Difference ascent sequences and related combinatorial structures

Yongchun Zang ${ }^{a}$, Robin D.P. Zhou ${ }^{a, b, \star \|}$
${ }^{a}$ College of Mathematics Physics and Information Shaoxing University
Shaoxing 312000, P.R. China
${ }^{b}$ Institute of Artificial Intelligence
Shaoxing University
Shaoxing 312000, P.R. China

Abstract

Ascent sequences were introduced by Bousquet-Mélou, Claesson, Dukes and Kitaev, which are in bijection with unlabeled $(2+2)$-free posets, Fishburn matrices, permutations avoiding a bivincular pattern of length 3, and Stoimenow matchings. Analogous results for weak ascent sequences have been obtained by Bényi, Claesson and Dukes. Recently, Dukes and Sagan introduced a more general class of sequences which are called d-ascent sequences. They showed that some maps from the weak case can be extended to bijections for general d while the extensions of others continue to be injective. The main objective of this paper is to restore these injections to bijections. To be specific, we introduce a class of permutations which we call them d-permutations and a class of factorial posets which we call them d-posets, both of which are showed to be in bijection with d-ascent sequences. Moreover, we also give a direct bijection between a class of matrices with a certain column restriction and Fishburn matrices. Our results give answers to several questions posed by Dukes and Sagan.

Keywords: ascent sequence, bivincular pattern, factorial poset, Fishburn matrix.
AMS Subject Classifications: 05A05, 05C30

1 Introduction

Let $x=x_{1} x_{2} \cdots x_{n}$ be a sequence of integers. An index $i(1 \leq i \leq n-1)$ is said to be an ascent of x if $x_{i+1}>x_{i}$. Let asc (x) denote the number of ascents of x. We call a sequence x an ascent sequence if $x_{1}=0$ and $0 \leq x_{i} \leq \operatorname{asc}\left(x_{1} x_{2} \cdots x_{i-1}\right)+1$ for all $2 \leq i \leq n$. For example, one can check that $x=01021324$ is an ascent sequence while

[^0]$x=0122431$ is not an ascent sequence. Let \mathcal{A}_{n} denote the set of ascent sequences of length n. For example, we have
$$
\mathcal{A}_{3}=\{000,001,010,011,012\} .
$$

Ascent sequences were introduced by Bousquet-Mélou et al. [2] to unify three other combinatorial structures: unlabeled $(2+2)$-free posets, permutations avoiding a bivincular pattern of length 3 and Stoimenow matchings [22]. And they have since been evolving into a research hotspot, drawing considerable attention from scholars such as [3, 5, 6, 7, 8, 9, 10, 12, 14, 16, 19, 20, 21, 23].

Bényi et al. [1] initially studied weak ascent sequences. Given a sequence $x=$ $x_{1} x_{2} \cdots x_{n}$, an index $i(1 \leq i \leq n-1)$ is said to be a weak ascent of x if $x_{i+1} \geq x_{i}$. Let wasc (x) denote the number of weak ascents of x. The sequence x is called a weak ascent sequence if $x_{1}=0$ and $0 \leq x_{i} \leq \operatorname{wasc}\left(x_{1} x_{2} \cdots x_{i-1}\right)+1$ for all $2 \leq i \leq n$. Even though $x=0122431$ is not an ascent sequence, it is a weak ascent sequence. In the spirit of [2], Bényi et al. [1] showed that the weak ascent sequences can uniquely encode each of the following objects: permutations avoiding a certain bivincular pattern of length 4, upper triangular binary matrices satisfying a column restriction, factorial posets that are special (3+1)-free, and matchings with a restriction on their nestings.

Very recently, Dukes and Sagan [11] introduced and studied a more general sequences which are called d-ascent sequences. Given a sequence $x=x_{1} x_{2} \cdots x_{n}$ and an integer $d \geq 0$, an index $i(1 \leq i \leq n-1)$ is said to be a d-ascent of x if $x_{i+1}>x_{i}-d$. Let $\mathrm{dAsc}(x)$ denote the set of d-ascents of x and let dasc (x) denote the number of d-ascents of x. The sequence x is called a d-ascent sequence if $x_{1}=0$ and $0 \leq x_{i} \leq \operatorname{dasc}\left(x_{1} x_{2} \cdots x_{i-1}\right)+1$ for all $2 \leq i \leq n$. It is easily seen that ascent sequences and week ascent sequences correspond to the d-ascent sequences when $d=0$ and $d=1$, respectively. Let \mathcal{A}_{n}^{d} denote the set of d-ascent sequences of length n. For example, we have $x=002143 \in \mathcal{A}_{6}^{2}$. It should be mentioned that d-ascent sequences are different from the p-ascent sequences introduced by Kitaev and Remmel [17].

Dukes and Sagan [11] showed that some maps from the weak case in [1] can be extended to bijections for general d while the extensions of others continue to be injective. To be specific, they constructed a bijection between d-ascent sequences and upper triangular matrices satisfying a column restriction and a bijection between d-ascent sequences and matchings with restricted nestings. They also constructed an injection from d-ascent sequences to permutations avoiding a bivincular pattern of length $d+3$ and an injection from d-ascent sequences to factorial posets avoiding a specially labeled poset with $d+3$ elements.

The purpose of the present work is to complete the results of Dukes and Sagan [11] by constructing a bijection between a class of permutations which we call them
d-permutations and d-ascent sequences (in Section 2) and a bijection between a class of posets which we call them d-posets and d-ascent sequences (in Section 3). Our results are extensions of certain works of Dukes and Sagan [11]. We also give an answer to a problem posed by Dukes and Sagan in the same paper by giving a direct bijection between two classes of matrices (in Section (4).

2 Permutations

In this section, we will introduce a class of permutations which we call them d permutations and show that there is a bijection between d-permutations and d-ascent sequences.

Recall that d-ascent sequences are closely related to permutations avoiding a bivincular pattern. The notion of pattern avoiding permutations was introduced by Knuth [18] in 1970 to study the stack permutations. Bousquet-Mélou et al. [2] initiated the study of bivincular patterns and showed that ascent sequences are in bijection with permutations avoiding a bivincular pattern of length 3 .

For nonnegative integers m, n, we let $[m, n]=\{m, m+1, \ldots, n\}$, and when $m=1$ we abbreviate this to [n]. Let \mathcal{S}_{n} denote the set of permutations of [n]. Given a permutation $\pi \in \mathcal{S}_{n}$ and a permutation $\sigma \in \mathcal{S}_{k}$, an occurrence of σ in π is a subsequence $\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{k}}$ of π that is order isomorphic to σ. We say π contains the (classical) pattern σ if π contains an occurrence of σ. Otherwise, we say π avoids the pattern σ or π is σ-avoiding. To contain a bivincular pattern σ, certain pairs of elements of the occurrence must be adjacent in π and others must be adjacent as integers. In the first case, we put a vertical bar between the elements of σ, and in the second case, we put a bar over the smaller of the two integers. To illustrate, if $c d a b$ is an occurrence of the bivincular pattern $3 \mid 41 \overline{2}$ in π, then we have $a<b<c<d$ with c,d adjacent in π and $c=b+1$. For any pattern σ (classical or bivincular), let $\mathcal{S}_{n}(\sigma)$ denote the set of σ-avoiding permutations of length n. Define

$$
\tau_{d}=(d-1) \mid d 12 \cdots \overline{(d-2)}
$$

Theorem 2.1 ([1, [2]) For $n \geq 1$, there is a bijection between \mathcal{A}_{n} and $\mathcal{S}_{n}\left(\tau_{3}\right)$, and a bijection between \mathcal{A}_{n}^{1} and $\mathcal{S}_{n}\left(\tau_{4}\right)$.

Theorem 2.2 ([11], Theorem 4.5) For $d \geq 0$ and $n \geq 1$, there is an injection pe from \mathcal{A}_{n}^{d} to $\mathcal{S}_{n}\left(\tau_{d+3}\right)$.

The map pe induces a bijection between \mathcal{A}_{n} and $\mathcal{S}_{n}\left(\tau_{3}\right)$ when $d=0$ and a bijection between \mathcal{A}_{n}^{1} and $\mathcal{S}_{n}\left(\tau_{4}\right)$ when $d=1$. Hence Theorem [2.2 is a generalization of Theorem 2.1. Dukes and Sagan [11] posed the following question.

Question 2.3 ([11], Question 8.4) Fix $d \geq 2$. Is there a set Σ_{d} of bivincular patterns containing τ_{d} such that $\left|\mathcal{A}_{n}^{d}\right|=\left|\mathcal{S}_{n}\left(\Sigma_{d+3}\right)\right|$ for all $n \geq 1$?

This is actually the motivation and original intention behind our writing of this section. However, instead of giving a direct answer to Question 2.3, we introduce a class of permutations which are called d-permutations. We show that d-permutations are τ_{d+3}-avoiding (in Theorem (2.4) and in bijection with d-ascent sequences (in Theorem 2.7).

To introduce d-permutations, we will need the notion of d-active elements in a permutation. Let $d \geq 0, n \geq 1$, and let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation of \mathcal{S}_{n}. We define the d-active elements of π in the following procedure:

- Set 1 to be a d-active element of π.
- For $k=2,3, \ldots, n$, if k is to the left of $k-1$ in π and there exist at least d d-active elements which are smaller than $k-1$ between k and $k-1$ in π, we say k is a d-inactive element of π, otherwise, we say k is a d-active element of π.

In what follows, we abbreviate d-active (resp. d-inactive) to active (resp. inactive) if the value of d is clear from the context. Let $\operatorname{Act}(\pi)$ be the set of active elements of π and let $\operatorname{act}(\pi)$ be the number of active elements of π. For example, let $\pi=42617385$ be a permutation of [8]. If $d=0$, we have $\operatorname{Act}(\pi)=\{1,3,5,7,8\}$ and hence $\operatorname{act}(\pi)=5$. If $d=2$, we have $\operatorname{Act}(\pi)=\{1,2,3,5,7,8\}$ and hence $\operatorname{act}(\pi)=6$.

Given a permutation $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, an index $i(1 \leq i \leq n-1)$ is said to be an ascent of π if $\pi_{i+1}>\pi_{i}$, and we call π_{i} an ascent bottom of π. Let $\operatorname{Ascbot}(\pi)$ be the set of ascent bottoms of π. For example, let $\pi=42617385$, we have $\operatorname{Ascbot}(\pi)=\{1,2,3\}$.

For $d \geq 0$, we call a permutation π a d-permutation if $\operatorname{Ascbot}(\pi) \subseteq \operatorname{Act}(\pi)$. Let \mathcal{S}_{n}^{d} denote the set of d-permutations in \mathcal{S}_{n}. For example, let $\pi=42617385$ be the permutation as given above. If $d=0$, we have $\operatorname{Ascbot}(\pi)=\{1,2,3\} \nsubseteq$ $\{1,3,5,7,8\}=\operatorname{Act}(\pi)$. Hence π is not a d-permutation in \mathcal{S}_{8}^{0}. If $d=2$, we have $\operatorname{Ascbot}(\pi)=\{1,2,3\} \subseteq\{1,2,3,5,7,8\}=\operatorname{Act}(\pi)$. Hence π is a d-permutation in \mathcal{S}_{8}^{2}. It turns out that d-permutations are closely related to permutations avoiding bivincular patterns.

Theorem 2.4 For $d \geq 0$ and $n \geq 1$, we have $\mathcal{S}_{n}^{d} \subseteq \mathcal{S}_{n}\left(\tau_{d+3}\right)$ with the equality holds when $d=0$ or $d=1$.

Proof. We first prove that $\mathcal{S}_{n}^{d} \subseteq \mathcal{S}_{n}\left(\tau_{d+3}\right)$. Let $\pi \in \mathcal{S}_{n}^{d}$. We proceed to prove that $\pi \in \mathcal{S}_{n}\left(\tau_{d+3}\right)$. If not, then there exists an occurrence $i j k_{1} k_{2} \cdots k_{d} k_{d+1}$ of τ_{d+3} in π. This
means that $k_{1}<k_{2}<\cdots<k_{d}<k_{d+1}=i-1<i<j$ with i, j adjacent in π. Then we have $i \in \operatorname{Ascbot}(\pi)$. For each $1 \leq r \leq d$, since $k_{r}<k_{r+1} \leq i-1$, there must be two adjacent elements $\pi_{t}<\pi_{t+1}$ with $\pi_{t}<i-1$ among the elements in the factor of π from k_{r} to k_{r+1}. This implies that $\pi_{t} \in \operatorname{Ascbot}(\pi)$. Since $\pi \in \mathcal{S}_{n}^{d}$, we have $\pi_{t} \in \operatorname{Ascbot}(\pi) \subseteq \operatorname{Act}(\pi)$. It follows that i is to the left of $i-1$ in π and there are at least d active elements between i and $i-1$ in π which are smaller than $i-1$. From the definition of inactive elements, i is inactive. Since $i \in \operatorname{Ascbot}(\pi)$, we have $\operatorname{Ascbot}(\pi) \nsubseteq \operatorname{Act}(\pi)$, a contradiction. Thus $\mathcal{S}_{n}^{d} \subseteq \mathcal{S}_{n}\left(\tau_{d+3}\right)$.

It remains to prove that $\mathcal{S}_{n}\left(\tau_{d+3}\right) \subseteq \mathcal{S}_{n}^{d}$ for $d=0,1$. We only consider the case $d=1$ as the other case $d=0$ can be proved similarly. Let $\pi \in \mathcal{S}_{n}\left(\tau_{4}\right)$. If $\pi \notin \mathcal{S}_{n}^{1}$, then there is some $\pi_{k} \in \operatorname{Ascbot}(\pi)$ but $\pi_{k} \notin \operatorname{Act}(\pi)$. This implies that $\pi_{k}<\pi_{k+1}$ and π_{k} is to the left of $\pi_{k}-1$ with at least one active element $\pi_{\ell}<\pi_{k}-1$ between them. Then $\pi_{k} \pi_{k+1} \pi_{\ell}\left(\pi_{k}-1\right)$ forms an occurrence of τ_{4} in π, a contradiction to the fact that $\pi \in \mathcal{S}_{n}\left(\tau_{4}\right)$. This completes the proof.

For $d \geq 2$ and $n \geq d+3$, we remark that $\mathcal{S}_{n}^{d} \varsubsetneqq \mathcal{S}_{n}\left(\tau_{d+3}\right)$ since one can check that the permutation $\pi=(d+2)(d+3) \cdots n d \cdots 21(d+1)$ is a permutation in $\mathcal{S}_{n}\left(\tau_{d+3}\right)$ but not in \mathcal{S}_{n}^{d}.

Lemma 2.5 Given $d \geq 0$ and $n \geq 2$, let σ be a permutation in \mathcal{S}_{n-1} and let π be a permutation obtained from σ by inserting the element n into σ. Then $\pi \in \mathcal{S}_{n}^{d}$ if and only if $\sigma \in \mathcal{S}_{n-1}^{d}$ and n is inserted before σ or after some active element of σ.

Proof. Suppose that $\pi \in \mathcal{S}_{n}^{d}$. By the definition of d-permutations, we have $\operatorname{Ascbot}(\pi) \subseteq$ $\operatorname{Act}(\pi)$. Notice that the elements of σ remain active or inactive after the insertion of n into σ. If the element n is inserted after some inactive element j of σ, then $j \in \operatorname{Ascbot}(\pi)$ but $j \notin \operatorname{Act}(\pi)$, a contradiction to the fact that $\operatorname{Ascbot}(\pi) \subseteq \operatorname{Act}(\pi)$. Hence n is inserted before σ or after some active element of σ. We now show that $\sigma \in \mathcal{S}_{n-1}^{d}$. If not, there is some $k \in \operatorname{Ascbot}(\sigma)$ but $k \notin \operatorname{Act}(\sigma)$. Hence $k \notin \operatorname{Act}(\pi)$. It is easily seen that $\operatorname{Ascbot}(\sigma) \subseteq \operatorname{Ascbot}(\pi)$, thereby $k \in \operatorname{Ascbot}(\pi)$. Then we have $\operatorname{Ascbot}(\pi) \nsubseteq \operatorname{Act}(\pi)$, a contradiction. Hence $\sigma \in \mathcal{S}_{n-1}^{d}$.

For the converse, suppose that $\sigma \in \mathcal{S}_{n-1}^{d}$. We have two cases. If n is inserted before σ, then we have $\operatorname{Ascbot}(\pi)=\operatorname{Ascbot}(\sigma) \subseteq \operatorname{Act}(\sigma) \subseteq \operatorname{Act}(\pi)$. Thus π is a d-permutation. If n is inserted after some active element i of σ, then the newly (possibly) added ascent bottom i is an active element of π. From the fact that $\operatorname{Ascbot}(\sigma) \subseteq \operatorname{Act}(\sigma)$ we also have $\operatorname{Ascbot}(\pi) \subseteq \operatorname{Act}(\pi)$, namely, π is a d-permutation. This completes the proof.

Based on Lemma 2.5, we now define a map ϕ from d-permutations \mathcal{S}_{n}^{d} to d-ascent sequences \mathcal{A}_{n}^{d}. Our map ϕ is defined recursively. For $\mathrm{n}=1$, we define $\phi(1)=0$. Next let $n \geq 2$ and suppose that π is obtained from σ by inserting the element n after
the x_{n}-th active element of σ (reading from left to right). We set $x_{n}=0$ if n is inserted before σ. Then the sequence associated to π is $\phi(\pi)=x_{1} x_{2} \cdots x_{n}$, where $x_{1} x_{2} \cdots x_{n-1}=\phi(\sigma)$.

Example 2.6 Let $d=2$ and let $\pi=42617385$ be a d-permutation in \mathcal{S}_{8}^{2}. Then we have $\phi(\pi)=00203124$ with the following recursive insertion of new maximal values. The elements colored by red indicate the active elements.

$$
\left.\begin{array}{l}
1 \xrightarrow[\longrightarrow]{x_{2}=0} 21 \\
\xrightarrow{x_{3}=2} 213 \\
\xrightarrow{x_{4}=0} 4213
\end{array}\right] \begin{aligned}
& \xrightarrow{x_{5}=3} 42135 \\
& \xrightarrow{x_{6}=1} 426135
\end{aligned} \begin{aligned}
& \xrightarrow{x_{7}=2} 4261735 \\
& \xrightarrow{x_{8}=4} 42617385 .
\end{aligned}
$$

From the construction of the map ϕ, it is easily seen that $x_{i}(1 \leq i \leq n)$ is the number of active elements to the left of i in π which are smaller than i.

Theorem 2.7 For $d \geq 0$ and $n \geq 1$, the map ϕ is a bijection between \mathcal{S}_{n}^{d} and \mathcal{A}_{n}^{d}. Furthermore, we have $\operatorname{act}(\pi)=\operatorname{dasc}(\phi(\pi))+1$ for any $\pi \in \mathcal{S}_{n}^{d}$.

Proof. Since the sequence $\phi(\pi)$ encodes the construction of π, the map ϕ is injective. To prove ϕ is a bijection, we need to show that the image $\phi\left(\mathcal{S}_{n}^{d}\right)$ is the set \mathcal{A}_{n}^{d}. The recursive construction of the map ϕ tells us that $x=x_{1} x_{2} \cdots x_{n} \in \phi\left(\mathcal{S}_{n}^{d}\right)$ if and only if $x^{\prime}=x_{1} x_{2} \cdots x_{n-1} \in \phi\left(\mathcal{S}_{n-1}^{d}\right)$ and $0 \leq x_{n} \leq \operatorname{act}\left(\phi^{-1}\left(x^{\prime}\right)\right)$. By induction on n and the definition of d-ascent sequences, to prove $\phi\left(\mathcal{S}_{n}^{d}\right)=\mathcal{A}_{n}^{d}$, it is sufficient to show that $\operatorname{act}(\pi)=\operatorname{dasc}(\phi(\pi))+1$.

Let us focus on the property $\operatorname{act}(\pi)=\operatorname{dasc}(\phi(\pi))+1$. We will prove the result by induction on n where $n=1$ is trivial. Assume the result for $n-1$. We need to prove the result for n. Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$ be a permutation in \mathcal{S}_{n}^{d} and $x=x_{1} x_{2} \cdots x_{n}=\phi(\pi)$. Then $x^{\prime}=x_{1} x_{2} \cdots x_{n-1}=\phi(\sigma)$, where σ is the permutation obtained from π by deleting the element n from π. By the induction hypothesis, we have $\operatorname{act}(\sigma)=\operatorname{dasc}\left(x^{\prime}\right)+1$. To prove $\operatorname{act}(\pi)=\operatorname{dasc}(\phi(\pi))+1$, it suffices to show that $n \notin \operatorname{Act}(\pi)$ if and only $n-1 \notin \operatorname{dAsc}(x)$. Recall that $x_{i}(1 \leq i \leq n)$ is the number of active elements to the left of i in π which are smaller than i. If n is to the left of $n-1$ in π, we have that
x_{n-1} is the sum of x_{n} and the number of active elements between n and $n-1$ in π which are smaller than $n-1$. Then by the definition of inactive elements, $n \notin \operatorname{Act}(\pi)$ if and only if $x_{n} \leq x_{n-1}-d$, namely $n-1 \notin \mathrm{dAsc}(x)$. This completes the proof.

Combining Theorems 2.4 and 2.7 gives new proofs of Theorems 2.1 and 2.2. Let $\sigma_{d} \in \mathcal{S}_{d}$. We define a special bivincular pattern $\tau_{d+3}^{\prime}=(d+2) \mid(d+3) \underline{\sigma_{d}} \overline{d+1}$ which is the same as bivincular pattern except that each corresponding element of σ_{d} in the occurrence of τ_{d+3}^{\prime} is active. We mark σ_{d} with an underline to distinguish it. Let $\Sigma_{d+3}=\left\{\tau_{d+3}^{\prime} \mid \sigma_{d} \in \mathcal{S}_{d}\right\}$ and let $\mathcal{S}_{n}\left(\Sigma_{d+3}\right)$ be the set of permutations that avoid all the special bivincular patterns in Σ_{d+3}. By the definition of d-permutations, it is easily seen that $\mathcal{S}_{n}^{d}=\mathcal{S}_{n}\left(\Sigma_{d+3}\right)$. Hence our results can be regard as an answer to Question [2.3. It should be mentioned that the map ϕ^{-1} is different from the map pe in Theorem 2.2.

3 Posets

In this section, we will introduce a class of posets which we call them d-posets and show that there is a bijection between d-posets and d-ascent sequences.

Let P be a poset (partial ordered set). We say P is $(a+b)$-free if it does not contain an (induced) subposet which is isomorphic to the disjoint union of an a element chain and a b-element chain. For example, the poset P whose Hasse diagram is on the left of Figure 1 is not (3+1)-free because the subposet of P consisting of the elements $\{3,5,7,8\}$ forms an occurrence of $(3+1)$. But the poset P is $(2+2)$-free.

Figure 1: Two factorial posets.

Let P be a poset on integers. We will use $<_{P}$ to denote the partial order on P and $<$ for the total order on the integers. We call P compatible if it satisfies the
following rule:

$$
i<_{P} j \Longrightarrow i<j
$$

for all $i, j \in P$. And we call a poset P on $[n]$ a factorial poset if it satisfies the following rule:

$$
\begin{equation*}
i<j \text { and } j<_{P} k \Longrightarrow i<_{P} k \tag{3.1}
\end{equation*}
$$

for all $i, j, k \in[n]$. Factorial posets were first introduced by Claesson and Linusson [6] which are easily seen to be compatible and $(2+2)$-free. The reason they are called factorial posets is because there is a natural bijection ω between factorial posets and inversion sequences. Given a factorial poset P on $[n]$, define $\omega(P)=a_{1} a_{2} \cdots a_{n}$, where

$$
a_{i}=\left\{\begin{array}{l}
0, \quad \text { if } i \text { is a minimal element of } P, \\
\max \left\{j \mid j<_{P} i\right\}, \quad \text { otherwise } .
\end{array}\right.
$$

Let $\mathcal{A}(P)$ be the set of nonzero elements of $\omega(P)$. That is, $\mathcal{A}(P)=\left\{a_{i} \in \omega(P) \mid\right.$ $\left.a_{i}>0\right\}$. For example, the two posets shown in Figure 1 are both factorial posets. Moreover, we have $\omega(P)=00204126$ and $\omega(Q)=001204$, thereby $\mathcal{A}(P)=\{1,2,4,6\}$ and $\mathcal{A}(Q)=\{1,2,4\}$.

Bényi et al. [1] built a bijection between week ascent sequences and factorial posets which do not contain a specially labeled $(3+1)$ subposet. In order to extend this result, Dukes and Sagan [11] introduced a special compatible poset P_{d} which is the disjoint union of a $(d-1)$-element chain and an isolated element whose label is one more than the second largest element of the $(d-1)$-element chain. Let P be a factorial poset. We call P contain the special poset P_{d} if there exists a subposet of P which is the disjoint union of a $(d-1)$-element chain

$$
i_{1}<_{P} i_{2}<_{P} \cdots<_{P} i_{d-2}<_{P} i_{d-1}
$$

and an isolated element $i_{d-2}+1$. Otherwise, we say P is special P_{d}-free. Let $\mathcal{P}_{n}\left(P_{d}\right)$ denote the set of special P_{d}-free factorial posets on [n]. For example, one can check (carefully) that the poset P shown in Figure 1 is special P_{4}-free. And the poset Q shown in Figure 1 contains the special poset P_{4} because the subposet of Q consisting of the elements $\{1,4,5,6\}$ forms an occurrence of the special poset P_{4}. The following theorem is an extension of the map of Bényi et al. [1] from the weak case.

Theorem 3.1 ([11], Theorem 5.4) For $d \geq 1$ and $n \geq 1$, there is an injection po from \mathcal{A}_{n}^{d} to $\mathcal{P}_{n}\left(P_{d+3}\right)$.

In analogy to permutations, Dukes and Sagan [11] posed the following question.

Question 3.2 ([11], Question 8.4) Fix $d \geq 2$. Is there a set Σ_{d}^{\prime} of special posets containing P_{d} such that $\left|\mathcal{A}_{n}^{d}\right|=\left|\mathcal{P}_{n}\left(\Sigma_{d+3}^{\prime}\right)\right|$ for all $n \geq 1$?

The purpose of this section is to give an answer to Question 3.2. To this end, we introduce a class of posets which we call them d-posets. We show that d-posets are special P_{d+3}-free (in Theorem 3.3) and in bijection with d-ascent sequences (in Theorem (3.8).

Analogously to permutations, we need to define d-active (active) elements on factorial posets. Let $d \geq 0$ and let P be a factorial poset on $[n]$ with $\omega(P)=a_{1} a_{2} \cdots a_{n}$. We define the active elements of P in the following procedure: For $k=1,2, \ldots n-1$, if $a_{k+1} \leq a_{k}$ and there are at least d active elements in $\left[a_{k+1}+1, a_{k}\right]$, we say k is an inactive element of P. Equivalently, if the set $\left\{u \in P \mid u<_{P} k, u \not_{P} k+1\right\}$ contains at least d active elements, we say k is inactive. Otherwise, we say k is an active element of P. Set n to be an inactive element of P. Let $\operatorname{Act}(P)$ denote the set of active elements of P and let $\operatorname{act}(\pi)$ denote the number of active elements of P. For example, let P be the poset shown in Figure 1 with $\omega(P)=00204126$. If $d=0$, we have $\operatorname{Act}(P)=\{2,4,6,7\}$ and hence $\operatorname{act}(P)=4$. If $d=2$, we have $\operatorname{Act}(P)=\{1,2,4,6,7\}$ and hence $\operatorname{act}(P)=5$.

Now we are at the position to define d-posets. For $d \geq 0$, we call a factorial poset P a d-poset if $\mathcal{A}(P) \subseteq \operatorname{Act}(P)$. Let \mathcal{P}_{n}^{d} denote the set of d-posets on [n]. For example, let $d=2$ and let P, Q be the two posets shown in Figure 1. For poset P, we have $\mathcal{A}(P)=\{1,2,4,6\} \subseteq\{1,2,4,6,7\}=\operatorname{Act}(P)$. Hence P is a d-poset in \mathcal{P}_{8}^{2}. For poset Q, we have $\mathcal{A}(Q)=\{1,2,4\} \nsubseteq\{1,2,3,5\}=\operatorname{Act}(Q)$. Hence Q is not a d-poset in \mathcal{P}_{6}^{2}. It turns that d-posets are closely related to special P_{d}-free posets.

Theorem 3.3 For all $d, n \geq 1$, we have $\mathcal{P}_{n}^{d} \subseteq \mathcal{P}_{n}\left(P_{d+3}\right)$ with the equality holds when $d=1$.

Proof. We first show that $\mathcal{P}_{n}^{d} \subseteq \mathcal{P}_{n}\left(P_{d+3}\right)$. Let P be a factorial poset in \mathcal{P}_{n}^{d} with $\omega(P)=a_{1} a_{2} \cdots a_{n}$. By the definition of d-posets, we have $\mathcal{A}(P) \subseteq \operatorname{Act}(P)$. We need to prove $P \in \mathcal{P}_{n}\left(P_{d+3}\right)$. If not, then there is a subposet of P which is the disjoint union of a $(d+2)$-element chain

$$
i_{1}<_{P} i_{2}<_{P} \cdots<_{P} i_{d+1}<_{P} i_{d+2}
$$

and an isolated element $i_{d+1}+1$. By the definition of $\mathcal{A}(P)$ and the rule (3.1), it is easily seen that

$$
i_{1} \leq a_{i_{2}}<i_{2} \leq a_{i_{3}}<\cdots<i_{d} \leq a_{i_{d+1}}<i_{d+1} .
$$

Since $i_{d+1}{ }_{P} i_{d+2}$ and $i_{d+1}+1{ }_{P} i_{d+2}$, we have $a_{i_{d+2}}=i_{d+1}$. Combining the fact that $\mathcal{A}(P) \subseteq \operatorname{Act}(P)$, we obtain that $a_{i_{k}} \in \operatorname{Act}(P)$ for $2 \leq k \leq d+2$. In particular, we have
$i_{d+1}=a_{i_{d+2}} \in \operatorname{Act}(P)$. Note that $i_{1} \not{ }_{P} i_{d+1}+1$. By the rule (3.1), we have $a_{i_{k}}<_{P} i_{d+1}$ and $a_{i_{k}} \nless P i_{d+1}+1$ for $2 \leq k \leq d+1$. Then by the definition of inactive elements, i_{d+1} is an inactive element of P, a contradiction. Thus, $\mathcal{P}_{n}^{d} \subseteq \mathcal{P}_{n}\left(P_{d+3}\right)$.

It remains to prove that $\mathcal{P}_{n}\left(P_{4}\right) \subseteq \mathcal{P}_{n}^{1}$. Let $P \in \mathcal{P}_{n}\left(P_{4}\right)$. If $P \notin \mathcal{P}_{n}^{1}$, then there is some i such that $i \in \mathcal{A}(P)$ but $i \notin \operatorname{Act}(P)$. Then there is some $k \in[n]$ such that
 definition of inactive elements, there is some active element j satisfying that $j<_{P} i$ but $j \nless P i+1$. It is easily seen that $i+1 \neq k$. Then the subposet of P consisting of the elements $\{j, i, i+1, k\}$ forms an occurrence of the special poset P_{4}, a contradiction. This completes the proof.

Some numerical evidences show that $\mathcal{P}_{n}^{0} \nsubseteq \mathcal{P}_{n}\left(P_{3}\right)$. However, we have the following theorem.

Theorem 3.4 For $n \geq 1$, we have $\mathcal{P}_{n}\left(P_{3}\right) \subseteq \mathcal{P}_{n}^{0}$.

Proof. Let $P \in \mathcal{P}_{n}\left(P_{3}\right)$ with $\omega(P)=a_{1} a_{2} \cdots a_{n}$. If $P \notin \mathcal{P}_{n}^{0}$, then there is some i such that $i \in \mathcal{A}(P)$ but $i \notin \operatorname{Act}(P)$. By the definition of $\mathcal{A}(P)$, we have $i<_{P} k$ and $i+1 \nless P k$ for some k. And by the definition of inactive elements, we have $a_{i+1} \leq a_{i}$. It follows that $i \nless P_{P} i+1$. It is easily seen that $i+1 \neq k$. Then the subposet of P consisting of the elements $\{i, i+1, k\}$ forms an occurrence of the special poset P_{3}, a contradiction. This completes the proof.

Given a factorial poset P on $[n]$ and $1 \leq i \leq n$, let $P[i]$ denote the subposet of P consisting of all the elements in [i]. It is easily seen that $P[i]$ is also a factorial poset for $1 \leq i \leq n$. We proceed to construct a bijection between d-posets and d-ascent sequences. The following lemma is needed.

Lemma 3.5 Given $d \geq 0$ and $n \geq 2$, let P be a factorial poset on $[n]$ with $\omega(P)=$ $a_{1} a_{2} \cdots a_{n}$. Then $P \in \mathcal{P}_{n}^{d}$ if and only if $P[n-1] \in \mathcal{P}_{n-1}^{d}$ and $a_{n} \in\{0, n-1\} \cup \operatorname{Act}(P[n-1])$.

Proof. Suppose that $P \in \mathcal{P}_{n}^{d}$. By the definition of d-posets, we have $\mathcal{A}(P) \subseteq \operatorname{Act}(P)$. If $a_{n} \neq 0$ and $a_{n} \neq n-1$, then $a_{n} \in \mathcal{A}(P) \subseteq \operatorname{Act}(P)$. Notice that either $\operatorname{Act}(P)=$ $\operatorname{Act}(P[n-1])$ or $\operatorname{Act}(P)=\operatorname{Act}(P[n-1]) \cup\{n-1\}$. Hence we have $a_{n} \in \operatorname{Act}(P[n-1])$. We now show that $P[n-1] \in \mathcal{P}_{n-1}^{d}$. By the definition of $\mathcal{A}(P)$, we have $\mathcal{A}(P[n-1]) \subseteq$ $\mathcal{A}(P) \subseteq \operatorname{Act}(P)$. Since all the elements in $\mathcal{A}(P[n-1])$ are smaller than $n-1$, we derive that $\mathcal{A}(P[n-1]) \subseteq \operatorname{Act}(P[n-1])$. Thus $P[n-1] \in \mathcal{P}_{n-1}^{d}$.

For the converse, suppose that $P[n-1] \in \mathcal{P}_{n-1}^{d}$ and $a_{n} \in\{0, n-1\} \cup \operatorname{Act}(P[n-1])$. Then we have $\mathcal{A}(P[n-1]) \subseteq \operatorname{Act}(P[n-1])$. We need to prove $P \in \mathcal{P}_{n}^{d}$, namely, $\mathcal{A}(P) \subseteq \operatorname{Act}(P)$. There are three cases. If $a_{n}=0$, then we have $\mathcal{A}(P)=\mathcal{A}(P[n-1]) \subseteq$
$\operatorname{Act}(P[n-1]) \subseteq \operatorname{Act}(P)$. If $a_{n}=n-1$, then we have $\mathcal{A}(P)=\mathcal{A}(P[n-1]) \cup\{n-1\} \subseteq$ $\operatorname{Act}(P[n-1]) \cup\{n-1\} \subseteq \operatorname{Act}(P) \cup\{n-1\}$. Since $a_{n}=n-1>a_{n-1}$, we deduce that $n-1$ is an active element of P. Thus, we have $\mathcal{A}(P) \subseteq \operatorname{Act}(P)$. If $a_{n} \in \operatorname{Act}(P[n-1])$, it is easily seen that $\mathcal{A}(P)=\mathcal{A}(P[n-1]) \cup\left\{a_{n}\right\} \subseteq \operatorname{Act}(P[n-1]) \subseteq \operatorname{Act}(P)$. This completes the proof.

Lemma 3.5 enables us to construct a map ψ from d-posets to d-ascent sequences recursively. Let $d \geq 0$ and let P be a d-poset of \mathcal{P}_{n}^{d} with $\omega(P)=a_{1} a_{2} \cdots a_{n}$. For $n=1$, set $\psi(P)=0$. For $n \geq 2$, suppose that we have obtained $\psi(P[n-1])=x_{1} x_{2} \cdots x_{n-1}$. Then define $\psi(P)=x_{1} \cdots x_{n-1} x_{n}$, where

$$
x_{n}=\left\{\begin{array}{l}
0, \quad \text { if } a_{n}=0, \tag{3.2}\\
\operatorname{act}(P[n-1])+1, \quad \text { if } a_{n}=n-1, \\
i, \quad \text { if } a_{n} \text { is the } i \text {-th smallest element in } \operatorname{Act}(P[n-1])
\end{array}\right.
$$

Example 3.6 Let $d=2$ and let P be the d-poset shown in Figure 1. Then we have $\psi(P)=00203124$ with the recursive construction in Figure Q in which the active 2 elements are colored by green in each posets.

Figure 2: An example of the bijection ψ between \mathcal{P}_{n}^{d} and \mathcal{A}_{n}^{d}.

The following lemma gives another equivalent description of the map ψ.
Lemma 3.7 For $d \geq 0$ and $n \geq 1$, let $P \in \mathcal{P}_{n}^{d}$ with $\omega(P)=a_{1} a_{2} \cdots a_{n}$ and let $x=$ $x_{1} x_{2} \cdots x_{n}=\psi(P)$. Then we have $x_{i}(1 \leq i \leq n)$ is the number of active elements of P in $\left[a_{i}\right]$ with the convention that $[0]=\varnothing$.

Proof. We prove the result by induction on n where $n=1$ is trivial. Assume the result for $n-1$. By the recursive construction of ψ, it is easily seen that $x^{\prime}=x_{1} x_{2} \cdots x_{n-1}=$ $\psi(P[n-1])$. Note that $w(P[n-1])=a_{1} a_{2} \cdots a_{n-1}$. Then by the induction hypothesis, we have $x_{i}(1 \leq i \leq n-1)$ is the number of active elements of the poset $P[n-1]$ in $\left[a_{i}\right]$. Notice that $\operatorname{Act}(P)$ and $\operatorname{Act}(P[n-1])$ may differ by one element $n-1$. Combining the fact that $a_{i} \leq i-1<n-1(1 \leq i \leq n-1)$, we deduce that P and $P[n-1]$ have the same active elements in $\left[a_{i}\right](1 \leq i \leq n-1)$. Hence x_{i} is also the number of active elements of P in $\left[a_{i}\right]$ for $1 \leq i \leq n-1$.

It remains to prove that x_{n} is the number of active elements of P in $\left[a_{n}\right]$. There are three cases for a_{n} where the first and the third cases of (3.2) are trivial. For the case $a_{n}=n-1$, be the definition of ψ, we obtain that $x_{n}=\operatorname{act}(P[n-1])+1$. Recall that $n-1 \in \operatorname{Act}(P)$ in this case. Hence the poset P contains $\operatorname{act}(P[n-1])+1=x_{n}$ active elements in [n-1], completing the proof.

Theorem 3.8 For $d \geq 0$ and $n \geq 1$, the map ψ is a bijection between \mathcal{P}_{n}^{d} and \mathcal{A}_{n}^{d}. Furthermore, we have $\operatorname{Act}(P)=\mathrm{d} \operatorname{Asc}(\psi(P))$ for any $P \in \mathcal{P}_{n}^{d}$.

Proof. Since the sequence $\psi(P)$ encodes the construction of P, the map ψ is injective. In order to prove ψ is a bijection, we need to show that ψ is surjective, namely, $\psi\left(\mathcal{P}_{n}^{d}\right)=\mathcal{A}_{n}^{d}$. The recursive construction of the map ψ tells us that $x=x_{1} x_{2} \cdots x_{n} \in$ $\psi\left(\mathcal{P}_{n}^{d}\right)$ if and only if $x^{\prime}=x_{1} x_{2} \cdots x_{n-1} \in \psi\left(\mathcal{P}_{n-1}^{d}\right)$ and $0 \leq x_{n} \leq \operatorname{act}\left(\psi^{-1}\left(x^{\prime}\right)\right)+1$. By induction on n and the definition of d-ascent sequences, to prove $\psi\left(\mathcal{P}_{n}^{d}\right)=\mathcal{A}_{n}^{d}$, it is sufficient to show that $\operatorname{Act}(P)=\mathrm{dAsc}(\psi(P))$ for any $P \in \mathcal{P}_{n}^{d}$.

Now let us focus on the property $\operatorname{Act}(P)=\operatorname{dAsc}(\psi(P))$. We will prove this result by induction on n where $n=1$ is trivial. Assume the result for $n-1$. Let P be a d-poset in \mathcal{P}_{n}^{d} and $x=x_{1} x_{2} \cdots x_{n}=\psi(P)$. Then we have $x^{\prime}=x_{1} x_{2} \cdots x_{n-1}=$ $\psi(P[n-1])$. By the induction hypothesis, we have $\operatorname{Act}(P[n-1])=\operatorname{dAsc}\left(x^{\prime}\right)$. To prove $\operatorname{Act}(P)=\operatorname{dAsc}(x)$. It is sufficient to prove $n-1 \notin \operatorname{Act}(P)$ if and only if $n-1 \notin \mathrm{~d} \operatorname{Asc}(x)$. By the definition of inactive elements, $n-1 \notin \operatorname{Act}(P)$ if and only if $a_{n} \leq a_{n-1}$ and there are at least d active elements in [$a_{n}+1, a_{n-1}$]. From Lemma 3.7, this is equivalent to the fact $x_{n} \leq x_{n-1}-d$, namely, $n-1 \notin \mathrm{~d} \operatorname{Asc}(x)$. To conclude, we have $\operatorname{Act}(P)=\operatorname{dAcc}(\psi(P))$. This completes the proof.

Combining Theorems 3.3 and 3.8 gives a new proof of Theorem 3.1. It should be mentioned that the map ψ also applies to $d=0$. When $d=0$, the map ψ induces a bijection between \mathcal{P}_{n}^{0} and ascent sequences \mathcal{A}_{n}, where \mathcal{P}_{n}^{0} can be equivalently described as the set of factorial posets P on [n] satisfying the following rule: if there exist some i, k such that $i{<_{P}}^{k}$ and $i+1{\Varangle_{P}} k$, then there exists some j such that $j<_{P} i+1$ and $j \not_{P} i$. We remark that the inverse of the map ψ is the map po in Theorem 3.1 which can be verified from Lemma 3.7. Theorem 3.8 and the proof of Theorem 5.4 in [11]. We omit the detailed proof here.

4 Matrices

In this section, we give an answer to a problem posed by Dukes and Sagan [11] by building a direct bijection between a class of matrices with a certain column restriction and Fishburn matrices.

Fishburn matrices were introduced by Fishburn [13] to represent interval orders. The first explicit bijection mx^{\prime} between ascent sequences and Fishburn matrices was given by Dukes and Parviainen [8]. In order to solve a conjecture of Jelínek [15], Chen et al. [4] constructed another bijection $\mathrm{mx}^{\prime \prime}$ between ascent sequences and Fishburn matrices. A Fishburn matrix A is an upper triangular matrix with nonnegative integers such that all rows and columns contain at least one nonzero entry. We define the weight of a matrix A, denoted by $w(A)$, to be the sum of the entries of A. Let \mathcal{M}_{n} denote the set of Fishburn matrices of weight n. For example, we have

$$
\mathcal{M}_{3}=\left\{(3),\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\}
$$

Given a matrix A, let $\operatorname{dim}(A)$ denote the number of rows of the matrix A and let $A_{i, j}$ denote the entry in the i-th row and j-th column of A. We assume that the rows of a matrix are numbered from top to bottom and the columns are numbered from left to right in which the topmost row is numbered by 1 and the leftmost column is numbered by 1. A row (or column) is said to be zero if all the entries in the row (or column) are zero.

Given a matrix A, we let $c_{j}(A)$ be the column vector consisting of the j-th column of A. If $c_{j}(A)$ is not zero, then we define $\operatorname{rmax}_{\mathrm{j}}(A)$ and $\operatorname{rmin}_{\mathrm{j}}(A)$ to be the largest and the smallest index i such that $A_{i, j}>0$, respectively. In what follows, we always assume that matrices are square matrices with nonnegative integers and contain no zero columns unless specified otherwise.

Recall that Dukes and Sagan [11] constructed a bijection mx between d-ascent sequences and a class of upper triangular matrices with a certain column restriction. When restricting $d=0$, mx induces a bijection between ascent sequences \mathcal{A}_{n} and a class of matrices \mathcal{M}_{n}^{\prime} defined as follows.

Definition 4.1 Let \mathcal{M}_{n}^{\prime} be the set of upper triangular matrices A with nonnegative integers which satisfy the following properties:
(Ma) The weight of A is n.
(Mb) There exist no zero columns in A.
(Mc) For all $1 \leq j \leq \operatorname{dim}(A)-1, \operatorname{rmax}_{j+1}(A)>\operatorname{rmin}_{\mathrm{j}}(A)$.

For example, let A be the matrix shown in Figure 3, The rmax and rmin values of each column are listed below the matrix. It can be checked that A is a matrix in $\mathcal{M}_{19}^{\prime}$. Let $\mathcal{M}^{\prime}=\bigcup_{n \geq 1} \mathcal{M}_{n}^{\prime}$.

$$
\begin{gathered}
A=\left(\begin{array}{lllll}
2 & 1 & 3 & 2 & 1 \\
0 & 1 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
j: \quad 1
\end{gathered} 2 \begin{array}{llll}
\\
j & 3 & 4 & 5 \\
\operatorname{rmin}_{j}: 1 & 1 & 1 & 1
\end{array} 1
$$

Figure 3: A matrix of $\mathcal{M}_{19}^{\prime}$ with its rmax and rmin values.

Problem 4.2 ([11], Problem 8.3) Find a direct bijection $\mathcal{M}_{n}^{\prime} \rightarrow \mathcal{M}_{n}$ without composing mx^{-1} and mx^{\prime}.

We will give an answer to Problem 4.2 by constructing a map θ from \mathcal{M}_{n}^{\prime} to \mathcal{M}_{n} which we then show (in Theorem 4.7) to be a bijection. To this end, we need to define two transformations α and β on matrices which will play essential roles in the construction of θ and its inverse θ^{\prime}, respectively. For $1 \leq k \leq \operatorname{dim}(A)$, let $A[k]$ denote the submatrix of A composed of entries from the first k rows and first k columns of A.

The transformation α

Let A be a matrix with $\operatorname{dim}(A)=m$ and $\operatorname{rmax}_{m}(A)=i$. The matrix $\alpha(A)$ is defined as follows.
(1) If $i=m$, then let $\alpha(A)=A$.
(2) If $i<m$, then we construct $\alpha(A)$ in the following way. In $A[m-1]$, insert a new zero row between rows $i-1$ and i, and insert a new zero column between columns $i-1$ and i. Denote by A^{\prime} the resulting matrix. Then copy the highest $i-1$ entries in the last column of A^{\prime} to the top $i-1$ entries in the new zero column. Set $A^{\prime \prime}$ to be the resulting matrix. Finally replace the highest i entries in the last column of $A^{\prime \prime}$ with the top i entries in the last column of A. The resulting matrix is $\alpha(A)$.

Example 4.3 Consider the following two matrices:

$$
A=\left(\begin{array}{cccc}
1 & 1 & 3 & 0 \\
0 & 2 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right) ; \quad B=\left(\begin{array}{ccccc}
1 & 0 & 2 & 3 & 1 \\
0 & 3 & 1 & 1 & 0 \\
0 & 0 & 2 & 3 & 2 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

For matrix A, we have $\operatorname{rmax}_{4}(A)=\operatorname{dim}(A)=4$, by using rule (1) of the transformation α, we have $\alpha(A)=A$. For matrix B, since $\operatorname{rmax}_{5}(B)=3<\operatorname{dim}(B)=5$, rule (2) of the transformation α applies and we do as follows. Insert a zero row and zero column between rows 2 and 3 and columns 2 and 3 of $B[4]$, respectively. We obtain the resulting matrix B^{\prime} shown as follows, with the newly inserted zeros highlighted in bold.

$$
B^{\prime}=\left(\begin{array}{lllll}
1 & 0 & \mathbf{0} & 2 & 3 \\
0 & 3 & \mathbf{0} & 1 & 1 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & \mathbf{0} & 2 & 3 \\
0 & 0 & \mathbf{0} & 0 & 2
\end{array}\right) .
$$

Next copy the highest 2 entries in the last column of B^{\prime} to the top 2 entries in the new zero column. These are illustrated in red in the following matrix:

$$
B^{\prime \prime}=\left(\begin{array}{lllll}
1 & 0 & 3 & 2 & 3 \\
0 & 3 & \mathbf{1} & 1 & 1 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & \mathbf{0} & 2 & 3 \\
0 & 0 & \mathbf{0} & 0 & 2
\end{array}\right) .
$$

Finally replace the highest 3 entries in the last column of $B^{\prime \prime}$ with the top 3 entries in the last column of B to yield $\alpha(B)$:

$$
\alpha(B)=\left(\begin{array}{lllll}
1 & 0 & 3 & 2 & \mathbf{1} \\
0 & 3 & 1 & 1 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 2 \\
0 & 0 & \mathbf{0} & 2 & 3 \\
0 & 0 & \mathbf{0} & 0 & 2
\end{array}\right) .
$$

Given a Fishburn matrix A with $\operatorname{dim}(A)=m$, let $\operatorname{index}(A)$ denote the smallest index i such that the i-th row of A contains a unique nonzero entry $A_{i, m}$. Since the only nonzero entry in m-th row of A is $A_{m, m}$, then $\operatorname{index}(A)$ is well-defined.

Lemma 4.4 Let A be a matrix with $\operatorname{dim}(A)=m$ such that $A[m-1]$ is a Fishburn matrix and $\operatorname{rmin}_{m-1}(A)<\operatorname{rmax}_{m}(A)$. Then we have that $\alpha(A)$ is a Fishburn matrix. Moreover we have $w(\alpha(A))=w(A), \operatorname{dim}(\alpha(A))=\operatorname{dim}(A), \operatorname{rmin}_{m}(\alpha(A))=$ $\operatorname{rmin}_{m}(A)$ and $\operatorname{index}(\alpha(A))=\operatorname{rmax}_{m}(A)$.

Proof. We first show $\alpha(A)$ is a Fishburn matrix. We have two cases. To simplify notation, let $i=\operatorname{rmax}_{m}(A)$. If $i=m$, by using rule (1) of α, we have $\alpha(A)=A$. In this case, we have $A_{m, m}>0$. Combining the fact that $A[m-1]$ is a Fishburn matrix, we deduce that A contains no zero rows or zero columns. It is easily seen that A is an upper triangular matrix. Hence, $\alpha(A)=A$ is a Fishburn matrix.

If $i<m$, rule (2) of α applies. We first claim that $\alpha(A)$ does not contain zero rows or zero columns. Since $A[m-1]$ is a Fishburn matrix, then by the construction of α, it is sufficient to show that the newly added row (resp. column) is not zero. Notice that $\operatorname{rmin}_{m-1}(A)<\operatorname{rmax}_{m}(A)$. We have that the newly added column is not zero. Again by the construction of α, we deduce that the last entry of the newly added row is not zero. This proves the claim. It is routine to check that $\alpha(A)$ is still an upper triangular matrix. This yields that $\alpha(A)$ is a Fishburn matrix.

For the second part of the theorem, we will only prove index $(\alpha(A))=\operatorname{rmax}_{m}(A)$ as the rest equalities can be easily verified by the construction of the transformation α. Since $A[m-1]$ is a Fishburn matrix, we have that each row of $A[m-1]$ contains at least one nonzero entry. Again by the construction of α, it can be checked that the first $i-1$ rows of $\alpha(A)[m-1]$ are not zero. Moreover, the i-th row of the matrix $\alpha(A)$ contains a unique nonzero entry $\alpha(A)_{i, m}$. Hence we have index $(\alpha(A))=i=$ $\operatorname{rmax}_{m}(A)$, as desired.

The transformation β

Let A be a Fishburn matrix with $\operatorname{dim}(A)=m$ and $\operatorname{index}(A)=i$. The matrix $\beta(A)$ is defined as follows.
(1) If $i=m$, then let $\beta(A)=A$.
(2) If $i<m$, then we construct $\beta(A)$ in the following way. Let B be the matrix obtained from A by replacing the highest i entries in the last column of A with the top i entries in the i-th column of A. Delete the i-th row and i-th column of B, then insert a zero row at the bottom and a zero column to the right of B. Let C be the resulting matrix. Then $\beta(A)$ is the matrix obtained from C by replacing the highest i entries in the last column of C with the top i entries in the last column of A.

For example, consider the matrix A in Example 4.3. Since index $(A)=\operatorname{dim}(A)=$ 4 , rule (1) of the transformation β applies and we obtain $\beta(A)=A$. For the
matrix $\alpha(B)$ in Example 4.3, since index $(\alpha(B))=3<\operatorname{dim}(\alpha(B))=5$, we obtain $\beta(\alpha(B))=B$ by applying the rule (2) of the transformation β.

Lemma 4.5 Let A be a matrix with $\operatorname{dim}(A)=m$ such that $A[m-1]$ is a Fishburn matrix and $\operatorname{rmin}_{m-1}(A)<\operatorname{rmax}_{m}(A)$. Then we have that $\beta(\alpha(A))=A$.

Proof. By Lemma 4.4, we see that $\alpha(A)$ is a Fishburn matrix and index $(\alpha(A))=$ $\operatorname{rmax}_{m}(A)$. Then the conclusion follows directly from the fact that cases (1) and (2) in the construction of β correspond, respectively, to cases (1) and (2) of the construction of α.

Let A be a matrix. For $1 \leq k \leq \operatorname{dim}(A)$, let $\alpha_{k}(A)$ denote the matrix obtained from A by replacing the submatrix $A[k]$ with $\alpha(A[k])$ and keeping other entries in A unchanged. We are now ready to define our map $\theta: \mathcal{M}_{n}^{\prime} \rightarrow \mathcal{M}_{n}$. Given $A \in \mathcal{M}_{n}^{\prime}$ with $\operatorname{dim}(A)=m$, define $\theta(A)=\alpha_{m} \circ \alpha_{m-1} \circ \cdots \circ \alpha_{1}(A)$.

Example 4.6 Let A be the matrix shown in Figure 3. Then we have

$$
\theta(A)=\left(\begin{array}{ccccc}
2 & 1 & 2 & 3 & 1 \\
0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right) \in \mathcal{M}_{19}
$$

with the detailed process below.

$$
A=\left(\begin{array}{lllll}
2 & 1 & 3 & 2 & 1 \\
0 & 1 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\alpha_{3}}\left(\begin{array}{lllll}
2 & 1 & 3 & 2 & 1 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\alpha_{5}}\left(\begin{array}{lllll}
2 & 1 & 2 & 3 & 1 \\
0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 2
\end{array}\right),
$$

where we omit all the transformations α_{i} that are the identity transformations in this case.

Let A be a matrix in \mathcal{M}_{n}^{\prime} with $\operatorname{dim}(A)=m$. In the rest of the paper, we always denote $A^{(i)}=\alpha_{i}\left(A^{(i-1)}\right)(1 \leq i \leq m)$ with the convention that $A^{(0)}=A$. By the definition of θ, we have that $\theta(A)=A^{(m)}$.

Theorem 4.7 For $n \geq 1$, the map θ is a bijection between \mathcal{M}_{n}^{\prime} and \mathcal{M}_{n}.

Proof. Let $A \in \mathcal{M}_{n}^{\prime}$ be a matrix with $\operatorname{dim}(A)=m$. We first prove that θ is welldefined in that $\theta(A) \in \mathcal{M}_{n}$. We will prove the result by induction on m where $m=1$ is trivial. Assume the result for $m-1$. Observe that $A[m-1]$ is a matrix in \mathcal{M}^{\prime}. Then by the induction hypothesis, $\theta(A[m-1])=A[m-1]^{(m-1)}=$ $A^{(m-1)}[m-1]$ is a Fishburn matrix with the same weight with $A[m-1]$. Thus, we have $w\left(A^{(m-1)}\right)=n$. By Lemma 4.4 and the construction of α_{k}, one can verify that $\operatorname{rmin}_{m-1}\left(A^{(m-1)}\right)=\operatorname{rmin}_{m-1}(A)<\operatorname{rmax}_{m}(A)=\operatorname{rmax}_{m}\left(A^{(m-1)}\right)$. Note that $\theta(A)=\alpha_{m}\left(A^{(m-1)}\right)=\alpha\left(A^{(m-1)}\right)$. Then the conclusion follows directly from Lemma 4.4.

By cardinality reasons, in order to prove θ is a bijection, it is sufficient to show that θ is an injection. It is easily seen that $A=A^{(0)}=A^{(1)}$. Then by the definition of θ, we need to recover the matrix $A^{(k)}$ from $A^{(k+1)}$ for $1 \leq k \leq m-1$. Given $1 \leq i \leq m$, let B be a matrix with $\operatorname{dim}(B)=m$ such that $B[i]$ is a Fishburn matrix. Define $\beta_{i}(B)$ to be the matrix obtained from B by replacing the submatrix $B[i]$ with $\beta(B[i])$ and keeping other entries in B unchanged. Notice that $\theta(A)$ is a Fishburn matrix for $A \in \mathcal{M}_{n}^{\prime}$. By the construction of θ and Lemma 4.4, we deduce that $A^{(k)}$ is a matrix such that $A^{(k)}[k]=\theta(A[k])$ is a Fishburn matrix and $\operatorname{rmin}_{k}\left(A^{(k)}\right)<\operatorname{rmax}_{k+1}\left(A^{(k)}\right)$ for $1 \leq k \leq m-1$. From Lemma 4.5, we have $\beta_{k+1}\left(\alpha_{k+1}\left(A^{(k)}\right)\right)=\beta_{k+1}\left(A^{(k+1)}\right)=A^{(k)}$. That is to say, we can recover $A^{(k)}$ from $A^{(k+1)}$ for each $1 \leq k \leq m-1$, as desired.

Given $B \in \mathcal{M}_{n}$ with $\operatorname{dim}(B)=m$, define $\theta^{\prime}(B)=\beta_{1} \circ \beta_{2} \circ \cdots \circ \beta_{m}(B)$. From the proof of Theorem 4.7, it is easily seen that $\theta^{\prime} \circ \theta(A)=A$ for any $A \in \mathcal{M}_{n}^{\prime}$. Namely, the maps θ and θ^{\prime} are inverse of each other.

Remark 4.8 For $A \in \mathcal{M}_{n}^{\prime}$, we have showed that $\theta(A)=\mathrm{mx}^{\prime} \circ \mathrm{mx}^{-1}(A)$ by induction on $\operatorname{dim}(A)$. Moreover, there is another direct bijection $\bar{\theta}$ between \mathcal{M}_{n}^{\prime} and \mathcal{M}_{n}. The construction of $\bar{\theta}$ is exactly the same as that of θ except replacing α with α^{\prime}, where α^{\prime} is defined as follows.

The transformation α^{\prime}

Let A be a matrix with $\operatorname{dim}(A)=m$ and $\operatorname{rmax}_{m}(A)=i$. The matrix $\alpha^{\prime}(A)$ is defined as follows.
(1) If $i=m$, then let $\alpha^{\prime}(A)=A$.
(2) If $i<m$, then we construct $\alpha^{\prime}(A)$ in the following way. In $A[m-1]$, insert a new zero row between rows $i-1$ and i, and insert a new zero column between columns $i-1$ and i. Denote by A^{\prime} the resulting matrix. Let T be the set of indices j such that $j \geq i+1$ and column j of A^{\prime} contains at least one nonzero entry above row i. Suppose that $T=\left\{c_{1}, c_{2}, \ldots, c_{\ell}\right\}$ with $c_{1}<c_{2}<\cdots<c_{\ell}$. Let $c_{0}=i$. For all $1 \leq a \leq i$ and $1 \leq b \leq \ell$, copy the entry $A_{a, c_{b}}$ to $A_{a, c_{b-1}}$ and replace
the highest i entries in the last column of A^{\prime} with the top i entries in the last column of A. The resulting matrix is $\alpha^{\prime}(A)$.

Similarly, for $A \in \mathcal{M}_{n}^{\prime}$, we can prove that $\bar{\theta}(A)=\mathrm{mx}^{\prime \prime} \circ \mathrm{mx}^{-1}(A)$ by induction on $\operatorname{dim}(A)$. The proofs of these results are left to the readers who are familiar with these maps.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (11801378).

References

[1] B. Bényi, A. Claesson, and M. Dukes, Weak ascent sequences and related combinatorial structures, European J. Combine., 108 (2023), No. 103633.
[2] M. Bousquet-Mélou, A. Claesson, M. Dukes, S. Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations, J. Combin. Theory Ser. $A, 117$ (2010), 884-909.
[3] W.Y.C. Chen, A.Y.L, Dai, T. Dokos, T. Dwyer, and B.E. Sagan, On 021avoiding ascent sequences, Electron. J. Combine., 29(4) (2013), \#P4.25.
[4] D.D. Chen, S.H.F. Yan, and R.D.P. Zhou, Equidistribution statistics on Fishburn matrices and permutations, Electron. J. Combin., 26(1) (2019), \#P1.11.
[5] A. Claesson, M. Dukes, and S. Kitaev, A direct encoding of Stoimenow's matchings as ascent sequences, Australas. J. Combin., 49 (2011), 47-59.
[6] A. Claesson, S. Linusson, n ! matching, n ! posets, Proc. Amer. Math. Soc., 139 (2011), 435-449.
[7] A.R. Conway, M. Conway, A.E. Price, and A.J. Guttmann, Pattern-avoiding ascent sequences of length 3, Electron. J. Combin., 20(1) (2022), \#P4.25
[8] M. Dukes, R. Parviainen, Ascent sequences and upper triangular matrices containing non-negative integers, Electron. J. Combin., 17 (2010), R53.
[9] M. Dukes, Generalized ballot sequences are ascent sequences, Australas. J. Combin., 64 (2016), 61-63.
[10] M. Dukes and P.R.W. McNamara, Refining the bijections among ascent sequences, $(2+2)$-free posets, integer matrices and pattern-avoiding permutations, J. Combin. Theory Ser. A, 167 (2019), 403-430.
[11] M. Dukes and B.E. Sagan, Difference ascent sequences, arXiv:2311.15370v1 [mth.CO], 2023.
[12] P. Duncan and E. Steingrímsson, Pattern avoidance in ascent sequences, Electron. J. Combin., 18(1) (2011), Paper 226.
[13] P.C. Fishburn, Interval orders and interval graphs: a study of partially ordered sets, John Wiley \& Sons, 1985.
[14] S.S. Fu, E.Y. Jin, Z.C. Lin, S.H.F. Yan, and R.D.P. Zhou, A new decomposition of ascent sequences and Euler-Stirling statistics, J. Combin. Theorey Ser. A, 31 (2020), 105141.
[15] V. Jelínek, Catalan pairs and Fishburn triples, Adv. Appl. Math., 70(2015), 1-31.
[16] E.Y. Jin and M.J. Schlosser, Proof of a bi-symmetric septuple equidistribution on ascent sequences, Comb. Theory, 3(1) (2023), No. 5.
[17] S. Kitaev and J.B. Remmel, A note on p-ascent sequences, J. Combin., 8(3) (2017), 487-506.
[18] D.E. Knuth, The art of computer programming, sorting and searching, vol. 3, Addison-Wesley, 1973.
[19] Z.C. Lin and S.S. Fu, On $\underline{120}$-avoiding inversion and ascent sequences, European J. Combin., 93 (2021), No. 103282.
[20] T. Mansour and M. Shattuck, Some enumerative results related to ascent sequences, Discrete Math., 315 (2014), 29-41.
[21] L.K. Pudwell, Ascent sequences and the binomial convolution of Catalan numbers, Australas. J. Combin., 64 (2016), 21-43.
[22] A. Stoimenow, Enumeration of chord diagrams and an upper bound for Vassiliev invariants, J. Knot Theory Ramifications, 7 (1998), 93-114.
[23] S.H.F. Yan, Bijections for inversion sequences, ascent sequences and 3nonnesting set partitions, Appl. Math. Comput., 325 (2018), 24-30.

[^0]: * Corresponding author.

 E-mail address: dapao2012@163.com.

