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Abstract. Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes
and Kitaev, which are in bijection with unlabeled (2 + 2)-free posets, Fishburn
matrices, permutations avoiding a bivincular pattern of length 3, and Stoimenow
matchings. Analogous results for weak ascent sequences have been obtained by
Bényi, Claesson and Dukes. Recently, Dukes and Sagan introduced a more general
class of sequences which are called d-ascent sequences. They showed that some maps
from the weak case can be extended to bijections for general d while the extensions
of others continue to be injective. The main objective of this paper is to restore these
injections to bijections. To be specific, we introduce a class of permutations which we
call them d-permutations and a class of factorial posets which we call them d-posets,
both of which are showed to be in bijection with d-ascent sequences. Moreover,
we also give a direct bijection between a class of matrices with a certain column
restriction and Fishburn matrices. Our results give answers to several questions
posed by Dukes and Sagan.
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AMS Subject Classifications: 05A05, 05C30

1 Introduction

Let x = x1x2⋯xn be a sequence of integers. An index i (1 ≤ i ≤ n − 1) is said to be
an ascent of x if xi+1 > xi. Let asc(x) denote the number of ascents of x. We call
a sequence x an ascent sequence if x1 = 0 and 0 ≤ xi ≤ asc(x1x2⋯xi−1) + 1 for all
2 ≤ i ≤ n. For example, one can check that x = 01021324 is an ascent sequence while
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x = 0122431 is not an ascent sequence. Let An denote the set of ascent sequences of
length n. For example, we have

A3 = {000,001,010,011,012}.

Ascent sequences were introduced by Bousquet-Mélou et al. [2] to unify three
other combinatorial structures: unlabeled (2+2)-free posets, permutations avoiding
a bivincular pattern of length 3 and Stoimenow matchings [22]. And they have since
been evolving into a research hotspot, drawing considerable attention from scholars
such as [3, 5, 6, 7, 8, 9, 10, 12, 14, 16, 19, 20, 21, 23].

Bényi et al. [1] initially studied weak ascent sequences. Given a sequence x =
x1x2⋯xn, an index i (1 ≤ i ≤ n − 1) is said to be a weak ascent of x if xi+1 ≥ xi. Let
wasc(x) denote the number of weak ascents of x. The sequence x is called a weak
ascent sequence if x1 = 0 and 0 ≤ xi ≤ wasc(x1x2⋯xi−1) + 1 for all 2 ≤ i ≤ n. Even
though x = 0122431 is not an ascent sequence, it is a weak ascent sequence. In the
spirit of [2], Bényi et al. [1] showed that the weak ascent sequences can uniquely
encode each of the following objects: permutations avoiding a certain bivincular
pattern of length 4, upper triangular binary matrices satisfying a column restriction,
factorial posets that are special (3+1)-free, and matchings with a restriction on their
nestings.

Very recently, Dukes and Sagan [11] introduced and studied a more general
sequences which are called d-ascent sequences. Given a sequence x = x1x2⋯xn
and an integer d ≥ 0, an index i (1 ≤ i ≤ n − 1) is said to be a d-ascent of x if
xi+1 > xi−d. Let dAsc(x) denote the set of d-ascents of x and let dasc(x) denote the
number of d-ascents of x. The sequence x is called a d-ascent sequence if x1 = 0 and
0 ≤ xi ≤ dasc(x1x2⋯xi−1) + 1 for all 2 ≤ i ≤ n. It is easily seen that ascent sequences
and week ascent sequences correspond to the d-ascent sequences when d = 0 and
d = 1, respectively. Let Ad

n denote the set of d-ascent sequences of length n. For
example, we have x = 002143 ∈ A2

6. It should be mentioned that d-ascent sequences
are different from the p-ascent sequences introduced by Kitaev and Remmel [17].

Dukes and Sagan [11] showed that some maps from the weak case in [1] can be
extended to bijections for general d while the extensions of others continue to be
injective. To be specific, they constructed a bijection between d-ascent sequences
and upper triangular matrices satisfying a column restriction and a bijection between
d-ascent sequences and matchings with restricted nestings. They also constructed
an injection from d-ascent sequences to permutations avoiding a bivincular pattern
of length d+ 3 and an injection from d-ascent sequences to factorial posets avoiding
a specially labeled poset with d + 3 elements.

The purpose of the present work is to complete the results of Dukes and Sagan
[11] by constructing a bijection between a class of permutations which we call them
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d-permutations and d-ascent sequences (in Section 2) and a bijection between a class
of posets which we call them d-posets and d-ascent sequences (in Section 3). Our
results are extensions of certain works of Dukes and Sagan [11]. We also give an
answer to a problem posed by Dukes and Sagan in the same paper by giving a direct
bijection between two classes of matrices (in Section 4).

2 Permutations

In this section, we will introduce a class of permutations which we call them d-
permutations and show that there is a bijection between d-permutations and d-ascent
sequences.

Recall that d-ascent sequences are closely related to permutations avoiding a
bivincular pattern. The notion of pattern avoiding permutations was introduced
by Knuth [18] in 1970 to study the stack permutations. Bousquet-Mélou et al. [2]
initiated the study of bivincular patterns and showed that ascent sequences are in
bijection with permutations avoiding a bivincular pattern of length 3.

For nonnegative integers m,n, we let [m,n] = {m,m+1, . . . , n}, and when m = 1
we abbreviate this to [n]. Let Sn denote the set of permutations of [n]. Given
a permutation π ∈ Sn and a permutation σ ∈ Sk, an occurrence of σ in π is a
subsequence πi1πi2⋯πik of π that is order isomorphic to σ. We say π contains the
(classical) pattern σ if π contains an occurrence of σ. Otherwise, we say π avoids
the pattern σ or π is σ-avoiding. To contain a bivincular pattern σ, certain pairs
of elements of the occurrence must be adjacent in π and others must be adjacent as
integers. In the first case, we put a vertical bar between the elements of σ, and in
the second case, we put a bar over the smaller of the two integers. To illustrate, if
cdab is an occurrence of the bivincular pattern 3∣412̄ in π, then we have a < b < c < d
with c,d adjacent in π and c = b + 1. For any pattern σ (classical or bivincular), letSn(σ) denote the set of σ-avoiding permutations of length n. Define

τd = (d − 1)∣d12⋯(d − 2).

Theorem 2.1 ([1, 2]) For n ≥ 1, there is a bijection between An and Sn(τ3), and a
bijection between A1

n and Sn(τ4).
Theorem 2.2 ([11], Theorem 4.5) For d ≥ 0 and n ≥ 1, there is an injection pe
from Ad

n to Sn(τd+3).
The map pe induces a bijection between An and Sn(τ3) when d = 0 and a bijection

between A1
n and Sn(τ4) when d = 1. Hence Theorem 2.2 is a generalization of

Theorem 2.1. Dukes and Sagan [11] posed the following question.
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Question 2.3 ([11], Question 8.4) Fix d ≥ 2. Is there a set Σd of bivincular patterns
containing τd such that ∣Ad

n∣ = ∣Sn(Σd+3)∣ for all n ≥ 1?

This is actually the motivation and original intention behind our writing of this
section. However, instead of giving a direct answer to Question 2.3, we introduce a
class of permutations which are called d-permutations. We show that d-permutations
are τd+3-avoiding (in Theorem 2.4) and in bijection with d-ascent sequences (in
Theorem 2.7).

To introduce d-permutations, we will need the notion of d-active elements in a
permutation. Let d ≥ 0, n ≥ 1, and let π = π1π2⋯πn be a permutation of Sn. We
define the d-active elements of π in the following procedure:

• Set 1 to be a d-active element of π.

• For k = 2,3, . . . , n, if k is to the left of k − 1 in π and there exist at least d
d-active elements which are smaller than k − 1 between k and k − 1 in π, we
say k is a d-inactive element of π, otherwise, we say k is a d-active element of
π.

In what follows, we abbreviate d-active (resp. d-inactive) to active (resp. inactive) if
the value of d is clear from the context. Let Act(π) be the set of active elements of π
and let act(π) be the number of active elements of π. For example, let π = 42617385
be a permutation of [8]. If d = 0, we have Act(π) = {1,3,5,7,8} and hence act(π) = 5.
If d = 2, we have Act(π) = {1,2,3,5,7,8} and hence act(π) = 6.

Given a permutation π = π1π2⋯πn, an index i (1 ≤ i ≤ n−1) is said to be an ascent
of π if πi+1 > πi, and we call πi an ascent bottom of π. Let Ascbot(π) be the set of
ascent bottoms of π. For example, let π = 42617385, we have Ascbot(π) = {1,2,3}.

For d ≥ 0, we call a permutation π a d-permutation if Ascbot(π) ⊆ Act(π).
Let Sdn denote the set of d-permutations in Sn. For example, let π = 42617385
be the permutation as given above. If d = 0, we have Ascbot(π) = {1,2,3} ⊈{1,3,5,7,8} = Act(π). Hence π is not a d-permutation in S08 . If d = 2, we have
Ascbot(π) = {1,2,3} ⊆ {1,2,3,5,7,8} = Act(π). Hence π is a d-permutation inS28 . It turns out that d-permutations are closely related to permutations avoiding
bivincular patterns.

Theorem 2.4 For d ≥ 0 and n ≥ 1, we have Sdn ⊆ Sn(τd+3) with the equality holds
when d = 0 or d = 1.

Proof. We first prove that Sdn ⊆ Sn(τd+3). Let π ∈ Sdn. We proceed to prove that
π ∈ Sn(τd+3). If not, then there exists an occurrence ijk1k2⋯kdkd+1 of τd+3 in π. This
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means that k1 < k2 < ⋯ < kd < kd+1 = i − 1 < i < j with i, j adjacent in π. Then
we have i ∈ Ascbot(π). For each 1 ≤ r ≤ d, since kr < kr+1 ≤ i − 1, there must be
two adjacent elements πt < πt+1 with πt < i − 1 among the elements in the factor
of π from kr to kr+1. This implies that πt ∈ Ascbot(π). Since π ∈ Sdn, we have
πt ∈ Ascbot(π) ⊆ Act(π). It follows that i is to the left of i − 1 in π and there are
at least d active elements between i and i − 1 in π which are smaller than i − 1.
From the definition of inactive elements, i is inactive. Since i ∈ Ascbot(π), we have
Ascbot(π) ⊈ Act(π), a contradiction. Thus Sdn ⊆ Sn(τd+3).

It remains to prove that Sn(τd+3) ⊆ Sdn for d = 0,1. We only consider the case
d = 1 as the other case d = 0 can be proved similarly. Let π ∈ Sn(τ4). If π ∉ S1n, then
there is some πk ∈ Ascbot(π) but πk ∉ Act(π). This implies that πk < πk+1 and πk
is to the left of πk − 1 with at least one active element πℓ < πk − 1 between them.
Then πkπk+1πℓ(πk − 1) forms an occurrence of τ4 in π, a contradiction to the fact
that π ∈ Sn(τ4). This completes the proof.

For d ≥ 2 and n ≥ d + 3, we remark that Sdn ⫋ Sn(τd+3) since one can check that
the permutation π = (d + 2)(d + 3)⋯nd⋯21(d + 1) is a permutation in Sn(τd+3) but
not in Sdn.
Lemma 2.5 Given d ≥ 0 and n ≥ 2, let σ be a permutation in Sn−1 and let π be a
permutation obtained from σ by inserting the element n into σ. Then π ∈ Sdn if and
only if σ ∈ Sdn−1 and n is inserted before σ or after some active element of σ.

Proof. Suppose that π ∈ Sdn. By the definition of d-permutations, we have Ascbot(π) ⊆
Act(π). Notice that the elements of σ remain active or inactive after the insertion
of n into σ. If the element n is inserted after some inactive element j of σ, then
j ∈ Ascbot(π) but j ∉ Act(π), a contradiction to the fact that Ascbot(π) ⊆ Act(π).
Hence n is inserted before σ or after some active element of σ. We now show that
σ ∈ Sdn−1. If not, there is some k ∈ Ascbot(σ) but k ∉ Act(σ). Hence k ∉ Act(π). It
is easily seen that Ascbot(σ) ⊆ Ascbot(π), thereby k ∈ Ascbot(π). Then we have
Ascbot(π) ⊈ Act(π), a contradiction. Hence σ ∈ Sdn−1.

For the converse, suppose that σ ∈ Sdn−1. We have two cases. If n is inserted
before σ, then we have Ascbot(π) = Ascbot(σ) ⊆ Act(σ) ⊆ Act(π). Thus π is a
d-permutation. If n is inserted after some active element i of σ, then the newly
(possibly) added ascent bottom i is an active element of π. From the fact that
Ascbot(σ) ⊆ Act(σ) we also have Ascbot(π) ⊆ Act(π), namely, π is a d-permutation.
This completes the proof.

Based on Lemma 2.5, we now define a map φ from d-permutations Sdn to d-ascent
sequences Ad

n. Our map φ is defined recursively. For n = 1, we define φ(1) = 0. Next
let n ≥ 2 and suppose that π is obtained from σ by inserting the element n after
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the xn-th active element of σ (reading from left to right). We set xn = 0 if n is
inserted before σ. Then the sequence associated to π is φ(π) = x1x2⋯xn, where
x1x2⋯xn−1 = φ(σ).
Example 2.6 Let d = 2 and let π = 42617385 be a d-permutation in S28 . Then we
have φ(π) = 00203124 with the following recursive insertion of new maximal values.
The elements colored by red indicate the active elements.

1
x2=0
ÐÐ→ 21
x3=2
ÐÐ→ 213
x4=0
ÐÐ→ 4213
x5=3
ÐÐ→ 42135
x6=1
ÐÐ→ 426135
x7=2
ÐÐ→ 4261735
x8=4
ÐÐ→ 42617385.

From the construction of the map φ, it is easily seen that xi (1 ≤ i ≤ n) is the
number of active elements to the left of i in π which are smaller than i.

Theorem 2.7 For d ≥ 0 and n ≥ 1, the map φ is a bijection between Sdn and Ad
n.

Furthermore, we have act(π) = dasc(φ(π)) + 1 for any π ∈ Sdn.
Proof. Since the sequence φ(π) encodes the construction of π, the map φ is injective.
To prove φ is a bijection, we need to show that the image φ(Sdn) is the set Ad

n. The
recursive construction of the map φ tells us that x = x1x2⋯xn ∈ φ(Sdn) if and only
if x′ = x1x2⋯xn−1 ∈ φ(Sdn−1) and 0 ≤ xn ≤ act(φ−1(x′)). By induction on n and the
definition of d-ascent sequences, to prove φ(Sdn) = Ad

n, it is sufficient to show that
act(π) = dasc(φ(π)) + 1.

Let us focus on the property act(π) = dasc(φ(π))+1. We will prove the result by
induction on n where n = 1 is trivial. Assume the result for n− 1. We need to prove
the result for n. Let π = π1π2⋯πn be a permutation in Sdn and x = x1x2⋯xn = φ(π).
Then x′ = x1x2⋯xn−1 = φ(σ), where σ is the permutation obtained from π by deleting
the element n from π. By the induction hypothesis, we have act(σ) = dasc(x′) + 1.
To prove act(π) = dasc(φ(π)) + 1, it suffices to show that n ∉ Act(π) if and only
n − 1 ∉ dAsc(x). Recall that xi (1 ≤ i ≤ n) is the number of active elements to the
left of i in π which are smaller than i. If n is to the left of n − 1 in π, we have that
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xn−1 is the sum of xn and the number of active elements between n and n − 1 in π
which are smaller than n−1. Then by the definition of inactive elements, n ∉ Act(π)
if and only if xn ≤ xn−1 − d, namely n − 1 ∉ dAsc(x). This completes the proof.

Combining Theorems 2.4 and 2.7 gives new proofs of Theorems 2.1 and 2.2. Let
σd ∈ Sd. We define a special bivincular pattern τ ′d+3 = (d + 2)∣(d + 3)σdd + 1 which
is the same as bivincular pattern except that each corresponding element of σd in
the occurrence of τ ′d+3 is active. We mark σd with an underline to distinguish it.
Let Σd+3 = {τ ′d+3 ∣ σd ∈ Sd} and let Sn(Σd+3) be the set of permutations that avoid
all the special bivincular patterns in Σd+3. By the definition of d-permutations, it
is easily seen that Sdn = Sn(Σd+3). Hence our results can be regard as an answer to
Question 2.3. It should be mentioned that the map φ−1 is different from the map
pe in Theorem 2.2.

3 Posets

In this section, we will introduce a class of posets which we call them d-posets and
show that there is a bijection between d-posets and d-ascent sequences.

Let P be a poset (partial ordered set). We say P is (a + b)-free if it does not
contain an (induced) subposet which is isomorphic to the disjoint union of an a-
element chain and a b-element chain. For example, the poset P whose Hasse diagram
is on the left of Figure 1 is not (3+1)-free because the subposet of P consisting of the
elements {3,5,7,8} forms an occurrence of (3 + 1). But the poset P is (2 + 2)-free.

1 2 4

3 6 7

5

8

P

1 2 5

3 4

6

Q

Figure 1: Two factorial posets.

Let P be a poset on integers. We will use <P to denote the partial order on P
and < for the total order on the integers. We call P compatible if it satisfies the
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following rule:
i <P j Ô⇒ i < j

for all i, j ∈ P . And we call a poset P on [n] a factorial poset if it satisfies the
following rule:

i < j and j <P k Ô⇒ i <P k (3.1)

for all i, j, k ∈ [n]. Factorial posets were first introduced by Claesson and Linusson
[6] which are easily seen to be compatible and (2+2)-free. The reason they are called
factorial posets is because there is a natural bijection ω between factorial posets and
inversion sequences. Given a factorial poset P on [n], define ω(P ) = a1a2⋯an, where

ai =
⎧⎪⎪⎨⎪⎪⎩
0, if i is a minimal element of P ,

max{j ∣ j <P i}, otherwise.

Let A(P ) be the set of nonzero elements of ω(P ). That is, A(P ) = {ai ∈ ω(P ) ∣
ai > 0}. For example, the two posets shown in Figure 1 are both factorial posets.
Moreover, we have ω(P ) = 00204126 and ω(Q) = 001204, thereby A(P ) = {1,2,4,6}
and A(Q) = {1,2,4}.

Bényi et al. [1] built a bijection between week ascent sequences and factorial
posets which do not contain a specially labeled (3+ 1) subposet. In order to extend
this result, Dukes and Sagan [11] introduced a special compatible poset Pd which is
the disjoint union of a (d − 1)-element chain and an isolated element whose label is
one more than the second largest element of the (d − 1)-element chain. Let P be a
factorial poset. We call P contain the special poset Pd if there exists a subposet of
P which is the disjoint union of a (d − 1)-element chain

i1 <P i2 <P ⋯ <P id−2 <P id−1

and an isolated element id−2 + 1. Otherwise, we say P is special Pd-free. Let Pn(Pd)
denote the set of special Pd-free factorial posets on [n]. For example, one can check
(carefully) that the poset P shown in Figure 1 is special P4-free. And the poset Q
shown in Figure 1 contains the special poset P4 because the subposet of Q consisting
of the elements {1,4,5,6} forms an occurrence of the special poset P4. The following
theorem is an extension of the map of Bényi et al. [1] from the weak case.

Theorem 3.1 ([11], Theorem 5.4) For d ≥ 1 and n ≥ 1, there is an injection po
from Ad

n to Pn(Pd+3).
In analogy to permutations, Dukes and Sagan [11] posed the following question.
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Question 3.2 ([11], Question 8.4) Fix d ≥ 2. Is there a set Σ′d of special posets
containing Pd such that ∣Ad

n∣ = ∣Pn(Σ′d+3)∣ for all n ≥ 1?

The purpose of this section is to give an answer to Question 3.2. To this end,
we introduce a class of posets which we call them d-posets. We show that d-posets
are special Pd+3-free (in Theorem 3.3) and in bijection with d-ascent sequences (in
Theorem 3.8).

Analogously to permutations, we need to define d-active (active) elements on
factorial posets. Let d ≥ 0 and let P be a factorial poset on [n] with ω(P ) = a1a2⋯an.
We define the active elements of P in the following procedure: For k = 1,2, . . . n− 1,
if ak+1 ≤ ak and there are at least d active elements in [ak+1 + 1, ak], we say k is
an inactive element of P . Equivalently, if the set {u ∈ P ∣ u <P k,u ≮P k + 1}
contains at least d active elements, we say k is inactive. Otherwise, we say k is
an active element of P . Set n to be an inactive element of P . Let Act(P ) denote
the set of active elements of P and let act(π) denote the number of active elements
of P . For example, let P be the poset shown in Figure 1 with ω(P ) = 00204126.
If d = 0, we have Act(P ) = {2,4,6,7} and hence act(P ) = 4. If d = 2, we have
Act(P ) = {1,2,4,6,7} and hence act(P ) = 5.

Now we are at the position to define d-posets. For d ≥ 0, we call a factorial
poset P a d-poset if A(P ) ⊆ Act(P ). Let Pd

n denote the set of d-posets on [n]. For
example, let d = 2 and let P,Q be the two posets shown in Figure 1. For poset P ,
we have A(P ) = {1,2,4,6} ⊆ {1,2,4,6,7} = Act(P ). Hence P is a d-poset in P2

8 . For
poset Q, we have A(Q) = {1,2,4} ⊈ {1,2,3,5} = Act(Q). Hence Q is not a d-poset
in P2

6 . It turns that d-posets are closely related to special Pd-free posets.

Theorem 3.3 For all d,n ≥ 1, we have Pd
n ⊆ Pn(Pd+3) with the equality holds when

d = 1.

Proof. We first show that Pd
n ⊆ Pn(Pd+3). Let P be a factorial poset in Pd

n with
ω(P ) = a1a2⋯an. By the definition of d-posets, we have A(P ) ⊆ Act(P ). We need
to prove P ∈ Pn(Pd+3). If not, then there is a subposet of P which is the disjoint
union of a (d + 2)-element chain

i1 <P i2 <P ⋯ <P id+1 <P id+2

and an isolated element id+1 + 1. By the definition of A(P ) and the rule (3.1), it is
easily seen that

i1 ≤ ai2 < i2 ≤ ai3 < ⋯ < id ≤ aid+1 < id+1.

Since id+1 <P id+2 and id+1 + 1 ≮P id+2, we have aid+2 = id+1. Combining the fact thatA(P ) ⊆ Act(P ), we obtain that aik ∈ Act(P ) for 2 ≤ k ≤ d+2. In particular, we have
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id+1 = aid+2 ∈ Act(P ). Note that i1 ≮P id+1 + 1. By the rule (3.1), we have aik <P id+1
and aik ≮P id+1 + 1 for 2 ≤ k ≤ d+ 1. Then by the definition of inactive elements, id+1
is an inactive element of P , a contradiction. Thus, Pd

n ⊆ Pn(Pd+3).
It remains to prove that Pn(P4) ⊆ P1

n. Let P ∈ Pn(P4). If P ∉ P1
n, then there

is some i such that i ∈ A(P ) but i ∉ Act(P ). Then there is some k ∈ [n] such that
ak = i. By the definition of A(P ), we have i <P k and i + 1 ≮P k. And by the
definition of inactive elements, there is some active element j satisfying that j <P i
but j ≮P i+1. It is easily seen that i+1 ≠ k. Then the subposet of P consisting of the
elements {j, i, i + 1, k} forms an occurrence of the special poset P4, a contradiction.
This completes the proof.

Some numerical evidences show that P0
n ⊈ Pn(P3). However, we have the follow-

ing theorem.

Theorem 3.4 For n ≥ 1, we have Pn(P3) ⊆ P0
n.

Proof. Let P ∈ Pn(P3) with ω(P ) = a1a2⋯an. If P ∉ P0
n, then there is some i such

that i ∈ A(P ) but i ∉ Act(P ). By the definition of A(P ), we have i <P k and
i + 1 ≮P k for some k. And by the definition of inactive elements, we have ai+1 ≤ ai.
It follows that i ≮P i + 1. It is easily seen that i + 1 ≠ k. Then the subposet of P
consisting of the elements {i, i + 1, k} forms an occurrence of the special poset P3, a
contradiction. This completes the proof.

Given a factorial poset P on [n] and 1 ≤ i ≤ n, let P [i] denote the subposet of P
consisting of all the elements in [i]. It is easily seen that P [i] is also a factorial poset
for 1 ≤ i ≤ n. We proceed to construct a bijection between d-posets and d-ascent
sequences. The following lemma is needed.

Lemma 3.5 Given d ≥ 0 and n ≥ 2, let P be a factorial poset on [n] with ω(P ) =
a1a2⋯an. Then P ∈ Pd

n if and only if P [n−1] ∈ Pd
n−1 and an ∈ {0, n−1}∪Act(P [n−1]).

Proof. Suppose that P ∈ Pd
n. By the definition of d-posets, we have A(P ) ⊆ Act(P ).

If an ≠ 0 and an ≠ n − 1, then an ∈ A(P ) ⊆ Act(P ). Notice that either Act(P ) =
Act(P [n−1]) or Act(P ) = Act(P [n−1])∪{n−1}. Hence we have an ∈ Act(P [n−1]).
We now show that P [n−1] ∈ Pd

n−1. By the definition of A(P ), we have A(P [n−1]) ⊆A(P ) ⊆ Act(P ). Since all the elements in A(P [n − 1]) are smaller than n − 1, we
derive that A(P [n − 1]) ⊆ Act(P [n − 1]). Thus P [n − 1] ∈ Pd

n−1.

For the converse, suppose that P [n−1] ∈ Pd
n−1 and an ∈ {0, n−1}∪Act(P [n−1]).

Then we have A(P [n − 1]) ⊆ Act(P [n − 1]). We need to prove P ∈ Pd
n, namely,A(P ) ⊆ Act(P ). There are three cases. If an = 0, then we have A(P ) = A(P [n−1]) ⊆

10



Act(P [n− 1]) ⊆ Act(P ). If an = n− 1, then we have A(P ) = A(P [n− 1])∪ {n− 1} ⊆
Act(P [n − 1]) ∪ {n − 1} ⊆ Act(P ) ∪ {n − 1}. Since an = n − 1 > an−1, we deduce that
n−1 is an active element of P . Thus, we have A(P ) ⊆ Act(P ). If an ∈ Act(P [n−1]),
it is easily seen that A(P ) = A(P [n − 1]) ∪ {an} ⊆ Act(P [n − 1]) ⊆ Act(P ). This
completes the proof.

Lemma 3.5 enables us to construct a map ψ from d-posets to d-ascent sequences
recursively. Let d ≥ 0 and let P be a d-poset of Pd

n with ω(P ) = a1a2⋯an. For n = 1,
set ψ(P ) = 0. For n ≥ 2, suppose that we have obtained ψ(P [n − 1]) = x1x2⋯xn−1.
Then define ψ(P ) = x1⋯xn−1xn, where

xn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if an = 0,

act(P [n − 1]) + 1, if an = n − 1,

i, if an is the i-th smallest element in Act(P [n − 1]).
(3.2)

Example 3.6 Let d = 2 and let P be the d-poset shown in Figure 1. Then we have
ψ(P ) = 00203124 with the recursive construction in Figure 2 in which the active
elements are colored by green in each posets.

1 1 2 1 2

3

1 2

3

4

1 2 4

3

5

1 2 4

3

5

6

1 2 4

63

5

7

1 2 4

6 73

5

8

x2 = 0 x3 = 2 x4 = 0

x5 = 3

x6 = 1x7 = 2x8 = 4

Figure 2: An example of the bijection ψ between Pd
n and Ad

n.

The following lemma gives another equivalent description of the map ψ.

Lemma 3.7 For d ≥ 0 and n ≥ 1, let P ∈ Pd
n with ω(P ) = a1a2⋯an and let x =

x1x2⋯xn = ψ(P ). Then we have xi (1 ≤ i ≤ n) is the number of active elements of
P in [ai] with the convention that [0] = ∅.

11



Proof. We prove the result by induction on n where n = 1 is trivial. Assume the result
for n − 1. By the recursive construction of ψ, it is easily seen that x′ = x1x2⋯xn−1 =
ψ(P [n−1]). Note that w(P [n−1]) = a1a2⋯an−1. Then by the induction hypothesis,
we have xi (1 ≤ i ≤ n − 1) is the number of active elements of the poset P [n − 1]
in [ai]. Notice that Act(P ) and Act(P [n − 1]) may differ by one element n − 1.
Combining the fact that ai ≤ i − 1 < n − 1 (1 ≤ i ≤ n − 1), we deduce that P and
P [n − 1] have the same active elements in [ai] (1 ≤ i ≤ n − 1). Hence xi is also the
number of active elements of P in [ai] for 1 ≤ i ≤ n − 1.

It remains to prove that xn is the number of active elements of P in [an]. There
are three cases for an where the first and the third cases of (3.2) are trivial. For the
case an = n − 1, be the definition of ψ, we obtain that xn = act(P [n − 1])+ 1. Recall
that n − 1 ∈ Act(P ) in this case. Hence the poset P contains act(P [n − 1]) + 1 = xn
active elements in [n − 1], completing the proof.

Theorem 3.8 For d ≥ 0 and n ≥ 1, the map ψ is a bijection between Pd
n and Ad

n.
Furthermore, we have Act(P ) = dAsc(ψ(P )) for any P ∈ Pd

n.

Proof. Since the sequence ψ(P ) encodes the construction of P , the map ψ is injec-
tive. In order to prove ψ is a bijection, we need to show that ψ is surjective, namely,
ψ(Pd

n) = Ad
n. The recursive construction of the map ψ tells us that x = x1x2⋯xn ∈

ψ(Pd
n) if and only if x′ = x1x2⋯xn−1 ∈ ψ(Pd

n−1) and 0 ≤ xn ≤ act(ψ−1(x′)) + 1. By
induction on n and the definition of d-ascent sequences, to prove ψ(Pd

n) = Ad
n, it is

sufficient to show that Act(P ) = dAsc(ψ(P )) for any P ∈ Pd
n.

Now let us focus on the property Act(P ) = dAsc(ψ(P )). We will prove this
result by induction on n where n = 1 is trivial. Assume the result for n − 1. Let
P be a d-poset in Pd

n and x = x1x2⋯xn = ψ(P ). Then we have x′ = x1x2⋯xn−1 =
ψ(P [n − 1]). By the induction hypothesis, we have Act(P [n − 1]) = dAsc(x′). To
prove Act(P ) = dAsc(x). It is sufficient to prove n − 1 ∉ Act(P ) if and only if
n − 1 ∉ dAsc(x). By the definition of inactive elements, n− 1 ∉ Act(P ) if and only if
an ≤ an−1 and there are at least d active elements in [an +1, an−1]. From Lemma 3.7,
this is equivalent to the fact xn ≤ xn−1 − d, namely, n− 1 ∉ dAsc(x). To conclude, we
have Act(P ) = dAsc(ψ(P )). This completes the proof.

Combining Theorems 3.3 and 3.8 gives a new proof of Theorem 3.1. It should
be mentioned that the map ψ also applies to d = 0. When d = 0, the map ψ induces
a bijection between P0

n and ascent sequences An, where P0
n can be equivalently

described as the set of factorial posets P on [n] satisfying the following rule: if
there exist some i, k such that i <P k and i + 1 ≮P k, then there exists some j such
that j <P i + 1 and j ≮P i. We remark that the inverse of the map ψ is the map po
in Theorem 3.1 which can be verified from Lemma 3.7, Theorem 3.8 and the proof
of Theorem 5.4 in [11]. We omit the detailed proof here.
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4 Matrices

In this section, we give an answer to a problem posed by Dukes and Sagan [11]
by building a direct bijection between a class of matrices with a certain column
restriction and Fishburn matrices.

Fishburn matrices were introduced by Fishburn [13] to represent interval orders.
The first explicit bijection mx′ between ascent sequences and Fishburn matrices
was given by Dukes and Parviainen [8]. In order to solve a conjecture of Jeĺınek
[15], Chen et al. [4] constructed another bijection mx′′ between ascent sequences
and Fishburn matrices. A Fishburn matrix A is an upper triangular matrix with
nonnegative integers such that all rows and columns contain at least one nonzero
entry. We define the weight of a matrix A, denoted by w(A), to be the sum of the
entries of A. LetMn denote the set of Fishburn matrices of weight n. For example,
we have

M3 = {(3) ,(2 0
0 1
) ,(1 1

0 1
) ,(1 0

0 2
) ,⎛⎜⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎠}.

Given a matrix A, let dim(A) denote the number of rows of the matrix A and let
Ai,j denote the entry in the i-th row and j-th column of A. We assume that the rows
of a matrix are numbered from top to bottom and the columns are numbered from
left to right in which the topmost row is numbered by 1 and the leftmost column is
numbered by 1. A row (or column) is said to be zero if all the entries in the row (or
column) are zero.

Given a matrix A, we let cj(A) be the column vector consisting of the j-th
column of A. If cj(A) is not zero, then we define rmaxj(A) and rminj(A) to be the
largest and the smallest index i such that Ai,j > 0, respectively. In what follows,
we always assume that matrices are square matrices with nonnegative integers and
contain no zero columns unless specified otherwise.

Recall that Dukes and Sagan [11] constructed a bijection mx between d-ascent
sequences and a class of upper triangular matrices with a certain column restriction.
When restricting d = 0, mx induces a bijection between ascent sequences An and a
class of matricesM′

n defined as follows.

Definition 4.1 LetM′
n be the set of upper triangular matrices A with nonnegative

integers which satisfy the following properties:

(Ma) The weight of A is n.

(Mb) There exist no zero columns in A.

13



(Mc) For all 1 ≤ j ≤ dim(A) − 1, rmaxj+1(A) > rminj(A).
For example, let A be the matrix shown in Figure 3. The rmax and rmin values

of each column are listed below the matrix. It can be checked that A is a matrix inM′
19. LetM′ = ⋃n≥1M′

n.

A =

⎛⎜⎜⎜⎜⎜⎜⎝

2 1 3 2 1
0 1 1 3 0
0 0 0 1 2
0 0 0 2 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
1 2 3 4 5

1 1 1 1 1

1 2 2 4 3

j:

rminj :

rmaxj :

Figure 3: A matrix ofM′
19 with its rmax and rmin values.

Problem 4.2 ([11], Problem 8.3) Find a direct bijection M′
n →Mn without com-

posing mx−1 and mx′.

We will give an answer to Problem 4.2 by constructing a map θ fromM′
n toMn

which we then show (in Theorem 4.7) to be a bijection. To this end, we need to
define two transformations α and β on matrices which will play essential roles in the
construction of θ and its inverse θ′, respectively. For 1 ≤ k ≤ dim(A), let A[k] denote
the submatrix of A composed of entries from the first k rows and first k columns of
A.

The transformation α

Let A be a matrix with dim(A) =m and rmaxm(A) = i. The matrix α(A) is defined
as follows.

(1) If i =m, then let α(A) = A.
(2) If i < m, then we construct α(A) in the following way. In A[m − 1], insert a

new zero row between rows i− 1 and i, and insert a new zero column between
columns i−1 and i. Denote by A′ the resulting matrix. Then copy the highest
i − 1 entries in the last column of A′ to the top i − 1 entries in the new zero
column. Set A′′ to be the resulting matrix. Finally replace the highest i entries
in the last column of A′′ with the top i entries in the last column of A. The
resulting matrix is α(A).

14



Example 4.3 Consider the following two matrices:

A =

⎛⎜⎜⎜⎝

1 1 3 0
0 2 1 1
0 0 1 0
0 0 0 2

⎞⎟⎟⎟⎠
; B =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 2 3 1
0 3 1 1 0
0 0 2 3 2
0 0 0 2 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
.

For matrix A, we have rmax4(A) = dim(A) = 4, by using rule (1) of the transfor-
mation α, we have α(A) = A. For matrix B, since rmax5(B) = 3 < dim(B) = 5, rule(2) of the transformation α applies and we do as follows. Insert a zero row and zero
column between rows 2 and 3 and columns 2 and 3 of B[4], respectively. We obtain
the resulting matrix B′ shown as follows, with the newly inserted zeros highlighted
in bold.

B′ =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 2 3
0 3 0 1 1
0 0 0 0 0
0 0 0 2 3
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠
.

Next copy the highest 2 entries in the last column of B′ to the top 2 entries in the
new zero column. These are illustrated in red in the following matrix:

B′′ =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 3 2 3
0 3 1 1 1
0 0 0 0 0
0 0 0 2 3
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠
.

Finally replace the highest 3 entries in the last column of B′′ with the top 3 entries
in the last column of B to yield α(B):

α(B) =
⎛⎜⎜⎜⎜⎜⎜⎝

1 0 3 2 1
0 3 1 1 0
0 0 0 0 2
0 0 0 2 3
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠
.

Given a Fishburn matrix A with dim(A) = m, let index(A) denote the smallest
index i such that the i-th row of A contains a unique nonzero entry Ai,m. Since the
only nonzero entry in m-th row of A is Am,m, then index(A) is well-defined.
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Lemma 4.4 Let A be a matrix with dim(A) =m such that A[m − 1] is a Fishburn
matrix and rminm−1(A) < rmaxm(A). Then we have that α(A) is a Fishburn ma-
trix. Moreover we have w(α(A)) = w(A), dim(α(A)) = dim(A), rminm(α(A)) =
rminm(A) and index(α(A)) = rmaxm(A).
Proof. We first show α(A) is a Fishburn matrix. We have two cases. To simplify
notation, let i = rmaxm(A). If i = m, by using rule (1) of α, we have α(A) = A. In
this case, we have Am,m > 0. Combining the fact that A[m−1] is a Fishburn matrix,
we deduce that A contains no zero rows or zero columns. It is easily seen that A is
an upper triangular matrix. Hence, α(A) = A is a Fishburn matrix.

If i < m, rule (2) of α applies. We first claim that α(A) does not contain zero
rows or zero columns. Since A[m−1] is a Fishburn matrix, then by the construction
of α, it is sufficient to show that the newly added row (resp. column) is not zero.
Notice that rminm−1(A) < rmaxm(A). We have that the newly added column is not
zero. Again by the construction of α, we deduce that the last entry of the newly
added row is not zero. This proves the claim. It is routine to check that α(A) is
still an upper triangular matrix. This yields that α(A) is a Fishburn matrix.

For the second part of the theorem, we will only prove index(α(A)) = rmaxm(A)
as the rest equalities can be easily verified by the construction of the transformation
α. Since A[m−1] is a Fishburn matrix, we have that each row of A[m−1] contains
at least one nonzero entry. Again by the construction of α, it can be checked that
the first i−1 rows of α(A)[m−1] are not zero. Moreover, the i-th row of the matrix
α(A) contains a unique nonzero entry α(A)i,m. Hence we have index(α(A)) = i =
rmaxm(A), as desired.
The transformation β

Let A be a Fishburn matrix with dim(A) = m and index(A) = i. The matrix β(A)
is defined as follows.

(1) If i =m, then let β(A) = A.
(2) If i < m, then we construct β(A) in the following way. Let B be the matrix

obtained from A by replacing the highest i entries in the last column of A with
the top i entries in the i-th column of A. Delete the i-th row and i-th column
of B, then insert a zero row at the bottom and a zero column to the right of
B. Let C be the resulting matrix. Then β(A) is the matrix obtained from C

by replacing the highest i entries in the last column of C with the top i entries
in the last column of A.

For example, consider the matrix A in Example 4.3. Since index(A) = dim(A) =
4, rule (1) of the transformation β applies and we obtain β(A) = A. For the
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matrix α(B) in Example 4.3, since index(α(B)) = 3 < dim(α(B)) = 5, we obtain
β(α(B)) = B by applying the rule (2) of the transformation β.

Lemma 4.5 Let A be a matrix with dim(A) =m such that A[m − 1] is a Fishburn
matrix and rminm−1(A) < rmaxm(A). Then we have that β(α(A)) = A.
Proof. By Lemma 4.4, we see that α(A) is a Fishburn matrix and index(α(A)) =
rmaxm(A). Then the conclusion follows directly from the fact that cases (1) and(2) in the construction of β correspond, respectively, to cases (1) and (2) of the
construction of α.

Let A be a matrix. For 1 ≤ k ≤ dim(A), let αk(A) denote the matrix obtained
from A by replacing the submatrix A[k] with α(A[k]) and keeping other entries in
A unchanged. We are now ready to define our map θ ∶M′

n →Mn. Given A ∈M′
n

with dim(A) =m, define θ(A) = αm ○ αm−1 ○ ⋯ ○ α1(A).
Example 4.6 Let A be the matrix shown in Figure 3. Then we have

θ(A) =
⎛⎜⎜⎜⎜⎜⎜⎝

2 1 2 3 1
0 0 3 1 0
0 0 0 0 2
0 0 0 1 1
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠
∈M19.

with the detailed process below.

A =

⎛⎜⎜⎜⎜⎜⎜⎝

2 1 3 2 1
0 1 1 3 0
0 0 0 1 2
0 0 0 2 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
α3

Ð→

⎛⎜⎜⎜⎜⎜⎜⎝

2 1 3 2 1
0 0 1 3 0
0 0 1 1 2
0 0 0 2 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
α5

Ð→

⎛⎜⎜⎜⎜⎜⎜⎝

2 1 2 3 1
0 0 3 1 0
0 0 0 0 2
0 0 0 1 1
0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠
,

where we omit all the transformations αi that are the identity transformations in
this case.

Let A be a matrix inM′
n with dim(A) =m. In the rest of the paper, we always

denote A(i) = αi(A(i−1)) (1 ≤ i ≤ m) with the convention that A(0) = A. By the
definition of θ, we have that θ(A) = A(m).
Theorem 4.7 For n ≥ 1, the map θ is a bijection betweenM′

n and Mn.
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Proof. Let A ∈M′
n be a matrix with dim(A) = m. We first prove that θ is well-

defined in that θ(A) ∈ Mn. We will prove the result by induction on m where
m = 1 is trivial. Assume the result for m − 1. Observe that A[m − 1] is a ma-
trix in M′. Then by the induction hypothesis, θ(A[m − 1]) = A[m − 1](m−1) =
A(m−1)[m − 1] is a Fishburn matrix with the same weight with A[m − 1]. Thus,
we have w(A(m−1)) = n. By Lemma 4.4 and the construction of αk, one can ver-
ify that rminm−1(A(m−1)) = rminm−1(A) < rmaxm(A) = rmaxm(A(m−1)). Note that
θ(A) = αm(A(m−1)) = α(A(m−1)). Then the conclusion follows directly from Lemma
4.4.

By cardinality reasons, in order to prove θ is a bijection, it is sufficient to show
that θ is an injection. It is easily seen that A = A(0) = A(1). Then by the definition
of θ, we need to recover the matrix A(k) from A(k+1) for 1 ≤ k ≤ m − 1. Given
1 ≤ i ≤ m, let B be a matrix with dim(B) = m such that B[i] is a Fishburn
matrix. Define βi(B) to be the matrix obtained from B by replacing the submatrix
B[i] with β(B[i]) and keeping other entries in B unchanged. Notice that θ(A)
is a Fishburn matrix for A ∈ M′

n. By the construction of θ and Lemma 4.4, we
deduce that A(k) is a matrix such that A(k)[k] = θ(A[k]) is a Fishburn matrix
and rmink(A(k)) < rmaxk+1(A(k)) for 1 ≤ k ≤ m − 1. From Lemma 4.5, we have
βk+1(αk+1(A(k))) = βk+1(A(k+1)) = A(k). That is to say, we can recover A(k) from
A(k+1) for each 1 ≤ k ≤m − 1, as desired.

Given B ∈Mn with dim(B) = m, define θ′(B) = β1 ○ β2 ○ ⋯ ○ βm(B). From the
proof of Theorem 4.7, it is easily seen that θ′ ○ θ(A) = A for any A ∈M′

n. Namely,
the maps θ and θ′ are inverse of each other.

Remark 4.8 For A ∈M′
n, we have showed that θ(A) = mx′ ○mx−1(A) by induction

on dim(A). Moreover, there is another direct bijection θ̄ betweenM′
n andMn. The

construction of θ̄ is exactly the same as that of θ except replacing α with α′, where
α′ is defined as follows.

The transformation α′

Let A be a matrix with dim(A) =m and rmaxm(A) = i. The matrix α′(A) is defined
as follows.

(1) If i =m, then let α′(A) = A.
(2) If i <m, then we construct α′(A) in the following way. In A[m − 1], insert a

new zero row between rows i − 1 and i, and insert a new zero column between
columns i − 1 and i. Denote by A′ the resulting matrix. Let T be the set of
indices j such that j ≥ i + 1 and column j of A′ contains at least one nonzero
entry above row i. Suppose that T = {c1, c2, . . . , cℓ} with c1 < c2 < ⋯ < cℓ. Let
c0 = i. For all 1 ≤ a ≤ i and 1 ≤ b ≤ ℓ, copy the entry Aa,cb to Aa,cb−1 and replace
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the highest i entries in the last column of A′ with the top i entries in the last
column of A. The resulting matrix is α′(A).

Similarly, for A ∈ M′
n, we can prove that θ̄(A) = mx′′ ○mx−1(A) by induction on

dim(A). The proofs of these results are left to the readers who are familiar with
these maps.
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