
1

Distributed Adaptive Spatial Filtering with Inexact
Local Solvers

Charles Hovine , Alexander Bertrand

Abstract—The Distributed Adaptive Signal Fusion (DASF)
framework is a meta-algorithm for computing data-driven spatial
filters in a distributed sensing platform with limited bandwidth
and computational resources, such as a wireless sensor network.
The convergence and optimality of the DASF algorithm has
been extensively studied under the assumption that an exact, but
possibly impractical solver for the local optimization problem
at each updating node is available. In this work, we provide
convergence and optimality results for the DASF framework
when used with an inexact, finite-time solver such as (proximal)
gradient descent or Newton’s method. We provide sufficient
conditions that the solver should satisfy in order to guarantee
convergence of the resulting algorithm, and a lower bound for
the convergence rate. We also provide numerical simulations to
validate these theoretical results.

Index Terms—Distributed signal processing, Wireless sensor
networks, Adaptive spatial filtering, Optimization.

I. INTRODUCTION

A wireless sensor network (WSN) is a networked collection
of sensor nodes equipped with communication and computing
capabilities. Each node typically senses a single or multi-
channel signal, which can either be transmitted to a fusion
center for processing, or be processed in-network. Spatial
filtering is a common processing task in such networks,
allowing the extraction of some target signal from the ag-
gregated sensor signals. A spatial filter typically consists in a
linear combination of the sensor signals, producing a lower-
dimensional output signal which is optimal in some sense, for
example, in terms of signal-to-noise ratio, output power, or
correlation with a target signal. Common examples include
principal component analysis (PCA) [1], Wiener filtering [2],
canonical correlation analysis (CCA) [3], linearly constrained
minimum variance beamforming (LCMV) [4] and Max-SNR
filtering [5].

The most straightforward way to compute such filters is
to aggregate the sensor data at a fusion center, where an
off-the-shelf algorithm can be used to process the data. This
convenience comes with several drawbacks. Firstly, the trans-
mission of the sensor nodes’ raw sensor signals are likely to
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telligentie (AI) Vlaanderen” programme. Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of
the European Union or ERC. Neither the European Union nor the ERC can
be held responsible for them.

Charles Hovine and Alexander Bertrand are with the STADIUS Center
for Dynamical Systems, Signal Processing and Data Analytics and with the
Leuven.AI institute for Artificial Intelligence at KU Leuven, Leuven 3001,
Belgium (e-mails: {charles.hovine, alexander.bertrand}@esat.kuleuven.be).

become the main energy bottleneck of the system [6], in par-
ticular in networks where multi-hop data relaying is required,
resulting in shorter battery life, making remote deployments
impractical. This poses a particular challenge for applications
that generate continuous streams of high-throughput sensor
data, such as audio in acoustic sensor networks [7], video
in CCTV systems or video sensor networks [8], biomedical
signals in EEG1 sensor networks [9], [10], or radio signals
in multistatic radars [11], [12]. Secondly, the fusion center
needs to have sufficient computing capabilities to handle the
continuous processing of the stream of high-dimensional input
signals. This comes with scalability issues, as the increase of
the number of nodes or input signals will eventually lead to
unrealistic hardware requirements at the fusion center in terms
of bandwidth, memory, and compute. Finally, the use of a
fusion center introduces a single point of failure [13], which
can be prohibitive if maintenance actions are difficult or costly,
such as in the case of remote deployments. The drawbacks
associated with centrally processing the data motivate the
use of distributed signal processing algorithms that distribute
the computational burden amongst the nodes and favor local
processing over data transmission.

We can identify two classes of distributed signal processing
algorithms, associated with two corresponding kinds of dis-
tributed datasets. The first kind covers algorithms operating
on the observations of a stochastic signal y(t) ∈ RM ,
whose observations are distributed across the nodes, such that
each node has access to all M entries of y(t), but only
a subset of the realizations of the random data associated
with those entries. This allows each node to locally estimate
the covariance structure of the full signal. The optimality
criterion can in this case typically be expressed as a sum
of local per-node objectives, and the distributed algorithm
will usually consist in performing some local processing on
the node, and then exchanging some low-dimensional vector
containing intermediate estimates of the optimization variables
(rather than signal samples). Typical examples of algorithms
suited for such datasets are the alternating direction method of
multipliers (ADMM) [14], consensus and diffusion strategies
[15], [16], and many of the techniques studied by the federated
learning community [17].

The second kind of distributed algorithms deals with
datasets where the entries (or channels) of y(t) are spread
across the nodes, such that no individual node can estimate
the correlation structure of the network-wide signal y(t)
(i.e. the signal consisting in the concatenation of all the
channels of the per-node signals). Such algorithms typically

1Electro-encephalography.
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require that signal samples (rather than low-dimensional pa-
rameter vectors) are shared between the nodes, in order to
learn the inter-node statistics and to properly evaluate the
optimality criterion. Distributed spatial filtering problems or
regression/classification problems with distributed features fit
in this second class, and are more difficult to solve if these
inter-node statistics are not known a-priori. For streaming data
or data sets where the number of observations of y(t) is much
larger than the number of channels M , the typical work-horse
distributed methods (ADMM, consensus, diffusion, etc.) do
not straightforwardly apply [18], or result in highly inefficient
multi-rate communication schemes with nested iterations [19],
[20]. Therefore, they are typically solved with ad-hoc problem-
specific algorithms, due to the absence of a one-fit-all off-the-
shelf solution [4], [20]–[26]. [27] describes an algorithm to
solve such distributed-features problem, but requires a central
node (although most of the computational load is distribued
amongst the nodes). In addition, it is limited to smooth and
unconstrained problems.

The Distributed Adaptive Signal Fusion (DASF) framework
[28]–[31] aims to bridge the gap by providing a scalable and
bandwidth-efficient algorithm that adaptively computes the
outputs of data-driven spatial filters satisfying some optimality
criterion, in a WSN or other distributed setting with con-
strained resources. Given an existing solver for the particular
optimization problem associated with the filter of interest, the
DASF algorithm can adaptively compute the desired filter
along with the filtered signal by relying on the exchange
of low-dimensional compressed samples between the nodes,
and the repeated computation of the solution of a lower-
dimensional version of the original centralized optimization
problem at each node. The DASF framework is mostly
problem-agnostic, and most traditional linear spatial filtering
or estimation problems can be solved by plugging-in the
appropriate (and unmodified) solver for the corresponding
centralized problem. However, the original DASF framework
was shown to converge under the assumption that the solver
produces an (near-)exact solution every time it is called. In
practice though, an exact solver might not be available, either
due to the nature of the problem (e.g. non-convexity), or
simply because obtaining an exact solution would be too
expensive or time consuming, hindering the adaptivity of the
algorithm. In addition, the convergence of DASF relies on
hard-to-check assumptions regarding the parametric continuity
of the problem. In this work, we show that an exact solution
is not required for optimality, and that a few iterations of an
iterative solver are in practice sufficient to ensure convergence
to an “interesting” filter (i.e. satisfying some relaxed optimal-
ity condition such as mere stationarity with regards to the
optimality criterion). We are also able to eliminate some of
the original convergence assumptions, making the algorithm
applicable to a broader set of problems.

The paper is organized as follows. Section II describes the
general objective, as well as the family of problems covered by
DASF. Section III gives a brief overview of the original DASF
algorithm. Section IV describes how DASF can be modified to
work with an inexact iterative solver, rather than an exact one.
This section describes our main contribution, including a proof

of the convergence of DASF used with such a solver. Section
V offers a validation of our theoretical results via numerical
simulations. We conclude with a brief discussion in Section
VI.

II. PROBLEM STATEMENT

We consider a WSN consisting of K nodes, each sensing
an Mk-dimensional stochastic signal yk(t), where t denotes
a sample index (usually related to a time index). We de-
note the M -dimensional network-wide sensor signal y(t) =
[yT

1 (t), . . . ,y
T
K(t)]T with values in RM , with M =

∑
k Mk.

We assume that y is short-term stationary and ergodic, such
that its statistics can be computed over short-term sample
batches. The DASF framework assumes that the nodes in
the network collaborate to compute an optimal linear spa-
tial filter X ∈ RM×Q in a bandwidth-efficient manner.
Similarly to y, we define the per-node partition of X as
X = [XT

1 , . . . , X
T
K ]T , where we refer to Xk as the “local”

filter associated with node k. The Q-channel filtered signal
z(t) ≜ XTy(t), and hence the filter X should satisfy some
optimality criterion, which can be expressed as [28]

X⋆ ∈ argmin
X∈RM×Q

φ(XTy(t), XTB)

s.t. ∀j ∈ JI , ηj(XTy(t), XTDj) ≤ 0,

∀j ∈ JE , ηj(XTy(t), XTDj) = 0

(1)

where the matrices B and Dj are deterministic matrices
known by every node, φ is a smooth real-valued function
encoding some design objective for the filter output, JI and
JE are the sets of inequality and equality constraints indices,
respectively, and the ηj are smooth functions enforcing some
hard constraints on the filter outputs and/or filter coefficients.

In order for the above functions to be real-valued, we
assume that they implicitly contain an operator turning the ran-
dom argument XTy(t) into a deterministic one, by applying,
e.g., an expectation operator. For the purpose of mathematical
tractability, we assume for the theoretical analysis of the
algorithm that y(t) is stationary (i.e. that its statistics are
independent of time) and ergodic (i.e. its statistics can be esti-
mated using samples averages), and its statistics are assumed
to be perfectly estimated at any point in time. However, the
expectation operators will in practice be estimated by temporal
averages of y(t). The impact of such an approximation on
the algorithm’s performance is outside of the scope of this
paper, we therefore refer the interested reader to the stochastic
optimization literature [32] for details.

The peculiar structure of problem (1) ensures that X always
appears either in an inner product with y(t) or in an inner
product with some pre-determined matrices (B or Dj). Most
traditional spatial filtering or linear estimation problems satisfy
this structure (two examples are given hereafter, and more
extensive illustrations can be found in [28]). The DASF
algorithm will exploit this inner-product structure to achieve a
bandwidth reduction. Note that the framework also allows for
complex-valued signals, in which case all transpose operators
should be replaced with conjugate (a.k.a. Hermitian) transpose
operators. Finally, it is noted that we only include a single y
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and B-matrix in the loss function φ, and a single D-matrix in
each constraint. This is for the sake of notational convenience,
as the DASF framework also allows multiple instances of each
(details in [28]).

In order to also cover the treatment of non-smooth objec-
tive functions, we also allow the optimality criterion to be
expressed as [30], [31]

X⋆ ∈ argmin
X∈RM×Q

φ(XTy(t), XTB) + γ(XTA)

s.t. ∀ k ∈ K,
∀j ∈ J k

I , ηj(X
T
k yk(t), X

T
k Dj,k) ≤ 0,

∀j ∈ J k
E , ηj(X

T
k yk(t), X

T
k Dj,k) = 0

(2)

where the main differences with (1) are the restriction of the
constraints to be per-node block-separable, i.e., the constraints
index sets J k

I and J k
E describe the constraints for a specific

node k, and the functions ηj associated with a particular node
k can only depend on the local filter Xk associated with that
node, and the addition of γ, a possibly non-smooth function.
The function γ is also required to be per-node block-separable,
i.e., there exist matrices Ak and functions γk such that

γ(XTA) =
∑
k∈K

γk(X
T
k Ak), (3)

which also implies that A in (3) must be a block-diagonal
matrix with blocks Ak. This allows for most of the typical
regularizers, including the ℓ1, ℓ2, and the ℓ1,2 norm. Note that
for simplicity, we previously assumed in [31] that γ was a
convex function, but this assumption is here relaxed, and γ is
thus allowed to be non-convex.

We refer to the parametric optimization problem defined by
(1) as PS(y(t), B,D), and PNS(y(t), B,D, A) for (2). Here
the set D denotes the collection of all the matrices Dj or
Dj,k. These generic problem formulations encompass a wide
range of well-known spatial filtering problems, including PCA,
CCA, LCMV, and many more [28]. For example, we can
express a PCA filter as

min
X

− Tr
(
XTE

{
yyT

}
X
)

s.t. XTX = I,
(4)

where E {·} denotes the expectation operator. A D matrix
hides in the constraint, which can equivalently be written

XTDDTX = I, D = I. (5)

This might seems superfluous, but D actually plays an im-
portant aglorithmic role, as its presence will allow the local
sub-problems solved during the application of DASF to keep
the same structure PS(y(t), B, {D}) as the original one, but
where D ̸= I . The ℓ1,2-regularized multi-channel Wiener filter
[33] is a non-smooth example that fits in the class of problems
defined by (1)-(2):

min
X

E
{∥∥XTy − d

∥∥2
F

}
+
∑
k

∥Xk∥F (6)

where ∥·∥F denotes the Frobenius norm, and d(t) is a known
multichannel signal taking values in RQ. The filter produces
an estimate of the signal d(t) from the measurements y(t), and

the non-smooth regularization term encourages nodes that do
not significantly contribute to the objective to set their filters
to zero. Note that X does not appear in an inner product in the
second term of (6), yet it fits (1)-(2) when explicitly writing
the Frobenius norm as

∥∥XT
k Ak

∥∥
F

with Ak = I .

III. DASF OVERVIEW

In this section, we briefly review the DASF algorithm. We
refer to [28] for more details and illustrative examples.

The DASF algorithm collaboratively updates the estimate
of the optimal filter X⋆ and tracks the filtered signal z by
solving a local “miniature” version of (1) or (2) at a particular
so-called updating node whose role is taken by a different node
at every iteration. This makes the DASF algorithm “plug-and-
play”2 as it only requires a solver for the centralized problem
(1) or (2), which is directly re-used as a local “sub-solver”
in the compressed local problems in the different iterations of
the distributed algorithm [28].

As the focus of this paper is the local sub-solver used
by DASF, which is largely independent of the rest of the
algorithmic framework, we can afford to limit our description
of the algorithm to fully-connected networks. It is important
to note that this is purely for intelligibility and notational con-
venience, but without loss of generality. The results described
in this paper can be straightforwardly extended to arbitrary
topology networks, as in [28], [29] (for the smooth case) and
[31] (for the non-smooth case) and the convergence proof in
Section IV-C is kept sufficiently generic to also cover the
case of arbitrary-topology networks. As a result, the extension
of DASF to arbitrary topologies that is detailed in [28] and
[31] straightforwardly applies to the inexact version of DASF
introduced in this paper, yet it is omitted here to reduce overlap
and avoid the extra layer of notational complexity that it would
incur.

An iteration i of the DASF algorithm is fully defined by the
current updating node index qi (we often drop the iteration
index when the iteration is clear from the context) and the
current estimate of the filter Xi, and consists of the following
three steps (after a random initialization of X0):

1. Data Aggregation At the beginning of a new iteration i, a
new updating node q is selected. Each node k collects a
new batch of N samples of y(t) for t = iN, . . . (i+1)N−
1, and compresses these into Q-dimensional3 samples
according to

ŷi
k ≜ XiT

k yk. (7)

2A Matlab and Python toolbox implementing this plug-and-play function-
ality is available in [34].

3Here we assume that Q < Mk , otherwise there is no compression possible
at node k. Nodes for which Mk ≤ Q can add their channels yk to the
channels of a neighboring node to create a virtual “super-node” within the
DASF algorithm. Note that in multi-hop network topologies, a bandwidth
reduction can even be achieved if Q > Mk in all nodes (when compared to
relayed data aggregation). We refer to [28] for more details.
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ŷ1

ŷ2

ŷ3

ŷ1 = XiT
1 y1ŷ2 = XiT

2 y2

ŷ3 = XiT
3 y3

ỹq =


yq

ŷ1

ŷ2

ŷ3

 , X̃⋆
q =


Xq

X̃1

X̃2

X̃3


solution of P(ỹi, B̃i, D̃i, Ãi)

(a) Data aggregation and local solution

12

3 q

X̃1

X̃2

X̃3

Xi+1
1 = Xi

1X̃1Xi+1
2 = Xi

2X̃2

Xi+1
3 = Xi

3X̃3

Xi+1
q = Xq

(b) Parameters update

Fig. 1: Overview of a single iteration of the DASF Algorithm in fully-connected networks, where node q is the updating node.
The matrices Bk, Dj,k and Ak are omitted for readability, but their treatment is the same as yk.

The compressed N -samples batch is then transmitted to
the updating node, along with the compressed matrices

D̂j,k ≜ XiT
k Dj,k (8)

Âi
k ≜ XiT

k Ak (9)

B̂iT
k ≜ XiT

k Bk (10)

(typically of negligible size compared to the transmission
of (7) when the sample batch size N is large). Here, Bk

is the block of B associated with the block Xk of X . In
order to offer a unifying description of the algorithm for
the smooth and non-smooth case, we also define the same
relationship between Dj,k and Dj (i.e. in the smooth case
Dj,k is the block of Dj associated with Xk in the product
XTDj), and in order to be consistent with the definitions
of problems (1) and (2), we require that Dj,k = 0 if
j /∈ J k

E∪J k
I in the non-smooth case (i.e. block-separable

constraints), and Ak = 0 in the smooth-case (i.e. smooth
objective function).

2. Local Solution The updating node constructs a local view
ỹq of y by concatenating the received signals with its
own sensor signals such that

ỹi =
[
yT
q ŷiT

1 · · · ŷiT
q−1 ŷiT

q+1 · · · ŷiT
K

]T
.

(11)
Similarly, it constructs

Ãi = BlockDiag(Aq, Â
i
1, . . . , Â

i
q−1, Â

i
q+1, . . . , Â

i
K),

B̃i =
[
BT

q B̂iT
1 · · · B̂iT

q−1 B̂iT
q+1 · · · B̂iT

K

]T
, and

D̃i
j =

[
DT

j,q D̂iT
j,1 · · · D̂iT

j,q−1 D̂iT
j,q+1 · · · D̂iT

j,K

]T
.

(12)

The updating node then obtains the local solution X̃⋆ by
solving P(ỹi, B̃i, D̃i, Ãi) (which here refers to either PS

or PNS) for the received N -sample batch, where, simir-
larly to D, D̃i denotes the collection of D̃i

j , which can be
viewed as a low-dimensional instance of the original op-
timization problem. Note that the solver for the network-
wide problem P(y, B, D̃, A) can thus also be used as-is
to solve the “compressed” problem P(ỹi, B̃i, D̃i, Ãi) at
updating node q [28].

3. Parameters Update The updating node partitions the local
solution X̃⋆ as4

X̃⋆ = [X⋆T
q , X̃⋆T

1 , . . . , X̃⋆T
q−1, X̃

⋆T
q+1, . . . , X̃

⋆T
K ]T . (13)

It then updates its own block of the filter as

Xi+1
q ← X⋆

q , (14)

and transmits each X̃k to its corresponding node, which
in turn updates its local filter as

Xi+1
k ← Xi

kX̃
⋆
k . (15)

The three steps are illustrated in Figure 1 and the full proce-
dure is described by Algorithm 1.

As a different batch of N samples is used at each iteration,
the DASF algorithm produces the filtered signal

zi+1 ≜ Xi+1Ty =
∑
k

Xi+1T
k yk = X̃⋆T ỹi (16)

for each N -samples block, while at the same time improving
the estimate of the optimal spatial filter X⋆, such that each new
block of the filtered signal is closer to the desired filtered signal
(under the stationarity assumption). In other words, DASF
acts as a time-recursive block-adaptive filter that continually
adapts itself over time to the (possibly changing) statistics
of y(t) [28]. Note that the last equality implies that each
updating node can locally produce the new estimate zi+1

without additional data exchange.
Provided that the local solution is obtained using an exact

solver, the DASF algorithm and its extension to arbitrary net-
work topologies have been shown to converge to a stationary
point of the original problem (under some technical conditions,
details omitted) [29], [31].

IV. DASF WITH INEXACT LOCAL SOLVERS

The algorithm described in the previous section might
in practice be difficult to implement, as the computational
cost to find a global minimizer of P(ỹi, B̃i, D̃i, Ãi) at the
updating node might be prohibitive, requiring either too much

4Note that X⋆
q ∈ RMq×Q and X̃⋆

k ∈ RQ×Q for all other k ̸= q. This
follows from the dimensions of the partitioning in (11).
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Algorithm 1: (NS-)DASF algorithm in fully-connected
networks. Implementation available in [34]

begin
i← 0, q ← 1, Randomly initialize X0

loop
for k ∈ K ∖ {q} do

At node k
Collect a new batch of N samples of
yk(t) and send the compressed
samples ŷi

k(t) = XiT
k yk(t) along with

Âi
k = XiT

k Ak, B̂i
k = XiT

k B̂k and
D̂i

k = XiTDk to node q.

At node q

Obtain X̃⋆ by solving and selecting any
solution of P(ỹi, B̃i, D̃i, Ãi) .

Extract X⋆
q and the X̃⋆

k ’s from X̃⋆

according to (13).
Xi+1

q ← X⋆
q

for k ∈ K ∖ {q} do
Send X̃⋆

k to node k.
At node k

Xi+1
k ← Xi

kX̃
⋆
k

i← i+ 1, q ← (q + 1) mod K

computations or too much memory. In addition, an exact
global solver for the problem of interest might not even
exist. For example, many solvers for non-convex problems
often produce a stationary point or local optimum rather than
a global optimum. In this section, we show how the local
solution step can be significantly relaxed to allow for common
iterative solvers, not necessarily converging to optimal values,
while still guaranteeing convergence to a stationnary point of
the centralized problem (1) or (2).

In what follows, we express (1)-(2) in the equivalent form

min
X

L(X) (17)

where

L(X) ≜ φ(XTy(t), XTB) + γ(XTA) + δX (X) (18)

with δX (·) the indicator function of some set X described
by the equality and inequality constraints, i.e., δX (X) = 0
if X ∈ X and δX (X) = ∞ otherwise5. In the case of the
generic problem (1) we have

X ≜ {X | ∀j ∈ JI , ηj(XTy(t), XTDj) ≤ 0,

∀j ∈ JE , ηj(XTy(t), XTDj) = 0},
(19)

and in the non-smooth case (2),

X ≜ {X | ∀k, ∀j ∈ J k
I , ηj(X

T
k yk(t), X

T
k Dj,k) ≤ 0,

∀j ∈ J k
E , ηj(X

T
k yk(t), X

T
k Dj,k) = 0}.

(20)

5L is thus not a real-valued function, but takes its values in the extended
real number line R ≜ R ∪ {−∞,∞}.

From the update rules (14) and (15), one could show
that solving P(ỹi, B̃i, D̃i, Ãi) in the space where X̃ lives is
equivalent to solving P(y, B,D,A) in the original space of
X with the additional constraints that

∀k ̸= q, ∃X̃k ∈ RQ×Q : Xk = Xi
kX̃k, (21)

or equivalently

∀k ̸= q, Xk ∈ rangeXi
k, (22)

with range denoting the range or column space operator. To
each local X̃ is associated a unique X in the original problem
space, a fact that we can express as the linear relationship

X = Ci
qX̃ (23)

where Ci
q ∈ RM×(Mq+(K−1)Q) is a particular block-matrix

performing the required permutations and multiplications by
the blocks Xi

k of the blocks X̃k of X̃ to obtain the transforma-
tion uniquely described by (21). More specifically, we define

Θ−q(X) ≜ BlockDiag (X1, . . . , Xq−1) and,

Θ+q(X) ≜ BlockDiag (Xq+1, . . . , XK)
(24)

from which we define the linear matrix-to-matrix map

Cq(X) =


O Θ−q(X) O

IMq O O

O O Θ+q(X)

 (25)

where the O’s denote all-zero matrices of approriate dimen-
sions. This allows us to formally express

Ci
q ≜ Cq(X

i), (26)

leading in particular to

Xi = Ci
q[X

iT
q , IQ, . . . , IQ]

T . (27)

It is important to note that there is a linear relationship
between the local variable X̃ and the corresponding point X
in the global space, and that this relationship depends on the
current iteration i (via the previous estimate of the solution
Xi) and the current updating node q. This relationship itself
linearly depends on Xi via (26). The linearity, and hence con-
tinuity of the map Cq is one of the key properties used to show
convergence, and replacing Cq by any other continuous map
would lead to the same convergence result (altough optimality
would not anymore be guaranteed). Although we haven’t
described the algorithm for arbitrary network topologies, a
similar linear map as in (25) can be defined for that case
(see [28], [31]), which implies that the convergence proof in
Section IV-C will generalize to these arbitrary topologies as
well.

Using the notation (18) and (23), we can now compactly
express the local problem at iteration i as

min
X̃

L(Ci
qX̃). (28)

We note that –by construction– (28) has the same solutions as
the local problem P(ỹi, B̃i, D̃i, Ãi). While we need (28) in the
proof, in practice it is better to directly solve P(ỹi, B̃i, D̃i, Ãi)
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instead of (28) as the former directly inherits the same
structure as the original centralized problem (1)-(2), and hence
the original solver for (1)-(2) can be re-used.

A. Useful concepts from variational analysis
We introduce here a few definitions from variational analy-

sis that are essential to our next developments. This section is
purposedly kept short, and we refer the reader to the reference
works of Clarke [35] and Rockafellar [36] for an in-depth
treatment of the subject.

a) Subgradients: Following [36, Definition 8.3], we de-
fine the set of regular subgradients of L at X (where L(X)
is finite) as

∂̂L(X) ≜
{
V ∈ RM×Q |

lim inf
X→X̄
X ̸=X̄

L(X)− L(X)− ⟨V,X −X⟩F∥∥X −X
∥∥ ≥ 0

}
, (29)

and the set of general subgradients of L at X as6

∂L(X) ≜ {V ∈ RM×Q |
∃Xj → X,L(Xj)→ L(X), V j ∈ ∂̂L(Xj)→ V }, (30)

which we refer to simply as “subgradients” from hereon. This
definition of a subgradient does not require any structural
property such as convexity, smoothness, or even continuity
from L, and extends the usual definition of subgradients from
convex analysis. Indeed, (30) generalizes the familiar notion
of subgradient of a convex function. Note again that the
developments in [31] assumed convexity for the non-smooth
part of the objective in (2), which is not required here.

b) Local Optimality: If L : RM×Q 7→ R is lower-
semicontinuous7 and X⋆ is a local minimum of L, then [36,
Theorem 8.15]

0 ∈ ∂L(X⋆). (31)

Any point X⋆ such that L(X⋆) is finite and satisfying (31) is
called a stationary point of L. This definition reduces to the
usual “KKT” optimality conditions [37], [38] in the smooth
case. Indeed, if

L(X) ≜ f(X) + δX (X) (32)

where f is a smooth function, and X is the closed set
{X | g(X) ≤ 0, h(X) = 0} where h and g are smooth
functions, then we have at any point X where L(X) is finite
(and thus X ∈ X ) [39, Proposition 4.58]

∂L(X) = ∇f(X) + ∂δX (X). (33)

If ∇g(X) and ∇h(X) are linearly independent (this is stricter
than required, but is only meant for illustrative purposes), then
[39, Example 4.49]

∂δX (X) = {λg∇g(X) + λh∇h(X) |
λh ∈ R, λg = 0 if g(X) < 0, else λg ≥ 0}. (34)

6(30) can be read as “the set of elements V such that there exist
sequences (Xj)j converging to X , (L(Xj))j converging to L(X) and
(V j)j converging to V , such that V j is a regular subgratient of L at Xj”.

7A function L is lower-semicontinuous if for any α, its level sets
{X | L(X) ≤ α} are closed.

Defining the Lagrangian

L(X,λg, λh) ≜ f(X) + λgg(X) + λhh(X), (35)

we have for a feasible point X the equivalence

0 ∈ ∂L(X)⇔
∃λg = 0 if g(X) < 0, else λg ≥ 0, λh :

∇XL(X,λg, λh) = 0. (36)

This equivalence allows us to offer a unifying treatment of
the smooth and non-smooth cases via the compact problem
formulation (17) (or (28) for the local problem at the updating
node).

B. DASF algorithm with inexact solver

In what follows, we define the local objective at iteration i

L̃i
q : X̃ 7→ L(Ci

qX̃), (37)

which we use to construct the following definition of an
inexact iterative solver:

Definition 1 (Inexact iterative solver). Given some
current estimate Xi, an inexact iterative local solver
running on node q produces a sequence of iterates
(X̃i,j)j∈N such that for each iteration i

1)
X̃i,0 = [XiT

q , IQ, . . . , IQ]
T , (C1)

2) there is some Ri > 0 such that for any j,

L̃i
q(X̃

i,j)− L̃i
q(X̃

i,j+1)

≥ Ri
∥∥∥X̃i,j − X̃i,j+1

∥∥∥2
F
, (C2)

3) there is some ci > 0 such that for any j there is
some W ∈ ∂L̃i

q(X̃
i,j+1) such that

ci
∥∥∥X̃i,j − X̃i,j+1

∥∥∥
F
≥ ∥W∥F . (C3)

4) In addition, the sequences of constants Ri and ci

must be such that

lim inf
i→∞

Ri > 0 and lim sup
i→∞

ci <∞. (C4)

Flowing directly from (27), condition (C1) ensures consis-
tency with the current global estimate of the solution Xi, and
can be enforced as long as the solver accepts an arbitrarily
chosen starting point. Condition (C2) is often referred to as
a sufficient decrease condition [40], [41]. It ensures that an
update of the optimization variable results in a corresponding
decrease of the cost, and produces a feasible point (as, by
the definition of the indicator function δX , the cost would
otherwise have infinite value in the case of a non-feasible
point). Condition (C3) ensures that progressively smaller up-
dates of the optimization variable result in a higher degree of
stationarity (the distance of the set ∂L̃(X̃j+1) to 0 plays here
the role of optimality criterion, and summarizes how “close”
we are to a stationary point). This third condition is crucial, as
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without it, the procedure could wander away from a stationary
point during the first few steps, but still eventually converge to
some stationary point, in which case a single step of the solver
would not be guaranteed to improve on the current iterate. The
last requirements on Ri and ci in condition (C4) ensure that
those constants do not become arbitrarily small or large as the
algorithm progresses, as that would render the two previous
conditions meaningless. Those constants are usually related to
a parameter of the solver that can be controlled, a lower or
upper bound can therefore be enforced explicitly.

Although these requirements might seem restrictive, they
have been shown to hold for many commonly used descent
methods [42], if some additional technical conditions are
satisfied. Here are some common examples, some of which
are further elaborated on in Appendix A:

Gradient Descent (see Appendix A, and [42], [43]) provided
that the problem is unconstrained and the objective has
Lipschitz gradients.

Projected/Proximal Gradient Descent (see [40], [42]) pro-
vided that the smooth part of the objective has Lipschitz
gradients.

Newton’s Method (see Appendix A) provided that the Hes-
sian is positive definite and bounded, and that the objec-
tive has Lipschitz gradients.

Regularized Exact Solver (see Appendix A) By definition,
an exact solver obtains a solution in a single iteration and
the properties of Definition 1 are almost satisfied. If there
are multiple solutions, some mechanism is required to
ensure that the solver does not “jump” from one solution
to the next, by for example explicitly penalizing the
distance from the starting point.

Power Method (see Appendix A) An intuitive argument is
that the power method can be expressed as an instance
of projected gradient descent applied to a specific con-
strained quadratic problem.

Remark IV.1 (Comparison with the original DASF algorithm).
An important, mostly theoritical, difference with the original
DASF and NS-DASF algorithms, is the removal of the well-
posedness assumption on the global problems. Indeed, it was
assumed in those algorithms that the solution set of the
optimization problem varied “smoothly” with regards to the
problem’s parameters (y(t), B,D, A). This assumption can be
hard to check, and even not hold in some cases. Property
(C2), which is not satisfied by an exact solver, allows us to
remove this assumption. See [28], [29], [31] for details on the
assumption.

The inexact version of the DASF Algorithm simply consists
in selecting X̃⋆ ≜ X̃i,ni as the solution of an inexact solver
applied to the local problem at node q at iteration i of the
DASF algorithm, which we denote

min
X̃

L̃i
q(X̃), (38)

where the number of iterations ni > 0 of the inexact solver
can be chosen arbitrarily.

C. Convergence and Optimality
We first describe a general and easily satisfied assumption

on L.

Assumption 1. L is continuous over its domain8, and
it has compact sublevel-sets.

A sufficient condition is to require that φ and the ηj are
continuous, γ is continuous over its domain, and either γ and
φ or at least one of the ηj have bounded sublevel sets.

We show the convergence of this scheme by showing that (i)
L(Xi) decreases monotonically, and (ii) every accumulation
point of (Xi)i∈N is a stationary point (as defined by (31)) of
the local problem associated with each node q (38) . We then
leverage the main result of [29], [31] to show optimality with
regards to the global optimization problem (17).

Lemma 1 (Monotonic decrease of the objective). Let
(Xi)i∈N be a sequence generated by the DASF Algo-
rithm with inexact local solver. Then (L(Xi))i∈N is a
monotonically decreasing convergent sequence.

Proof. Since by the definition (37) L̃i
q(X̃) = L(Ci

qX̃), from
the second property of the local solver (C2), we have

L(Ci
qX̃

i,j)− L(Ci
qX̃

i,j+1) ≥ Ri
∥∥∥X̃i,j − X̃i,j+1

∥∥∥2
F
≥ 0.

(39)
Summing from j = 0 to j = ni and telescoping the left-hand
side yields

L(Xi)− L(Xi+1) ≥ 0, (40)

where we used (C1) to substitute Xi = Ci
qX̃

i,0 and the defi-
nition of the inexact algorithm to substitute Xi+1 = Ci

qX̃
i,ni ,

hence proving the monotonic decrease.
As L is continuous over its domain with compact sub-level

sets, it has a minimum value, and the sequence (L(Xi))i∈N
is therefore bounded-below [44] and must converge [45].

Lemma 2 (Convergence of the Sequence of Residuals).
Let (Xi)i∈N be a sequence generated by the DASF
Algorithm with inexact local solver, and let (X̃i,j)j∈N
be the subsequence generated by the local solver at
each iteration i. Then ,

lim
i→∞

∥∥∥X̃i,j − X̃i,j+1
∥∥∥2
F
= 0 ∀j (41)

and
lim
i→∞

∥∥Xi −Xi+1
∥∥
F
= 0. (42)

Proof. Using the fact that

Xi = Ci
qX̃

i,0 and Xi+1 = Ci
qX̃

i,ni , (43)

we have

L(Xi)− L(Xi+1) =

j=ni∑
j=0

L(Ci
qX̃

i,j)− L(Ci
qX̃

i,j+1), (44)

8The domain of a function L is the set of points for which L(X) < ∞.
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From the second property of the local solver (C2), for any i
and j ≤ ni

L(Ci
qX̃

i,j)− L(Ci
qX̃

i,j+1) ≥ 0, (45)

it must be that, for any i and j ≤ ni

L(Xi)− L(Xi+1) ≥ L(Ci
qX̃

i,j)− L(Ci
qX̃

i,j+1), (46)

and hence from (C2) again

L(Xi)− L(Xi+1) ≥ Ri
∥∥∥X̃i,j − X̃i,j+1

∥∥∥2
F
. (47)

As a consequence of Lemma 1, the convergence of
(L(Xi))i∈N in combination with (47) implies that, for any
0 ≤ j < ni,

lim
i→∞

L(Xi)− L(Xi+1) = lim
i→∞

Ri
∥∥∥X̃i,j − X̃i,j+1

∥∥∥2
F
= 0.

(48)
From property (C4) of the local solver, the sequence Ri is
eventually lower-bounded, and therefore

lim
i→∞

∥∥∥X̃i,j − X̃i,j+1
∥∥∥2
F
= 0 ∀j, (49)

proving the first statement.
From (43) and the triangle inequality, we have

∥∥Xi −Xi+1
∥∥
F
≤

ni−1∑
j=0

∥∥∥Ci
qX̃

i,j − Ci
qX̃

i,j+1
∥∥∥
F
≤

∥∥Ci
q

∥∥
F

ni−1∑
j=0

∥∥∥X̃i,j − X̃i,j+1
∥∥∥
F
, (50)

where the second inequality relies on the sub-multiplicative
property of the Frobenius norm. As Ci

q = Cq(X
i), and as the

sub-level sets of L(X0) are compact,
∥∥Xi

∥∥
F

is bounded and
by the continuity of the map Cq(X), so is

∥∥Ci
q

∥∥. (49) and
(50) therefore imply that

lim
i→∞

∥∥Xi −Xi+1
∥∥
F
= 0, (51)

completing the proof.

Lemma 3 (Node-specific Optimality of Accumulation
Points). Let (Xi)i∈N be a sequence generated by the
DASF Algorithm with inexact local solver. Then, every
accumulation point X of (Xi)i∈N is a stationary point
of the local problem (38) for any updating node q.

Proof. By the third and fourth property of the local solver
(C3)-(C4), we can find sequences (W i)i∈N and (ci)i∈N (with
ci > 0) such that

W i ∈ ∂L̃i
q(X̃

i,ni), (52)

and

c
∥∥∥X̃i,ni−1 − X̃i,ni

∥∥∥
F
≥

∥∥W i
∥∥
F
, (53)

where c = lim supi c
i. We can express equation (52) in the

global domain of X by applying the generalized chain rule910

[36] to L(Ci
qX̃

i,ni):

∂L̃i
q(X̃

i,ni) = ∂X̃

(
L(Ci

qX̃
i,ni)

)
= CiT

q ∂L(Ci
qX̃

i,ni) = CiT
q ∂L(Xi+1) (54)

where we used the fact that Ci
qX̃

i,ni = Xi+1 by definition of
the algorithm.

If X is an accumulation point, then there is (by definition)
some index set I such that11 limi∈I→∞ Xi = X . Further-
more, from Lemma 2 and in particular (42), we also have

lim
i∈I→∞

Xi+1 = lim
i∈I→∞

Xi = X. (55)

As the number of nodes is finite, we can furthermore select I
such that the sequence of updating nodes (qi)i∈I is a constant
sequence, i.e. we only consider a single updating node q. From
the continuity of the map Cq(X) it must also be that there is
some Cq ≜ Cq(X) such that

lim
i∈I→∞

Ci
q = lim

i∈I→∞
Cq(X

i) = Cq(X) = Cq. (56)

From (52), (54) and the outer-semicontinuity of the set of
subgradients [36], we have

W i ∈ CiT
q ∂L(Xi+1) ∀i⇒ lim

i∈I→∞
W i ∈ C

T

q ∂L(X). (57)

From (41) and (53), it must be that

lim
i→∞

∥∥W i
∥∥
F
= 0, (58)

and thus
lim

i∈I→∞
W i = 0. (59)

Combining (59) with (57) yields

0 ∈ Cq(X)
T
∂L(X) (60)

which is the condition for X to be a stationary point of the
local problem (38), based on the argument in (54). Note that
the local problem (38) is equal to (17) equipped with the
additional constraint (21), i.e. X is a stationary point of

min
X

L(X) s.t. X = Cq(X)X̃, X̃ ∈ R((K−1)Q+Mq)×Q.

We have shown that an accumulation point is a stationary
point for at least a single node q, it remains to show that it is
the case for any q. From Lemma 2 and in particular (42), if
X is an accumulation point of (Xi+1)i∈I , then it is also an
accumulation point of (Xi+n)i∈I for any n ≥ 0. Indeed,

Xi+n = Xi− (Xi−Xi+1)−· · ·− (Xi+n−1−Xi+n), (61)

9We denote ∂
X̃
(·) the set of subgradients of the expression in argument,

interpreted as a function of the local variable X̃ .
10We define the product between a set and a matrix as the set whose

elements are the elements of the original set multiplied by that matrix.
11limi∈I→∞ ai is a short-hand notation for limj→∞ aij where ij is the

j-th element in the ordered index set I.
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and therefore

lim
i→∞

Xi+n −Xi =

lim
i→∞

(Xi −Xi+1)− · · · − (Xi+n−1 −Xi+n) = 0, (62)

and finally

lim
i∈I→∞

Xi = lim
i∈I→∞

Xi+n = X. (63)

As we have shown that X is a stationary point for at least
one node, it is a stationary point for all nodes as the sequence
(Xi+n)i∈I will be associated with node12 (q + n) mod K.

Lemma 3 asserts that any accumulation point of DASF is a
stationary point of all local problems at all nodes. We will
use this result to show that these accumulation points are
also stationary points of the centralized problem (1)-(2). For
this, we need a technical condition that is usually satisfied
with high probability if the number of constraints is not too
high (see below). The condition can actually be viewed as
a compressed version of the standard linear independence
constraint qualifications (LICQ) in numerical optimization
[43], except that they apply to the “compressed” gradients
rather than the actual gradients of the constraint functions.

Proposition 1 (Compressed LICQ). Let ϑj : X 7→
ηj(X

Ty, XTDj) in the smooth case, and ϑj : X 7→
ηj(X

T
k yk, X

T
k Dj,k) in the non-smooth case, and define

the active constraint set A(X) ≜ {j ∈ JI | ϑj(X) =
0}. If the elements of the set

{BlockDiag(X1, . . . , XK)T∇ϑj(X) | j ∈ A(X)∪JE}
(64)

are linearly independent matrices and X is a stationary
point of the local problems for any node q, i.e.

∀q ∈ K, 0 ∈ C
T

q ∂L(X), (65)

then it is also a stationary point of the global problem
(1)-(2), i.e.

0 ∈ ∂L(X). (66)

A proof of the above statement is available in [29] for the
smooth case and in [31] for the non-smooth case. Note that
this qualification is automatically violated if the number of
active constraints exceeds KQ2 (which is the dimension of
the vector space in which the compressed gradients live). See
[28], [29] for details and an extension of this condition to the
case of arbitrary network topologies.

12assuming a sequential selection rule, but the conclusion stays valid as
long as every node is selected infinitely many times.

Theorem 1 (Convergence and Optimality). Let
(Xi)i∈N be a sequence generated by the DASF al-
gorithm with inexact solver. Then if Assumption 1 is
satisfied and the qualification (64) is also satisfied at
the accumulation points of (Xi)i∈N, (Xi)i∈N converges
to the set of stationary points of the global problem (1)-
(2), that is

lim
i→∞

min
X∈Ω

∥∥X −Xi
∥∥
F
= 0, (67)

where Ω denotes the set of stationary points of problem
(1)-(2).
Furthermore, if the number of stationary points of (1)-
(2) is finite, then (Xi)i∈N converges to a single point.

Proof. Under Assumption 1, Lemma 3 asserts that any accu-
mulation point is a stationary point of the local problem at
every node. Proposition 1 ensures that under the qualification
(64), the local stationarity at every node implies stationarity
for the global problem, proving the first part of the theorem
(i.e., convergence to the set of stationary points). The second
part (convergence to a single point) is a direct consequence of
Lemma 2 and is a standard analysis result. See the proof of
[29, Theorem 4] for details.

As a consequence of the above theorem, interleaving the
steps of DASF with a single descent step is sufficient to ensure
convergence to a stationary point.

D. A Bound on the Convergence Rate

Obtaining a convergence rate for the objective value would
unfortunately require much more assumptions on the functions
involved in (1)-(2), than what we assumed so far. Still, we
can obtain a lower bound on the convergence rate of a local
optimality measure at each node, that is

wi ≜ dist(0, ∂L̃i
qi(X̃

i,ni)) ≜ min
W∈∂L̃i

qi
(X̃i,ni )

∥W∥ . (68)

As our actual objective is to find stationary points rather
than an actual minimum, wi is an appropriate measure of
optimality. We could also have considered the step-length∥∥Xi −Xi+1

∥∥ as a measure of optimality, which would yield
a rate similar to the one presented hereafter.

Proposition 2 (Convergence Rate Bound). Let (Xi)i∈N
be a sequence generated by the DASF algorithm with
inexact solver, and let wi be as defined in (68). Then
there is some positive constant a such that

min
j≤i

wj ≤ a

√
L(X0)− L⋆

√
i+ 1

, (69)

where L⋆ is the minumum value of L.

Proof. This follows from a well-known proof argument [40],
[41]. From (47) and condition (C3), we have

L(Xi)− L(Xi+1) ≥ Ri

ci
(wi)2. (70)
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Fig. 2: Convergence of the DASF algorithm with inexact solver for the Max-SNR problem. Each curve was generated by 1000
Monte-Carlo runs. Solid curves depict the median trajectories, while the shaded areas of corresponding color depict the the
5%-95% percentiles regions.

Summing the inequality from 0 to i and telescoping yields

L(X0)− L(Xi+1) ≥
i∑

j=0

Rj

cj
(wj)2. (71)

From condition (C4), there is some r > 0 such that

lim inf
i→∞

Ri

ci
= r, (72)

and hence, using the fact that L⋆ ≤ L(Xi+1),

L(X0)− L⋆ ≥ r

i∑
j=0

(wj)2 ≥ r(i+ 1)min
j

(wj)
2, (73)

which can be rearranged to obtain (69) with a = r−1/2.

For a given level of optimality minwi, the bound gives a
linear relationship between the required number of iterations
and the current error L(Xi) − L⋆. In other words, if the
algorithm is set to stop after a sufficiently small norm of the
subgradient is reached, we can guarantee that the algorithm
will run for a number of iterations (hence time) that is at most
proportional to the current error L(Xi)− L⋆.

V. NUMERICAL EXPERIMENTS

In order to qualitatively demonstrate the convergence of the
DASF algorithm with inexact solver, we consider an SNR
maximization (Max-SNR) problem [5] defined as

max
x

E
{
∥xTy(t)∥2

}
s.t. E

{
∥xTn(t)∥2F

}
= 1 (74)

where x denotes the M × 1 spatial filter (Q = 1), y(t) is
modelled as y(t) = ad(t) + n(t), n(t) is an M -dimensional
i.i.d white Gaussian noise signal, d(t) is a single-channel
(unknown) target signal, and where a is some unknown mixing
vector with entries sampled from N (0, 1). The purpose of
the multi-input single-output (MISO) filter x is to maximize

the SNR of d in the output filtered signal z(t) = xTy(t).
It is assumed that the nodes of the WSN are able to collect
samples of both y(t) and n(t). For our simulations we set
M = 100, Mk = 10, K = 10, i.e., there are 10 nodes, with
each node collecting 10 different channels of the 100-channel
signals y(t) and n(t). The noise variance is 10, while the
signal variance is 1. Our figure of merit is the relative excess
cost, defined as

1− L(X)

L⋆
, (75)

where L⋆ denotes the optimal objective value of (74). Note that
the solution of (74) can be solved by computing a generalized
eigenvalue decomposition (GEVD) on the covariance matrices
E
{
y(t)y(t)T

}
and E

{
n(t)n(t)T

}
[46].

Figure 2 depicts the convergence of the inexact version of
DASF applied to problem (74) with different numbers of sub-
solver iterations (ni). The exact (GEVD) solver uses Cuppen’s
divide and conquer algorithm [47], while the inexact solver
relies on the generalized power method [48]. On the left part
of the figure, we see that the algorithm converges to the
optimal objective value with a single sub-solver iteration per-
node, and that 10 sub-solver iterations are sufficient to reach a
convergence rate at par with the exact solver. Although, based
on this first plot, one might conclude that more sub-solver
iterations is better, the right part of Figure 2 tells a very
different story. The same figure of merit is depicted, but in
terms of the total number of sub-solver iterations, rather than
“global” DASF iterations. This second plot therefore depicts
the algorithm’s convergence as a function of “real” time and
offers a fairer comparison. Indeed, the sub-solver with the
lowest number of iterations (ni = 1) outperforms all the other
ones. It seems that the smaller progress achieved at each step
is largely compensated by the fact that the rate at which the
updating node role is passed-on is much larger, resulting in the
network being able to update the filter in more “directions”
(i.e. with different subspace constraints (21)) in a given time-
interval, albeit with smaller progress at each updating node.
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These more frequent updates of the updating node do come
with a cost, as a new batch of N compressed samples data
should normally be retransmitted every time the updating node
changes. This can be largerly compensated by applying the
data-reuse technique described in [49] , making the DASF
algorithm with inexact local solver an excellent option for
adaptively tracking a spatial filter.

VI. CONCLUSION

We have extended the convergence results of the DASF
algorithm to a setting where the exact solver is replaced by
an inexact, iterative one. We have shown, both by the means
of proofs and simulations, that the convergence properties of
DASF were preserved under more relaxed technical condi-
tions. Furthermore, the simulations have shown that DASF
used with an iterative solver could display better convergence
properties, at the cost of a slighly increased bandwidth, as-
suming a data-reuse scheme as in [49].

APPENDIX

A. Common Inexact Solvers

We describe in this section a couple of methods satisfy-
ing the requirements set by Definition 1. In what follows,
we consider methods to minimize a real-valued function
h : RM×Q 7→ R, whose precise structure (e.g. smoothness,
convexity, etc.) will be redefined for every method. We first
state a useful definition:
Definition 2. A smooth function h : RM×Q 7→ R is said to
have R-Lipschitz gradients if there is some R > 0 such that
for any X,Y ∈ RM×Q

∥∇h(X)−∇h(Y )∥F ≤ R ∥X − Y ∥F . (76)

In addition, [40, Descent Lemma], (76) also implies that

h(Y ) ≤ h(X) + ⟨∇h(X), Y −X⟩F +
R

2
∥X − Y ∥2F , (77)

where ⟨A,B⟩F ≜ Tr
(
ATB

)
.

1) Line-Search Methods: Gradient Descent and Newton’s
Method: Line search methods are defined by the update rule

Xi+1 = Xi + µiP i, (78)

where P i is the search direction and µi is an appropriately
chosen step-size.

a) Gradient Descent: In the case of Gradient Descent,
we have P i = −∇h(Xi) and hence

Xi+1 −Xi = −µi∇h(Xi). (79)

As a consequence, we have
1

infi µi

∥∥Xi+1 −Xi
∥∥ ≥ ∥∥∇h(Xi)

∥∥ . (80)

As h is smooth, ∂h(Xi) = {∇h(Xi)} [36], and condition
(C3) of Definition 1 is therefore satisfied.

Applying the Descent Lemma (77) to Xi, Xi+1 we have

h(Xi)− h(Xi+1)

≥ −⟨∇h(Xi), Xi+1 −Xi⟩F −
R

2

∥∥Xi+1 −Xi
∥∥2
F
. (81)

From (79), (81) becomes

h(Xi)− h(Xi+1) ≥
(

1

µi
− R

2

)∥∥Xi+1 −Xi
∥∥2
F
. (82)

and condition (C2) is thus also satisfied if supi µ
i < 2

R .
b) Newton’s Method: Newton’s step consists in setting

P i = −
(
∇2h(Xi)

)−1∇h(Xi). Hence, from the update rule
(78), we have

− 1

µi
∇2h(Xi)(Xi+1 −Xi) = ∇h(Xi). (83)

Taking the norm on both sides and denoting as λmax an upper
bound on the largest eigenvalue of the Hessian (across all
iterations),

λmax

infi µi

∥∥Xi+1 −Xi
∥∥ ≥ ∥∥∇h(Xi)

∥∥ , (84)

and condition (C3) is fulfilled by the same reasoning as for
gradient descent.

Taking the inner product of both sides of (83) with (Xi+1−
Xi) and denoting the Cholesky factorization of the Hessian
as ∇2f(Xi) ≜ UUT , we have

−⟨∇h(Xi), Xi+1 −Xi⟩F =
1

µi

∥∥UT (Xi+1 −Xi)
∥∥2 . (85)

Hence

−⟨∇h(Xi), Xi+1 −Xi⟩F ≥
λmin

supi µ
i

∥∥Xi+1 −Xi
∥∥2 (86)

where λmin denotes a lower bound on the smallest eigenvalue
of the Hessian (across all iterations). Combining the above
inequality with (81) yields

h(Xi)−h(Xi+1) ≥
(

λmin

supi µ
i
− R

2

)∥∥Xi+1 −Xi
∥∥2
F
, (87)

and condition (C2) is satisfied as long as the step-size satisfies
supi µ

i < 2λmin

R (note that this also implies that the Hessian
must be positive definite).

In practice, the bounds on the step-size cannot be known
apriori, but the same results can be obtained if a backtracking
line-search [40], [43], [50] is used to obtain the step-size (we
omit the analysis for brevity).

2) Regularized Exact Solver: Given some previous estimate
of the solution X−, a regularized exact solver would update
the solution as (we drop any iteration index, as the solver only
performs a single iteration)

X+ = argmin
X

h(X) + µ
∥∥X −X−∥∥2

F
(88)

instead of minX h(X), where µ > 0 is a freely chosen
parameter. From the optimality of X+ in (88), we have

h(X−)− h(X+) ≥ µ
∥∥X+ −X−∥∥2

F
, (89)

and condition (C2) is satsfied. Furthermore, the optimality of
X+ also implies that (using the sum-rule for subgradients [39])

0 ∈ ∂h(X+) + 2µ(X+ −X−), (90)

And thus there is W ≜ 2µ(X− − X+) ∈ ∂h(X+), and
condition (C3) is trivially satisfied.
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3) Power Method: We will rely on the proof available in
[42] that the projected gradient algorithm satisfies conditions
(C2) and (C3) of Definition 1, even when the constraint set is
non-convex. The projected gradient algorithm is defined by

Xi+1 = PC
(
Xi − µ∇h(Xi)

)
(91)

where PC is the projection on some constraint set C and µ
some step-size. We will show that the power method is a
particular case of (91). The power method finds the eigenvector
associated with the largest eigenvalue of some matrix A. It
therefore finds a solution of

min
x
−xTAx s.t. xTx = 1. (92)

The power method’s udpate rule is

xi+1 =
Axi

∥Axi∥ . (93)

Let us now assume that we solve the following (equivalent)
problem using a projected gradient algorithm:

min
x
−xT (A− I)

2µ
x s.t. xTx = 1. (94)

Denoting the objective h, its gradient is

∇h(x) = (I −A)

µ
x, (95)

The projected gradient method with step-size µ for this prob-
lem is thus

xi+1 = PC

(
xi − µ

xi −Axi

µ

)
= PC

(
Axi

)
(96)

with C denoting in this case the unit ball, which is equivalent to
the update rule of the power method (93). Note that we skipped
the discussion on the condition that the step-size should be
smaller than the inverse of the Lipschitz constant of ∇h(x)
[42], and simply mention that this condition can always be
enforced by applying the proper scaling on A, as this changes
neither the solution of (92) nor the update rule (93).
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