be

ck =
χ(E ⊗ Lk)

Vol(X) rkE
.

Leung’s equation (4.10) can be reinterpreted as a special case of the Z-critical equa-
tion (1.1), given by the almost Hermite-Einstein charge

ZaHE
k (h) = ck

ωn

n!
⊗ 1E + i

(
exp (F(h) + k ω ⊗ 1E) ∧ ToddX

)top
.
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Indeed, by integrating over X we find
∫

X

Tr
(
ZaHE

k (h)
)
= χ(E ⊗ Lk) (1 + i)

so that the corresponding equation (1.1) is equivalent to (at least if χ(E ⊗ Lk) 6= 0)

0 =Im
(
(1− i)ZaHE

k (h)
)
=

=− ck
ωn

n!
⊗ 1E +

[
exp (F(h) + k ω ⊗ 1E) ∧ ToddX

]top

which is precisely (4.10). Note that ZaHE
k can be expressed in a form closer to (2.1):

ZaHE
k (h) =

[

ck
ωn

n!
eF(h)ToddX + iek ωeF(h)ToddX

]top

=

[(
( ck
kn

+ i
) (kω)n

n!
1E +

(
n−1∑

j=0

i

j!
(kω)j

))

∧ eF(h) ∧ ToddX

]top

.

The stability vector ρaHE := (ρ1, . . . , ρn) is then







ρj =
i

j!
for 0 ≤ j ≤ n− 1

ρn =
1

n!

( ck
kn

+ i
)

.

An important remark is that the almost Hermite-Einstein charge does not fit precisely in
the discussion of [DMS24], as it is not properly a polynomial central charge: ρj/ρj+1 =
j + 1 for j < n − 1, hence Im(ρj/ρj+1) is not positive for j < n − 1. It is however
true that Im(ρn−1/ρn) > 0 for k → ∞ (by asymptotic Riemann-Roch), which is the
assumption needed to carry out the asymptotic analysis of the equation in [DMS24].
Another issue is that the coefficient ρn defining the charge depends on the bundle E
itself, so the charge is not additive over short exact sequences, for example.
Nevertheless, given a bundle E, we can still apply our results to the almost Hermite-

Einstein charge, by considering the coefficients ρj as fixed. In this way we obtain a Z-
critical equation for any bundle F , which will coincide with the almost Hermite-Einstein
equation on F only if χ(F⊗Lk)rk(E) = χ(E⊗Lk)rk(F ): explicitly, the almost Hermite-
Einstein charge defined by E → X , ZaHE

E,k , is defined by the unitary class U = ToddX

and the stability vector






ρj =
i

j!
for 0 ≤ j ≤ n− 1

ρn =
1

n!

( ck
kn

+ i
)

so that for any vector bundle F

ZaHE
E,k (F ) = χ(E ⊗ Lk)

rk(F )

rk(E)
+ iχ(F ⊗ Lk).
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In particular for any coherent subsheaf F ⊂ E we have

Im
(

ZaHE
E,k (E)ZaHE

E,k (F )
)

=χ(E ⊗ Lk)Im

(

(1− i)

(

χ(E ⊗ Lk)
rk(F )

rk(E)
+ iχ(F ⊗ Lk)

))

=χ(E ⊗ Lk)

(

χ(F ⊗ Lk)− χ(E ⊗ Lk)
rk(F )

rk(E)

)

.

Since χ(E ⊗ Lk) > 0 for k ≫ 0, we obtain that ZaHE
E,k -stability of E coincides with

Gieseker stability for sufficiently large k.
This remark has two applications. Firstly, all our results however apply to this almost-
Hermitian charge for any k, thus giving an analogue of Gieseker-stability in a non-
asymptotic case, for rank 2 bundles over surfaces. Secondly, the proof of Theorem 3.9
works in that case and provides the existence of an almost Hermitian-Einstein metric on
a Gieseker stable bundle which is sufficiently smooth, completing the proof of the main
result of Leung’s thesis. Moreover, the techniques of [DMS24] do not require k to be a
integer, it can be chosen as a real positive number sufficiently large.

Example 4.12. We continue to investigate Example 3.4 in order to construct a Z-
positive Z-critical metric on E, thus checking Conjecture 1.4 in this particular case. As
before, we consider a non-split extension

0 → Lr → E → OX → 0

over X , the blow-up of P2 at one point, but we fix [ω] = 3H − E1 = c1(X). Given any
stability vector ρ = (ρ0, ρ1, ρ2), we consider U1 proportional to c1(X) such that α > 0
in (2.5). Since ch2(Lr) < ch2(OX), the same reasoning as we did for Monge-Ampère
stability shows that E is Gieseker stable (and thus simple) with respect to the integral
class [ω]. From the exact sequence, E is also sufficiently smooth as the graded object
Gr(E) = Lr ⊕E/Lr is a holomorphic bundle. Consequently, there exists k0(r) > 0 such
that for any real k > k0(r), there exists a metric hr,k on E that solves (4.10) and this
simplifies to

F(hr,k)
2 +

(

2k +
1

2

)

ω ∧ F(hr,k) = c′r,kω
2 ⊗ 1E

where c′r,k is a topological constant. We explain now how we will fix the Z-charge.
As we explained before, we have the flexibility to choose U2 independently of r such

that |ZX(E)|β writes as κω where κ > 0 is as large as we want. Since |ZX(E)|α is
positive and does not depend on U2, the Z-critical equation (2.4) becomes

F(h)2 + κ′ω ∧ F(h) + γ′ω2 ⊗ 1E = 0

where κ′ = κ
α
> 0 is large as we want while γ′ is a constant, which is fixed topologically.

From above discussion, we can choose U2 independently of r such that κ′ > 2k0(r) +
1
2

and we can identify the topological constants γ′ = −c′r,κ/2−1/4. Consequently, the almost
Hermitian-Einstein metric hr,κ/2−1/4 is solution to the Z-critical equation.
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To sum up, we have obtained an infinite family of Mumford semistable bundles E
(in the r parameter) such that for any stability vector ρ and for an infinite choice of
unipotent classes 1 + u1 + u2, E is Z-stable and admits a Z-critical metric. From
Theorem 3.9, the boundedness of the almost Hermitian-Einstein metrics ensure that

i Tr
[(
2αF(hr,κ/2−1/4) + β ⊗ 1E

)
∧ ξ∗ ∧ ξ

]

sym
> 0

for any ξ ∈ T 0,1
p

∗X × End(Ep) at p ∈ X , since κ can be taken arbitrarily large. This
shows that we have obtained a Z-positive metric.
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