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Abstract. De Bruijn tori, also called perfect maps, are two-dimensional
periodic arrays of letters drawn from a given finite alphabet, such that
each possible pattern of a given shape (m,n) appears exactly once within
one period of the torus. It is still unknown if de Bruijn tori of some certain
size exist, like e.g. square shaped de Bruijn Tori with odd m = n ∈
{3, 5, 7} and an even alphabet size k. However, in certain applications
like positional coding, sub-perfect maps are sufficient, i.e. one does not
need every possible (m,n)-pattern to appear, as long as a sufficient large
number of such patterns is captured and every pattern occurs at most
once. We show, that given any m = n and a square alphabet size k2, one
can efficiently construct a sub-perfect map which is almost perfect, i.e. of
almost maximal size. We do this by introducing de Bruijn rings, i.e. sub-
perfect maps of minimal height, and providing an efficient construction
method for them. We extend our results to non-square torus shapes and
arbitrary non-prime alphabet sizes.

1 Introduction

De Bruijn tori, also called perfect maps, are two-dimensional cyclic matrices
with their entries being drawn from some alphabet, such that every pattern of
a given rectangular shape occurs exactly once within one period.

One of the most prominent use cases of de Bruijn tori is in the spatial coding
context, e.g. for robot localization based on some optical ground pattern [17,18].

In such a use case, it is not required that every pattern occurs exactly once.
It is sufficient, that every pattern occurs at most once. Such maps are called sub-
perfect maps [11]. For optical robot localization, a spatial code based on some
(m,n)-pattern of letters from an alphabet of size k should have the following
properties:

1. every (m,n)-pattern occurs at most once. I.e. a local pattern uniquely de-
termines the position.

2. (Almost) every possible (m,n)-pattern occurs somewhere. I.e. a large area
can be covered.

3. m,n, k are small numbers. I.e. the pattern to be captured locally is of a
manageable size.
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4. The code can efficiently be generated for different m,n, k. I.e. it can be
streamlined for the specific application.

5. The decoding should be efficient. I.e. the amount of data to be stored for
decoding the position given some local pattern should be much smaller than
the whole code and the time complexity should be as low as possible.

The first two properties point to sub-perfect maps. Nevertheless, even in
spatial coding, it is advantageous when the majority if not all patterns occur in
the code. However, it is still unknown if certain types of de Bruijn tori exist,
e.g. no square shaped de Bruijn torus with pattern shape (n, n) is known for
n ∈ {3, 5, 7} and even alphabet size [8]. For such cases, it is of interest to be able
to generate sub-perfect maps which are not far away from perfect maps in that
they contain almost every possible local pattern.

For these applications, we provide a new efficient construction method for
sub-perfect maps including square shaped maps for any square pattern shape
(n, n) (thus including n ∈ {3, 5, 7}). Moreover, we prove, that these maps are
almost perfect, i.e. for increasing m,n, the percentage of not occurring patterns
tends to zero.

2 Basic Definitions and Related Work for the 1D Case

Let an alphabet be a totally ordered, nonempty finite set Σ with its elements
being called letters. A word is a finite sequence of letters [a1, a2, . . . , am] with
ai ∈ Σ, 1 ≤ i ≤ m. A word is a Lyndon word, if it is strictly less than any of the
rotations [ai, . . . , am, a1, . . . , ai−1] (2 ≤ i < m) with respect to the induced lex-
icographic order. With lexmin(w) being the lexicographically smallest rotation
of a word w, we call a word w aperiodic, if lexmin(w) is a Lyndon word, oth-
erwise w is periodic. The equivalence classes of words w modulo cyclic rotation
are called necklaces with lexmin(w) being a natural choice of representatives
of these classes. Then the representatives of aperiodic necklaces are the Lyndon
words.

For |Σ| = k, there are km words of length m in total. The number of Lyndon
words is given by the necklace polynomial M(k,m) [13] (also known as Witt’s
formula [10]), as defined by

M(k,m) =
1

m

∑
d|m

µ
(m
d

)
kd

where µ is the classic Möbius function [12]

µ(n) =


1, if n = 1

(−1)i, if n is the product of i different primes

0, otherwise.

For m prime this simplifies to M(k,m) = 1
m (km − k). Note, that m · M(k,m),

i.e. the number of aperiodic words of a given length m, quickly tends to km for
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increasing m, or in other words, the majority of words of size m are aperiodic
and fall into equivalence classes of size m under rotation [16]. As Riedel [16]
only describes the asymptotic behaviour, we give an explicit (although not very
strict) lower bound:

Lemma 1. Let k,m ≥ 2 be natural numbers. Then M(k,m) is smaller than
1
mkm and larger than 1

m

(
km − k⌊m/2⌋+1

)
.

Proof. It is obvious that M(k,m) < 1
mkm since there are km words of length m,

each aperiodic necklace is an equivalence class of m words and there are periodic
necklaces for any m ≥ 2. For the lower bound we have:

M(k,m) =
1

m

∑
d|m

µ
(m
d

)
kd (1)

=
1

m

km +
∑

d|m, d ̸=m

µ
(m
d

)
kd

 (2)

≥ 1

m

km −
∑

d|m, d ̸=m

kd

 (3)

≥ 1

m

km −
⌊m/2⌋∑
i=1

ki

 (4)

=
1

m

(
km −

k
(
k⌊m/2⌋ − 1

)
k − 1

)
(5)

>
1

m

(
km −

k
(
k⌊m/2⌋)
k − 1

)
(6)

>
1

m

(
km − k⌊m/2⌋+1

)
(7)

Since the probability of a random word of length m given an alphabet of size
k ≥ 2 being periodic is given by 1−mM(k,m)/km, it follows corollary 1:

Corollary 1. Given an alphabet Σ with Σ = |k| ≥ 2, the probability of a random
word of length m being periodic does not exceed k1−⌈m/2⌉.

A de Bruijn sequence of type (M ; m)k is a cyclic sequence of letters from an
alphabet Σ of size k in which every possible word of length m occurs exactly
once. Such a sequence always exist and is of length M = km [3].

A well-known method to generate de Bruijn sequences is the construction
of an Eulerian cycle or of a Hamiltonian cycle in a de Bruijn digraph [9]:
Given an alphabet Σ with |Σ| = k, the m-dimensional de Bruijn digraph is
defined by the vertex set V = Σm of words of length m and the edge set
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E = {(v, w) | v = [v1, v2, . . . , vm] ∈ V ; w = [v2, . . . , vm, vm+1] ∈ V }. Any
such graph is Hamiltonian and each Hamiltonian cycle defines a de Bruijn se-
quence of type (km; m)k, given by [a1, a2, a3, ..., akm ] where each sub-sequence
[ai, ai+1, ..., ai+m] of the cyclic sequence is the ith vertex of the Hamiltonian
cycle (1 ≤ i ≤ km). Moreover, the (m− 1)-dimensional de Bruijn digraph is Eu-
lerian and each Euler cycle defines a de Bruijn sequence of type (km; m)k, given
by [a1, a2, a3, ..., akm ] where each length-(m−1)-subword [ai, ai+1, ..., ai+m−1] of
the cyclic sequence is the ith vertex of the Eulerian cycle.

3 Basic Definitions and Related Work for the 2D Case

Given an alphabet Σ, a pattern of shape (m,n) is a finite array of letters

P =

 p1,1 · · · p1,n
...

. . .
...

pm,1 · · · pm,n


with pi,j ∈ Σ, 1 ≤ i ≤ m and 1 ≤ j ≤ n. A pattern is a row-Lyndon pattern, if
the word [[p1,1, . . . , p1,n], . . . [pm,1, . . . , pm,n]] is a Lyndon word given the alphabet
Σn. Further, we define lexmin(P ) as the rotation of rows

pi,1 · · · pi,n
...

. . .
...

pm,1 · · · pm,n

p1,1 · · · p1,n
...

. . .
...

pi−1,1 · · · pi−1,n,


such that the corresponding word [[pi,1, . . . , pi,n], . . . , [pi−1,1, . . . , pi−1,n]] is a lex-
icographically smallest one. We call a pattern row-aperiodic if lexmin(w) is a
row-Lyndon pattern, otherwise it is row-periodic.

A cyclic two-dimensional array of shape (M,N) of letters from an alphabet
Σ of size |Σ| = k, is called a sub-perfect map of type (M,N ; m,n)k, if every
(m,n)-pattern p ∈ Σm,n occurs at most once. It is called a perfect map or a de
Bruijn torus of type (M,N ; m,n)k if every (m,n)-pattern occurs exactly once.

It is well known [15,8], that (omitting the trivial cases M = m = 1 and/or
N = n = 1) every de Bruijn torus of type (M,N ; m,n)k must fulfill

M > m, N > n and MN = kmn. (8)

For k = 2 it has been shown constructively, that these necessary conditions
are also sufficient [15]. For k > 2, the question is not that simple. However, there
are a lot of methods known for the construction of de Bruijn tori.

e.g. Cook proves that for every m,n and k (except n = 2 if k even), there
exists a de Bruijn torus of type (km, kmn−m; m,n)k [2].
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As shown by Hurlbert and Isaak [8], for k even and n ̸∈ {3, 5, 7, 9}, for k = 2

and for k odd there exists a de Bruijn torus of type (kn
2/2, kn

2/2; n, n)k if and
only if n is even or k is a perfect square. They conjecture that there are also
such square shaped de Bruijn tori for k even and n ∈ {3, 5, 7, 9} iff k is a perfect
square, but this is still not proven.

In the following we show on how to construct square shaped sub-perfect maps
for these and other cases. We do this by introducing de Bruijn rings.

4 De Bruijn Rings

When replacing the necessary condition M > m in equation 8 by M = m,
one gets a sub-perfect map of minimal height. We denote such thin but long
sub-perfect maps as de Bruijn rings. The reason for the name ring is as follows:

When thinking of the geometrical shape of a torus one usually has a torus
of revolution in mind, which can be described as the twodimensional surface
in 3d space which one gets when rotating a circle of minor radius r around a
coplanar axis of distance R > r from the center of the circle (with R being called
the major radius). Although ’torus’ is just the latin word for ’ring’, r is often
assumed to be small compared to R when one has a physical ring in mind (while
for greater r one would more prefer to call this a ’donut’). We therefore define
a de Bruijn ring to be a sub-perfect map of minimal minor and maximal major
radius:

Definition 1 (De Bruijn ring). A sub-perfect map of type (m,N ; m,n)k is
called an (m,n)k-de Bruijn ring if there does not exist any sub-perfect map of
type (m,N ′; m,n)k with N ′ > N .

For m = 1, a (m,n)k-de Bruijn ring simplifies to a one-dimensional de Bruijn
sequence of type (kn; n)k. Therefore, we assume for the rest of the paper, that
m > 1. For similar reasons we also omit the trivial cases n = 1 and k = 1. As
an example, a (2, 2)2-de Bruijn ring is given by[

0 0 1 1 0 0
0 1 0 1 1 1

]
.

This is a sub-perfect map which contains every possible binary (2, 2) pattern
except of [

0 0
0 0

]
,

[
0 1
0 1

]
,

[
1 0
1 0

]
and

[
1 1
1 1

]
,

since each of these patterns would occur twice within a cyclic map of height two.
It is obvious, that a de Bruijn Ring of type (m,N ; m,n)k can only contain row-
aperiodic (m,n)-patterns, since row-periodic patterns would occur more than
once in the cyclic map. e.g. for m = 3, n = 2 and k = 2, there are 26 = 64
patterns in total, whereas the following 4 patterns are the only row-periodic
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ones and thus can not occur in a (3, 2)2-de Bruijn Ring:0 0
0 0
0 0

 ,

0 1
0 1
0 1

 ,

1 0
1 0
1 0

 ,

1 1
1 1
1 1


In case of m = 4, n = 2 and k = 2, the following 16 out of the possible 256
patterns are row-periodic:

0 0
0 0
0 0
0 0

 ,


0 1
0 1
0 1
0 1

 ,


0 0
0 1
0 0
0 1

 ,


0 1
0 0
0 1
0 0

 ,


1 0
1 0
1 0
1 0

 ,


1 1
1 1
1 1
1 1

 ,


1 0
1 1
1 0
1 1

 ,


1 1
1 0
1 1
1 0

 ,


0 0
1 0
0 0
1 0

 ,


0 1
1 1
0 1
1 1

 ,


0 0
1 1
0 0
1 1

 ,


0 1
1 0
0 1
1 0

 ,


1 0
0 0
1 0
0 0

 ,


1 1
0 1
1 1
0 1

 ,


1 0
0 1
1 0
0 1

 ,


1 1
0 0
1 1
0 0

 .

In general, given some alphabet size k, there are kmn patterns of shape
(m,n), of which m ·M(kn,m) are row-aperiodic (each being one of the m vertical
rotations of a row-Lyndon pattern) and kmn − m · M(kn,m) are row-periodic.
The ratio of row-aperiodic patterns ap(m,n, k) := (m ·M(kn,m))/kmn quickly
grows towards 1 with increasing m,n and/or k, as

1 ≥ ap(m,n, k) >
kmn − k(⌊m/2⌋+1)n

kmn
,

and the limit of this fraction is 1 for any of m → ∞, n → ∞ or k → ∞. Table 1
illustrates the ratio of row-aperiodic patterns for 2 ≤ m,n ≤ 6 and 2 ≤ k ≤ 5.

Further examples are given in the following for de Bruijn rings of different
sizes:

(3, 2)2 :

0000000010000010101000010011010111011011
01101011111101011111

 (9)

(2, 2)3 :

[
000121111110200021010112201000102021
011010201211212200200221221202221222

]
(10)

(2, 3)2 :

[
0000000100011001010111110110
0010111011001010011010011111

]
(11)

(4, 2)2 :


000010001000000100010101000111101000100010000001000010101110
000001100000010101111101111101101111010010000100011111010001
000100001001111001111010010000111101111010111010111101000101
011000110101101001101101010101111111011111101010110101111011


Each of these (m,n)k-de Bruijn rings contains every row-aperiodic (m,n)k-

pattern, such that it is obvious, that these sub-perfect maps are of maximal
width. The following theorem 1 states, that this is always the case, i.e. there
always exists a sub-perfect map of type (m,M(kn,m); m,n)k.
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m n k = 2 k = 3 k = 4 k = 5

2 2 12
16

72
81

240
256

600
625

2 3 56
64

702
729

4032
4096

15500
15625

2 4 240
256

6480
6561

65280
65536

390000
390625

2 5 992
1024

58806
59049

1047552
1048576

9762500
9765625

2 6 4032
4096

530712
531441

16773120
16777216

244125000
244140625

3 2 60
64

720
729

4080
4096

15600
15625

3 3 504
512

19656
19683

262080
262144

1953000
1953125

3 4 4080
4096

531360
531441

16776960
16777216

244140000
244140625

3 5 32736
32768

14348664
14348907

1073740800
1073741824

30517575000
30517578125

3 6 262080
262144

387419760
387420489

68719472640
68719476736

3814697250000
3814697265625

4 2 240
256

6480
6561

65280
65536

390000
390625

4 3 4032
4096

530712
531441

16773120
16777216

244125000
244140625

4 4 65280
65536

43040160
43046721

4294901760
4294967296

152587500000
152587890625

4 5 1047552
1048576

3486725352
3486784401

1099510579200
1099511627776

95367421875000
95367431640625

4 6 16773120
16777216

282429005040
282429536481

281474959933440
281474976710656

59604644531250000
59604644775390624

5 2 1020
1024

59040
59049

1048560
1048576

9765600
9765625

5 3 32760
32768

14348880
14348907

1073741760
1073741824

30517578000
30517578125

5 4 1048560
1048576

3486784320
3486784401

1099511627520
1099511627776

95367431640000
95367431640625

5 5 33554400
33554432

847288609200
847288609443

1125899906841600
1125899906842624

298023223876950016
298023223876953152

5 6 1073741760
1073741824

205891132093920
205891132094649

1152921504606846976
1152921504606846976

931322574615478534144
931322574615478534144

6 2 4020
4096

530640
531441

16772880
16777216

244124400
244140625

6 3 261576
262144

387400104
387420489

68719210560
68719476736

3814695297000
3814697265625

6 4 16772880
16777216

282428998560
282429536481

281474959868160
281474976710656

59604644530860000
59604644775390624

6 5 1073708064
1073741824

205891117686936
205891132094649

1152921503532057600
1152921504606846976

931322574584951078912
931322574615478534144

6 6 68719210560
68719476736

150094634909047936
150094635296999136

4722366482800908959744
4722366482869645213696

14551915228363036345499648
14551915228366852423942144

Table 1. Ratio of row-aperiodic to all patterns of shape (m,n) and alphabet size k.
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Theorem 1. For any alphabet size k and any pattern size (m,n), there exists an
(m,M(kn,m); m,n)k sub-perfect map. This map is an (m,n)k-de Bruijn ring.

It is obvious, that only the m ·M(kn,m) row-aperiodic patterns of size (m,n)
can occur in a map of height m. Thus, a sub-perfect map of height m has a width
of at most M(kn,m). In order to prove that such a map exists and that it can
efficiently be constructed, we introduce (m,n)k-ring graphs, which generalize
the construction of de Bruijn sequences using Euler cycles to two dimensions.
In contrast to the one-dimensional case, these ring graphs are not necessarily
Hamiltonian.

Definition 2 (Ring graph). A (m,n)k-ring graph is a labeled multidigraph
G = (V,E) with the vertices V = {lexmin(S) | S ∈ Σm,n−1} and E being the set
of labeled edges (P1, P2) with label R, such that there exist patterns L,R ∈ Σm,1,
C ∈ Σm,n−2, such that

1. P1 = [L,C] ∈ V , P2 = lexmin([C,R]) ∈ V ,
2. lexmin([L,C,R]) is a row-Lyndon pattern of shape (m,n) and
3. there is no lexicographically smaller R′ < R with R′ ∈ Σm,1 and

lexmin([L,C,R′]) = lexmin([L,C,R]).

We set one separate edge (each with a different label) for every R ∈ Σm,1 between
P1 and P2 if more than one are applicable.

The nodes are representatives of the vertical rotation groups of patterns of
shape (m,n−1). I.e. each node is the representative of a set of vertical rotations:

 p1,1 · · · p1,n−1

...
. . .

...
pm,1 · · · pm,n−1

 ,


p2,1 · · · p2,n−1

...
. . .

...
pm,1 · · · pm,n−1

p1,1 · · · p1,n−1

 , . . .


pm,1 · · · pm,n−1

p1,1 · · · p1,n−1

...
. . .

...
pm−1,1 · · · pm−1,n−1


The number of elements in each vertical rotation group is a divisor of m and
depends on the vertical periodicity of the group elements.

Moreover, each edge stands for the vertical rotation group of a unique pat-
tern of shape (m,n) and one gets a group representative by concatenating the
outgoing vertex label with the edge label.

While any vertex P is equal to lexmin(P ), this is not necessarily true for
the edge labels. A vertex will have an outgoing edge for any R ∈ Σm,1, which
completes the vertex label to a unique row-aperiodic pattern. E.g. in case of
m = 2, n = 3 and k = 2, there are two edges from the vertex [01

1
1] to the

vertex [11
0
1], with one edge being labeled as [01] and the other as [10]. These edges

represent the row-Lyndon patterns [01
1
1
0
1] and [01

1
1
1
0]. However, due to the third

condition, there is only one edge from the vertex [00
0
0] to the vertex [00

0
1] with label

[01], which represents the row-Lyndon pattern [00
0
0
0
1]. Figures 1 to 5 show the ring

graphs which correspond to the de Bruijn rings given above.
The following lemmata describe some interesting properties of ring graphs,

which we will use for proving theorem 1:
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Lemma 2. Any (m,n)k-ring graph has exactly M(kn,m) edges.

Proof. By definition of the edges of a ring graph, each row-Lyndon pattern P
of shape (m,n) corresponds to exactly one edge of label R from a vertex V to
some other vertex by P = lexmin([V,R]). This implies the lemma.

Lemma 3. Any (m,n)k-ring graph is weakly connected.

Proof. Let 0, 1 ∈ Σ be two different characters with 0 < 1. Now let V be an
arbitrary vertex of the ring graph. Since V = lexmin(V ) and R := [0, ..., 0, 1]T is
row-Lyndon, the concatenation [V,R] is row-Lyndon as well and thus V has an
outgoing edge being labelled with R. This edge directs to a vertex V ′, of which
the number of rightmost columns being equal to R is increased by one compared
to V itself if not all columns of V are already equal to R. In that last case, the
edge goes from V to V itself. It follows that there is a directed path from every
vertex to the vertex [R,R, ..., R].

Lemma 4. Any (m,n)k-ring graph is Eulerian.

Proof. Let [L,C] be a vertex of a ring graph with L ∈ Σm,1 and C ∈ Σm,n−2.
Further, let R ∈ Σm,1. Then lexmin([L,C,R]) is a row-Lyndon pattern iff
lexmin([R,L,C]) is a low-Lyndon pattern, since the row-periodicity does not de-
pend on the order of the columns. With lexmin([L,C,R]) being row-Lyndon, let
L′ ∈ Σm,1, C ′ ∈ Σm,n−2 andR′ ∈ Σm,1 be uniquely defined by lexmin([R,L,C])
= lexmin([L′, C ′, R′]), [L′, C ′] = lexmin([L′, C ′]), and R′ being the lexicograph-
ically smallest such choice if [L′, C ′] is row-periodic. It follows that there is an
edge of label R from [L,C] to lexmin([C,R]) iff there is an edge of label R′

from [L′, C ′] to lexmin([C ′, R′]) = [L,C]. This defines a one-to-one mapping of
ingoing and outgoing edges of the arbitrarily chosen vertex [L,C]. Thus, each
vertex of the ring graph has its in-degree equal to its out-degree, and due to the
ring graph being weakly connected, each ring graph is Eulerian.

Now we prove theorem 1 by constructing (m,n)k-de Bruijn rings based on
Eulerian cycles of (m,n)k-ring graphs:

Proof (of Theorem 1). Let C = (V0, R1, V1, R2, V2, . . . , RM(kn,m), VM(kn,m) = V0)
be an Eulerian cycle of an (m,n)k-ring graph which starts and ends in the vertex
V0 := 0m,n−1 with 0 ∈ Σ. Such a cycle can be constructed in linear time by using
Hierholzers algorithm [7]. We now build a sub-perfect map using algorithm 1.

In every round of the for loop, algorithm 1 adds a new column to Ring. For
i = 1, Ring is set equal to [V0, R1] with R1 being an edge from V0 to V1. [V0, R1]
is a row-Lyndon pattern which ends with V1. Now suppose, after i − 1 rounds
of the loop, Ring ends with Vi−1 for some 2 ≤ i ≤ M(kn,m) − (n − 1). Then
there exists an edge Ri from Vi−1 to Vi and lexmin([Vi−1, Ri]) is row-Lyndon.
Moreover, the last n− 1 columns of Ring are equal to Vi up to vertical rotation.
Thus, vertically rotating Ring accordingly lets it end with Vi. It follows by
induction, that each n-column subset of Ring is a vertical rotation of a unique
row-Lyndon pattern. After M(kn,m)− (n−1) loops, Ring is of length M(kn,m)
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Algorithm 1 Generation of a de Bruijn ring.

Require: An Eulerian cycle C = (V0, R1, V1, R2, V2, . . . , RM(kn,m), VM(kn,m)) of an
(m,n)k-ring graph using the alphabet Σ.

Require: V0 = 0m,n−1 for some 0 ∈ Σ.

Ring ← V0

for i = 1 to M(kn,m)− (n− 1) do
Ring ← [Ring,Ri]
Rotate Ring vertically, such that it ends with Vi

end for
return Ring

and thus contains every row-aperiodic (m,n)k pattern. Moreover it is a cyclic
map, since the remaining n− 1 edges in C lead to VM(kn,m) = V0 and thus are
labelled with 0m. Thus, Ring is an (m,M(kn,m); m,n)k sub-perfect map. Since
there cannot be a bigger sub-perfect map of height m, it is an (m,n)k-de Bruijn
ring.

0
0

0
1

1
1

0
1

0
1 ,

1
0 1

1

0
0

0
1

Fig. 1. The (2, 2)2-ring graph.

Note, that the generation of de Bruijn rings is both time- and space-efficient,
as the construction of ring graphs, the construction of one of their Euler cycles
using the Hierholzer algorithm and algorithm 1 all have linear time and space
complexity with respect to the number of aperiodic patterns.

In the following, we will use de Bruijn rings for constructing sub-perfect maps
of more general sizes.

5 From Rings to larger Sub-Perfect Maps

Two sub-perfect maps with patterns of the same shape(m,n) but not necessarily
different alphabet sizes k1, k2 can be easily combined to a larger sub-perfect map
with patterns of the same shape but larger alphabet size k1k2:

Lemma 5. Let A1 be a sub-perfect map of type (M1, N1; m,n)k1
and A2 be a

sub-perfect map of type (M2, N2; m,n)k2
. Then there exists a sub-perfect map A

of type (lcm (M1,M2) , lcm (N1, N2) ;m,n)k1k2
.
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1

Fig. 2. The (3, 2)2-ring graph.
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1

1
1

0
2

1
2

2
2

0
1 ,

1
0

0
2 ,

2
0

1
2 ,

2
1

1
2 ,

2
1

0
1 ,

1
0

0
2 ,

2
0

0
2 ,

2
0

1
2 ,

2
1

0
1 ,

1
0

Fig. 3. The (2, 2)3-ring graph. If no label is given at an edge, the label is equal to
the target node label. A bidirectional edge represents two edges in opposing directions
(with not necessarily equal labels).
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00
00

00
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00
01

01
01

01
10

00
11

10
10

10
11

01
11

11
11

0
1 ,

1
0

0
1 ,

1
0

Fig. 4. The (2, 3)2-ring graph. If no label is given at an edge, the label follows uniquely
from the rules given in definition 2.
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1

4x
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4x

4x

1x

1x

2x

2x
2x1x

1x

1x

Fig. 5. The (4, 2)2-ring graph. For better readability, the edge labels (which are rota-
tions of the vertex label the edge is pointing to) are omitted and only the number of
labels per edge and direction is given.
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Proof. Let Σ1 and Σ2 be the alphabets of A1 and A2, respectively. We now
simply lay the cyclic maps onto each other by combining Σ1 and Σ2 to the
product alphabet Σ1×Σ2, which has k1k2 elements. This new map has a vertical
period length of (lcm (M1,M2) and a horizontal period length of lcm (N1, N2).

Note, that if both A1 and A2 are perfect maps, the combined map A is a
perfect map as well, iff M1 and M2 are coprime and N1 and N2 are coprime.

Lemma 5 can easily be applied to de Bruijn rings. E.g. when rotating one of
two de Bruijn rings by 90◦, it follows corollary 2.

Corollary 2. Given two alphabets Σ1 and Σ2 with |Σ1| = k1 and |Σ2| = k2,
there exists a sub-perfect map of type (M,N ; m,n)k1k2

with

M = lcm (m,M(km2 , n)) and N = lcm (n,M(kn1 ,m)) .

Proof. According to theorem 1, there exists an (m,n)k1
-de Bruijn ring A1 and

an (n,m)k2
-de Bruijn ring A2. By rotating A2 by 90◦, we get a sub-perfect map

A′
2 of type (M(km2 , n), n; m,n)k. By stacking A1 and A′

2 onto each other and
combining the alphabets to Σ = Σ1 × Σ2, we get a sub-perfect map of type
(lcm (m,M(km2 , n)) , lcm (n,M(kn1 ,m)) ; m,n)k1k2

.

For example, using the (2, 2)2-de Bruijn ring given above for both A1 and A2,
and when interpreting the tuples of Σ = Σ1 × Σ2 as two-digit binary numbers
and writing them as decimals, one gets the following sub-perfect map of type
(6, 6; 2, 2)4: 

0 0 2 2 0 0
1 2 1 2 3 2
0 1 2 3 0 1
1 3 1 3 3 3
1 0 3 2 1 0
1 2 1 2 3 2


However, since the with 6 and the height 2 are not coprime, the resulting

map is far away from containing almost all patterns. In fact, it contains only 36
of 256 possible (2, 2)-patterns of a 4-letter alphabet. A simple trick is to remove
the fifth column of the de Bruijn ring and use this sub-perfect map as A1 and A2.
Now, the width and height are coprime and the resulting combined sub-perfect
map has size (10, 10): 

0 0 2 2 0 0 0 2 2 0
1 2 1 2 3 0 3 0 3 2
0 1 2 3 0 1 0 3 2 1
1 3 1 3 3 1 3 1 3 3
1 0 3 2 1 0 1 2 3 0
0 2 0 2 2 0 2 0 2 2
1 0 3 2 1 0 1 2 3 0
0 3 0 3 2 1 2 1 2 3
1 1 3 3 1 1 1 3 3 1
1 2 1 2 3 0 3 0 3 2
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In this case, the numbered of covered patterns increases to almost three
times the original number, but is still less than half the number of all possible
patterns. However, as we show, the trick of removing columns to ensure coprime
dimensions of A1 and A2 can be used in general, and in case of larger rings, the
percentage of covered patterns quickly grows near 100% with increasing m, n.
E.g. when using the already given (3, 2)2-de Bruijn ring as A1 and the (2, 3)2-de
Bruijn ring as A2, one gets a sub-perfect map of type (84, 20; 3, 2)4 without
using the trick and a sub-perfect map of type (84, 38; 3, 2)2 by removing the
second column from A1. This map covers 3192 of 4096 patterns.

In general, if m and M(km2 , n) are not coprime or if n and M(kn1 ,m) are
not coprime, then the resulting sub-perfect map contains only a fraction of all
possible (m,n)-patterns over Σ (at most half of them).

However, we are interested in families of almost perfect maps, where the
maps contain almost every pattern.

Definition 3 (Almost perfect map). Let k > 2 and M be a set of sub-
perfect maps for an alphabet of size k, such that for any tuple m′, n′ ≥ 1 there
exists a sup-perfect map of type (M,N ; m,n)k in M with m > m′ and n > n′.
A sequence (Ai)i∈N of sub-perfect maps for an alphabet of size k is called an
increasing sequence if for any elements Ai of type (Mi, Ni; mi, ni)k and Aj of
type (Mj , Nj ; mj , nj)k with j > i it follows mj > mi and nj > ni. We call a set
of sub-perfect maps M a family of almost perfect maps, if for any increasing
sequence (Ai)i∈N with Ai being of type (Mi, Ni; mi, ni)k it follows

lim
i→∞

MiNi

kmini
= 1.

We call M a family of perfect maps, if MiNi = kmini for any element of type
(Mi, Ni; mi, ni)k.

Theorem 1 directly implies that (m,n)k-de Bruijn rings are a family of almost
perfect maps for any k, while the construction method given in lemma 5 does
not give a family of almost perfect maps since m and M(km2 , n), as well as n and
M(kn1 ,m) are not necessarily coprime. However, the trick being used above can
be used for arbitrary de Bruijn rings, such that stacking them leads to families
of almost perfect maps:

Theorem 2. Given two alphabets Σ1 and Σ2 with |Σ1| = k1 ≥ 2 and |Σ2| =
k2 ≥ 2, and given a pattern shape (m,n) with |m − n| ≤ 2, there exists a sub-
perfect map of type (M,N ; m,n)k1k2

with

M = m · (M(km2 , n)− (|m′ − 1| · [m′ < m− 1])) (12)

≥ m · (M(km2 , n)−max(1,m− 3))

and

N = n · (M(kn1 ,m)− (|n′ − 1| · [n′ < n− 1])) (13)

≥ n · (M(kn1 ,m)−max(1, n− 3)) ,
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where
m′ := M(km2 , n) mod m

and
n′ := M(kn1 ,m) mod n.

Proof. By definition of m′ it follows that M(km2 , n)−m′ is a multiple of m. Thus,
M(km2 , n)−m′ ± 1 and m are coprime. Now let

m′′ := |m′ − 1| · [m′ < m− 1].

Thenm′ andm′′ either differ by one, orm′ = m−1 andm′′ = 0. Thus M(km2 , n)−
m′′ and m are coprime. Since 0 ≤ m′′ ≤ max(1,m− 3), it follows

M := lcm(m,M(km2 , n)−m′′) (14)

= m · (M(km2 , n)−m′′) (15)

≥ m · (M(km2 , n)−max(1,m− 3)).

Analogously it follows

N := lcm(n,M(kn1 ,m)− n′′) (16)

= n · (M(kn1 ,m)− n′′) (17)

≥ n · (M(kn1 ,m)−max(1, n− 3))

with
n′′ := |(M(kn1 ,m) mod n)− 1| · [n′ < n− 1].

It remains to be shown, that in case of n′′ > 0 and/or m′′ > 0 there exist
sub-perfect maps of types

(m,M(kn1 ,m)−m′′; m,n)k1
and

(n,M(km2 , n)− n′′; n,m)k2
.

Given some alphabet Σ1, |Σ1| = k1, let A be an (m,n)k1
-de Bruijn ring, i.e.

a sub-perfect map of type (m,M(kn1 ,m); m,n)k1
. Now let 0, 1 ∈ Σ1. Then each

of the (m,n)-patterns with the first i rows (1 ≤ i < m) being equal to 0 and
the last m − i rows being equal to 1 is contained in A. Removing one column
of one such pattern from A removes this pattern and its vertical rotations from
A but still results in a sub-perfect map. Since there are m − 1 such patterns,
we can construct a sub-perfect map of type (m,M(kn1 ,m)− i; m,n)k1

for any
1 ≤ i < m which includes i := n′′ ≤ max(1, n− 3) ≤ m− 1.

Analogously, it follows the existence of a sub-perfect map of type
(n,M(km2 , n)− j; n,m)k2

for any 1 ≤ j < n which includes j := m′′ ≤ max(1,m−
3) ≤ n− 1.

Theorem 3. The set of sub-perfect maps given in theorem 2 for k = k1k2 with
k1, k2 ≥ 2 is a family of almost perfect maps.
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Proof. Let (Ai)i∈N be an increasing sequence of such sub-perfect maps of type
(Mi, Ni; mi, ni)k. Then for k = k1k2 it follows

MiNi

kmini
≥ mi (M(kmi

2 , ni)−mi + 3) · ni (M(kni
1 ,mi)− ni + 3)

(k1k2)mini
(18)

=

(
miM(kmi

2 , ni)−m2
i + 3mi

)
·
(
niM(kni

1 ,mi)− n2
i + 3ni

)
kmini
2 kmini

1,i

(19)

>
kmini
2 − k

(⌊mi/2⌋+1)ni

2 −m2
i + 3mi

kmini
2

· k
nimi
1 − k

(⌊ni/2⌋+1)mi

1 − n2
i + 3ni

kmini
1

(20)

For k1, k2 ≥ 2 and mi, ni → ∞, the last term reduces to
k
mini
2

k
mini
2

· k
mini
1

k
mini
1

, thus

limi→∞
MiNi

kmini
= 1.

In case of m = n and k1 = k2, i.e. for square shaped patterns of perfect
square alphabet sizes we get square shaped maps:

Corollary 3. Given an alphabet Σ with |Σ| = k ≥ 2, there exists for any n ≥ 2
a sub-perfect map of type (N,N ; n, n)k2 with

N = n · (M(kn, n)− (|n′ − 1| · [n′ < n− 1])) (21)

≥ n · (M(kn, n)−max(1, n− 3)) (22)

> kn
2

− k(⌊n/2⌋+1)n −max(n, n2 − 3n),

with

n′ = M(kn, n) mod n

and this set of sub-perfect maps is a family of almost perfect maps.

Theorem 4. Given any alphabet Σ with |Σ| = k ≥ 2 and any prime p, there
exists a sub-perfect map of type (N,N ; p, p)k2 with N = p · (M(kp, p) − 1) =

kp
2 − kp − p.

Proof. Since p is prime, it follows M(kp, p) = kp2−kp

p . If the nominator kp
2−kp is

a multiple of p2, it follows, that M(kp, p) is a multiple of p and thus M(kp, p)−1
is coprime to p. Then, according to corollary 3 there exists a sub-perfect map
of type (N,N ; p, p)k2 with N = p · (M(kp, p) − 1) = kp

2 − kp − p. Thus, we

only need to show that kp
2 ≡ kp (mod p2), or equivalently the p-adic valuation

νp(k
p2 − kp) is at least 2.
Depending on p, the lifting-the-exponent (LTE) lemma [14] implies the fol-

lowing:

– p | k: In this case obviously p2 | kp and p2 | kp2

, which implies 0 ≡ kp
2 ≡ kp

(mod p2).



On de Bruijn Rings and Families of Almost Perfect Maps 17

– p ∤ k, p = 2: Due to the LTE lemma it follows ν2(k
p2 − kp) = ν2(k

2 − k) +
ν2(k

2 + k) + ν2(2) − 1 = ν2(k
2 − k) + ν2(k

2 + k), which is at least 2 since
k2 ± k is always even.

– p ∤ k, p odd: This implies p ∤ kp. In this case, the LTE lemma gives νp(k
p2 −

kp) = νp(k
p−k)+νp(p) = νp(k

p−k)+1, which is at least 2 due to Fermat’s
little theorem.

As an example, theorem 4 says, that for p = 3, there is a sub-perfect map type
(501, 501; 3, 3)4, which covers more than 95.7% of all possible (3, 3) patterns of
an alphabet of size 22 = 4. Such a map requires just to build a (3, 3)2-de Bruijn
ring, which is a matrix of size (3, 168) and which can efficiently be constructed.

Analogously, a (5, 5)2-de Bruijn ring, which is of size (5, 6710880), can be
used to construct a sub-perfect map of type (33554395, 33554395; 5, 5)4, which
covers more than 99.9997% of all (5, 5) patterns of an alphabet of size 4, and a
(7, 7)2-de Bruijn ring of size (7, 80421421917312) gives a sub-perfect map of type
(562949953421177, 562949953421177; 7, 7)4 covering more than 99.99999999995%
of all patterns. Table 2 gives some further examples.

Theorems 2 and 4 allow to generate sub-perfect maps which are perfectly
suitable for For optical localization tasks, since:

1. every local (m,n)-pattern occurs at most once.
2. Almost every possible (m,n)-pattern is contained in the map.
3. The code can efficiently be generated for arbitrary m,n, k ≥ 2 with k being

not prime (such that it can be decomposed into some k1 and k2).
4. The decoding is quite efficient, as one only needs to store a (m,n)k-de Bruijn

ring, which reduces the number of entries to the square root of the whole
pattern.

In the spacial coding context, the decoding process should be efficient, i.e.
given some local pattern it should easily be possible to derive its position in the
whole map. For sub-perfect maps being constructed according to theorem 2 and
its specializations, this can be done as follows: The local pattern of alphabet size
k = k1k2 is first separated into the two patterns of alphabet sizes k1 and k2,
then by using a lookup table of size of the modified de Bruijn rings used, one
gets the position in these modified rings, which can directly be combined to the
position in the combined map. Such a decoding algorithm has time complexity
O(mn) while the space complexity is linear with regard to the size of the de
Bruijn rings and thus of order O(

√
MN).

If space complexity needs to be further restricted at the cost of time com-
plexity, one could generate the de Bruijn rings implicitly for every lookup (with
choosing a fixed selection scheme for each next edge in the Hierholzer algorithm)
which results in time complexity O(

√
MN) and space complexity O(mn) when

the ring graphs are not stored permanently.

6 Conclusion and Future Work

We have introduced de Bruijn rings, i.e. sub-perfect maps of minimal height,
which can be constructed by generating Eulerian cycles in a graph, which gener-
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k n N/Ñ N2/Ñ2 in %

2 2 10
16

39.062500000000000%

2 3 501
512

95.749282836914063%

2 4 65276
65536

99.208116903901100%

2 5 33554395
33554432

99.999779462935919%

2 6 68719210554
68719476736

99.999225309920504%

3 2 70
81

74.683737235177560%

3 3 19653
19683

99.695400725179510%

3 4 43040156
43046721

99.969500583377069%

3 5 847288609195
847288609443

99.999999941460331%

3 6 150094634909047936
150094635296999136

99.999999483057906%

4 2 238
256

86.431884765625000%

4 3 262077
262144

99.948889588995371%

4 4 4294901756
4294967296

99.996948079208892%

4 5 1125899906841595
1125899906842624

99.999999999817220%

4 6 4722366482800908959744
4722366482869645213696

99.999999997088906%

5 2 598
625

91.546623999999994%

5 3 1952997
1953125

99.986893229496729%

5 4 152587499996
152587890625

99.999487995412494%

5 5 298023223876950016
298023223876953152

99.999999999997897%

5 6 14551915228363036345499648
14551915228366852423942144

99.999999999947562%

Table 2. Size comparison of square shaped sub-perfect maps according to theorem 2
and (not guaranteed to exist) de Bruijn tori of the same type. When N is the side
length of a sub-perfect map, Ñ denotes the side length of the corresponding de Bruijn
torus. The second column gives the ratio of covered to all (n, n)k2 -patterns.
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alizes a construction method of de Bruijn sequences to two dimensions. The time
complexity of this construction is linear in the number of contained patterns and
a de Bruijn ring contains every pattern which does not only consists of constant
columns.

We further introduced the concept of a family of almost perfect maps and
show, that de Bruijn rings are almost perfect in that sense, which practically
means, that they contain almost all possible patterns. Moreover, we showed,
how de Bruijn rings can be used to construct families of almost perfect maps
of other rectangular shapes, including the cases for which perfect maps are not
yet known. This construction allows a decoding scheme which is sublinear (with
regard to the total numper of patterns) in time and space complexity. As a side
product, we derive an explicit lower bound for the Mobius function.

The findings are are especially of practical interest in the spacial coding
context, since here a map does not need to be perfect, but it should be efficiently
constructible and decodible. The findings can easily be generalized to higher
dimensions.
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