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Abstract

The problem of matroid-reachability-based packing of arborescences was solved by
Király. Here we solve the corresponding decomposition problem that turns out to be more
complicated. The result is obtained from the solution of the more general problem of
matroid-reachability-based (ℓ, ℓ′)-limited packing of arborescences where we are given a
lower bound ℓ and an upper bound ℓ′ on the total number of arborescences in the packing.
The problem is considered for branchings and in directed hypergraphs as well.

1 Introduction

Packing and Covering is an important and well-studied subject of Combinatorial Optimization.
In graphs, packing problems consist of fitting as many non-overlapping subgraphs of a given
type as possible in the input graph, while covering problems aim to cover the whole graph
with such subgraphs possibly allowing overlaps. A packing which is also a covering is called
a decomposition. Some of the classic results of the area are about packing trees and packing
arborescences. Relevant applications include evacuation problems [16], rigidity problems [25],
[17] and robustness problems in networks [4]. While Nash-Williams [20], and independently
Tutte [26], characterized graphs having a packing of k spanning trees, Edmonds [4] characterized
digraphs having a packing of k spanning arborescences. Frank noted in [8] that the result
of Nash-Williams and Tutte can be obtained from the result of Edmonds via an orientation
theorem. The covering problems, covering the edge set of a graph by forests and covering the arc
set of a directed graph by branchings, were solved by Nash-Williams [21] and by Frank [9]. We
mention that it is well-known that the previous corresponding packing and covering problems
are equivalent (see Section 10 in [11]). When spanning arborescences do not exist one may
instead be interested in packing reachability arborescences. Kamiyama, Katoh, and Takizawa
[16] gave a surprising extension of Edmonds’ theorem on packing reachability arborescences.

To solve a rigidity problem, Katoh and Tanigawa [17] introduced and solved the problem of
matroid-based packing of rooted trees, in which given a graph and a matroid on a multiset of its
vertices, we want a packing of rooted-trees such that for every vertex v of the graph, the root-set
of the rooted-trees containing v forms a basis of the matroid. The corresponding problem in
directed graphs, matroid-based packing of arborescences was solved by Durand de Gevigney,
Nguyen, and Szigeti [5]. We pointed out in [5] how the result of Katoh and Tanigawa [17]
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can be obtained from its directed counterpart given in [5] via an orientation theorem of Frank.
Katoh and Tanigawa [17] also solved the problem of matroid-based rooted tree decomposition.
The problem of matroid-based decomposition into arborescences was not considered in [5], we
will solve it in this paper. A common generalization of the results of Kamiyama, Katoh, and
Takizawa [16] and Durand de Gevigney, Nguyen, and Szigeti [5] was given by Király [18], namely
a characterization of the existence of a matroid-reachability-based packing of arborescences,
where instead of the condition having the root-set of the arborescences containing any given
vertex be a basis of the matroid, it must be a basis of the restriction of the matroid to the set
of vertices from which that vertex is reachable in the original directed graph. Later the result
of Király [18] was further refined by Gao and Yang [14]. We will use this refinement to get a
TDI description of the polyhedron of the subgraphs that admit a matroid-reachability-based
packing of arborescences. This and the strong duality theorem allow us to solve the problem of
matroid-reachability-based (ℓ, ℓ′)-limited packing of arborescences where we are given a lower
bound ℓ and an upper bound ℓ′ on the total number of arborescences in the packing. This in
turn will easily imply the solution of the problem of matroid-reachability-based decomposition
into arborescences.

We mention that all these results were extended to hypergraphs, namely packing span-
ning hypertrees by Frank, Király, and Kriesell [13], packing spanning hyperarborescences by
Frank, Király, and Király [12], packing reachability hyperarborescences by Bérczi and Frank
[1], matroid-based packing of rooted hypertrees, matroid-based packing of hyperarborescences,
matroid-reachability-based packing of hyperarborescences by Fortier et al. [7]. The problems of
matroid-based decomposition into hyperarborescences and matroid-reachability-based decom-
position into hyperarborescences will be treated in this paper.

Along the presentation of our results, we will show how they imply the previous results of
the field (see Figure 1). While describing those implications, we will only show the sufficiency
as the necessity can easily be obtained directly.

Theorem 14
M-reachability-based (ℓ, ℓ′)-limited

Theorem 13
M-reachability-based

with limited arcs

Theorem 8
M-based (ℓ, ℓ′) limited

Theorem 15
Decomposition into M-reachability-based

Theorem 9
Decomposition into M-based

Theorems 10 and 11
Király & Gao, Yang

(Complete) M-reachability-based

Theorem 5
Kamiyama, Katoh, Takizawa

Reachability with root-set

Theorem 6
Durand de Gevigney, Nguyen, Szigeti

Complete M-based

Theorem 7
Szigeti
M-based

Theorem 4
Edmonds

Spanning with root-set

Figure 1: Our results (in bold) on packings of arborescences and their implications.
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2 Definitions

Two subsets of a set V are called intersecting if their intersection is non-empty. A set of
mutually disjoint subsets of V is called a subpartition of V. For a subpartition P of V , ∪P

denotes the set of elements of V that belong to some member of P. For a multiset S of V
and a subset X of V , SX denotes the multiset consisting of the elements of X with the same
multiplicities as in S. For a family S of subsets of V and a subset X of V , SX denotes the
members of S that intersect X.

Let D = (V,A) be a directed graph, shortly digraph. A subgraph of D that contains all the
vertices of D is called a spanning subgraph of D. By a packing of subgraphs in D, we mean a set
of subgraphs that are arc-disjoint. For a subset X of V, the in-degree of X, denote by d

−

A(X),
is the number of arcs entering X. For a subpartition P of V , we denote by eA(P) the set of
arcs in A that enters at least one member of P. By an atom of D we mean a strongly-connected
component of D, a subatom is a non-empty subset of an atom of D.

A digraph (U, F ) is called an S-branching if S ⊆ U and there exists a unique (S, v)-path for
every v ∈ U. The vertex set S is called the root set of the S-branching. If S = {s}, then the
S-branching is an s-arborescence where the vertex s is called the root of the s-arborescence. A
subgraph (U, F ) of D is called reachability s-arborescence if it an s-arborescence and U is the
set of vertices that can be attained from s by a path in D. For a subset X of V, we denote by
PX or PD

X
the set of vertices from which there exists a path to at least one vertex of X in D.

For ℓ, ℓ′ ∈ Z+, a packing of branchings is (ℓ, ℓ′)-limited if the total number of the arborescences
in the packing is at least ℓ and at most ℓ′.

A set function r on a set V is called monotone if for all X ⊆ Y ⊆ V, we have r(X) ≤ r(Y ).
We say that r is subcardinal if r(X) ≤ |X| for every X ⊆ V. Set functions b and p on V are
called submodular and supermodular if for all X, Y ⊆ V, (1) and (2) hold, respectively. We say
that b and p are intersecting submodular and intersecting supermodular if for all intersecting
subsets X and Y of V, (1) and (2) hold, respectively.

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ), (1)

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ). (2)

Let S be a finite ground set and r : S → Z+ a non-negative integer valued function on S such
that r(∅) = 0, r is subcardinal, monotone and submodular. Then M = (S, r) is called a matroid.
The function r is the rank function of the matroid M. For a matroid M, its rank function will be
denoted by rM. An independent set of M is a subset X of S such that rM(X) = |X|. The set of
independent sets of M is denoted by IM. A maximal independent set of M is called a basis of M.
Every basis of M has size rM(S). For a subset S ′ of S, a maximal independent set in S ′ is called
a basis of S ′. We say that two elements s and s′ of S are parallel if rM(s) = rM(s

′) = rM({s, s
′}).

The free matroid on S is the matroid where the only basis is the ground set S. For a given
partition P of S and a positive integer ai for every member Xi of P, the partition matroid Ma

P

is the matroid whose rank function is rMa

P
(S ′) =

∑

Xi∈P
min{|S ′ ∩Xi|, ai} for every S ′ ⊆ S.

In a directed graph D = (V,A), let S be a multiset of V and M a matroid on S. A packing
B of arborescences in D is called M-based or matroid-based if every s ∈ S is the root of at most
one arborescence in the packing and for every vertex v ∈ V , the multiset RB

v
of the roots of

the arborescences containing v in the packing forms a basis of M. A packing B of arborescences
in D is called M-reachability-based or matroid-reachability-based if every s ∈ S is the root of
at most one arborescence in the packing and for every vertex v ∈ V , the multiset RB

v of the
roots of the arborescences containing v in the packing forms a basis of SPD

v
in M. A packing of

arborescences is complete if every s ∈ S is the root of exactly one arborescence in the packing.
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A biset X on a set V is an ordered pair (XO, XI) of subsets of V such that XI ⊆ XO. We
call XO and XI the outer set and the inner set of X, while XW = XO −XI is called the wall
of X. We say that an arc uv enters a biset X if u ∈ V −XO and v ∈ XI . The set of arcs in A
entering a biset X is denoted by δ

−

A(X) and d
−

A(X)= |δ−A(X)|. For two bisets X = (XO, XI) and
Y = (YO, YI), the intersection X ∩ Y of X and Y is the biset (XO ∩ YO, XI ∩ YI) and the union
X∪Y of X and Y is the biset (XO ∪YO, XI ∪YI). A function on bisets is called a biset function.
Biset function p is called positively intersecting supermodular if (3) holds for all bisets X and Y

with p(X), p(Y) > 0 and XI ∩ YI 6= ∅.

p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y). (3)

In a directed graph D = (V,A), we call a vertex set Z a petal if there exists an atom C of
D such that Z ∩ C 6= ∅, Z ⊆ PC and d−A(Z − C) = 0. Note that if Z is a petal, then the atom
CZ is uniquely defined and PCZ

= PZ . The core of a petal Z is CZ ∩ Z. Let ẐD, shortly Ẑ,
be the set of petals in D. We define the biset XZ = (Z,CZ ∩ Z) for every petal Z and we call
it a petal biset. Let Ẑb be the set of petal bisets, that is Ẑb = {XZ : Z ∈ Ẑ}. Note that for
every X ∈ Ẑb, XI is the core of the petal XO. More generally, let X be the set of bisets X on V ,
called generalized petal bisets, such that XO is a petal and XI is a non-empty subset of the core
of the petal XO. Two petals Z and Z ′ are called core-intersecting if their cores intersect (see
Figure 2a). Note that two petals may intersect without being core-intersecting (see Figure 2b).
We say that a set Z of petals is core-laminar if for all core-intersecting Z,Z ′ ∈ Z, we have
Z ⊆ Z ′ or Z ′ ⊆ Z. More generally, bisets X1,X2 ∈ X are called core-intersecting if their petals
X1

O and X2
O are core-intersecting. We say that P ⊆ X is OW-laminar if for all core-intersecting

X1,X2 ∈ P, we have X1
O ⊆ X2

W or X2
O ⊆ X1

W . Note that a biset on an atom is an element X of
X for which the petal XO of X coincide with the core of XO.

PC

CX

Y

(a) Two core-intersecting petals

PC

CX

Y

(b) Two intersecting petals that are not core-intersecting

Figure 2: Examples of petals. The dashed areas correspond to the cores of the petals.

3 Total dual integrality

The solution of our problems will rely on the polyhedral description of the subgraphs of a given
digraph D, that admit an M-reachability-based packing of arborescences. We will use a TDI
description of the polyhedron in question. To be able to do that we need some properties of
TDI systems.

A linear system Ax ≤ b where A is a rational matrix and b a rational vector is called Totally
Dual Integral (TDI) if the dual linear program of max{cTx : Ax ≤ b} has an integer-valued
optimal solution for every integral vector c for which the dual has a feasible solution.

The seminal result of Edmonds, Giles [6] on TDIness is the following.

Theorem 1 (Edmonds, Giles [6], Corollary 22.1b in [22]). Let Ax ≤ b be a TDI-system where
A is an integral matrix and b is an integral vector. If max{cTx : Ax ≤ b} is finite, then it has
an integral optimal solution.
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The TDI description of the polyhedron we are interested in uses bisets. The following result
result of Frank [10] will hence play an important role.

Theorem 2 (Frank, Theorem 5.3 in [10]). Let D = (V,A) be a digraph and p a positively
intersecting supermodular biset function on V such that d−A(X) ≥ p(X) for every biset X on V.
Then the following linear system is TDI:

x(δ−A(X)) ≥ p(X) for every biset X on V ,

1 ≥ x ≥ 0.

We also need the following simple observation on TDI systems given by Schrijver in [22].

Theorem 3 (Schrijver, (41) in [22]). If A1x ≤ b1 and A2x ≤ b2 define the same polyhedron, and
each inequality of A1x ≤ b1 is a non-negative integral combination of inequalities in A2x ≤ b2,
then A1x ≤ b1 is TDI implies that A2x ≤ b2 is TDI.

4 Packings in directed graphs

In this section we consider packings of arborescences in digraphs. We present known and new
results on packing spanning arborescences, packing reachability arborescences, matroid-based
packing of arborescences, and matroid-reachability-based packing of arborescences in different
subsections.

4.1 Packing arborescences

Let us start with the seminal result of Edmonds on packing spanning arborescences.

Theorem 4 (Edmonds [4]). Let D = (V,A) be a digraph and S a multiset of vertices in V.
There exists a packing of spanning s-arborescences (s ∈ S) in D if and only if

|SX |+ d−A(X) ≥ |S| for every non-empty X ⊆ V. (4)

It is worth mentioning that to have a packing of spanning s-arborescences (s ∈ S) in D it
is sufficient that (4) holds for every subatom.

The following nice extension of Theorem 4 about packing of reachability arborescences was
given in [16].

Theorem 5 (Kamiyama, Katoh, Takizawa [16]). Let D = (V,A) be a digraph and S a multiset
of vertices in V. There exists a packing of reachability s-arborescences (s ∈ S) in D if and only
if

|SX |+ d−A(X) ≥ |SPD

X
| for every X ⊆ V. (5)

Theorem 5 implies Theorem 4 because (4) implies that each reachability s-arborescence is
spanning and it also implies that (5) holds. We mention that Hörsch and Szigeti [15] pointed
out that Theorem 5 can be obtained from Edmonds’ result on packing spanning branchings
(see Theorem 16) by an easy induction.
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4.2 Matroid-based packing of arborescences

The directed counterpart of the problem of matroid-based packing of rooted trees of Katoh and
Tanigawa [17], the problem of matroid-based packing of arborescences, was solved in [5].

Theorem 6 (Durand de Gevigney, Nguyen, Szigeti [5]). Let D = (V,A) be a digraph, S a
multiset of vertices in V , and M = (S, IM) a matroid with rank function rM. There exists a
complete M-based packing of arborescences in D if and only if

Sv ∈ IM for every v ∈ V, (6)

rM(SZ) + d−A(Z) ≥ rM(S) for every non-empty Z ⊆ V. (7)

For the free matroid, Theorem 6 reduces to Theorem 4. We mention that (7) is equivalent to

rM(SX) + d−A(X) ≥ rM(S) for every subatom X of D. (8)

Indeed, (7) trivially implies (8). To see that (8) implies (7), let Z be a non-empty subset
of V. Let V1, . . . , Vt be a topological ordering of the atoms of D that is if an arc exists from
Vi to Vj, then i < j. Let i be the smallest index such that Vi ∩ Z 6= ∅. Since Z 6= ∅, i
exists. Then X = Vi ∩ Z is a subset of the atom Vi, so X is a subatom. Since we have
a topological ordering, every arc entering X enters Z, so we have d−(X) ≤ d−(Z). Further,
by X ⊆ Z and the monotonicity of rM, we have rM(SX) ≤ rM(SZ). Then, by (8), we get
rM(S) ≤ rM(SX) + d−A(X) ≤ rM(SZ) + d−A(Z), so (7) holds.

In the previous theorem we were interested in a matroid-based packing of arborescences
containing the largest possible number of arborescences, namely |S|. In the following result we
consider a matroid-based packing of arborescences containing the smallest possible number of
arborescences, namely rM(S).

Theorem 7 (Szigeti [24]). Let D = (V,A) be a digraph, S a multiset of vertices in V and
M = (S, rM) a matroid. There exists an M-based packing of spanning arborescences in D if and
only if

rM(S∪P) + eA(P) ≥ rM(S)|P| for every subpartition P of V. (9)

For the free matroid, Theorem 7 reduces to Theorem 4.

4.2.1 New results on matroid-based packing of arborescences

Here we propose to study a problem that is more general than the above two problems. We
give the following common generalization of Theorems 6 and 7 where we have a lower bound
and an upper bound on the number of arborescences in the packing.

Theorem 8. Let D = (V,A) be a digraph, S a multiset of vertices in V , ℓ, ℓ′ ∈ Z+, and
M = (S, rM) a matroid. There exists an M-based (ℓ, ℓ′)-limited packing of arborescences in D if
and only if (8) holds and

ℓ ≤ ℓ′, (10)
∑

v∈V

rM(Sv) ≥ ℓ, (11)

∑

X∈P

(rM(S)− rM(SXW
)− d−A(XO)) ≤ ℓ′ for every OW laminar biset family P of subatoms. (12)
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s2

s4 s3

s1 s′1

(a) Family giving a lower bound of 5 arborescences.

s2

s4 s3

s1 s′1

(b) A matroid-based packing of 5 arborescences.

Figure 3: Instance of Theorem 8.

We provide an instance of Theorem 8 in Figure 3 with the given digraph D = (V,A)
and the matroid M = (S, IM) where S = {s1, s

′
1, s2, s3, s4} and a set is in IM if and only

if it contains at most one of s1 and s′1. In Figure 3a, we give an OW laminar biset fam-
ily of subatoms such that, for the function f(X) = rM(S) − rM(SXW

) − d−A(XO), we have
f(A) = 2, f(B) = 1, f(C) = 1, and f(D) = 1. Thus, by Theorem 8, the given digraph requires
at least 5 arborescences and a matroid-based packing of 5 arborescences is shown in Figure 3b.

Theorem 8 will be later obtained from Theorem 14.

We now provide the answer to the decomposition problem for the matroid-based version. It
will be obtained from Theorem 8.

Theorem 9. Let D = (V,A) be a digraph, S a multiset of vertices in V , and M = (S, rM) a
matroid. There exists a decomposition of A into an M-based packing of arborescences in D if
and only if (8) holds and for every OW laminar biset family P of subatoms,

∑

X∈P

(rM(S)− rM(SXW
)− d−A(XO)) ≤ rM(S)|V | − |A|. (13)

We conclude by showing that Theorem 8 implies all the results of Subsection 4.2.

Claim 1. Theorem 8 implies Theorem 6.

Proof. Let (D,S,M) be an instance of Theorem 6 satisfying (6) and (7). Let ℓ = ℓ′ = |S|.
The condition (10) trivially holds. By (6), we have

∑

v∈V rM(Sv) =
∑

v∈V |Sv| = |S|, so (11) is
satisfied. By (7), (8) holds. Further, let P be an OW laminar biset family of subatoms. Then
the inner sets of the bisets in P are disjoint. By (7), the submodularity and the subcardinality
of rM, and since XI ’s are disjoint, we have

∑

X∈P

(rM(S)−rM(SXW
)−d−A(XO)) ≤

∑

X∈P

(rM(SXO
)−rM(SXW

)) ≤
∑

X∈P

rM(SXI
) ≤

∑

X∈P

|SXI
| ≤ |S|,

so (12) is satisfied. Hence, by Theorem 8, there exists an M-based packing of s-arborescences
(s ∈ S) in D, that is, a complete M-based packing of arborescences in D.

Claim 2. Theorem 8 implies Theorem 7.
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Proof. Let (D,S,M) be an instance of Theorem 7 satisfying (9). Let ℓ = ℓ′ = rM(S). The
condition (10) trivially holds. Then, by the submodularity of rM, we have

∑

v∈V rM(Sv) ≥
rM(

⋃

v∈V Sv) = rM(S), so (11) is satisfied. Applying (9) for every subatom as a subpartition
we get that (8) holds. To show that (12) also holds, let P be an OW laminar biset family of
subatoms. For all Y ∈ P, let

PY = {Z ∈ P − Y : ZO ⊆ YW},

QY = {Z ∈ PY : there exists no Z′ ∈ PY − Z such that ZO ⊆ Z ′
W}.

Note that PY =
⋃

Z∈QY
(Z ∪ PZ) and the outer sets of the bisets in QY are mutually disjoint.

Indeed, if Z1,Z2 ∈ QY and Z1
O ∩Z2

O 6= ∅, then, since P is OW laminar, we have that Z1
O ⊆ Z2

W

or Z2
O ⊆ Z1

W , so either Z1 /∈ QY or Z2 /∈ QY which is a contradiction.

Let us introduce the following biset function: f(X) = rM(S)− rM(SXW
)−d−A(XO) for all X ∈ P.

We now claim that we have

∑

Z∈PY

f(Z) ≤ rM(SYW
) for every Y ∈ P. (14)

If PY = ∅, then, by the non-negativity of rM, the (14) holds. Suppose that (14) holds for every
Z ∈ PY. We show that it also holds for Y. By the hypothesis, the definition of f, since the
outer sets of the bisets in QY are mutually disjoint, by (9) applied for these sets, since P is OW
laminar and by the monotonicity of rM, we have (14) for Y :

∑

Z∈PY

f(Z) =
∑

Z∈QY

(f(Z) +
∑

X∈PZ

f(X)) ≤
∑

Z∈QY

(f(Z) + rM(SZW
))

=
∑

Z∈QY

(rM(S)− d−A(ZO)) ≤ rM(S⋃
Z∈Q

Y
ZO

) ≤ rM(SYW
).

Let P ′ = P ∪ {V} where V = (V, ∅). Then P ′ is also an OW laminar biset family of V . Since
the above arguments also work for P ′, we have, by (14) for V,

∑

X∈P f(X) =
∑

X∈P ′
V

f(X) ≤

rM(SV ) = rM(S), so (12) holds. Hence, by Theorem 8, there exists an M-based packing of
s-arborescences (s ∈ S∗ ⊆ S) in D with |S∗| = rM(S), and hence each arborescence in the
packing is spanning.

Claim 3. Theorem 8 implies Theorem 9.

Proof. Let (D = (V,A), S,M) be an instance of Theorem 9. To see the necessity, suppose that
there exists a decomposition of A into an M-based packing of arborescences in D with root set
S∗. Then, by Theorem 6, (7) and hence (8) holds. Since |S∗| =

∑

v∈V |S∗
v | =

∑

v∈V (rM(S) −
d−A(v)) = rM(S)|V | − |A|, by Theorem 8, (12) holds for ℓ′ = rM(S)|V | − |A| and hence (13)
holds.

To see the sufficiency, suppose that (8) and (13) hold. Let ℓ = ℓ′ = rM(S)|V | − |A|. Then
conditions (10), (8) and (12) hold. By (8) applied for all v ∈ V, we get that

∑

v∈V rM(Sv) ≥
∑

v∈V (rM(S) − d−A(v)) = rM(S)|V | − |A|, so (11) also holds. Hence, by Theorem 8, there
exists an M-based packing of arborescences in D with arc set B and root set S∗ such that
|S∗| = rM(S)|V |−|A|. Since |B| =

∑

v∈V d−B(v) =
∑

v∈V (rM(S)−|S∗
v |) = rM(S)|V |−|S∗| = |A|,

we have in fact a decomposition of A, and the proof of Theorem 9 is complete.

4.3 Matroid-reachability-based packing of arborescences

In this section we present results on matroid-reachability-based packing of arborescences.
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We need the following two functions which are non-zero only on petals and petal bisets.
Let D = (V,A) be a digraph, S a multiset of vertices in V and M a matroid on S with rank
function rM. Recall that Ẑ is the set of petals and we have PCZ

= PZ for all Z ∈ Ẑ; Ẑb is the

set of petal bisets and we have PCX
= PXO

for all X ∈ Ẑb. Let the set function p̂ and the biset
function p̂ on V be defined as follows:

p̂(Z) =

{

rM(SPCZ
)− rM(SZ) Z ∈ Ẑ ,

0 otherwise,
p̂(X) =

{

rM(SPCX
)− rM(SXO

) X ∈ Ẑb,

0 otherwise.

The following properties of these functions will be crucial.

Claim 4. The following hold.
(a) p̂ is a supermodular function on core-intersecting sets of Ẑ.
(b) p̂ is a positively intersecting supermodular biset function on V.

Proof. (a) Let Z and Z ′ be core-intersecting sets in Ẑ. It follows that there exists an atom C
of D such that

p̂(Z) = rM(SPC
)− rM(SZ), (15)

p̂(Z ′) = rM(SPC
)− rM(SZ′), (16)

∅ 6= Z ∩ C, Z ⊆ PC , d−A(Z − C) = 0, (17)

∅ 6= Z ′ ∩ C, Z ′ ⊆ PC , d−A(Z
′ − C) = 0. (18)

Then, by (17) and (18), we have

∅ 6= (Z ∩ Z ′) ∩ C, Z ∩ Z ′ ⊆ PC , d−A((Z ∩ Z ′)− C) = 0, (19)

∅ 6= (Z ∪ Z ′) ∩ C, Z ∪ Z ′ ⊆ PC , d−A((Z ∪ Z ′)− C) = 0. (20)

By (19) and (20), we have Z ∩ Z ′, Z ∪ Z ′ ∈ Ẑ, so

p̂(Z ∩ Z ′) = rM(SPC
)− rM(SZ∩Z′), (21)

p̂(Z ∪ Z ′) = rM(SPC
)− rM(SZ∪Z′). (22)

Since rM(SZ) + rM(SZ′) ≥ rM(SZ∩Z′) + rM(SZ∪Z′), we get, by (15),(16),(21),(22), that p̂(Z) +
p̂(Z ′) ≤ p̂(Z ∩ Z ′) + p̂(Z ∪ Z ′), and (a) follows.

(b) The same proof as in (a) also works for (b).

A common generalization of Theorems 5 and 6 was given by Király [18] where he charac-
terized the existence of a complete matroid-reachability-based packing of arborescences.

Theorem 10 (Király [18]). Let D = (V,A) be a digraph, S a multiset of vertices in V , and
M = (S, IM) a matroid with rank function rM. There exists a complete M-reachability-based
packing of arborescences in D if and only if (6) holds and

d−A(Z) ≥ rM(SPZ
)− rM(SZ) for every Z ⊆ V. (23)

For the free matroid, Theorem 10 reduces to Theorem 5. If rM(SPv
) = rM(S) for all v ∈ V,

then Theorem 10 reduces to Theorem 6.

Another characterization of the existence of a matroid-reachability-based packing of ar-
borescences was given by Gao and Yang [14].
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Theorem 11 (Gao, Yang [14]). Let D = (V,A) be a digraph, S a multiset of vertices in V ,
and M = (S, rM) a matroid.

(a) There exists an M-reachability-based packing of arborescences in D if and only if

d−A(X) ≥ p̂(X) for every biset X on V , (24)

or equivalently

d−A(Z) ≥ p̂(Z) for every Z ∈ Ẑ. (25)

(b) There exists a complete M-reachability-based packing of arborescences in D if and only
if (6) and (25) hold.

In [23] it was proved that Theorems 10 and 11 are equivalent.

4.3.1 New results on matroid-reachability-based packing of arborescences

In this subsection we provide our main results.

We start with the following polyhedral result.

Theorem 12. Let D = (V,A) be a digraph, S a multiset of vertices in V , and M = (S, rM) a
matroid such that (25) holds. Then the system defined by (26) and (27) is TDI.

x(δ−A(Z)) ≥ p̂(Z) for every Z ∈ Ẑ, (26)

1 ≥ x ≥ 0. (27)

Proof. It is clear that the polyhedron defined by (26) and (27) coincides with the polyhedron
defined by (27) and

x(δ−A(X)) ≥ p̂(X) for every biset X on V . (28)

Claim 4(b), (24) and Theorem 2 immediately imply that the system defined by (27) and (28)
is TDI. Let X be a biset on V . If X /∈ Ẑb, then p̂(X) = 0, so the inequality x(δ−A(X)) ≥

p̂(X) = 0 is the sum of the inequalities x(a) ≥ 0 for all a ∈ δ−A(X). Otherwise, X ∈ Ẑb so

p̂(X) = rM(SPC
)− rM(SXO

) for an atom C of D. Then Z = XO ∈ Ẑ, hence (28) for X and (26)
for Z coincide. Then, by Theorem 3, the system defined by (26) and (27) is also TDI.

In order to characterize the existence of a matroid-reachability-based (ℓ, ℓ′)-limited packing
of arborescences, our strategy is to minimize the number of roots of the arborescences in the
packing. To achieve this we consider the extended version of the problem where the elements
of the matroid correspond to different vertices of the extended graph. For an instance (D =
(V,A), S, ℓ, ℓ′,M = (S, rM)) of the problem, let D′ = (V ∪ S ′, A ∪ A′) be obtained from D by
adding a new vertex set S′ containing one vertex s′ for every s ∈ S and adding a new arc set
A′ containing one arc s′s for every s ∈ S. Let M′ be a copy of M on S ′. We say that a family
Z of subsets of V ∪ S is A′-disjoint if every arc of A′ enters at most one member Z.

We are ready to present the following intermediary result, for the proof see Subsection 6.1.

Theorem 13. Let D = (V ∪ S,A∗) be a digraph (A′ being the set of arcs leaving S and
A = A∗ − A′) such that no arc enters s and exactly one arc leaves s for every vertex s of
S, ℓ, ℓ′ ∈ Z+, and M = (S, rM) a matroid. There exists an M-reachability-based packing of
arborescences in D using at least ℓ and at most ℓ′ arcs of A′ if and only if (10) holds and

∑

v∈V

rM(N
−
A′(v)) ≥ ℓ, (29)

rM(S ∩ PZ)− rM(S ∩ Z) ≤ d−A∗(Z) for every Z ∈ Ẑ, (30)
∑

Z∈Z

(rM(S ∩ PZ)− rM(S ∩ Z)− d−A(Z)) ≤ ℓ′ ∀A′-disjoint core-laminar subset Z of Ẑ.(31)
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Recall that X is the set of generalized petal bisets. We now present our main result. It will
be obtained from Theorem 13, for the proof see Subsection 6.2.

Theorem 14. Let D = (V,A) be a digraph, S a multiset of vertices in V , ℓ, ℓ′ ∈ Z+, and M =
(S, rM) a matroid. There exists an M-reachability-based (ℓ, ℓ′)-limited packing of arborescences
in D if and only if (10), (11) and (24) hold and

∑

X∈P

(rM(SPXI
)− rM(SXW

)− d−A(XO)) ≤ ℓ′ for every OW laminar biset family P of X . (32)

We finally provide the answer for the decomposition problem for the matroid-reachability-
based version. It will be easily obtained from the previous result.

Theorem 15. Let D = (V,A) be a digraph, S a multiset of vertices in V , and M = (S, rM)
a matroid. There exists a decomposition of A into an M-reachability-based packing of arbores-
cences in D if and only if (25) holds and for every OW laminar biset family P of X ,

∑

X∈P

(rM(SPXI
)− rM(SXW

)− d−A(XO)) ≤ (
∑

v∈V

rM(SPv
))− |A|. (33)

We conclude by showing that Theorem 14 implies all the results of Subsection 4.3.

Claim 5. Theorem 14 implies Theorem 8.

Proof. Let (D = (V,A),M = (S, rM), ℓ, ℓ
′) be an instance of Theorem 8 satisfying (8), (10),

(11), and (12). We show that (12) implies (24) and (32). First we mention that

rM(S) ≤ rM(SZ) for every non-empty Z ⊆ V with d−A(Z) = 0. (34)

Indeed, by Z 6= ∅ and d−A(Z) = 0, there exists a smallest non-empty Y ⊆ Z such that d−A(Y ) = 0.
Then Y is an atom of D. Thus, by (8) and since rM is monotone, we get that (34) also holds.

To show (24), let X ∈ Ẑb. If XW 6= ∅, then, by the monotonicity of rM, d−A(XW ) = 0 and
(34), we get that rM(SPXI

) − rM(SXO
) ≤ rM(S) − rM(SXW

) ≤ 0 ≤ d−A(XO), and (24) holds.
If XW = ∅, then, XO is an subatom, so, by the monotonicity of rM and (8), we get that
rM(SPXI

)− rM(SXO
) ≤ rM(S)− rM(SXO

) ≤ d−A(XO), and (24) holds.

To show that (32) also holds let P be an OW laminar biset family of X . For every X ∈ P, we
may suppose without loss of generality, by the monotonicity of rM, that we have 1 ≤ rM(SPXI

)−

rM(SXW
)− d−A(XO) ≤ rM(S)− rM(SXW−CX

). Since d−A(XW − CX) = 0, it follows, by (34), that
XW −CX = ∅, that is, XO ⊆ CX, so XO is a subatom. Then, since rM is monotone and by (12),
we have

∑

X∈P(rM(SPXI
)− rM(SXW

)− d−A(XO)) ≤
∑

X∈P(rM(S)− rM(SXW
)− d−A(XO)) ≤ ℓ′, so

(32) holds.

By Theorem 14, there exists an M-reachability-based (ℓ, ℓ′)-limited packing of arborescences
in D. Since, by (34), we have rM(SPv

) ≥ rM(S) for every v ∈ V, the packing is M-based and
the proof of Theorem 8 is complete.

Claim 6. Theorem 14 implies Theorem 11.

Proof. Let (D = (V,A),M = (S, rM)) be an instance of Theorem 11 satisfying (24). Let ℓ = 0
and ℓ′ = |S|. Then (D = (V,A),M = (S, rM), ℓ, ℓ

′) is an instance of Theorem 14. We now show
that all the conditions of Theorem 14 hold. Conditions (10) and (11) trivially hold and (24)
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holds by assumption. To show that (32) also holds let P be an OW laminar biset family of X .
By (24), the submodularity and the subcardinality of rM, and since XI ’s are disjoint, we have

0 ≥
∑

X∈P

(rM(SPXO
)− rM(SXO

)− d−A(XO))

≥
∑

X∈P

(rM(SPXI
)− rM(SXW

)− |SXI
| − d−A(XO))

≥
∑

X∈P

(rM(SPXI
)− rM(SXW

)− d−A(XO))− |S|,

so (32) holds. Then, by Theorem 14, there exists an M-reachability-based packing of ar-
borescences in D (containing at most |S| arborescences) and the proof of Theorem 11 is com-
pleted.

Claim 7. Theorem 14 implies Theorem 15.

Proof. Let (D = (V,A), S,M) be an instance of Theorem 15. To see the necessity, suppose that
there exists a decomposition of A into an M-reachability-based packing of arborescences in D
with root set S∗. Then, by Theorem 11, (25) holds. Since |S∗| =

∑

v∈V |S∗
v | =

∑

v∈V (rM(SPv
)−

d−A(v)) =
∑

v∈V rM(SPv
) − |A|, by Theorem 14, (32) holds for ℓ′ =

∑

v∈V rM(SPv
) − |A| and

hence (33) holds.
To see the sufficiency, suppose that (25) and (33) hold. Let ℓ = ℓ′ =

∑

v∈V rM(SPv
)− |A|.

Then (10), (25) (and hence (24)) and (32) hold. By (25) applied for all v ∈ V, we get that
∑

v∈V rM(Sv) ≥
∑

v∈V (rM(SPv
) − d−A(v)) =

∑

v∈V rM(SPv
) − |A|, so (11) also holds. Hence,

by Theorem 14, there exists an M-reachability-based packing of arborescences in D with arc
set B and root set S∗ such that |S∗| =

∑

v∈V (rM(SPv
) − |A|. Since |B| =

∑

v∈V d−B(v) =
∑

v∈V (rM(SPv
)−|S∗

v |) =
∑

v∈V rM(SPv
)−|S∗| = |A|, we have in fact a decomposition of A, and

the proof of Theorem 9 is complete.

4.4 Packing of branchings

We complete the section on packings in digraphs by some results on packing branchings that
can be derived from our results.

Let D = (V,A) be a digraph, S a family of subsets of V , and M = (S, rM) a matroid. Let Ŝ
=

⋃

S∈S S where the union is taken by multiplicities, so Ŝ is a multiset of V and S is a partition

of Ŝ. Recall that M1

S
is the partition matroid on Ŝ with value 1 on each S ∈ S. Let p̂S(X)

= rM(SPC
X

)− rM(SXO
) if X ∈ Ẑb and 0 otherwise.

Theorem 16 (Edmonds [4]). Let D = (V,A) be a digraph and S a family of subsets of V .
There exists a packing of spanning S-branchings (S ∈ S) in D if and only if

|SX |+ d−A(X) ≥ |S| for every non-empty X ⊆ V. (35)

For S = {{s} : s ∈ S}, Theorem 16 reduces to Theorem 4. Theorem 16 can be obtained
from Theorem 6 for the matroid M1

S . We note that to have a packing of spanning S-branchings
(S ∈ S) in D it is sufficient that (35) holds for every subatom.

We provide a generalization of Theorem 16 with bounds on the total number of roots.
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Theorem 17. Let D = (V,A) be a digraph, S a family of subsets of V , and ℓ, ℓ′ ∈ Z+. There
exists an (ℓ, ℓ′)-limited packing of spanning S ′-branchings (∅ 6= S ′ ⊆ S ∈ S) in D if and only
(10) holds and

ℓ ≤
∑

S∈S

|S|, (36)

|SX |+ d−A(X) ≥ |S| for every subatom X of D, (37)
∑

X∈P

(|S| − |SXW
| − d−A(XO)) ≤ ℓ′ for every OW laminar biset family P of subatoms.(38)

Theorem 17 can be extended even to matroid-reachability-based packings as follows.

Theorem 18. Let D = (V,A) be a digraph, S a family of subsets of V , ℓ, ℓ′ ∈ Z+, and M =
(S, rM) a matroid. There exists an M-reachability-based (ℓ, ℓ′)-limited packing of S ′-branchings
(S ′ ⊆ S ∈ S) in D if and only if (10) holds and

∑

v∈V

rM(Sv) ≥ ℓ, (39)

d−A(X) ≥ p̂S(X) for every biset X on V , (40)
∑

X∈P

(rM(SPXI
)− rM(SXW

)− d−A(XO)) ≤ ℓ′ for every OW laminar biset family P of X . (41)

Let us show some implications between these results.

Claim 8. Theorem 8 implies Theorem 17.

Proof. Let (D = (V,A),S, ℓ, ℓ′) be an instance of Theorem 17 satisfying (10), (36), (37) and
(38). Then (D, Ŝ, ℓ, ℓ′,M1

S) is an instance of Theorem 8. We now show that it satisfies (8), (10),
(11), and (12). By assumption, (10) holds. By (36), we have

∑

v∈V rM1

S
(Ŝv) =

∑

v∈V |Ŝv| =
∑

S∈S |S| ≥ ℓ, so (11) holds for (D, Ŝ, ℓ, ℓ′,M1
S). Since rM1

S
(ŜZ) = |SZ| for all Z ⊆ V, (37)

implies that (8) holds and (38) implies that (12) holds for (D, Ŝ, ℓ, ℓ′,M1
S). Thus, by Theorem

8, there exists an M1
S-based (ℓ, ℓ′)-limited packing of s-arborescences (s ∈ S∗ ⊆ Ŝ) in D. For

every S ∈ S, by the definition of M1
S , the s-arborescences in the packing with s ∈ S are

vertex disjoint and hence form an S ′-branching with S ′ ⊆ S. Since the packing is M1
S-based

and rM1

S
(Ŝ) = |S|, each S ′-branching is spanning. We hence have an (ℓ, ℓ′)-limited packing of

spanning S ′-branchings (∅ 6= S ′ ⊆ S ∈ S) in D. This completes the proof of Theorem 17.

Claim 9. Theorem 17 implies Theorem 16.

Proof. Let (D,S) be an instance of Theorem 16 such that (35) holds. Let ℓ = ℓ′ =
∑

S∈S |S|.
Note that (10), (36) trivially hold and, by (35), (37) holds. Let P be any OW laminar biset
family of subatoms. Then the inner sets of the bisets in P are disjoint. Thus, by (35), we have

∑

X∈P

(|S| − |SXW
| − d−A(XO)) ≤

∑

X∈P

(|SXO
| − |SXW

|) ≤
∑

X∈P

|SXI
| ≤

∑

v∈
⋃

XI

X∈P

|Sv| ≤
∑

v∈V

|Sv| =
∑

S∈S

|S|,

so (38) also holds. Hence, by Theorem 17, there exists a packing of spanning S ′-branchings
(∅ 6= S ′ ⊆ S ∈ S) in D such that

∑

S∈S |S
′| =

∑

S∈S |S|, and Theorem 16 follows.

Claim 10. Theorem 14 implies Theorem 18.
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Proof. Let (D,M = (S, rM), ℓ, ℓ
′) be an instance of Theorem 18 satisfying (10), (39), (40),

and 41. Let M′

S
be the matroid on the multiset Ŝ =

⋃

S∈S S of vertices obtained from M by
replacing each S ∈ S by parallel elements on all s ∈ S, that is rM′

S
(S ′) = rM(SS′) for every

S ′ ⊆ Ŝ. Then (D,M′
S = (Ŝ, rM′

S
), ℓ, ℓ′) is an instance of Theorem 14 satisfying the conditions

(10), (11), (24), and (32) for Ŝ. Thus, by Theorem 14, there exists an M′
S-reachability-based

(ℓ, ℓ′)-limited packing of arborescences in D. By the construction of M′
S , this provides an

M-reachability-based (ℓ, ℓ′)-limited packing of S ′-branchings (S ′ ⊆ S ∈ S) in D.

We conclude this section by mentioning an NP-complete result on packing branchings.

Theorem 19. Let D = (V,A) be a digraph, S a family of subsets of V , M a matroid on S. It
is NP-complete to decide whether there exists an M-based packing of S-branchings (S ∈ S ′) in
D with S ′ ⊆ S and |S ′| = k, even for the uniform matroid of rank k.

Proof. In the special case when M is the uniform matroid of rank k, the problem is equivalent
to whether there exists a packing of spanning S-branching (S ∈ S ′) in D with S ′ ⊆ S and
|S ′| = k, which is known to be NP-complete, see Theorem 3.6 in Bérczi and Frank [2].

5 Packings in directed hypergraphs

Let D = (V,A) be a directed hypergraph, shortly dypergraph, where A is the set of dyperedges
of D. A dyperedge e is an ordered pair (Z, z), where z ∈ V is the head of e and ∅ 6= Z ⊆ V − z
is the set of tails of e. All of our previous results can be extended to directed hypergraphs from
the corresponding graphic versions, by applying the gadget of [7].

6 Proofs

In this section we provide the main proofs of the paper.

6.1 Proof of Theorem 13

Proof. To prove the necessity, let B1, . . . , Bk be an M-reachability-based packing of arbores-
cences in D using a subset A′′ of A′ of size at least ℓ at most ℓ′. Then (10) holds. By the
monotonicity of rM and since N−

A′′(v) is independent in M, we have

∑

v∈V

rM(N
−
A′(v)) ≥

∑

v∈V

rM(N
−
A′′(v)) =

∑

v∈V

d−A′′(v) = |A′′| ≥ ℓ,

so (29) also holds. Let Z be an A′-disjoint subset of Ẑ. By the necessity of Theorem 10 for
(V,A ∪A′′) and A′′ ⊆ A′, we have for every Z ∈ Z,

rM(S ∩ PZ)− rM(S ∩ Z) ≤ d−A∪A′′(Z) ≤ d−A∪A′(Z), (42)

so (30) holds. By (42) and since every arc of A′′ ⊆ A′ enters at most one set in Z, we get that

∑

Z∈Z

(rM(S ∩ PZ)− rM(S ∩ Z)− d−A(Z)) ≤
∑

Z∈Z

d−A′′(Z) ≤ |A′′| ≤ ℓ′,

so (31) holds.

To prove the sufficiency, let us suppose that (10), (29), (30) and (31) hold. The proof relies
on the polyhedral description, obtained from Theorem 11(a), of the subgraphs that admit an
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M-reachability-based packing of arborescences in D. First we focus on the upper bound ℓ′. To
this purpose we find a subgraph admitting an M-reachability-based packing of arborescences
in D that contains the minimum number of arcs in A′. The lower bound ℓ is achieved through
Theorem 11(b). Let us hence consider the following dual linear programs where c(a) = 1 if
a ∈ A′ and 0 if a ∈ A:

x(δ−A∗(Z)) ≥ p̂(Z) Z ∈ Ẑ

−x(a) ≥ −1 a ∈ A∗

(P ) x ≥ 0

cTx = w(min)

−q(a) +
∑

a∈δ−(Z)

y(Z) ≤ c(a) a ∈ A∗

(D) y, q ≥ 0

p̂Ty − 1
T q = z(max)

Note that since S is a set of vertices, that is every element of S has multiplicity one,
S ∩ PZ = SPZ

and S ∩ Z = SZ for every Z ⊆ V ∪ S. Thus, by (30), the vector 1 is a feasible
solution of (P ) and, by c ≥ 0, the vector 0 is a feasible solution of (D). The complementary
slackness theorem says that feasible solutions x and

(

y

q

)

of (P ) and (D) are optimal if and only
if

x(a) > 0 =⇒ −q(a) +
∑

a∈δ−(Z)

y(Z) = c(a), (43)

y(Z) > 0 =⇒ x(δ−A∗(Z)) = p̂(Z), (44)

q(a) > 0 =⇒ x(a) = 1. (45)

By Theorems 12 and 1, there exist integral optimal solutions x and
(

y

q

)

of (P ) and (D) that

minimizes 1
T
(

y

q

)

and then that maximizes
∑

Z∈Ẑ

|Z|2y(Z). Let Z = {Z ∈ Ẑ : y(Z) > 0}.

We want to prove that cTx ≤ ℓ′. To obtain it we need some properties of Z.

Lemma 1. The following hold:

(a) if Z ∈ Z, then there exists an arc a entering Z with q(a) = 0,

(b) if a ∈ A∗ enters Z ∈ Z and q(a) = 0, then a ∈ A′, a enters no other member of Z, and
y(Z) = 1,

(c) if Z ∈ Z, then y(Z) = 1,

(d) if a ∈ A∗ enters Z ∈ Z and q(a) 6= 0, then a ∈ A and q(a) =
∑

a∈δ−(Z′)

y(Z ′),

(e) Z is an A′-disjoint core-laminar subset of Ẑ,

(f) if a ∈ A∗ enters no Z ∈ Z, then q(a) = 0,

(g)
∑

a∈A∗

q(a) =
∑

Z∈Z

d−A(Z),

(h) cTx ≤ ℓ′.

Proof. (a) Suppose that there exists Z ∈ Z such that q(a) 6= 0 for all a ∈ δ−A∗(Z). Let

y′ = y − χẐ
{Z} and q′ = q − χA∗

δ−
A∗ (Z)

.

Since y ∈ Z
Ẑ
+ and Z ∈ Z (and hence y(Z) ≥ 1), we have y′ ∈ Z

Ẑ
+. Since q ∈ Z

A∗

+ and
q(a) 6= 0 (and hence q(a) ≥ 1) for all a ∈ δ−A∗(Z), we have q′ ∈ Z

A∗

+ . Further, for all a ∈ δ−A∗(Z),
we have

−q′(a) +
∑

a∈δ−(Z′′)

y′(Z ′′) = −(q(a)− 1) + (
∑

a∈δ−(Z′′)

y(Z ′′))− 1 = −q(a) +
∑

a∈δ−(Z′′)

y(Z ′′).
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Since x and
(

y

q

)

are optimal solutions of (P ) and (D), it follows that
(

y′

q′

)

is a feasible solution

of (D) and that x and
(

y′

q′

)

satisfy the complementary slackness conditions, so
(

y′

q′

)

is an optimal

solution of (D). However, 1
T
(

y′

q′

)

< 1
T
(

y

q

)

, that contradicts the choice of
(

y

q

)

.

(b) Let a be an arc with q(a) = 0 that enters Z ∈ Z. Then, since
(

y

q

)

is an integral feasible

solution of (D) and c(a) ≤ 1, we have

0 = q(a) ≥ −c(a) +
∑

a∈δ−(Z′)

y(Z ′) ≥ −c(a) + y(Z) ≥ −1 + 1 = 0,

hence equality holds everywhere, thus y(Z) = 1, c(a) = 1 and y(Z ′) = 0 for all Z ′ 6= Z entered
by a, so (b) holds.

(c) It immediately follows from (a) and (b).

(d) Let a be an arc with q(a) 6= 0 that enters Z ∈ Z. Then, since x and
(

y

q

)

are optimal

solutions of (P ) and (D), we get, by (45) and (43), that −q(a)+
∑

a∈δ−(Z′)

y(Z ′) = c(a). To finish

the proof we have to show that a ∈ A (and hence c(a) = 0). Suppose for a contradiction that
a = sv ∈ A′, with s ∈ S and v ∈ V . Let Z′ = Z ∪ {s}. Since Z ∈ Ẑ, we have Z ′ ∈ Ẑ. Let

y′ = y − χẐ
{Z} + χẐ

{Z′} and q′ = q − χA∗

a .

Since y ∈ Z
Ẑ
+ and Z ∈ Z, we have y′ ∈ Z

Ẑ
+. As q ∈ Z

A∗

+ and q(a) 6= 0, we have q′ ∈ Z
A∗

+ .
Since no arc enters s, only a leaves s, q(a) > 0 and (45), we get

x(δ−A∗(Z
′)) = x(δ−A∗(Z))− x(a) = x(δ−A∗(Z))− 1. (46)

Since Z ′ ∈ Ẑ, x is a feasible solution of (P ), by (46), Z ∈ Z, (44), and rM(S∩Z
′) ≤ rM(S∩Z)+1,

we have
p̂(Z ′) ≤ x(δ−A∗(Z

′)) = x(δ−A∗(Z))− 1 = p̂(Z)− 1 ≤ p̂(Z ′).

It follows that equality holds everywhere, that is p̂(Z ′) = x(δ−A∗(Z ′)).
For all b ∈ δ−A∗(Z ′),

−q′(b) +
∑

b∈δ−(Z′′)

y′(Z ′′) = −q(b) + (
∑

b∈δ−(Z′′)

y(Z ′′))− 1 + 1 = −q(b) +
∑

b∈δ−(Z′′)

y(Z ′′).

For a,

−q′(a) +
∑

a∈δ−(Z′′)

y′(Z ′′) = −(q(a)− 1) + (
∑

a∈δ−(Z′′)

y(Z ′′))− 1 = −q(a) +
∑

a∈δ−(Z′′)

y(Z ′′).

Since x and
(

y

q

)

are optimal solutions of (P ) and (D), the above arguments show that
(

y′

q′

)

is a feasible solution of (D) and x and
(

y′

q′

)

satisfy the complementary slackness conditions, so
(

y′

q′

)

is an optimal solution of (D). However, 1
T
(

y′

q′

)

< 1
T
(

y

q

)

contradicts the choice of
(

y

q

)

.

(e) It immediately follows from (b) and (d) that Z is an A′-disjoint subset of Ẑ. We prove
by the usual uncrossing technique that Z is core-laminar. Suppose for a contradiction that
there exist core-intersecting Z1 and Z2 in Z such that Z1 − Z2 6= ∅ and Z2 − Z1 6= ∅. Let y′

= y−χẐ
{Z1}

−χẐ
{Z2}

+χẐ
{Z1∩Z2}

+χẐ
{Z1∪Z2}

. Since y ∈ Z
Ẑ
+ and Z1, Z2 ∈ Z, we have y′ ∈ Z

Ẑ
+. Since

(

y

q

)

is a feasible solution of (D) and
∑

a∈δ−(Z)

y′(Z) ≤
∑

a∈δ−(Z)

y(Z),
(

y′

q

)

is also a feasible solution
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of (D). Then, since
(

y

q

)

is an optimal solution of (D), Z1 and Z2 are core-intersecting, and by

Claim 4(a), we have

0 ≤ (p̂Ty − 1
T q)− (p̂Ty′ − 1

T q) = p̂(Z1) + p̂(Z2)− p̂(Z1 ∩ Z2)− p̂(Z1 ∪ Z2) ≤ 0,

so
(

y′

q

)

is an optimal solution of (D). Note that 1
T
(

y′

q

)

= 1
T
(

y

q

)

. However, by Z1 − Z2 6= ∅ 6=
Z2 − Z1, we have

∑

Z∈Ẑ

|Z|2y(Z)−
∑

Z∈Ẑ

|Z|2y′(Z) = |Z1|
2 + |Z2|

2 − |Z1 ∩ Z2|
2 − |Z1 ∪ Z2|

2 < 0

that contradicts the choice of
(

y

q

)

.

(f) Suppose that there exists an arc a with q(a) 6= 0 that enters no Z ∈ Z. Since q(a) ≥ 0,
we have q(a) > 0. Then, by (45), (43), and c(a) ≥ 0, we have a contradiction:

0 =
∑

a∈δ−(Z)

y(Z) = c(a) + q(a) > 0 + 0.

(g) By (f), (d), and (c), we have

∑

a∈A∗

q(a) =
∑

a∈A∗

q(a)>0

q(a) =
∑

a∈A∗

q(a)>0

∑

a∈δ−
A
(Z)

y(Z) =
∑

a∈A∗

q(a)>0

∑

a∈δ−
A
(Z)

Z∈Z

1 =
∑

Z∈Z

∑

a∈δ−
A
(Z)

1 =
∑

Z∈Z

d−A(Z).

(h) Since x and
(

y

q

)

are optimal solutions of (P ) and (D), we have, by strong duality, that

cTx = p̂Ty − 1
T q, which, by (c) and (g), is equal to

∑

Z∈Z(rM(S ∩ PZ)− rM(S ∩ Z)− d−A(Z)).
By (e) and (31), this sum is at most ℓ′.

Let A1 = {a ∈ A∗ : x(a) = 1}. Note that, by Lemma 1(h), we have

|A′ ∩ A1| = cTx ≤ ℓ′. (47)

Note that N−
A1∩A′(v) is independent in M for all v ∈ V. Indeed, let D(A1) = (V ∪S,A1). Since x is

a feasible solution of (P ), (25) holds for (D(A1), S,M). Then, by Theorem 11(b), there exists an
M-reachability-based packing B1 of arborescences in D(A1). Hence χA∗

A(B1)
is a feasible solution

of (P ). Since x is an optimal solution of (P ), |A1 ∩A′| = cTx ≤ cTχA∗

A(B1)
= |A(B1)∩A1 ∩A′| so

A1∩A′ ⊆ A(B1). Then, for each v ∈ V , the set Rv of roots of the arborescences in B1 containing
v contains N−

A1∩A′(v). Since B1 is an M-reachability-based packing B1 of arborescences, Rv is
independent in M and thus N−

A1∩A′(v) is independent in M.
Let A2 be obtained by adding to A1 a smallest arc set in A′ such that N−

A2
(v) is independent

in M and
∑

v∈V |N−
A2
(v)| ≥ ℓ. By (29), this arc set exists. Let D′ = (V,A1∩A), S′ the multiset

of V such that S ′
v = N−

A2
(v) for every v ∈ V and M′ the restriction of M on S ′. Let us check

that the conditions of Theorem 11(b) are satisfied for (D′, S ′,M′). First observe that

S ′
v ∈ IM′ for every v ∈ V. (48)

For Z ′ ∈ ẐD′, let Z = Z ′ ∪ (S ∩N−
A2
(Z ′)). By the definition of Z and the assumption on S, we

have d−A1∩A
(Z ′) = d−A1

(Z) = x(δ−A∗(Z)). Note that Z ′ ∈ ẐD′ implies that Z ∈ ẐD. Since x is a
feasible solution of (P ), x(δ−A∗(Z)) ≥ rM(S ∩ PD

Z )− rM(S ∩ Z). By the constructions of D′ and
Z, we have rM(S ∩ PD

Z ) ≥ rM′(S ′
PD′

Z′

) and rM(S ∩ Z) = rM′(S ′
Z′). Hence we have

d−A1∩A
(Z ′) = x(δ−A∗(Z)) ≥ rM(S ∩ PD

Z )− rM(S ∩ Z) ≥ rM′(S ′
PD′

Z′

)− rM′(S ′
Z′) ∀Z ′ ∈ ẐD′. (49)
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By (48) and (49), the conditions of Theorem 11(b) are satisfied for (D′, S ′,M′), and hence
there exists a complete M′-reachability-based packing B′ of arborescences in D′. By adding to
each s′-arborescence in B′ the arc from the corresponding vertex of S to s′ and adding to the
packing each other vertex s of S with rM(s) = 1 as an arborescence, we obtain a packing B of
arborescences in D. Since B′ is an M′-reachability-based packing of arborescences in D′,

|RB′

v | = rM′(S ′
PD′
v

) for every v ∈ V. (50)

Since B′ is complete, B uses all the arcs in A2 ∩ A′. Further, |A2 ∩ A′| is equal to either ℓ and
so, by (10), is at most ℓ′ or |A1 ∩A′| which is then at least ℓ and, by (47), at most ℓ′.

For every v ∈ V, let Z ′
v = PD′

v and Zv = Z ′
v∪(S∩N

−
A2
(Z ′

v)). We show that Z ′
v ∈ ẐD′. Indeed,

let C ′
v be the strongly-connected component of D′ containing v. Then Z ′

v ∩ C ′
v 6= ∅, Z ′

v = PD′

C′

and d−A1∩A
(Z ′

v − C ′
v) = 0, so Z ′

v ∈ ẐD′. As above, this implies that Zv ∈ ẐD. Note also that
v ∈ Zv and S ∩ Zv = S ∩ N−

A2
(Z ′

v). Then, by (49) applied for Z ′
v and the monotonicity of rM,

we have

0 = d−A1∩A
(Z ′

v) ≥ rM(S ∩ PD
Zv
)− rM(S ∩ Zv) ≥ rM(S ∩ PD

v )− rM(S ∩N−
A2
(PD′

v )) ≥ 0.

Hence equality holds everywhere, so rM(S ∩ PD
v ) = rM(S ∩ N−

A2
(PD′

v )). Further, by the con-

struction of D′, we have rM(S ∩ N−
A2
(PD′

v )) = rM′(S ′
PD′
v

). Hence, by the construction of B

and (50), we get that |RB
v | = |RB′

v | = rM′(S ′
PD′
v

) = rM(S ∩ PD
v ) for every v ∈ V. Further,

|RB
s | = rM(s) = rM(S ∩ PD

s ) for every s ∈ S, so the packing B is M-reachability-based.

6.2 Proof of Theorem 14

Proof. To prove the necessity, take an M-reachability-based packing B of s-arborescences
(s ∈ S∗) in D for some S∗ ⊆ S with ℓ ≤ |S∗| ≤ ℓ′. Then, clearly, (10) holds. Also holds (11)
because, since rM is non-decreasing and S∗

v is independent in M, we have

∑

v∈V

rM(Sv) ≥
∑

v∈V

rM(S
∗
v ) =

∑

v∈V

|S∗
v | = |S∗| ≥ ℓ.

By the necessity of Theorem 11, (24) also holds. Let X ∈ X and v ∈ XI . Let Rv = RB
v .

|Rv| = |Rv
XI
|+ |Rv

XW
|+ |Rv

XO

|. (51)

Since the packing is M-reachability-based, Rv is a base of SPv
. Since v ∈ XI ⊆ CX and CX is

strongly-connected, we have Pv ⊆ PXI
⊆ PCX

⊆ Pv. Then

|Rv| = rM(SPv
) = rM(SPXI

). (52)

Since Rv
XW

⊆ Rv, Rv is independent in M and rM is monotone, we have

|Rv
XW

| = rM(R
v
XW

) ≤ rM(SXW
). (53)

Since the arborescences are arc-disjoint and v ∈ XO, we have

|Rv
XO

| ≤ d−A(XO). (54)

It follows from (51)–(54) that

|S∗
XI
| ≥ |Rv

XI
| ≥ rM(SPXI

)− rM(SXW
)− d−A(XO). (55)
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Let P be an OW laminar biset family of X . Then, by ℓ′ ≥ |S∗|, since XI ’s are disjoint, and by
(55), we have

ℓ′ ≥ |S∗| ≥
∑

X∈P

|S∗
XI
| ≥

∑

X∈P

(rM(SPXI
)− rM(SXW

)− d−A(XO)),

so (32) holds.

To prove the sufficiency, suppose that for an instance (D = (V,A), S, ℓ, ℓ′,M = (S, rM)) of
Theorem 14, the conditions (10), (11), (24) and (32) hold. To be able to apply Theorem 13 we
have to consider the extended version. Let D′ = (V ∪S ′, A∪A′) hence be obtained from D by
adding a new vertex set S′ containing one vertex s′ for every s ∈ S and adding a new arc set
A′ containing one arc s′s for every s ∈ S. Let M′ be a copy of M on S ′. Note that A′ is the set
of arcs leaving S ′, no arc enters s′ and exactly one arc leaves s′ for every vertex s′ of S ′. Then
(D′, ℓ, ℓ′,M′) is an instance of Theorem 13. We now show that all the conditions of Theorem
13 hold. First, (10) holds by assumption. Note that (11) implies (29) and (24) implies (30).
Finally, the following lemma implies that (31) also holds.

Lemma 2.
∑

Z∈Z(rM′(S ′ ∩ PD′

Z ) − rM′(S ′ ∩ Z) − d−A(Z)) ≤ ℓ′ for all A′-disjoint core-laminar

subset Z of ẐD′ .

Proof. Let Z be an A′-disjoint core-laminar subset Z of ẐD′ . For every Z i ∈ Z, we may suppose
without loss of generality that rM′(S ′ ∩ PD′

Zi ) − rM′(S ′ ∩ Z i)− d−A(Z
i) ≥ 1 and hence, by (30),

that d−A′(Z i) ≥ 1. Let Xi be the biset on V with Xi
O

= V ∩ Z i and Xi
I
= N+

A′(S ′ − Z i) ∩ Z i

and P = {Xi : Z i ∈ Z}.

Proposition 1. P is an OW laminar biset family of X .

Proof. To show that P ⊆ X , let Xi ∈ P. Since Z i ∈ Z ⊆ ẐD′ , there exists an atom C of D′

such that Z i ∩C 6= ∅, Z i ⊆ PD′

C and d−A∪A′(Z i −C) = 0. Then, since d−A′(Z i) ≥ 1, C is an atom
of D, ∅ 6= X i

I ⊆ C, X i
W ⊆ PD

C and d−A(XW − C) = 0, so we have Xi ∈ X .
We now show that P is OW laminar. Suppose there exist two core-intersecting bisets Xi,Xj

in P such that X i
O−Xj

W 6= ∅ 6= Xj
O−X i

W . Then Z i and Zj are ẐD′-intersecting. Since Z is D′-
core-laminar, we get that Z i ⊆ Zj or Zj ⊆ Z i, say Z i ⊆ Zj , so X i

O ⊆ Xj
O. Since X i

O −Xj
W 6= ∅,

it follows that there exists a vertex v ∈ X i
O ∩Xj

I . Then, by definition, there exist s′j ∈ S ′ \ Zj

such that s′jv ∈ A′. Since v ∈ X i
O ∩Xj

I ⊆ Z i ⊆ Zj and s′j ∈ S ′ \ Zj ⊆ S ′ \ Z i, we get that the
arc s′jv ∈ A′ enters Z i and Zj , that contradicts the fact that Z is A′-disjoint.

Note that, by construction of D′, we have S ′ ∩PD′

Zi = SPD

XO

. Since there exists v ∈ XI ⊆ CX

and CX is strongly-connected, we have PD
v ⊆ PD

XI
⊆ PD

XO
⊆ PD

CX
⊆ PD

v . Then

rM′(S ′ ∩ PD′

Zi ) = rM(SPD

Xi
I

). (56)

For every s ∈ SXi

W
, by the definition of X i

W , we have s′ ∈ S ′ ∩ Z i. Hence the elements of S ′

corresponding to SXi

W
are contained in S ′ ∩ Z i. Then, by the monotonicity of rM, we have

rM(SXi

W
) ≤ rM′(S ′ ∩ Z i). (57)

Since no arc enters Z i ∩ S ′, we have

d−A(Z
i) = d−A(X

i
O). (58)
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Thus, by (56)–(58), Proposition 1 and (32), we get that

∑

Zi∈Z

(rM′(S ′ ∩ PD′

Zi )− rM′(S ′ ∩ Z i)− d−A(Z
i)) ≤

∑

Xi∈P

(rM(SPD

Xi
I

)− rM(SXi

W
)− d−A(X

i
O)) ≤ ℓ′,

and the proof of the lemma is completed.

By Theorem 13, there exists an M′-reachability-based packing of arborescences in D′ using
at least ℓ and at most ℓ′ arcs of A′. By deleting the roots s′ of the arborescences in the packing,
we obtain s-arborescences in D. Hence we get an M-reachability-based packing of at least ℓ and
at most ℓ′ arborescences in D that completes the proof of Theorem 14.

7 Algorithmic aspects

In this section we assume that a matroid is given by an oracle for the rank function and,
under this assumption, we point out that all the problems which derive from the problem of
Theorem 13 can be solved in polynomial time. Since all the reductions we presented are done
in polynomial time, it is enough to show that the problem of Theorem 13 can be solved in
polynomial time. The main algorithmic difficulty in the proof of Theorem 13 is to find an arc
set containing a minimum number of arcs leaving S, that admits a matroid-reachability-based
packing of arborescences. This can be done by finding the arc set of a matroid-reachability-
based packing of arborescences of minimum weight where the weight is 1 for every arc leaving
S and 0 for the other arcs. This latter problem can be solved in polynomial time due to Bérczi,
Király, Kobayashi [3] or Király, Szigeti, and Tanigawa [19]. Then, we mention that the last
part in the proof of Theorem 13, that is finding a complete matroid-reachability-based packing
of arborescences, is polynomial (see Király [18], Hörsch and Szigeti [15]) hence we can get the
required packing in polynomial time.

References

[1] K. Bérczi, A. Frank, Variations for Lovász’ submodular ideas, in Building Bridges,
Springer, (2008) 137–164.

[2] K. Bérczi, A. Frank, Packing arborescences, in: S. Iwata (Ed.), RIMS Kokyuroku Bessatsu
B23: Combinatorial Optimization and Discrete Algorithms, Lecture Notes, (2010) 1–31.

[3] K. Bérczi, T. Király, Y. Kobayashi, Covering intersecting bi-set families under matroid
constraints, SIAM J. Discret. Math. 30(3) (2016) 1758–1774.

[4] J. Edmonds, Edge-disjoint branchings, in Combinatorial Algorithms, B. Rustin ed., Aca-
demic Press, New York, (1973) 91–96.

[5] O. Durand de Gevigney, V. H. Nguyen, Z. Szigeti, Matroid-Based Packing of Arborescences,
SIAM J. Discret. Math. 27(1) (2013) 567–574.

[6] J. Edmonds, R. Giles, A min-max relation for submodular functions on graphs, Annals of
Discrete Math., 1 (1977) 185–204.

[7] Q. Fortier, Cs. Király, M. Léonard, Z. Szigeti, A. Talon, Old and new results on packing
arborescences, Discret. Appl. Math. 242 (2018) 26–33.

20



[8] A. Frank, On disjoint trees and arborescences, in: Algebraic Methods in Graph Theory,
Colloquia Mathematica Soc. J. Bolyai, 25 (1978) 159–169.

[9] A. Frank, Covering branchings, Acta Sci. Math. (Szeged) 41 (1–2) (1979) 77–81.

[10] A. Frank, Rooted k-connections in digraphs, Discrete Appl. Math. 157 (2009) 1242–1254.

[11] A. Frank, Connections in Combinatorial Optimization, Oxford University Press, 2011.

[12] A. Frank, T. Király, Z. Király, On the orientation of graphs and hypergraphs, Discret.
Appl. Math. 131(2) (2003) 385–400.

[13] A. Frank, T. Király, M. Kriesell, On decomposing a hypergraph into k connected sub-
hypergraphs, Discret. Appl. Math. 131 (2) (2003) 373–383.

[14] H. Gao, D. Yang, Packing of maximal independent mixed arborescences, Discrete Appl.
Math. 289 (2021) 313–319.

[15] F. Hörsch, Z. Szigeti, Reachability in arborescence packings, Discret. Appl. Math. 320
(2022) 170–183.

[16] N. Kamiyama, N. Katoh, A. Takizawa, Arc-disjoint in-trees in directed graphs, Comb. 29
(2009) 197–214.

[17] N. Katoh, S. Tanigawa, Rooted-tree decomposition with matroid constrains and the in-
finitesimal rigidity of frameworks with boundaries, SIAM J. Discret. Math. 27(1), (2013)
155–185.

[18] Cs. Király, On maximal independent arborescence packing, SIAM J. Discret. Math. 30(4)
(2016) 2107–2114.

[19] Cs. Király, Z. Szigeti, S. Tanigawa, Packing of arborescences with matroid constraints via
matroid intersection, Math. Program. 181 (2020) 85–117.

[20] C. St. J. A. Nash-Williams, Edge-disjoints spanning trees of finite graphs, Journal of the
London Mathematical Society, 36 (1961) 445–450.

[21] C. St. J. A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math.
Soc., 39 (1964) 12.

[22] A. Schrijver, Theory of linear and integer programming, Wiley (1998)

[23] Z. Szigeti, Packing mixed hyperarborescences, Discrete Optimization 50 (2023) 100811.

[24] Z. Szigeti, Matroid-rooted packing of arborescences, submitted

[25] T. Tay, Rigidity of multi-graphs I: Linking rigid bodies in n-space, Journal of Combinatorial
Theory. Series B, 36(1) (1984) 95–112.

[26] W.T. Tutte, On the problem of decomposing a graph into n connected factors, Journal of
the London Mathematical Society, 36 (1961) 221–230.

21



A Detailed results on packings in directed hypergraphs

The aim of this section is to present the extensions of the previous results to directed hyper-
graphs. We start with the necessary definitions on directed hypergraphs.

Let D = (V,A) be a directed hypergraph, shortly dypergraph, where A is the set of dyper-
edges of D. A dyperedge e is an ordered pair (Z, z), where z ∈ V is the head of e and
∅ 6= Z ⊆ V − z is the set of tails of e. For a subset X of V, a dyperedge (Z, z) enters X
if z ∈ X and Z−X 6= ∅. The in-degree d

−

A(X) of X is the number of dyperedges in A entering
X. For a subpartition P of V , we denote by eA(P) the set of dyperedges in A that enters
at least one member of P. By trimming a dyperedge e = (Z, z), we mean the operation that
replaces e by an arc yz where y ∈ Z. A dypergraph D is called a (spanning) s-hyperarborescence
if D can be trimmed to a (spanning) s-arborescence. A dypergraph D is called a dyperpath
from s to t if D can be trimmed to a path from s to t. A subatom of D is a non-empty subset
C of vertices such that for every ordered pair (u, v) ∈ C × C, there exists a dyperpath from u
to v in D. An atom of D is a maximal subatom of D. For a subset X of V, we denote by PD

X

the set of vertices from which there exists a dyperpath to at least one vertex of X.

Let S be a multiset of V and M a matroid on S. A packing B of hyperarborescences in D
is called M-based or matroid-based if every s ∈ S is the root of at most one hyperarborescence
in the packing and for every vertex v ∈ V , the multiset RB

v
of roots of hyperarborescences

in the packing in which v can be reached from the root forms a basis of M. A packing B
of hyperarborescences in D is called M-reachability-based or matroid-reachability-based if every
s ∈ S is the root of at most one hyperarborescence in the packing and for every vertex v ∈ V ,
the multiset RB

v forms a basis of SPD
v

in M. A packing of hyperarborescences is complete if every
s ∈ S is the root of exactly one hyperarborescence in the packing.

A.1 Packing of hyperarborescences

Theorem 4 was generalized to dypergraphs in [12].

Theorem 20 (Frank, Király, Király [12]). Let D = (V,A) be a dypergraph and S a multiset of
vertices in V. There exists a packing of spanning s-hyperarborescences (s ∈ S) in D if and only
if

|SX |+ d−A(X) ≥ |S| for every ∅ 6= X ⊆ V. (59)

If D is a digraph, then Theorem 20 reduces to Theorem 4.

The following common extension of Theorems 5 and 20 was given in [1].

Theorem 21 (Bérczi, Frank [1]). Let D = (V,A) be a dypergraph and S a multiset of vertices
in V. There exists a packing of reachability s-hyperarborescences (s ∈ S) in D if and only if

|SX |+ d−A(X) ≥ |SPD
X
| for every X ⊆ V. (60)

If D is a digraph, then Theorem 21 reduces to Theorem 5. The same way as Theorem 5
implies Theorem 4, Theorem 21 implies Theorem 20.

A.2 Matroid-based packing of hyperarborescences

Theorem 6 was generalized to dypergraphs in [7] as follows. It was obtained from the graphic
version, Theorem 6, by a simple gadget.
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Theorem 22 (Fortier, Király, Léonard, Szigeti, Talon [7]). Let D = (V,A) be a dypergraph, S
a multiset of vertices in V , and M = (S, IM) a matroid with rank function rM. There exists a
complete M-based packing of hyperarborescences in D if and only if (6) holds and

d−A(Z) ≥ rM(S)− rM(SZ) for every Z ⊆ V. (61)

If D is a digraph, then Theorem 22 reduces to Theorem 6. For the free matroid, Theorem
22 reduces to Theorem 20.

Theorem 7 was extended to dypergraphs in [24].

Theorem 23 (Szigeti [24]). Let D = (V,A) be a dypergraph, S a multiset of vertices in V , and
M = (S, rM) a matroid. There exists an M-based packing of spanning hyperarborescences in D
if and only if

rM(S∪P) + eA(P) ≥ rM(S)|P| for every subpartition P of V . (62)

If D is a digraph, then Theorem 23 reduces to Theorem 7. For the free matroid, Theorem
23 reduces to Theorem 22.

The following generalizations to dypergraphs follow from the corresponding graphic versions,
by applying the gadget of [7].

Theorem 24. Let D = (V,A) be a dypergraph, S a multiset of vertices in V , ℓ, ℓ′ ∈ Z+, and
M = (S, rM) a matroid. There exists an M-based (ℓ, ℓ′)-limited packing of hyperarborescences in
D if and only if (10) and (11) hold and

rM(SX) + d−A(X) ≥ rM(S) for every subatom X of D, (63)
∑

X∈P

(rM(S)− rM(SXW
)− d−A(XO)) ≤ ℓ′ ∀ OW laminar biset family P of subatoms. (64)

If D is a digraph, then Theorem 24 reduces to Theorem 8. If ℓ = ℓ′ = |S|, then Theorem
24 reduces to Theorem 22. If ℓ = ℓ′ = rM(S), then Theorem 24 reduces to Theorem 23.

Theorem 25. Let D = (V,A) be a dypergraph, S a multiset of vertices in V , and M = (S, rM)
a matroid. There exists a decomposition of A into an M-based packing of hyperarborescences in
D if and only if (63) holds and for every OW laminar biset family P of subatoms,

∑

X∈P

(rM(S)− rM(SXW
)− d−A(XO)) ≤ rM(S)|V | − |A|. (65)

If D is a digraph, then Theorem 25 reduces to Theorem 9.

A.3 Matroid-reachability-based packing of hyperarborescences

Theorem 10 was generalized to dypergraphs in [7] as follows.

Theorem 26 (Fortier, Király, Léonard, Szigeti, Talon [7]). Let D = (V,A) be a dypergraph, S
a multiset of vertices in V , and M = (S, IM) a matroid with rank function rM.There exists a
complete M-reachability-based packing of hyperarborescences in D if and only if (6) holds and

d−A(Z) ≥ rM(SPZ
)− rM(SZ) for every Z ⊆ V. (66)

If D is a digraph, then Theorem 26 reduces to Theorem 10. If rM(SPv
) = rM(S) for all

v ∈ V, then Theorem 26 reduces to Theorem 22.

The following generalizations to dypergraphs follow from the corresponding graphic versions,
by applying the gadget of [7].
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Theorem 27. Let D = (V,A) be a dypergraph, S a multiset of vertices in V , ℓ, ℓ′ ∈ Z+,
and M = (S, rM) a matroid. There exists an M-reachability-based (ℓ, ℓ′)-limited packing of
hyperarborescences in D if and only if (10) and (11) hold and

rM(SPXI
)− rM(SXO

) ≤ d−A(XO) for every biset X on V , (67)
∑

X∈P

(rM(SPXI
)− rM(SXW

)− d−A(XO)) ≤ ℓ′ for every OW laminar biset family P of X . (68)

If D is a digraph, then Theorem 27 reduces to Theorem 14. If rM(SPv
) = rM(S) for all

v ∈ V, then Theorem 27 reduces to Theorem 24. If ℓ = ℓ′ = |S|, then Theorem 27 reduces to
Theorem 26.

Theorem 28. Let D = (V,A) be a dypergraph, S a multiset of vertices in V , and M =
(S, rM) a matroid. There exists a decomposition of A into an M-reachability-based packing of
hyperarborescences in D if and only if (67) holds and for every OW laminar biset family P of
X ,

∑

X∈P

(rM(SPXI
)− rM(SXW

)− d−A(XO)) ≤ rM(S)|V | − |A|. (69)

If D is a digraph, then Theorem 28 reduces to Theorem 15. If rM(SPv
) = rM(S) for all

v ∈ V, then Theorem 28 reduces to Theorem 25.
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