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A COMPUTATIONAL APPROACH TO THE HOMOTOPY THEORY OF DG

CATEGORIES

DOGANCAN KARABAS AND SANGJIN LEE

Abstract. We give a specific cylinder functor for semifree dg categories. This allows us to con-
struct a homotopy colimit functor explicitly. These two functors are “computable”, specifically, the
constructed cylinder functor sends a dg category of strictly finite type, i.e., a semifree dg category
having finitely many objects and generating morphisms, to a dg category of strictly finite type.
The homotopy colimit functor has a similar property. Moreover, using the cylinder functor, we
give a cofibration category of semifree dg categories and that of dg categories of strictly finite type,
independently from the work of Tabuada [Tab05b]. All the results similarly work for semifree dg
algebras. We also describe an application to symplectic topology and provide a toy example.
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1. Introduction

Homotopy theory, originating in algebraic topology, plays a pivotal role in numerous areas of mod-
ern mathematics. Specifically, the homotopy theory of differential graded (dg) categories is promi-
nently featured in fields such as algebraic geometry, representation theory, higher categories, and
symplectic topology. To explore their homotopy theory up to various weak equivalences, Tabuada
[Tab05b, Tab05a] introduced model structures for the category of dg categories. These model struc-
tures come with auxiliary functors called cofibrations and fibrations, and provide two functorial
factorizations of functors: the first type factors a functor into a cofibration followed by a weak
equivalence, and the second type factors it into a weak equivalence followed by a fibration.

There is another approach to the homotopy theory of dg categories without using a model struc-
ture: Starting with cofibrations, instead of considering the entire factorization data, one can focus
solely on the functorial factorization of codiagonal maps into a cofibration and a weak equivalence.
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2 DOGANCAN KARABAS AND SANGJIN LEE

This functorial factorization yields a construction of a cylinder functor (Definition 4.1). Once ad-
ditional axioms (see Definition 6.1) are established, this construction recovers an entire functorial
factorization of the first type, representing “half” of a model structure known as a cofibration cate-
gory in the sense of [Bau89]. Therefore, constructing a cylinder functor allows us to delve into the
homotopy theory of dg categories, specifically allowing us to describe the homotopy colimit functor
on diagrams of dg categories.

In the current paper, we present a simple construction of a cylinder functor on the category of dg
categories, expanding upon our earlier work [KL21] where the cylinder functor was defined solely at
the level of objects. Moreover, our cylinder functor leads us to a simple homotopy colimit functor
and establishes an I-category and a cofibration category of dg categories, offering a computational
approach to the homotopy theory of dg categories. Detailed results can be found in Theorems 1–3,
which will be discussed following the introduction of our framework. We will also comment on the
simplicity of our constructions.

Throughout this paper, we mostly work within the context of the category of semifree dg categories
over a commutative ring k, denoted by dgCats (see Definition 2.1). We note that every dg category
has a semifree resolution (as discussed in [Dri04]), emphasizing the significance of our focus on
dgCats. Furthermore, we fix weak equivalences as quasi-equivalences, pretriangulated equivalences,
or Morita equivalences.

Theorem 1. [Corollary 4.9] Let Cyl: dgCats → dgCats be a functor together with the natural
transformations i1, i2 : 1dgCats ⇒ Cyl and p : Cyl⇒ 1dgCats defined as follows:

• Cyl(C) for any C ∈ dgCats and the natural transformations are as in Theorem 4.5,
• Cyl(F ) for any morphism (dg functor) F : A→ B in dgCats is as in Theorem 4.8.

Then, Cyl is a cylinder functor, which means the following conditions are satisfied:

• p ◦ (i1 ∐ i2) : C ∐ C → Cyl(C)→ C is the codiagonal of A,
• i1 ∐ i2 : C ∐ C → Cyl(C) is a cofibration,
• p : Cyl(C)→ C is a weak equivalence and a fibration.

We note that our cylinder functor differs significantly from the natural cylinder functor induced
by Tabuada’s model structures. Tabuada employed Quillen’s “small object argument” (as detailed
in Hovey [Hov07]) to establish a functorial factorization, which results in a cylinder functor as a
special case. However, this method (or its refinement by Garner [Gar09]) involves a transfinite
construction that is overly complicated from a computational standpoint.

In contrast, our cylinder functor Cyl ensures that the number of generating morphisms of a
semifree dg category C and its image Cyl(C) are close in size. Specifically, if the former is finite, the
latter is also finite, a property that does not hold for Tabuada’s natural cylinder. This effectiveness
arises from the construction of Cyl, which is specifically tailored for semifree dg categories. Moreover,
the computability of our cylinder functor ensures that all our functorial factorizations are computable
as can be seen in Theorem 6.9.

Using the cylinder functor described earlier, we can construct the homotopy colimit (pushout)
functor for the category of dg categories, where weak equivalences are defined as quasi-equivalences,
pretriangulated equivalences, or Morita equivalences:

Theorem 2. [Theorem 5.3] Let J be a category of the form a ← c → b, and dgCatJ denote the
category of J-diagrams in dgCat. Then, the homotopy colimit functor

hocolim: Ho(dgCatJ)→ Ho(dgCat)
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can be given such that hocolim(C) for any C ∈ dgCats is defined as in Theorem 5.3(1), and
hocolim(F ) for any morphism (dg functor) F : A→ B in dgCats is defined as in Theorem 5.3(2).

Our homotopy colimit functor is simple in the sense that it produces a semifree dg category of a
size close to the total sizes of semifree dg categories in a given diagram. Specifically, the finiteness of
the number of generators is preserved under our homotopy colimit functor. In contrast, if we compare
this to the Grothendieck construction for homotopy colimit functor (refer to [GPS18]), our method
offers several computational advantages. The Grothendieck construction is not explicit; rather, it
is expressed as a localization of a non-semifree dg category, which often leads to computational
difficulties.

We note that the description in Theorem 2 still holds for the diagrams of the form A ← C → B,
where A and B are not necessarily semifree, if k has flat dimension zero (e.g., if k is a field). See
Remark 5.8 for details.

Moreover, the constructions in Theorems 1 and 2 can be adapted for scenarios where the input
of the functors is a localization of a semifree dg category. Please refer to Theorems 4.12, 4.13,
and 5.7 for more details on these adjustments. The usage of Theorem 5.7 is demonstrated through
computations for the case n = 2 in Sections 7.2 and 7.3.

As mentioned earlier, the constructed cylinder functor can define a “half” of a model structure, or
more precisely, a cofibration category structure on dgCats. This structure differs from that induced
by [Tab05b] due to its simpler functorial factorization:

Theorem 3.

(1) (Theorem 6.2) The category of semifree dg categories dgCats is an I-category with the struc-
ture (cof , I), which is defined as follows:
• cof : Cofibrations are semifree extensions.
• I: The functor I is the cylinder functor Cyl: dgCats → dgCats from Theorem 1.

(2) (Theorem 6.11) The category of semifree dg categories dgCats forms a cofibration cate-
gory, where weak equivalences are quasi-equivalences and cofibrations are semifree exten-
sions. Moreover, every object in dgCats is both fibrant and cofibrant. In particular, dgCats
makes a category of cofibrant objects.

Theorems 1–3 hold in the setting of semifree dg algebras with slight modifications, see Remarks
4.11 and 5.6, and Theorem 6.13.

We note that Theorem 3 is not necessary for constructions such as Theorem 2, as we can use
our cylinder functor within Tabuada’s model structures to carry out homotopy theory. However,
we have established additional axioms for the constructed cylinder functor to explicitly construct a
cofibration category of semifree dg categories, which is distinct from the approach in [Tab05b]. In
[Tab05b], Quillen’s small object argument is employed to construct a model structure and establish
the existence of factorizations, but they are not effective or concretely expressible in practice. In
contrast, our cylinder functor is explicit and computable, allowing for explicit and computable
constructions within the cofibration category dgCats. Consequently, we can derive Theorem 2 from
Theorem 3 without relying on [Tab05b].

Moreover, we can directly restrict the cofibration category structure given in Theorem 3 to dg
categories of strictly finite type, i.e., semifree dg categories with finitely many objects and generating
morphisms, as the factorizations preserve finiteness. See Remark 6.14. The same is not true for
the model structure of Tabuada [Tab05b], as its given factorizations do not preserve finiteness. We
note that dg categories of strictly finite type are, in particular, of finite type. Refer to [Kel07] and
[Kon09] for the definition of dg categories of finite type.
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One can find a direct application of the above results in symplectic topology.

Symplectic manifolds are associated with a powerful symplectic invariant known as the Fukaya
category, defined as an A∞-category in [FOOO09a, FOOO09b]. Computing the Fukaya category is
typically a notoriously challenging task. However, Ganatra, Pardon, and Shende [GPS20, GPS18]
proved that for certain open symplectic manifolds (referred as Weinstein manifolds), the (wrapped)
Fukaya category can be computed, after a choice of a covering, as a homotopy colimit of the wrapped
Fukaya categories of the covering elements.

Furthermore, given the relation of wrapped Fukaya categories to microlocal sheaves by [GPS24],
Nadler [Nad17, Nad15] has shown that the wrapped Fukaya category of each covering element can
be regarded as a semifree dg category with finitely many objects and generating morphisms (a dg
category of strictly finite type) up to pretriangulated (or Morita) equivalence. This result highlights
the significance of Theorem 2 in facilitating such computations.

Now, let us consider a symplectomorphism φ : W1 → W2 between two symplectic manifolds.
It is known that φ induces a functor between Fukaya categories of W1 and W2. If φ respects the
homotopy colimit diagrams that compute Fukaya categories of W1 and W2, one can obtain a specific
description of the induced functor using Theorem 2. For a detailed example and the symplectic
topological motivations behind this discussion, please refer to Section 7.

1.1. Acknowledgment. We are grateful to Ezra Getzler for his insightful comments, which inspired
the content of Section 6.

The first-named author is supported by World Premier International Research Center Initia-
tive (WPI), MEXT, Japan. The second-named author is supported by a KIAS Individual Grant
(MG094401) at Korea Institute for Advanced Study.

2. Preliminaries on dg categories

A differential graded (dg) category is a category enriched over the symmetric monoidal category
of complexes over a fixed commutative ring k. It can also be viewed as an A∞-category in which
compositions of order greater than 2 are set to vanish. For further details on dg categories, readers
may refer to [Kel07], and for a review of A∞-categories, one can consult [Sei08]. We use d for the
differential and ◦ for compositions of morphisms, and we omit the latter whenever it is convenient.
When introducing a dg category, we follow the convention of providing the following five items:

(i) Objects: We list the objects in the category.
(ii) Generating morphisms: We give a set of generating morphisms. They generate all the mor-

phisms as an algebra, not as a module. We will not explicitly mention the existence of identity
morphisms, but it should be understood that every object has the identity endomorphism.

(iii) Degrees: For each generating morphism, we specify its degree.
(iv) Differentials: For each generating morphism, we specify its differential.
(v) Relations: We specify the relations between generating morphisms. This item will be omitted

if the generating morphisms freely generate all other morphisms.

Given a dg category C, we denote by Ob C (or simply C when it is clear from the context) the
collection of objects in C, and by Mor C the collection of morphisms in C. We use hom∗

C(A,B) (or
simply hom∗(A,B)) to represent the cochain complex of morphisms between the objects A and B
of C.

Next, we introduce a specific class of dg categories and dg functors that will be fundamental
throughout the paper. For further details, readers can refer to [KL21].
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Definition 2.1.

(1) A (small) dg category C is called a semifree dg category if its morphisms, treated as an
algebra, are freely generated by a set of morphisms {fi} (indexed by an ordinal), with the
condition that dfi is generated by the set {fj | j < i}. In this case, {fi} is called a set of
generating morphisms of C.

(2) A dg functor F : C → D is called a semifree extension by a set of objects R and a set of
morphisms S = {fi} if it satisfies the following conditions:
• F is an inclusion.
• The objects of F (C), along with R, form the objects of D.
• The morphisms of D, treated as an algebra, can be expressed as a free extension of
the morphisms of F (C) by {fi} (indexed by an ordinal), with the condition that dfi is
generated by the morphisms of F (C) and {fj | j < i}.

(3) A dg category D is called a semifree extension of a dg category C by a set of objects R and
a set of morphisms S if there exists a semifree extension F : C → D as in Definition 2.1(2).

Let dgCat denote the category of small dg categories, where morphisms are dg functors. We aim
to invert certain dg functors, referred to as weak equivalences, in dgCat. The resulting categories
can be studied by introducing model structures on dgCat, making dgCat a model category. See
[DS95], [Hov07], and [Hir03] for a review of model categories. More precisely, upon inverting weak
equivalences in dgCat, we obtain the homotopy category Ho(dgCat) of the model category dgCat.
Refer to Section 3 for further details.

For a given dg category C, we introduce the following notations:

• Tw C is the dg category of twisted complexes in C, which is a pretriangulated envelope of C.
• Perf C is the split-closure (or idempotent completion) of Tw C.

See [Sei08] for more details. With these notations, we can state the following theorem:

Theorem 2.2 ([Tab05b, Tab05a]). The category dgCat admits the following model structures:

(1) Dwyer-Kan model structure: Weak equivalences are dg functors that are quasi-equivalences,
and any dg category is a fibrant object.

(2) Quasi-equiconic model structure: Weak equivalences are pretriangulated equivalences, which
are dg functors C → D that induce a quasi-equivalence Tw C → TwD, and fibrant objects
are pretriangulated dg categories.

(3) Morita model structure: Weak equivalences are Morita equivalences, which are dg functors
C → D that induce a quasi-equivalence Perf C → PerfD, and fibrant objects are idempotent
complete pretriangulated dg categories.

All three model structures have the same cofibrations, which are retracts of semifree extensions.
Consequently, they also share the same cofibrant objects, which are retracts of semifree dg categories.

Remark 2.3. Any quasi-equivalence is a pretriangulated equivalence, and any pretriangulated
equivalence is a Morita equivalence.

It is known that any morphism C → D in the homotopy category Ho(M) of a model categoryM
can be seen as a chain of objects and morphisms inM

C
∼
←− C′ → D′ ∼

←− D

for some cofibrant object C′ and fibrant object D′, and arrows
∼
←− are weak equivalences. Conse-

quently, we can characterize the morphisms in Ho(dgCat) through the following proposition:
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Proposition 2.4. For given dg categories C and D, a morphism C → D in Ho(dgCat) can be
characterized as a chain of dg categories and dg functors in the following ways:

(1) C
∼
←− C′ → D, if dgCat is equipped with the Dwyer-Kan model structure.

(2) C
∼
←− C′ → TwD, if dgCat is equipped with the quasi-equiconic model structure.

(3) C
∼
←− C′ → PerfD, if dgCat is equipped with the Morita model structure.

Here, C′ is a cofibrant dg category, and
∼
←− is a weak equivalence in the corresponding model structure.

Remark 2.5. If C is a cofibrant dg category, then we can replace each C
∼
←− C′ with C in Proposition

2.4.

Next, we introduce three distinct types of equivalency between dg categories, characterized by
becoming isomorphic in the corresponding homotopy category Ho(dgCat):

Definition 2.6. Let C and D be dg categories.

(1) C and D are quasi-equivalent if there is a chain of dg categories and dg functors

C
∼
←− C′

∼
−→ D

for some dg category C′, where each dg functor in the chain is a quasi-equivalence.
(2) C and D are pretriangulated equivalent if Tw C and TwD are quasi-equivalent.
(3) C and D are Morita equivalent if Perf C and PerfD are quasi-equivalent.

As a result, we have two distinct types of generations for a dg category, defined as follows:

Definition 2.7. Let C be a dg category. Let {Li} be a collection of objects in C. We say

(1) {Li} generates C if the full dg subcategory of C with the objects {Li} is pretriangulated
equivalent to C,

(2) {Li} split-generates C if the full dg subcategory of C with the objects {Li} is Morita equivalent
to C.

When C is a dg category, and S is a subset of closed degree zero morphisms in C, there exists a
dg category C[S−1], known as the dg localization of C at the morphisms in S. This localization is
essentially obtained from C by inverting morphisms in S. For a precise definition, one can refer to
sources such as [Toë11] or [KL21]. The dg localization is unique up to quasi-equivalence, and its
existence is established in [Toë07].

In the case where C is a semifree dg category, we can explicitly describe C[S−1]:

Proposition 2.8 ([KL21]). When C is a semifree dg category, and S = {gi : Ai → Bi} is a subset of
closed degree zero morphisms in C, the dg localization C[S−1] can be viewed as the semifree extension
of C by the morphisms g′i, ĝi, ǧi, ḡi

Ai Biĝi
gi

ḡi

g′i

ǧi

for each i, with the gradings

|g′i| = 0, |ĝi| = |ǧi| = −1, |ḡi| = −2,

and with the differentials

dg′i = 0, dĝi = 1Ai
− g′igi, dǧi = 1Bi

− gig
′
i, dḡi = giĝi − ǧigi.
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Next, we explore the colimit of diagrams of dg categories:

Proposition 2.9 ([KL21]). Let G : A → C be a dg functor, and F : A → B be a semifree extension
by a set of objects R and a set of morphisms S. Then, there exists a pushout (colimit) square

B D

A C

Ḡ

F

G

F̄

where F̄ : C → D is a semifree extension by the set of objects R and a set of morphisms

S̄ := {f̄ : Ḡ(A)→ Ḡ(B) | f : A→ B in S}

with |f̄ | := |f | and df̄ := Ḡ(df), and

Ḡ(A) :=

{

G(A) if A ∈ ObA

A if A ∈ R
, and Ḡ(f) :=

{

G(f) if f ∈ MorA

f̄ if f ∈ S
.

Remark 2.10. In a more casual sense, the colimit D in Proposition 2.9 can be thought as B ∐ C
after the identification of the images of F with the images of G.

Remark 2.11. Given a semifree dg category C with a set of generating morphisms {fi}, consider
a morphism f : A → B in {fi} where A 6= B. The dg localization C[f−1] can be given by C with
the identifications A = B and f = 1A=B . This description relies on a description of dg localization
through a colimit diagram, as presented in [Toë07], and Proposition 2.9.

Finally, we present two propositions from [Che02] and [EN15], which can be thought as “basis
change” and “cancellation of generators” for the morphisms of semifree dg categories, respectively.
They are useful when we simplify a given semifree dg category.

Proposition 2.12. Let C be a semifree dg category with a set of generating morphisms {fi} (indexed
by an ordinal). Define the morphisms

f̃i := uifi + gi

where ui is a unit in the coefficient ring k, and gi is a morphism in C generated by the set {fj | j < i}.

Then, the set {f̃i} also generates the morphisms in C semifreely.

Proposition 2.13. Let C be a semifree dg category, and D be the semifree extension of C by the
morphisms {ai, bi} such that dai = bi for all i. Then, C and D are quasi-equivalent.

In the setting of Proposition 2.13, we say D is obtained from C by stabilization, and C is obtained
from D by destabilization.

3. Homotopy colimit functor using model structures

This section is a review of the homotopy colimit functor and related model-theoretical results.
Our main reference is [DS95].

For a given model categoryM (more generally, a categoryM with weak equivalences), we write
Ho(M) for its homotopy category, which is the category

• whose objects are the same as the objects ofM, and
• whose morphisms are generated by the morphisms ofM and the formal inverses of the weak
equivalences.
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It comes with the localization functor

l :M→ Ho(M)

which is the identity on objects, and sending morphisms to themselves.

From now on, let J be the category given by

a← c→ b

where a, b, c are the objects and the arrows are the morphisms.

Definition 3.1. LetM be a category with weak equivalences, andMJ be the category of functors
J → M (J-diagrams in M) whose weak equivalences are the objectwise weak equivalences. The
homotopy colimit functor

hocolim: Ho(MJ )→ Ho(M)

is defined (up to natural equivalence) as the total left derived functor of the colimit functor

colim:MJ →M.

IfM has a model structure, we have a more concrete way to express the homotopy colimit functor.
To describe it, we consider an induced model structure onMJ from the model structure onM:

Proposition 3.2 ([Hir03],[Dug08]). Let M be a model category.

(1) MJ has a model structure, called a Reedy model structure, whose cofibrant objects are the
diagrams of the form

A
α
←− C

β
−→ B

where A,B, C are cofibrant objects in M, and β is a cofibration.
(2) If MJ is equipped with the Reedy model structure above, then colim: MJ → M preserves

cofibrations and acyclic cofibrations.

Before describing the homotopy colimit functor using model structures, we need to define cofibrant
resolution functors:

Proposition 3.3 ([DS95]). Let M be a model category. For any X ∈ M, there exists a cofibrant
object Q(X) ∈ M and an acyclic fibration pX : Q(X)→ X by model category axioms. Then for any

morphism f : X → Y , there exists a unique morphism f̃ : Q(X)→ Q(Y ) up to right homotopy such
that the diagram

Q(X) Q(Y )

X Y

f̃

pX pY

f

commutes.

Definition 3.4. LetM be a model category.

(1) We define Mc as the full subcategory of M consisting of cofibrant objects, and πMc as
the category with the same objects as Mc whose morphisms are right homotopy classes of
morphisms inMc.
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(2) For any X ∈ M, there exists a cofibrant object Q(X) ∈ M and an acyclic fibration
pX : Q(X) → X by model category axioms. Then we define a cofibrant resolution func-
tor as

Q :M→ πMc

X 7→ Q(X) on objects

f 7→ [f̃ ] on morphisms

where given f : X → Y , the morphism f̃ is determined by Proposition 3.3, and [f̃ ] is the

right homotopy class of f̃ . The well-definedness of this functor follows from Proposition 3.3.

Now, we present the alternative description of the homotopy colimit functor:

Theorem 3.5 ([DS95]). LetM be a model category, and equipMJ with the Reedy model structure
induced byM as in Proposition 3.2. The unique lift of the composition

MJ Q
−→ π(MJ )c

l ◦ colim
−−−−−→ Ho(M)

gives the homotopy colimit functor

hocolim: Ho(MJ )→ Ho(M)

where Q is a cofibrant resolution functor.

Remark 3.6.

(1) Although the colimit functor is not well-defined on π(MJ)c, the functor l ◦ colim above is
well-defined since it identifies right homotopic maps between cofibrant objects. This follows
from the second item in Proposition 3.2. See [DS95] for the details.

(2) By the lift, we mean that the triangle

MJ Ho(M)

Ho(MJ)

l ◦ colim ◦Q

l
hocolim

commutes. The existence and uniqueness follow from the fact that l ◦ colim ◦Q sends weak
equivalences to isomorphisms, which again follows from the second item in Proposition 3.2.

Before presenting a corollary of Theorem 3.5, we describe a functor transforming a given diagram
to a more manageable one:

Proposition 3.7.

(1) There exists a functor T :MJ →MJ such that
• T sends an object of the form

X := (A
α
←− C

β
−→ B)

to the object

T (X) := (A∐ B
α∐β
←−−− C ∐ C

∇C−−→ C)

where ∇C is the codiagonal for C, and
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• T sends a morphism of the form

X

X ′

F :=

A C B

A′ C′ B′

FA

α β

FC FB

α′ β′

to the morphism

T (X)

T (X ′)

T (F ) :=

A∐ B C ∐ C C

A′ ∐ B′ C′ ∐ C′ C′

FA∐FB

α∐β ∇C

FC∐FC FC

α′∐β′ ∇C′

.

(2) The colimit functor satisfies

colim ◦ T = colim.

(3) T sends weak equivalences to weak equivalences, hence it induces the functor

Ho(T ) : Ho(MJ )→ Ho(MJ )

satisfying

hocolim ◦ Ho(T ) = hocolim.

Proof. It is straightforward to check. �

Using Proposition 3.7, we have a slight improvement of Theorem 3.5 for constructing the homotopy
colimit functor, which only requires us to construct a cofibrant resolution functor Q for the image
of the functor T . This will be useful in Section 5.

Corollary 3.8. LetM be a model category, and equipMJ with the Reedy model structure induced
by M as in Proposition 3.2. The unique lift of the composition

MJ T
−→MJ Q

−→ π(MJ )c
l ◦ colim
−−−−−→ Ho(M)

gives the homotopy colimit functor

hocolim: Ho(MJ )→ Ho(M)

where T is the functor described in Proposition 3.7, and Q is a cofibrant resolution functor.

Proof. The statement follows from the commutativity of the diagram

MJ MJ π(MJ )c

Ho(MJ ) Ho(MJ) Ho(M)

T

l l

Q

l ◦ colim

Ho(T )

hocolim

hocolim

by Theorem 3.5 and Proposition 3.7. �
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4. Cylinder functor for the category of dg categories

Our goal is to give a formula for the homotopy colimit functor hocolim: Ho(MJ ) → Ho(M)
for the case M = dgCat, where dgCat is the model category of small k-linear dg categories for a
commutative ring k with Dwyer-Kan, quasi-equiconic, or Morita model structure. Their weak equiv-
alences are quasi-equivalences, pretriangulated equivalences, and Morita equivalences, respectively
(see Theorem 2.2). Our formula will work for all these model structures. To express the formula,
first we need to describe a cofibrant resolution functor, which will be done in Section 5.

Here, we will define a cylinder functor for the semifree dg categories in dgCat, in other words,
we will give a functorial construction of cylinder objects for semifree dg categories. We will use this
construction to describe a cofibrant resolution functor in Section 5. Also, in Section 6, the cylinder
functor will play a pivotal role in defining an I-category and a cofibration category of semifree dg
categories.

We first recall the definition of a cylinder functor:

Definition 4.1. LetM be a model category. A functor I :M→M is called a cylinder functor, if
there exists a cofibration

iC : C ∐ C → I(C)

and an acyclic fibration

pC : I(C)→ C

such that pC ◦ iC = ∇C (the codiagonal of C) for all C ∈ M (in other words, I(C) is a cylinder object
for C), and the diagram

(4.1)

C ∐ C D ∐ D

I(C) I(D)

C D

F∐F

iC iD

I(F )

pC pD

F

commutes for any morphism F : C → D inM.

From now on, we focus on M = dgCat with Dwyer-Kan model structure. Everything here still
holds if we work with quasi-equiconic or Morita model structure. Before defining a cylinder functor,
recall that [KL21] defined a cylinder object Cyl(C) for any semifree dg category C:

Definition 4.2 ([KL21]). Let C be a semifree dg category, and i1, i2 : C → C ∐ C be the inclusions
to the first and second copies, respectively. We define Cyl(C) as the semifree extension of C ∐ C by
the morphisms comprised of

• the morphisms tC , t
′
C , t̂C , ťC , t̄C

i1(C) i2(C)t̂C
tC

t̄C

t′
C

ťC

for each C ∈ C, with the gradings

|tC | = |t
′
C | = 0, |t̂C | = |ťC | = −1, |t̄C | = −2,
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and with the differentials

dtC = dt′C = 0, dt̂C = 1i1(C) − t′C ◦ tC , dťC = 1i2(C) − tC ◦ t
′
C , dt̄C = tC ◦ t̂C − ťC ◦ tC ,

• degree |f | − 1 morphism tf : i1(A) → i2(B) for each generating morphism f ∈ hom∗
C(A,B),

with the differential

dtf = (−1)|f |(i2(f) ◦ tA − tB ◦ i1(f)) + correction term

where the correction term is 0 if df = 0.

If df 6= 0, the correction term is given as follows: If

df = c1A +
m
∑

i=1

cifi,ni
◦ . . . ◦ fi,j ◦ . . . ◦ fi,1

where fi,j are generating morphisms of C, and c, ci ∈ k (c = 0 if A 6= B), then

correction term =

m
∑

i=1

ci

ni
∑

j=1

(−1)|fi,j−1|+...+|fi,1|i2(fi,ni
) . . . i2(fi,j+1) ◦ tfi,j ◦ i1(fi,j−1) . . . i1(fi,1).

Remark 4.3. The semifree dg category Cyl(C), associated with a given semifree dg category C,
is well-defined up to isomorphism. In other words, it does not depend on the choice of generating
morphisms of C. This can be verified directly or by considering Remark 4.10.

Remark 4.4. By the description of the dg localization in Proposition 2.8, Cyl(C) is the dg local-
ization Cyl0(C)[S

−1] (up to quasi-equivalence), where Cyl0(C) is the semifree extension of C ∐ C by
the morphisms comprised of

• closed degree zero morphism tC : i1(C)→ i2(C) for each C ∈ C,
• degree |f | − 1 morphism tf : i1(A) → i2(B) for each generating morphism f ∈ hom∗

C(A,B),
with the differential given in Definition 4.2,

and S = {tC |C ∈ C}.

Theorem 4.5 ([KL21]). Let C be a semifree dg category. Cyl(C) defined in Definition 4.2 is a
cylinder object for C. That is, the semifree extension

iC := i1 ∐ i2 : C ∐ C → Cyl(C)

is a cofibration, and the functor

pC : Cyl(C)→ C

i1(C), i2(C) 7→ C, tC , t
′
C 7→ 1C , t̂C , ťC , t̄C 7→ 0 for each object C ∈ C

i1(f), i2(f) 7→ f, tf 7→ 0 for each generating morphism f in C

is an acyclic fibration, and they satisfy pC ◦ iC = ∇C.

So, Theorem 4.5 builds the cylinder functor on objects of dgCat, but not on morphisms. The
functoriality of the cylinder object construction is not discussed in [KL21]. Here, we will make the
construction functorial. This is the main goal of this section. First, we need some definitions and
properties.

Given a semifree dg category C, Definition 4.2 defines Cyl(C) and for each generating morphism
f of C, it specifies a generating morphism tf of Cyl(C). Here, we extend this and define a morphism
tθ in Cyl(C) for each morphism θ in C, which will be useful later:
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Definition 4.6. Let C be a semifree dg category. Let θ ∈ hom∗
C(A,B) be given by

θ = c1A +

m
∑

i=1

cifi,ni
◦ . . . ◦ fi,j ◦ . . . ◦ fi,1

for some generating morphisms fi,j of C and c, ci ∈ k (c = 0 if A 6= B). We define degree |θ| − 1
morphism tθ ∈ hom∗

Cyl(C)(i1(A), i2(B)) by

tθ :=

m
∑

i=1

ci

ni
∑

j=1

(−1)|fi,j−1|+...+|fi,1|i2(fi,ni
) ◦ . . . ◦ i2(fi,j+1) ◦ tfi,j ◦ i1(fi,j−1) ◦ . . . ◦ i1(fi,1).

Proposition 4.7. Let C be a semifree dg category, and let θ ∈ hom∗
C(A,B). We have the identity

(4.2) dtθ = (−1)|θ|(i2(θ) ◦ tA − tB ◦ i1(θ)) + tdθ.

Moreover, if

(4.3) θ = c1A +

m
∑

i=1

ciθi,ni
◦ . . . ◦ θi,j ◦ . . . ◦ θi,1

for some morphisms θi,j in C (not necessarily generating morphisms) and c, ci ∈ k (c = 0 if A 6= B),
we have the identity

(4.4) tθ =

m
∑

i=1

ci

ni
∑

j=1

(−1)|θi,j−1|+...+|θi,1|i2(θi,ni
) ◦ . . . ◦ i2(θi,j+1) ◦ tθi,j ◦ i1(θi,j−1) ◦ . . . ◦ i1(θi,1).

Proof. First, we remark that (4.2) holds by definition when θ is a generating morphism. Now,
assume θ is as in Definition 4.6. Then the assignment θ 7→ tθ is linear. Hence, it is enough to prove
(4.2) for θ = 1A and θ = fn ◦ . . . ◦ f1 for any generating morphisms fi of C. This is straightforward
to check using the remark in the beginning of the proof.

Now, assume θ is given as in (4.3). By the linearity of the assignment θ 7→ tθ, we only need to
prove (4.4) for θ = θn ◦ . . . ◦ θ1 for any given morphisms θi. Furthermore, again by the linearity,
we can assume that each θi is given as a product of generating morphisms fj of C. Then, it is
straightforward to check that (4.4) holds. �

We are now ready to state one of the main results of this section:

Theorem 4.8. Let F : C → D be a dg functor between semifree dg categories.

(1) There is a dg functor Cyl(F ) : Cyl(C)→ Cyl(D) that is an extension of the dg functor

F ∐ F : C ∐ C → D ∐D

i.e.

Cyl(F ) : Cyl(C)→ Cyl(D)

i1(C), i2(C) 7→ i1(F (C)), i2(F (C)) respectively, for each C ∈ C

i1(θ), i2(θ) 7→ i1(F (θ)), i2(F (θ)) respectively, for each morphism θ in C

by additionally specifying

tC , t
′
C , t̂C , ťC , t̄C 7→ tF (C), t

′
F (C), t̂F (C), ťF (C), t̄F (C) respectively, for each object C ∈ C

tf 7→ tF (f) for each generating morphism f in C

where tF (f) is defined according to Definition 4.6.
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(2) The dg functor Cyl(F ) satisfies

(4.5) Cyl(F )(tθ) = tF (θ)

for any morphism θ in C.
(3) The diagram

(4.6)

C ∐ C D ∐ D

Cyl(C) Cyl(D)

C D

F∐F

iC iD

Cyl(F )

pC pD

F

commutes.

Proof. We need to show that Cyl(F ) is indeed a dg functor (it is already a functor by definition).
The only nontrivial part is showing that d(Cyl(F )(tf )) = Cyl(F )(dtf ) for any generating morphism
f in C. To verify this, we need to prove the identity

Cyl(F )(tθ) = tF (θ)

for any morphism θ in C. Assume without loss of generality that θ is given by

θ = fn ◦ . . . ◦ f1

for some generating morphisms fj of C. Then, since Cyl(F ) is a functor, we have

Cyl(F )(tθ) = Cyl(F )





n
∑

j=1

(−1)|fj−1|+...+|f1|i2(fn) ◦ . . . ◦ i2(fj+1) ◦ tfj ◦ i1(fj−1) ◦ . . . ◦ i1(f1)





=
n
∑

j=1

(−1)|fj−1|+...+|f1|i2(F (fn)) ◦ . . . ◦ i2(F (fj+1)) ◦ tF (fj) ◦ i1(F (fj−1)) ◦ . . . ◦ i1(F (f1))

= tF (θ)

by the identity (4.4) since F (θ) = F (fn) ◦ . . . ◦ F (f1).

Using this and the identity (4.2), for any generating morphism f : A→ B in C, we see that

d(Cyl(F )(tf )) = dtF (f)

= (−1)|F (f)|(i2(F (f)) ◦ tF (A) − tF (B) ◦ i1(F (f))) + td(F (f))

= (−1)|f |(i2(F (f)) ◦ tF (A) − tF (B) ◦ i1(F (f))) + tF (df)

= Cyl(F )((−1)|f |(i2(f) ◦ tA − tB ◦ i1(f)) + tdf )

= Cyl(F )(dtf )

which shows that Cyl(F ) is a dg functor.

Finally, the commutation of the diagram (4.6) is obvious from the construction. �

Theorem 4.8 suffices for the purpose of defining the homotopy colimit functor in Section 5. How-
ever, we proceed to establish a cylinder functor for semifree dg categories in Corollary 4.9. This
construction plays a key role in defining an I-category (a category with a natural cylinder functor),
thus giving rise to a cofibration category of semifree dg categories in Section 6.
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Corollary 4.9. The assignment

Cyl: dgCats → dgCats

C 7→ Cyl(C)

F 7→ Cyl(F )

is a cylinder functor for dgCats, where dgCats is the full subcategory of the model category of
dg categories dgCat (with Dwyer-Kan, quasi-equiconic, or Morita model structure) consisting of
semifree dg categories, and Cyl(C) is as defined in Definition 4.2, and Cyl(F ) is as defined in
Theorem 4.8.

Proof. Clearly, Cyl(1C) = 1Cyl(C) where 1C : C → C is the identity functor on C. Also, the equality
Cyl(G ◦ F ) = Cyl(G) ◦Cyl(F ) directly follows from the definition of Cyl(F ) and the identity (4.5),
hence Cyl is a functor. Then, the commutative diagram (4.6) shows that Cyl is indeed a cylinder
functor in the sense of Definition 4.1. �

Remark 4.10. To establish the well-definedness of the functor Cyl up to natural isomorphism, let
us denote the application of Cyl to a semifree dg category C with a predetermined set of generating
morphisms {fi} by Cyl(C, {fi}). By applying Cyl to the identity functor 1C : C → C, we get an
isomorphism

Cyl(1C) : Cyl(C, {fi})
∼
−→ Cyl(C, {gi})

for any set of generating morphisms {gi} of C, which follows from the fact that Cyl is a functor.
Hence, Cyl(C) is well-defined up to isomorphism. Lastly, if there is a functor F : C → D between
semifree dg categories, it induces a commutative square

Cyl(C, {fi}) Cyl(C, {gi})

Cyl(D, {f ′
i}) Cyl(D, {g′i})

Cyl(1C)

∼

Cyl(F ) Cyl(F )

Cyl(1D)

∼

.

Here, {f ′
i} and {g

′
i} are two arbitrary sets of generating morphisms of D. Hence, Cyl is well-defined

up to natural isomorphism.

Remark 4.11. The cylinder object and functor can be also defined for the model category of dg
algebras. In that case, for a given semifree dg algebra C, C ∐ C is the semifree dg algebra (with the
same unique object as C by definition) whose generating morphisms are doubled, and i1, i2 : C → C∐C
are the obvious inclusions. Cyl(C) is defined as the semifree extension of C ∐C by the morphisms tf ,

where f is a generating morphism of C (no tC , t
′
C , t̂C , ťC , t̄C are used for C ∈ C). All the formulas

still hold by setting

tC = 1, t′C = 1, t̂C = 0, ťC = 0, t̄C = 0.

Given a morphism F : C → D between semifree dg algebras, Cyl(F ) is just defined by

Cyl(F )(tf ) = tF (f)

for every generating morphism f in C. Hence, this defines a cylinder functor for the model category
of dg algebras as in Corollary 4.9. The proofs are the similar in the case of semifree dg algebras.

Finally, we want to discuss the cylinder object for the dg localization C[S−1], where C is a semifree
dg category and S is a subset of closed degree zero morphisms in C. We note that since C[S−1] can
be also seen as a semifree dg category, one can apply Theorem 4.5 and 4.8 to C[S−1]. But we would
like to discuss a simpler cylinder object for C[S−1] for later convenience.
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By the description of dg localization in Proposition 2.8, we know that C[S−1] can be express as a
semifree extension of C by the morphisms

g′ : B → A, ĝ : A→ A, ǧ : B → B, ḡ : A→ B

for every g : A → B in S, whose gradings and differentials are given as in Proposition 2.8. Hence,
the generating morphisms of C[S−1] are the generating morphisms of C and the morphisms g′, ĝ, ǧ, ḡ
for each morphism g in S.

Recall that i1, i2 : C → C ∐ C →֒ Cyl(C) are the inclusions to the first and second copies, respec-
tively. Then, it is easy to see that Cyl(C[S−1]) is the semifree extension of Cyl(C)[(i1(S)⊔ i2(S))

−1]
by the morphisms

tg′ : i1(B)→ i2(A), tĝ : i1(A)→ i2(A), tǧ : i1(B)→ i2(B), tḡ : i1(A)→ i2(B)

for every g : A→ B in S.

Note that Cyl(C)[(i1(S)⊔ i2(S))
−1] is the semifree extension of C[S−1]∐C[S−1] by the morphisms

• tC , t
′
C , t̂C , ťC , t̄C for each C ∈ C, and

• tf for each generating morphism f in C.

In [KL21], it is shown that one can choose a cylinder object for C[S−1] that is simpler than
Cyl(C[S−1]) in the sense that it does not need the generating morphisms tg′ , tĝ, tǧ, tḡ:

Theorem 4.12 ([KL21]). Let C be a semifree dg category, and S be a subset of closed degree zero
morphisms in C. Then Cyl(C)[(i1(S)⊔ i2(S))

−1] is a cylinder object for C[S−1]. That is, the semifree
extension

iC[S−1] := i1 ∐ i2 : C[S
−1] ∐ C[S−1]→ Cyl(C)[(i1(S) ⊔ i2(S))

−1]

is a cofibration, and the functor

pC[S−1] : Cyl(C)[(i1(S) ⊔ i2(S))
−1]→ C[S−1]

i1(C), i2(C) 7→ C, tC , t
′
C 7→ 1C , t̂C , ťC , t̄C 7→ 0 for each object C ∈ C

tf 7→ 0 for each generating morphism f in C

i1(θ), i2(θ) 7→ θ for each morphism θ in C[S−1]

is an acyclic fibration, and they satisfy pC[S−1] ◦ iC[S−1] = ∇C[S−1].

Let C and D be a semifree dg categories, and SC and SD be subsets of closed degree zero morphisms
in C and D, respectively. For a given functor F : C[S−1

C ] → D[S−1
D ], Theorem 4.8 constructs the dg

functor
Cyl(F ) : Cyl(C[S−1

C ])→ Cyl(D[S−1
D ]).

However, in such cases, i.e., when a dg category is given as a dg localization, we want to work
with its simpler cylinder object given by Theorem 4.12. Hence, we conclude this section with a
construction of a dg functor between the simpler cylinder objects:

Theorem 4.13. Let C and D be a semifree dg categories, and SC and SD be subsets of closed degree
zero morphisms in C and D, respectively. Let F : C[S−1

C ]→ D[S−1
D ] be a dg functor.

(1) There is a dg functor

Cyl(F ) : Cyl(C)[(i1(SC) ⊔ i2(SC))
−1]→ Cyl(D)[(i1(SD) ⊔ i2(SD))

−1]

between cylinder objects of C[S−1
C ] and D[S−1

D ] given by Theorem 4.12, which is an extension
of the dg functor

F ∐ F : C[S−1
C ] ∐ C[S−1

C ]→ D[S−1
D ]∐D[S−1

D ]
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by additionally specifying

tC , t
′
C , t̂C , ťC , t̄C 7→ tF (C), t

′
F (C), t̂F (C), ťF (C), t̄F (C) respectively, for each object C ∈ C

tf 7→ tF (f) for each generating morphism f in C

where tF (f) is defined according to Definition 4.6, and for any g : A → B in SD, we define
the morphisms

tg′ := −i2(g
′) ◦ tg ◦ i1(g

′)− i2(ĝ) ◦ tA ◦ i1(g
′) + i2(g

′) ◦ tB ◦ i1(ǧ) + i2(ĝ ◦ g
′ − g′ ◦ ǧ) ◦ tB(4.7)

tĝ := i2(g
′) ◦ tg ◦ i1(ĝ) + i2(ĝ) ◦ tA ◦ i1(ĝ) + i2(g

′) ◦ tB ◦ i1(ḡ)− i2(ĝ ◦ ĝ + g′ ◦ ḡ) ◦ tA

− i2(ĝ ◦ g
′ − g′ ◦ ǧ) ◦ tg

tǧ := −i2(ǧ) ◦ tg ◦ i1(g
′) + i2(ǧ) ◦ tB ◦ i1(ǧ) + i2(ḡ) ◦ tA ◦ i1(g

′)− i2(ǧ ◦ ǧ + ḡ ◦ g′) ◦ tB

tḡ := −i2(ǧ) ◦ tg ◦ i1(ĝ)− i2(ǧ) ◦ tB ◦ i1(ḡ) + i2(ḡ) ◦ tA ◦ i1(ĝ) + i2(ǧ ◦ ḡ − ḡ ◦ ĝ) ◦ tA

− i2(ǧ ◦ ǧ + ḡ ◦ g′) ◦ tg

in Cyl(D)[(i1(SD) ⊔ i2(SD))
−1].

(2) The dg functor Cyl(F ) satisfies

Cyl(F )(tθ) = tF (θ)

for any morphism θ in C[S−1
C ].

(3) The diagram

C[S−1
C ]∐ C[S−1

C ] D[S−1
D ]∐ D[S−1

D ]

Cyl(C)[(i1(SC) ⊔ i2(SC))
−1] Cyl(D)[(i1(SD) ⊔ i2(SD))

−1]

C[S−1
C ] D[S−1

D ]

F∐F

i
C[S−1

C
]

i
D[S−1

D
]

Cyl(F )

p
C[S−1

C
]

p
D[S−1

D
]

F

commutes.

Proof. First, it is straightforward (although tedious) to check that (4.2) holds for tg′ , tĝ, tǧ, tḡ for
every morphism g in SD (and SC). Then, one can similarly prove Proposition 4.7 for the morphisms
in D[S−1

D ] (and C[S−1
C ]). Hence, the first two items of Theorem 4.13 can be proven similar to Theorem

4.8. The last item, the commutation of the diagram, is straightforward to check. �

5. Homotopy colimit functor on the diagrams of semifree dg categories

Our goal in this section is to construct the homotopy colimit functor Ho(dgCatJ)→ Ho(dgCat),
where dgCat is the model category of dg categories with Dwyer-Kan, quasi-equiconic, or Morita
model structure (see Theorem 2.2), and J is a category given as follows:

a← c→ b

Note that we equip dgCatJ with the Reedy model structure as in Proposition 3.2.

To achieve our goal, we will explicitly construct the homotopy colimit functor on (dgCats)
J in

Theorem 5.3 and Theorem 5.7, where dgCats is the full subcategory of dgCat consisting of semifree
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dg categories. The category (dgCats)
J can be seen as a subcategory of Ho(dgCatJ), and there is a

way to lift the homotopy colimit functor on (dgCats)
J to Ho(dgCatJ) via the commuting diagram

(dgCats)
J dgCatJ dgCatJ π(dgCatJ)c

Ho(dgCatJ) Ho(dgCat)

j

l◦j

T

l

Q

l ◦ colim

hocolim

where j is the inclusion functor, T is the functor given in Proposition 3.7, and Q is a cofibrant
resolution functor, which we will give in Lemma 5.1. The reason is as follows: hocolim (up to
natural equivalence) is the unique lift of the composition l ◦ colim ◦Q ◦T by Corollary 3.8, and each
object of dgCatJ is weakly equivalent to an object of (dgCats)

J .

Therefore, we only need to describe a cofibrant resolution functor Q on the image of the functor
T ◦ j:

Lemma 5.1. There is a cofibrant resolution functor Q : (dgCat)J → π(dgCatJ)c satisfying the
following:

(1) Q sends an object of the form

X := (A∐ B
α∐β
←−−− C ∐ C

∇C−−→ C)

where A,B, C are semifree dg categories and α, β are dg functors, to the object

Q(X) := (A∐ B
α∐β
←−−− C ∐ C

iC−→ Cyl(C))

where Cyl(C) is defined as in Definition 4.2 (along with the functors iC and pC given in
Theorem 4.5).

(2) Q sends a morphism of the form

X

X ′

F :=

A∐ B C ∐ C C

A′ ∐ B′ C′ ∐ C′ C′

FA∐FB

α∐β ∇C

FC∐FC FC

α′∐β′ ∇C′

where FA, FB, FC are dg functors, to the morphism

Q(X)

Q(X ′)

Q(F ) :=

A∐ B C ∐ C Cyl(C)

A′ ∐ B′ C′ ∐ C′ Cyl(C′)

FA∐FB

α∐β iC

FC∐FC Cyl(FC)

α′∐β′ iC′

where Cyl(FC) is defined as in Theorem 4.8.

Proof. For every object X given in the lemma, Q(X) is a cofibrant object by Proposition 3.2 and
Theorem 4.5. Moreover, consider the morphism pX : Q(X)→ X given by

Q(X)

X

pX
:=

A∐ B C ∐ C Cyl(C)

A∐ B C ∐ C C

1A∐1B

α∐β iC

1C∐1C pC

α∐β ∇C
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which is indeed a morphism and an acyclic (Reedy) fibration (see [Hir03]) since pC ◦ iC = ∇C and
pC is an acyclic fibration by Theorem 4.5. Then, the diagram

Q(X) Q(X ′)

X X ′

Q(F )

pX pX′

F

commutes for every morphism F : X → X ′ given in the lemma since the diagram (4.6) commutes
by Theorem 4.8. Note that Q(F ) is indeed a morphisms also because the diagram (4.6) commutes.
Therefore, by Proposition 3.3 and Definition 3.4, there is a cofibration functor Q with the properties
given in the lemma. �

Remark 5.2. Assume that in Lemma 5.1, we replace C and C′ by C[S−1
C ] and C′[S−1

C′ ] for some
subsets of degree zero closed morphisms SC and SC′ in C and C′, respectively. Then, instead of using
Cyl(FC[S−1

C
]) : Cyl

(

C[S−1
C ]

)

→ Cyl(C′[S−1
C′ ]) when defining Q, we can use the dg functor

Cyl(C)[(i1(SC) ⊔ i2(SC))
−1]→ Cyl(C′)[(i1(SC′) ⊔ i2(SC′))−1]

given in Theorem 4.13, which gives a simpler cofibrant resolution functor Q. The proof will be the
same as the proof of Lemma 5.1 after replacing Theorem 4.8 with Theorem 4.13 in the proof.

Finally, we can state the formula for the homotopy colimit functor on the diagrams of semifree
dg categories:

Theorem 5.3. The homotopy colimit functor hocolim: Ho(dgCatJ) → Ho(dgCat) (up to natural
equivalence) satisfies the following:

(1) hocolim sends an object of the form

X := (A
α
←− C

β
−→ B)

where A,B, C are semifree dg categories and α, β are dg functors, to the object (semifree dg
category)

hocolim(X)

which is the semifree extension of A∐ B by
• closed degree zero morphism tC : α(C)→ β(C) for each object C ∈ C,
• morphisms t′C , t̂C , ťC , t̄C for each object C ∈ C as in Definition 4.2 (after replacing i1
with α and i2 with β),
• degree |f | − 1 morphism tf : α(A) → β(B) for each generating morphism f : A→ B in
C whose differential is given as in Definition 4.2 (after replacing i1 with α and i2 with
β).

(2) hocolim sends a morphism of the form

X

X ′

F :=

A C B

A′ C′ B′

FA

α β

FC FB

α′ β′
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where FA, FB, FC are dg functors, to the morphism (dg functor)

hocolim(F ) : hocolim(X)→ hocolim(X ′)

A 7→ FA(A) for any object A ∈ A

B 7→ FB(B) for any object B ∈ B

a 7→ FA(a) for any morphism a in A

b 7→ FB(b) for any morphism b in B

tC , t
′
C , t̂C , ťC , t̄C 7→ tFC(C), t

′
FC(C), t̂FC(C), ťFC(C), t̄FC(C) respectively, for any object C ∈ C

tf 7→ tFC(f) for any generating morphism f in C,

where for any generating morphism f : A → B in C, the degree |f | − 1 morphism tFC(f) is
defined as

tFC(f) :=
m
∑

i=1

ci

ni
∑

j=1

(−1)|fi,j−1|+...+|fi,1|β′(fi,ni
) ◦ . . . ◦ β′(fi,j+1) ◦ tfi,j ◦ α

′(fi,j−1) ◦ . . . ◦ α
′(fi,1)

if FC(f) is given by

FC(f) = c1FC(A) +
m
∑

i=1

cifi,ni
◦ . . . ◦ fi,j ◦ . . . ◦ fi,1 ∈ hom∗

C′(FC(A), FC(B))

for some generating morphisms fi,j of C′ and c, ci ∈ k (c = 0 if FC(A) 6= FC(B)).

Proof. First, we note that the description of hocolim(X) is given in [KL21]. We can also see it here
as follows: By Corollary 3.8, we have

hocolim(X) = l ◦ colim ◦Q ◦ T (X)

where T is a functor as in Proposition 3.7, Q is the cofibration functor given in Lemma 5.1. Using
the description of colim given in Proposition 2.9, it is straightforward to check that hocolim(X) is
as described in the first item.

For the second item (which does not appear in [KL21]), by Corollary 3.8 again, we have

hocolim(F ) = l ◦ colim ◦Q ◦ T (F ).

Then, considering that hocolim(X) is the semifree extension of A ∐ B by the morphims given in
the theorem, we see that hocolim(F ) : hocolim(X)→ hocolim(X ′) acts like FA on A, FB on B, and
Cyl(FC) (which is given in Theorem 4.8) on the added morphisms. �

Remark 5.4. In Theorem 5.3, we could have expressed hocolim(X) as the semifree dg category
obtained by first taking the semifree extension of A ∐ B by the morphisms tC and tf for each
C ∈ C and for each generating morphism f in C, and then taking the dg localization of the resulting
category at the morphisms {tC |C ∈ C} as in Remark 4.4. Hence, up to natural equivalence, the
images of the morphisms t′C , t̂C , ťC , t̄C under the homotopy colimit functor are uniquely determined
for every C ∈ C.

Remark 5.5. Theorem 5.3 implies that for any morphism θ in C, we have

hocolim(F )(tθ) = tFC(θ).

This follows from the identity (4.5).
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Remark 5.6. Similar to Remark 4.11, we can modify Theorem 5.3 to describe the homotopy colimit
functor Ho(dgAlgJ) → Ho(dgAlg) for the model category of dg algebras dgAlg. All the formulas
still hold by setting

tC = 1, t′C = 1, t̂C = 0, ťC = 0, t̄C = 0.

Considering Theorem 4.13 and Remark 5.2, we have the following version of Theorem 5.3 when
C is given as a dg localization:

Theorem 5.7. The homotopy colimit functor hocolim: Ho(dgCatJ) → Ho(dgCat) (up to natural
equivalence) satisfies the following:

(1) hocolim sends an object of the form

X := (A
α
←− C[S−1

C ]
β
−→ B)

where A,B, C are semifree dg categories, SC is a subset of degree zero morphisms in C, and
α, β are dg functors, to the object (semifree dg category)

hocolim(X) = hocolim(A
α
←− C

β
−→ B)

which is given by Theorem 5.3.
(2) hocolim sends a morphism of the form

X

X ′

F :=

A C[S−1
C ] B

A′ C′[S−1
C′ ] B′

FA

α β

FC
FB

α′ β′

where for any generating morphism f : A → B in C, the degree |f | − 1 morphism tFC(f) is
defined as

tFC(f) :=
m
∑

i=1

ci

ni
∑

j=1

(−1)|fi,j−1|+...+|fi,1|β′(fi,ni
) ◦ . . . ◦ β′(fi,j+1) ◦ tfi,j ◦ α

′(fi,j−1) ◦ . . . ◦ α
′(fi,1)

if FC(f) is given by

FC(f) = c1FC(A) +
m
∑

i=1

cifi,ni
◦ . . . ◦ fi,j ◦ . . . ◦ fi,1 ∈ hom∗

C′[S−1
C′

]
(FC(A), FC(B))

for some generating morphisms fi,j of C′[S−1
C′ ] and c, ci ∈ k (c = 0 if FC(A) 6= FC(B)).

The generating morphisms of C′[S−1
C′ ] are given by the generating morphisms of C′ and the

morphisms g′, ĝ, ǧ, ḡ for every morphism g in SC′ as in Proposition 2.8. The morphisms

tg′ , tĝ, tǧ, tḡ

are given in terms of tg as in (4.7) and tg is given as in Definition 4.6 (after replacing i1
with α′ and i2 with β′).

Proof. The first item appears in [KL21]. We can also see it here as in the proof of Theorem 5.3 after
replacing the cofibrant resolution functor Q with the one given in Remark 5.2.

The second item (which does not appear in [KL21]) can be again shown as in the proof of
Theorem 5.3 after replacing the cofibrant resolution functor Q with the one given in Remark 5.2.
In particular, we replace the functor Cyl(F ) given in Theorem 4.8 to define Q with the one given in
Theorem 4.13. �
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Remark 5.8. According to [Hol14], if the coefficient ring k has flat dimension 0 (e.g., k is a field),
then the model category dgCat with weak equivalences being quasi-equivalences, pretriangulated
equivalences, or Morita equivalences is left proper. This implies that the formulas in Theorems 5.3
and 5.7 still hold if we choose arbitrary dg categories A,A′,B,B′ instead of semifree ones, given that
k has flat dimension 0.

In Section 7, we will demonstrate a simple application of Theorem 5.3 and Theorem 5.7 to
symplectic geometry.

6. I-category and cofibration category of semifree dg categories

The purpose of this section is to elaborate on the construction of the cylinder functor introduced in
Section 4 to approach the homotopy theory of dg categories up to quasi-equivalence. This approach
is independent of the celebrated result by Tabuada (Theorem 2.2(1)). The advantage of our approach
is that the simplicity of our cylinder functor makes many constructions explicit and computable. It
is worth noting that readers can skip to Section 7 without losing continuity in the paper.

We will define an I-category structure on the category of semifree dg categories in Theorem 6.2
by introducing cofibrations and a natural cylinder functor. This structure enables us to establish
a cofibration category of semifree dg categories in Theorem 6.11, following the framework outlined
in [Bau89]. Conceptually, this category corresponds to half of a model category. Alternatively, it
can be regarded as a category of cofibrant objects first introduced by Brown in [Bro73] and further
studied, for example, in [KP97].

These frameworks enable the construction of various homotopical operations, such as homotopy
colimits (Remark 6.12), without relying on the existence of a model structure. Thus, it provides an
alternative pathway to achieve the most of the results outlined in the preceding sections without
relying on [Tab05b]. We will also present an explicit functorial factorization of dg functors into a
cofibration and a quasi-equivalence in Theorem 6.9.

We recall that k is a commutative ring, and dgCats represents the category of (small) k-linear
semifree dg categories, with morphisms defined as dg functors. The definitions of semifree dg
categories and semifree extensions can be revisited from Definition 2.1. Note that every dg category
is quasi-equivalent to a semifree one, thus justifying our focus on dgCats.

We now introduce the definition of an I-category as outlined in [Bau89]. Then, we will show how
the category of semifree dg categories can be made an I-category:

Definition 6.1. An I-category is a category M with an initial object ∅ and equipped with a
structure (cof , I). The term cof represents a class of morphisms inM identified as cofibrations, and
I is a functor fromM to itself. The structure satisfies the following set of axioms:

(1) Cylinder Axiom: I :M→M is a functor together with natural transformations

i1, i2 : idM ⇒ I, p : I ⇒ idM,

such that for all A ∈M and r ∈ {1, 2}, p ◦ ir : A → I(A)→ A is the identity of A.
(2) Pushout Axiom: For a cofibration F : A → B and a morphism G : A → C inM, there exists

a pushout inM

B B ∪A C

A C

Ḡ

F

G

F̄
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where F̄ is also a cofibration. Moreover, I(∅) = ∅, and I sends the pushout diagram into a
pushout diagram, i.e., I(B ∪A C) = I(B) ∪I(A) I(C).

(3) Cofibration Axiom: Each isomorphism in M is a cofibration, and for each A ∈ M, the
morphism ∅ → A is a cofibration. The composition of cofibrations is a cofibration. Moreover,
any cofibration F : A → B in M has the following homotopy extension property: For each
r ∈ {1, 2}, and for each commutative diagram inM

B C

A I(A)

G

ir

F H

there is a morphism E : I(B)→ C with E ◦ ir = G and E ◦ I(F ) = H.
(4) Relative Cylinder Axiom: For a cofibration F : A → B in M, the morphism G defined by

the pushout diagram

B ⊔ B

A ⊔ A pushout B ∪A I(A) ∪A B I(B)

I(A)

i1⊔i2

F⊔F

i1⊔i2

G

I(F )

is a cofibration.
(5) Interchange Axiom: For all A ∈ M, there exists a morphism T : I(I(A)) → I(I(A)) such

that T ◦ ir = I(ir) and T ◦ I(ir) = ir for any r ∈ {1, 2}.

Theorem 6.2. The category of semifree dg categories dgCats is an I-category with the structure
(cof , I), which is defined as follows:

• cof : Cofibrations are semifree extensions.
• I: The functor I is the cylinder functor Cyl: dgCats → dgCats introduced in Corollary 4.9.

Proof. First, note that the empty category ∅ is an initial object of dgCats. We introduce the
following conventions and review some definitions:

• Given a semifree dg category A, we fix a set of generating morphisms {ai : Xi → Yi} (indexed
by an ordinal). Then, the semifree dg category Cyl(A) is given as follows:
(i) Objects: A1, A2 for each A ∈ A.
(ii) Generating morphisms: For each object A ∈ A,

tA : A1 → A2, t′A : A2 → A1, t̂A : A1 → A1, ťA : A2 → A2, t̄A : A1 → A2,

and for each generating morphism ai : Xi → Yi of A,

a1i : X
1
i → Y 1

i , a2i : X
2
i → Y 2

i , tai : X
1
i → Y 2

i .

(iii) Degrees:

|tA| = |t
′
A| = 0, |t̂A| = |ťA| = −1, |t̄A| = −2, |a1i | = |a

2
i | = |ai|, |tai | = |ai| − 1.

(iv) Differentials:

dtA = dt′A = 0, dt̂A = 1A1 − t′A ◦ tA, dťA = 1A2 − tA ◦ t
′
A, dt̄A = tA ◦ t̂A − ťA ◦ tA,

da1i = (dai)
1, da2i = (dai)

2, dtai = (−1)|ai|(a2i ◦ tXi
− tYi

◦ a1i ) + tdai ,
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where tdai is defined according to Definition 4.6, and for each r ∈ {1, 2}, (dai)
r is defined

via the dg functor

ir : A → Cyl(A)

A 7→ Ar, ai 7→ ari

by setting ar := ir(a) for each morphism a of A.
• Given a semifree extension F : A → B by a set of objects Rb and a set of morphisms
Sb = {bi : Ui → Vi}, we select a set of generating morphisms of B as

{F (ai) | ai is a generating morphism of A} ∪ Sb.

It is important to note that the functor Cyl may initially depend on the choice of generating
morphisms, but it ultimately does not (up to natural isomorphism), as discussed in Remark
4.10.
• Given a dg functor G : A → C between semifree dg categories, the dg functor Cyl(G) is
defined as follows:

Cyl(G) : Cyl(A)→ Cyl(C)

Ar 7→ G(A)r , ari 7→ G(ai)
r, tai 7→ tG(ai),

tA 7→ tG(A), t′A 7→ t′G(A), t̂A 7→ t̂G(A), ťA 7→ ťG(A), t̄A 7→ t̄G(A),

where r ∈ {1, 2}.

With the notations established, we proceed to verify the axioms outlined in Definition 6.1 for
M = dgCats with cofibrations defined as semifree extensions and I = Cyl:

(1) Cylinder Axiom: The functor I = Cyl satisfies the conditions of Definition 4.1 by Corollary
4.9, thus fulfilling the Cylinder Axiom. Note that Definition 4.1 provides more than what is
necessary for the axiom.

(2) Pushout Axiom: The existence of the pushout in Definition 6.1(2) is given by Proposition
2.9. Also, we have Cyl(∅) = ∅ by definition. Moreover, if F : A → B is a semifree extension
by a set of objects Rb and a set of morphisms Sb, then Cyl(F ) : Cyl(A) → Cyl(B) is a
semifree extension by the set of objects {B1, B2 |B ∈ Rb} and the set of morphisms

{tB , t
′
B , t̂B , ťB , t̄B |B ∈ Rb} ∪ {b

1
i , b

2
i , tbi | bi ∈ Sb}.

Then, given a pushout square

B D

A C

Ḡ

F

G

F̄

as in Proposition 2.9, applying the functor Cyl yields a commutative diagram

Cyl(B) Cyl(D)

Cyl(A) Cyl(C)

Cyl(Ḡ)

Cyl(F )

Cyl(G)

Cyl(F̄ )

where Cyl(F̄ ) is a semifree extension, as F̄ is. Also, it is straightforward to verify that

Cyl(F̄ ) = Cyl(F ) and Cyl(Ḡ) = Cyl(G). Thus, the above diagram forms a pushout square.
(3) Cofibration Axiom: Clearly, each isomorphism in dgCats is a semifree extension, and for

each A ∈ dgCats, ∅ → A is a semifree extension. Moreover, the composition of semifree
extensions is a semifree extension.
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Regarding the homotopy extension property, let us first set r = 1 without loss of generality.
Consider the commutative diagram described in Definition 6.1(3), where I = Cyl. Then,
we define the dg functor E : Cyl(B) → C as follows: Since Cyl(F ) : Cyl(A) → Cyl(B) is a
semifree extension, we can view Cyl(A) as a full dg subcategory of Cyl(B). We define

E|Cyl(A) := H.

Moreover, we set

E(B1) = E(B2) := G(B), E(tB) = E(t′B) := 1G(B), E(t̂B) = E(ťB) = E(t̄B) := 0

for each B ∈ Rb, and
E(b1i ) := G(bi)

for each bi ∈ Sb. We will define E(b2i ) and E(tbi) by transfinite induction: Let us give an
ordering on the set of morphisms Sb = {bi : Ui → Vi} (indexed by an ordinal) such that each
dbi in B is generated by the morphisms of A and {bj | j < i}. Assume that E is defined on
the morphisms generated by the morphisms of Cyl(A) and

{tB , t
′
B , t̂B , ťB, t̄B |B ∈ Rb} ∪ {b

1
i | bi ∈ Sb} ∪ {b

2
j , tbj | j < i}.

Then, we define

E(b2i ) := E(tVi
◦ b1i ◦ t

′
Ui
− (−1)|bi|tdbi ◦ t

′
Ui
− (−1)|bi|(dbi)

2 ◦ ťUi
),

E(tbi) := E(−tVi
◦ b1i ◦ t̂Ui

+ (−1)|bi|tdbi ◦ t̂Ui
− (−1)|bi|(dbi)

2 ◦ t̄Ui
).

It is straightforward to check that E is a dg functor, as dE(b2i ) = E(db2i ) = E((dbi)
2) and

dE(tbi) = E(dtbi) = E((−1)|bi|(b2i ◦ tUi
− tVi

◦ b1i ) + tdbi), and it satisfies E ◦ i1 = G and
E ◦ Cyl(F ) = H.

(4) Relative Cylinder Axiom: Consider the diagram described in Definition 6.1(4), where I =
Cyl. The dg category B ∪A Cyl(A) ∪A B is a semifree extension of Cyl(A) by the set of
objects {B1, B2 |B ∈ Rb} and the set of morphisms {b1i , b

2
i | bi ∈ Sb}. Then, the dg functor

G : B ∪A Cyl(A) ∪A B → Cyl(B) is a semifree extension by the morphisms

{tB , t
′
B , t̂B , ťB , t̄B |B ∈ Rb} ∪ {tbi | bi ∈ Sb}.

Hence, G is a cofibration.
(5) Interchange Axiom: First, note that for s ∈ {1, 2}, we have the dg functor

is : Cyl(A)→ Cyl(Cyl(A))

Ar 7→ Ars if Ar ∈ Ob(Cyl(A)) and r ∈ {1, 2},

θ 7→ θs if θ ∈Mor(Cyl(A)),

and the commutative diagram

A Cyl(A)

Cyl(A) Cyl(Cyl(A))

ir

is is

Cyl(ir)

for any r, s ∈ {1, 2} by Cylinder Axiom. Then, the semifree dg category Cyl(Cyl(A)) can be
given as follows:
(i) Objects: Ars := is(ir(A)) = Cyl(ir)(is(A)) for each A ∈ A and r, s ∈ {1, 2}.
(ii) Generating morphisms: For each object A ∈ A and r ∈ {1, 2},

(t∗A)
r := ir(t

∗
A), t∗Ar := Cyl(ir)(t

∗
A),

ttA : A11 → A22, tt′
A
: A21 → A12, tt̂A : A11 → A12, tťA : A21 → A22, tt̄A : A11 → A22,
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where t∗ ∈ {t, t′, t̂, ť, t̄}, and for each generating morphism ai : Xi → Yi of A and
r, s ∈ {1, 2},

arsi := is(ir(ai)) = Cyl(ir)(is(ai)), (tai)
r := ir(tai), tari := Cyl(ir)(tai), ttai : X

11
i → Y 22

i .

(iii) Degrees: |(t∗A)
r| = |t∗Ar | = |t∗A|, |tt∗A | = |t

∗
A|−1, |(t∗ai)

r| = |t∗ari
| = |ai|−1, |ttai | = |ai|−2.

(iv) Differentials:

d(t∗A)
r = ir(dt

∗
A), d(t∗Ar) = Cyl(ir)(dt

∗
A),

dttA = (tA)
2 ◦ tA1 − tA2 ◦ (tA)

1, dtt′
A
= (t′A)

2 ◦ tA2 − tA1 ◦ (t′A)
1,

dtt̂A = −(t̂A)
2 ◦ tA1 + tA1 ◦ (t̂A)

1 − (t′A)
2 ◦ ttA − tt′

A
◦ (tA)

1,

dtťA = −(ťA)
2 ◦ tA2 + tA2 ◦ (ťA)

1 − (tA)
2 ◦ tt′

A
− ttA ◦ (t

′
A)

1,

dtt̄A = (t̄A)
2 ◦ tA1 − tA2 ◦ (t̄A)

1 + (tA)
2 ◦ tt̂A − ttA ◦ (t̂A)

1 − (ťA)
2 ◦ ttA − tťA ◦ (tA)

1,

darsi = is(ir(dai)) = Cyl(ir)(is(dai)), d(tai)
r = ir(dtai), dtari = Cyl(ir)(dtai),

dttai = (−1)|ai|(−(tai)
2 ◦ tX1

i
+ tY 2

i
◦ (tai)

1 + a22i ◦ ttXi
+ ta2i

◦ (tXi
)1 − (tYi

)2 ◦ ta1i )− ttYi ◦ a
11
i + ttdai .

Given this expression of Cyl(Cyl(A)), we define a functor

T : Cyl(Cyl(A))→ Cyl(Cyl(A))

Ars 7→ Asr, (t∗A)
r 7→ t∗Ar , t∗Ar 7→ (t∗A)

r

ttA 7→ −ttA , tt′
A
7→ t′A2 ◦ ttA ◦ t

′
A1 − t̂A2 ◦ (tA)

1 ◦ t′A1 + t′A2 ◦ (tA)
2 ◦ ťA1 ,

tt̂A 7→ −t
′
A2 ◦ ttA ◦ t̂A1 + t̂A2 ◦ (tA)

1 ◦ t̂A1 + t′A2 ◦ (tA)
2 ◦ t̄A1 ,

tťA 7→ ťA2 ◦ ttA ◦ t
′
A1 + ťA2 ◦ (tA)

2 ◦ ťA1 + t̄A2 ◦ (tA)
1 ◦ t′A1 ,

tt̄A 7→ ťA2 ◦ ttA ◦ t̂A1 + t̄A2 ◦ (tA)
1 ◦ t̂A1 − ťA2 ◦ (tA)

2 ◦ t̄A1 ,

arsi 7→ asri , (tai)
r 7→ tari , tari 7→ (tai)

r, ttai 7→ −ttai ,

where r, s ∈ {1, 2}. The functor T clearly satisfies T ◦ ir = Cyl(ir) and T ◦ Cyl(ir) = ir for any
r ∈ {1, 2}. Confirming that T is a dg functor involves a straightforward computation, with the
exception of showing dT (ttai ) = T (dttai ). Upon observing that T (ttdai ) = −ttdai , this also becomes
trivial. �

Remark 6.3. The dg functor T introduced in the proof of Interchange Axiom acts as an involution
as expected, except for the morphisms tt′

A
, tt̂A , tťA , tt̄A . These morphisms lack counterparts such

as t′tA , t̂tA , ťtA , t̄tA . However, they are superfluous in Cyl(Cyl(A)) (compare with Theorem 4.12).
More explicitly, tt′

A
, tt̂A , tťA , tt̄A are homotopic to −T (tt′

A
),−T (tt̂A),−T (tťA),−T (tt̄A), respectively.

Therefore, T acts like an involution, but up to homotopy.

In order to show that dgCats is a cofibration category using Theorem 6.2, we first need to establish
an analogue of Whitehead theorem for semifree dg categories. Before presenting the theorem, we
need to introduce some definitions and lemmas:

Definition 6.4. LetM be an I-category with a structure (cof, I).

(1) Two morphisms F1, F2 : A → B inM are homotopic, which is denoted by F1 ≈ F2, if there
exists a morphism H : I(A)→ B inM such that H ◦ i1 = F1 and H ◦ i2 = F2.

(2) A morphism F : A → B inM is a homotopy equivalence if there exists a morphismG : B → A
inM such that G ◦ F ≈ 1A and F ◦G ≈ 1B.
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Lemma 6.5. Let A be a dg category. If A,C ∈ A are isomorphic in H0(A), then there exist
morphisms

r : A→ C, r′ : C → A, r̂ : A→ A, ř : C → C, r̄ : A→ C

with the gradings |r| = |r′| = 0, |r̂| = |ř| = −1, |r̄| = −2, and the differentials

dr = dr′ = 0, dr̂ = 1A − r′ ◦ r, ř = 1C − r ◦ r′, dr̄ = r ◦ r̂ − ř ◦ r.

Proof. Assume A,C ∈ A are isomorphic in H0(A). Then, there exist morphisms

s : A→ C, s′ : C → A, ŝ : A→ A, š : C → C

with the gradings |s| = |s′| = 0, |ŝ| = |š| = −1, and the differentials

ds = ds′ = 0, dŝ = 1A − s′ ◦ s, š = 1C − s ◦ s′.

We get the desired morphisms by defining

r := s, r′ := s′ ◦ s ◦ s′, r̂ := ŝ+ s′ ◦ š ◦ s, ř := š+ s ◦ ŝ ◦ s′, r̄ := š ◦ s ◦ ŝ− s ◦ ŝ ◦ ŝ− š ◦ š ◦ s.

�

Lemma 6.6. Let A and B be dg categories, and F : A → B be a dg functor such that H∗(F ) is
full and faithful. If da = 0 and db = F (a) for some a ∈ Mor(A) and b ∈ Mor(B), then there exist
c ∈ Mor(A) and e ∈ Mor(B) such that dc = a and de = b− F (c).

Proof. Since H∗(F ) is faithful, da = 0 and db = F (a), there exists c1 ∈ Mor(A) such that dc1 = a.
Then, d(b− F (c1)) = 0, and since H∗(F ) is full, there exist c2 ∈ Mor(A) and e ∈ Mor(B) such that
dc2 = 0 and de = b− F (c1)− F (c2). Setting c := c1 + c2 concludes the proof. �

We are now prepared to present an analogue of Whitehead’s theorem for semifree dg categories:

Theorem 6.7. Consider dgCats as an I-category with the structure (cof, I = Cyl) as in Theorem
6.2. Let F : A → B be a morphism in dgCats, i.e., a dg functor between semifree dg categories.
Then, F is a homotopy equivalence if and only if F is a quasi-equivalence.

Proof. First, let us assume that F : A → B is a homotopy equivalence. Then, there exists dg functors
G : B → A, H : Cyl(A)→ A and K : Cyl(B)→ B such that H◦i1 = G◦F , H◦i2 = 1A, K◦i1 = F ◦G
and K ◦ i2 = 1B.

• H0(F ) : H0(A) → H0(B) is essentially surjective: Let B ∈ B. Since K is a dg functor,
we have the morphisms K(tB) : F (G(B)) → B and K(t′B) : B → F (G(B)) with dK(tB) =

dK(t′B) = 0, dK(t̂B) = 1F (G(B))−K(t′B)◦K(tB) and dK(ťB) = 1B−K(tB)◦K(t′B). Hence,

H0(F )(G(B)) = F (G(B)) is isomorphic to B in H0(B).
• H∗(F ) : H∗(A) → H∗(B) is faithful: Let a : A → C be a morphism in A with da = 0 such
that there exists a morphism h : F (A) → F (C) with dh = F (a). By Proposition 4.7 and

applying H, we have dH(ta) = (−1)|a|(a ◦H(tA)−H(tC) ◦G(F (a))). Consequently, we get

d((−1)|a|a ◦H(ťA) + (−1)|a|H(ta ◦ t
′
A) +H(tC) ◦G(h) ◦H(t′A)) = a.

• H∗(F ) : H∗(A) → H∗(B) is full: Let A,C ∈ A and b : F (A) → F (C) be a morphism with
db = 0. Define y := K(tF (C)) ◦ F (H(t′C)) ◦ b ◦ F (H(tA)) ◦K(t′

F (A)) : F (A) → F (C), which

satisfies dy = 0. By Proposition 4.7 and applyingK, we have dK(ty) = (−1)|y|(y◦K(tF (A))−
K(tF (C)) ◦ F (G(y))). Consequently, we get dh = F (H(t′C)) ◦ b ◦ F (H(tA))− F (G(y)) where

h := (−1)|y|K(t′F (C)◦ty)−K(t̂F (C))◦F (G(y))+K(t̂F (C))◦F (H(t′C ))◦b◦F (H(tA))◦K(t′F (A)◦tF (A))

+ (−1)|b|F (H(t′C)) ◦ b ◦ F (H(tA)) ◦K(t̂F (A)).
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Hence, we have dk = b− F (H(tC) ◦G(y) ◦H(t′A)) where

k := F (H(tC)) ◦ h ◦ F (H(t′A)) + F (H(ťC)) ◦ b ◦ F (H(tA ◦ t
′
A)) + (−1)|b|b ◦ F (H(ťA)).

These items prove that F is a quasi-equivalence.

Conversely, assume that F : A → B is a quasi-equivalence. We first define a dg functor G : B → A
as follows: Assume {bi : Bi → Di} (indexed by an ordinal) is a set of generating morphisms of B.

• Let B ∈ B. Since H0(F ) is essentially surjective, there exists C ∈ A such that F (C) is
isomorphic to B in H0(B). We set G(B) := C. Then, by Lemma 6.5, there exist morphisms

rB : F (G(B))→ B, r′B : B → F (G(B)), r̂B : F (G(B))→ F (G(B)), řB : B → B, r̄B : F (G(B))→ B,

where their gradings and differentials are given as in Lemma 6.5.
• Let bi : Bi → Di be a generating morphism such that dbi = 0. Then, r′Di

◦bi◦rBi
: F (G(Bi))→

F (G(Di)) is a morphism with degree |bi| and zero differential. Since H∗(F ) is full, there
exist morphisms ci : G(Bi) → G(Di) and sbi : F (G(Bi)) → F (G(Di)) such that |ci| = |bi|,
|sbi | = |bi| − 1, dci = 0 and dsbi = r′Di

◦ bi ◦ rBi
− F (ci). We set G(bi) := ci. Then, there

exists a morphism rbi : F (G(Bi))→ Di such that |rbi | = |bi| − 1 and

drbi = (−1)|bi|(bi ◦ rBi
− rDi

◦ F (G(bi))).

• We proceed with transfinite induction: Assume G is defined on morphisms generated by
{bj : Bj → Dj | j < i} as a dg functor, and assume that for j < i, there exist morphisms
rbj : F (G(Bj))→ Dj such that |rbj | = |bj | − 1 and

drbj = (−1)|bj |(bj ◦ rBj
− rDj

◦ F (G(bj))) + rdbj ,

where rb for any morphism b generated by {bj | j < i} is defined as in Definition 4.6 after
replacing t with r, i1 with F ◦ G, and i2 with 1B. Also, Proposition 4.7 applies to the
morphisms rb after such replacement. We want to define G(bi) and rbi .

We have d(r′Di
◦ bi ◦ rBi

+ r̂Di
◦ F (G(dbi)) + (−1)|bi|r′Di

◦ rdbi) = F (G(dbi)). Since H∗(F )

is full and faithful, by Lemma 6.6, there exist morphisms ci and sbi such that |ci| = |bi|,
|sbi | = |bi|−1, dci = G(dbi) and dsbi = r′Di

◦bi◦rBi
+r̂Di

◦F (G(dbi))+(−1)|bi|r′Di
◦rdbi−F (ci).

We set G(bi) := ci. We also define

rbi := (−1)|bi|rDi
◦ sbi + (−1)|bi|řDi

◦ bi ◦ rBi
+ řDi

◦ rdbi − (−1)|bi|r̄Di
◦ F (G(dbi)),

which satisfies |rbi | = |bi| − 1 and drbi = (−1)|bi|(bi ◦ rBi
− rDi

◦ F (G(bi))) + rdbi . Note that
we can also define rb for any morphisms b : B → D in B in this case as in Definition 4.6
(after replacing t with r, i1 with F ◦ G, and i2 with 1B), which satisfies |rb| = |b| − 1 and

drb = (−1)|b|(b ◦ rB − rD ◦ F (G(b))) + rdb by Proposition 4.7.

Having defined the dg functor G : B → A and morphisms rb : F (G(B)) → D, it is straightforward
to check that F ◦ G ≈ 1B by constructing a dg functor K : Cyl(B) → B satisfying K(t∗B) = r∗B for

each B ∈ B and t∗ ∈ {t, t′, t̂, ť, t̄}, and K(tbi) = rbi for each generating morphism bi of B. Finally,
we want to show that G ◦ F ≈ 1A. For that, we need to construct a dg functor H : Cyl(A) → A
such that H ◦ i1 = G ◦ F and H ◦ i2 = 1A. Hence, we only need to define H(t∗A) for any A ∈ A
satisfying |H(t∗A)| = |t

∗
A| and dH(t∗A) = H(dt∗A), and H(tai) for any generating morphism ai of A

satisfying |H(tai)| = |tai | and dH(tai) = H(dtai):

• Let A ∈ A. Since H∗(F ) is full, there exist morphisms

uA : G(F (A)) → A, vA : F (G(F (A))) → F (A), u′A : A→ G(F (A)), v′A : F (A)→ F (G(F (A)))
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such that dvA = rF (A) − F (uA) and dv′A = r′
F (A) − F (u′A). Next, since H∗(F ) is full

and faithful and d(r̂F (A) + r′
F (A) ◦ vA + v′A ◦ F (uA)) = F (1G(F (A)) − u′A ◦ uA), by Lemma

6.6, there exist morphisms ûA and v̂A such that dûA = 1G(F (A)) − u′A ◦ uA and dv̂A =

r̂F (A) + r′
F (A) ◦ vA + v′A ◦ F (uA) − F (ûA). Similarly, we can define ǔA and v̌A satisfying

dǔA = 1A−uA◦u
′
A and dv̌A = řF (A)+vA◦r

′
F (A)+F (uA)◦v

′
A−F (ǔA). Finally, by Lemma 6.6

again, we can show the existence of morphisms ūA and v̄A satisfying dūA = uA ◦ ûA− ǔA ◦uA
and dv̄A = r̄F (A)+ v̌A ◦F (uA)−F (uA)◦ v̂A− řF (A) ◦vA−vA ◦ r̂F (A)−vA ◦r

′
F (A) ◦vA−F (ūA).

Then, we set

H(tA) := uA, H(t′A) := u′A, H(t̂A) := ûA, H(ťA) := ǔA, H(t̄A) := ūA.

• Let ai : Ai → Ci be a generating morphism of A satisfying dai = 0. First, observe that
d(rF (ai) − F (ai) ◦ vAi

+ (−1)|ai|vCi
◦ F (G(F (ai)))) = F ((−1)|ai|(ai ◦ uAi

− uCi
◦G(F (ai)))).

Hence, by Lemma 6.6, there exist uai and vai satisfying

duai = (−1)|ai|(ai ◦ uAi
− uCi

◦G(F (ai))) = H(dtai)

and dvai = rF (ai) − F (ai) ◦ vAi
+ (−1)|ai|vCi

◦ F (G(F (ai)))− F (uai). We set H(tai) := uai .
• We proceed with transfinite induction: Let ai : Ai → Ci be a generating morphism of A.
Assume H(taj ) := uaj and vaj are defined for generating morphisms {aj : Aj → Cj | j < i}

with duaj = (−1)|aj |(aj ◦ uAj
− uCj

◦G(F (aj))) + udaj and

dvaj = rF (aj) − F (aj) ◦ vAj
+ (−1)|aj |vCj

◦ F (G(F (aj))) − vdaj − F (uaj ).

Here, we set ua := H(ta) for any morphism a generated by {aj | j < i}, and for any morphism
a = ajn ◦ . . . ◦ aj1 with ajl ∈ {aj | j < i}, we define

va :=

n
∑

l=1

(−1)|a|−|al|F (ajn ◦ . . . ◦ ajl+1
) ◦ vajl ◦ F (G(F (ajl−1

◦ . . . ◦ aj1))).

The definition extends linearly to define va for any morphism a generated by {aj | j < i}.
Then, a version of Proposition 4.7 holds for the morphisms va. In particular, we have

dva = rF (a) − F (a) ◦ vA + (−1)|a|vC ◦ F (G(F (a))) − vda − F (ua)

for any morphism a : A → C generated by {aj | j < i}. We want to show that there exist

morphisms uai and vai satisfying duai = (−1)|ai|(ai ◦ uAi
− uCi

◦G(F (ai))) + udai and

dvai = rF (ai) − F (ai) ◦ vAi
+ (−1)|ai|vCi

◦ F (G(F (ai)))− vdai − F (uai).

We observe that

d(rF (ai)−F (ai)◦vAi
+(−1)|ai|vCi

◦F (G(F (ai)))−vdai ) = F ((−1)|ai|(ai◦uAi
−uCi

◦G(F (ai)))+udai ).

Hence, by Lemma 6.6, the desired morphisms uai and vai exist. We set H(tai) := uai .

These items define the dg functor H : Cyl(A)→ A satisfying H ◦ i1 = G ◦F and H ◦ i2 = 1A, which
implies G ◦ F ≈ 1A. Hence, F is a homotopy equivalence. �

At this stage, we can provide a computable functorial factorizations of dg functors as a composition
of a cofibration and a quasi-equivalence. We will achieve this using mapping cylinders of dg functors,
which we will define below:

Definition 6.8. Let A be a semifree dg category and F : A → B be a dg functor.
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(1) We define the mapping cylinder MF of F as the pushout

MF := colim(Cyl(A)
i1←− A

F
−→ B).

Explicitly, MF is given as the semifree extension of B ∐A by the morphisms

tA : F (A)→ A, t′A : A→ F (A), t̂A : F (A)→ F (A), ťA : A→ A, t̄A : F (A)→ A

for each A ∈ A, and the morphism

tai : F (Xi)→ Yi

for each generating morphism ai : Xi → Yi of A, with the gradings

|tA| = |t
′
A| = 0, |t̂A| = |ťA| = −1, |t̄A| = −2, |tai | = |ai| − 1,

and differentials

dtA = dt′A = 0, dt̂A = 1F (A) − t′A ◦ tA, dťA = 1A − tA ◦ t
′
A, dt̄A = tA ◦ t̂A − ťA ◦ tA,

dtai = (−1)|ai|(ai ◦ tXi
− tYi

◦ F (ai)) + tdai ,

where for any morphism a in A, ta is defined as in Definition 4.6 (after replacing i1 with F
and i2 with 1A).

(2) For any commutative diagram

A B

A′ B′

F

α β

F ′

in dgCats, we define a dg functor M(α, β) : MF →MF ′ as the image of the morphism of the
diagrams

Cyl(A) A B

Cyl(A′) A′ B′

Cyl(α)

i1 F

α β

i1 F ′

under the colimit functor. Explicitly, M(α, β) is given by

M(α, β)|B∐A = β ∐ α, M(α, β)(t∗A) = t∗α(A), M(α, β)(tai ) = tα(ai),

where t∗ ∈ {t, t′, t̂, ť, t̄}.

Theorem 6.9. Let F : A → B be a dg functor between semifree dg categories, MF be the mapping
cylinder of F , and M(α, β) : MF →MF ′ be a dg functor as in Definition 6.8.

(1) There exists a factorization of F by dg functors

F : A
j
−→MF

q
−→ B,

where j is defined as the composition A →֒ B ∐ A →֒MF , and q is defined as

q|B∐A := 1B ∐ F, q(tA) = q(t′A) := 1F (A), q(t̂A) = q(ťA) = q(t̄A) = q(tai) := 0.

Moreover, j is a cofibration and q is a quasi-equivalence.
(2) The factorization above is functorial. In other words, for every commutative square

A B

A′ B′

F

α β

F ′
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in dgCats, the diagram

A MF B

A′ MF ′ B′

j

α

q

M(α,β) β

j′ q′

commutes, M(1A, 1A) = 1MF
, and M(α′, β′) ◦M(α, β) = M(α′ ◦ α, β′ ◦ β).

Proof. Since dgCats is an I-category with I = Cyl by Theorem 6.2, [Bau89, Lemma 3.12] shows
that the first item holds with the distinction that q is a homotopy equivalence. Then, Theorem 6.7
implies that q is a quasi-equivalence. As for the second item, it is straightforward to check. �

Remark 6.10. It is easy to check that the dg functor q above is a fibration in the Dwyer-Kan model
category of dg categories given in Theorem 2.2. See e.g. [KL21] for the definition of fibrations.
Hence, Theorem 6.9 gives an explicit factorization of F into a cofibration and an acyclic fibration
in the Dwyer-Kan model category. This factorization also holds in quasi-equiconic and Morita
model categories of dg categories given in Theorem 2.2, as they are left Bousfield localization of the
Dwyer-Kan model category.

We are ready to present one of the main results of this section:

Theorem 6.11. The category of semifree dg categories dgCats forms a cofibration category, where
weak equivalences are quasi-equivalences and cofibrations are semifree extensions. Moreover, every
object in dgCats is both fibrant and cofibrant. In particular, dgCats makes a category of cofibrant
objects.

Proof of Theorem 6.11. According to [Bau89], every I-category is a cofibration category with the
same cofibrations, and its weak equivalences are homotopy equivalences. Additionally, each of its
objects is both fibrant and cofibrant. Since homotopy equivalences between semifree dg categories
are exactly quasi-equivalences by Theorem 6.7, the result follows. Finally, cofibrant objects in a
cofibration category makes a category with cofibrant objects, see e.g. [KP97] for the definition. �

Remark 6.12. Since Theorem 6.11 realizes dgCats as a cofibration category, we can consider
homotopical constructions such as homotopy pushouts in dgCats, see [Bau89]. Specifically, we can
define the homotopy pushout as

hocolim(A
α
←− C

β
−→ B) := colim(Mα

j
←− C

β
−→ B)

up to quasi-equivalence using Theorem 6.9(1). As a consequence, we can directly obtain Theorem
5.3 for dgCats using Theorem 6.9(1) and Theorem 6.9(2).

We conclude this section by stating the main theorems for semifree dg algebras and dg cate-
gories/algebras of strictly finite type. Their proofs follow a similar approach to those for semifree
dg categories.

Theorem 6.13.

(1) The category of semifree dg algebras dgAlgs is an I-category with the structure (cof , I), which
is defined as follows:
• cof : Cofibrations are semifree extensions.
• I: The functor I is the cylinder functor Cyl: dgAlgs → dgAlgs described in Remark
4.11.
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(2) The category of semifree dg algebras dgAlgs forms a cofibration category, where weak equiva-
lences are quasi-equivalences and cofibrations are semifree extensions. Moreover, every object
in dgAlgs is both fibrant and cofibrant. In particular, dgAlgs makes a category of cofibrant
objects.

Remark 6.14. Let dgCatf be the category of dg categories of strictly finite type, i.e., semifree dg
categories with finitely many objects and generating morphisms. It is easy to check that Theorem
6.2 and 6.11 hold if we replace dgCats with dgCatf . The same is true if we consider the category
dgAlgf of dg algebras of strictly finite type, i.e., semifree dg algebras with finitely many generating
morphisms: Theorem 6.13 still holds if we replace dgAlgs with dgAlgf .

7. Wrapped Fukaya category of T ∗Sn and the reflection functor

In this section, we give a simple application of Theorem 5.3 and 5.7 within the context of sym-
plectic geometry.

Consider two symplectic manifolds W1 and W2, and a symplectic map f : W1 → W2, which
is a smooth map respecting their symplectic structures. It is well-known that f induces a functor
between their Fukaya categories. It is a natural question to ask how to construct the induced functor
from f .

For a Weinstein manifold, i.e., an open symplectic manifold satisfying certain conditions, [GPS18]
proved that the corresponding wrapped Fukaya category can be computed, after a choice of a cover-
ing, as a homotopy colimit of the wrapped Fukaya categories of the covering elements. Furthermore,
if f respects the coverings, applying Theorems 5.3 or 5.7 allows us to describe the functor induced
by f . To illustrate this, we provide an example of constructing an induced functor using Theorems
5.3 and 5.7. We consider the symplectic manifold T ∗Sn, where Sn is the n-dimensional sphere.

Before going further, let us discuss motivations behind considering these induced functors.

The first motivation stems from a conjecture written in [Kon09], which questions whether the
group of autofunctors of the Fukaya category coincides with the (stabilized) group of symplectic
automorphisms. If this conjecture holds true, the induced functor would encapsulate the same
information as the original symplectic automorphism. Thus, studying induced functors becomes
instrumental in exploring symplectic automorphisms.

The second motivation is the homotopy colimit computation of the wrapped Fukaya category, es-
tablished in [GPS18]. This computation involves a homotopy colimit diagram comprising categories
and functors between them. For instance, in Theorems 5.3 and 5.7, the homotopy colimit diagram
includes functors denoted as α and β. Therefore, to fully describe a homotopy colimit diagram and
subsequently compute the wrapped Fukaya category via a homotopy colimit, it is essential to specify
these corresponding functors.

In Section 7.1, we recall some facts about the wrapped Fukaya category of Weinstein manifolds.
In Section 7.2, we calculate the wrapped Fukaya category W(T ∗Sn) of the cotangent bundle T ∗Sn.
In Section 7.3, we present the dg functor Rn : W(T ∗Sn) → W(T ∗Sn) that is induced from the
reflection map rn : T

∗Sn → T ∗Sn along an axis.

7.1. Preliminaries on wrapped Fukaya categories. In this subsection, we will review some key
aspects of a powerful invariant known as the “wrapped Fukaya category” W(W ) of a Weinstein
manifold/sector W . A Weinstein manifold is an exact symplectic manifold whose Liouville vector
field is both complete and gradient-like for an exhausting Morse function. A Weinstein sector is a
Weinstein manifold with boundary, where its Liouville vector field satisfies certain conditions near
the boundary. For a more detailed exposition, readers can consult [CE12] and [GPS20].
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The wrapped Fukaya category W(W ) of W is an A∞-category whose objects are certain exact
Lagrangians in W with cylindrical ends, equipped with additional data. Morphisms in this category
are generated by the intersections of Lagrangians after perturbing them through a process known
as “wrapping”. A∞-operations arise from counting pseudoholomorphic polygons bounded by La-
grangians (edges) and their intersections (corners). For a rigorous definition, refer to [GPS20] and
[Sei08].

The subsequent subsections will focus on the case where W is a cotangent bundle, specifically,
W = T ∗Sn for some n.

Remark 7.1.

(1) Any A∞-category C can be regarded as a dg category up to quasi-equivalence by replacing
C with its image under the A∞-Yoneda embedding. Hence, wrapped Fukaya categories can
be regarded as dg categories up to quasi-equivalence.

(2) The wrapped Fukaya category W(W ) can be given Z-grading if 2c1(W ) = 0 ∈ H2(W ;Z).
Also, the definition of W(W ) depends on the classes η ∈ H1(W ;Z) (grading structure)
and b ∈ H2(W ;Z/2) (background class), which are used to give gradings on the Lagrangian
intersections and orientations of moduli spaces of pseudoholomorphic disks, respectively. See
[Sei08] for more details, or [BCJ+22] for a quick overview.

The skeleton of a Weinstein manifold/sector W can be defined as the union of the stable manifolds
of the zeroes of the Liouville vector field of W . Then, we have the following theorem:

Theorem 7.2 ([CRGG17, GPS18]). Let W be a Weinstein manifold (or sector) of dimension 2n.
Then W(W ) is generated by Lagrangian cocores, which are Lagrangian disks dual to n dimensional
strata of the skeleton of W .

Remark 7.3. When W = T ∗M for a smooth manifold M , its skeleton is the zero section M , and
Lagrangian cocores correspond to cotangent fibers. Then, Theorem 7.2 implies that the wrapped
Fukaya category W(T ∗M) is generated by cotangent fibers of T ∗M , which is originally due to
[Abo11]. Moreover, ifW(T ∗M) is equipped with the standard grading structure and the background
class as described in [NZ09], [Abo12] (or [GPS18, Example 1.36]) shows that

hom∗(Lp, Lp) ≃ C−∗(Ωp(M))

where Lp is the cotangent fiber at p ∈M , and C−∗(Ωp(M)) is the normalized cubical chains on the
based (Moore) loop space Ωp(M) of M at p. The product structure on C−∗(Ωp(M)) is induced by
the concatenation of Moore loops, which is strictly associative.

Given an inclusion of Weinstein sectors F →֒W , there is an induced A∞-functorW(F )→W(W )
as described in [GPS20]. Then, we state the following theorem, which will serve as our primary tool
for computing wrapped Fukaya categories:

Theorem 7.4 ([GPS18]). Let W be a Weinstein manifold (or sector). Suppose W = W1 ∪W2 for
some Weinstein sectors W1 and W2, and W1∩W2 is a hypersurface in W whose neighborhood can be
written as F × T ∗[0, 1], where F is Weinstein (up to deformation). Then there is a pretriangulated
equivalence

W(W ) ≃ hocolim











W(W1) W(W2)

W(F )











,

where the arrows are induced by the inclusion of Weinstein sectors F →֒Wi for i = 1, 2.
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7.2. Wrapped Fukaya category W(T ∗Sn) of T ∗Sn. First, note that by Remark 7.1(2), the
wrapped Fukaya category W(T ∗Sn) can be given Z-grading since 2c1(T

∗Sn) = 0 ∈ H2(T ∗Sn;Z) for
any n ≥ 1. Also by Remark 7.1(2), the definition of W(T ∗Sn) depends on the grading structure
η ∈ H1(T ∗Sn;Z) and the background class b ∈ H2(T ∗Sn;Z/2). They are uniquely determined for
T ∗Sn for n ≥ 3. For T ∗S1 and T ∗S2, we choose the standard grading structure and the background
class as in [NZ09]. We will comment on the nonstandard choices in Remark 7.6.

Proposition 7.5. Let n ≥ 1. The wrapped Fukaya category of T ∗Sn is given, up to pretriangulated
equivalence, by

W(T ∗Sn) ≃

{

C1[z
−1] if n = 1

Cn if n ≥ 2

where Cn is the semifree dg category given as follows:

(i) Objects: L (representing a cotangent fiber of T ∗Sn).
(ii) Generating morphisms: z ∈ hom∗(L,L).
(iii) Degrees: |z| = 1− n.
(iv) Differentials: dz = 0.

Remark 7.6.

(1) For T ∗S1, there are Z-many grading structures to defineW(T ∗S1). To capture the nonstan-
dard ones, one needs to let |z| = m for m ∈ Z instead of |z| = 0.

(2) For T ∗S2, there is another background class to defineW(T ∗S2). To capture the nonstandard
one, one needs to replace dz = 1L − 1L = 0 with dz = 1L + 1L = 2 · 1L.

Proof of Proposition 7.5. The cases n = 1 and n = 2 are proved in e.g. [Kar18] using microlocal
sheaves, but we will prove it independently for any n ≥ 1. By Theorem 7.4, we have the pretrian-
gulated equivalence

W(T ∗Sn) ≃ hocolim(W(T ∗Dn)←W(T ∗Sn−1)→W(T ∗Dn))

≃ hocolim(Tw(A1(1))←W(T ∗Sn−1)→ Tw(A1(2)))(7.1)

where we used the pretriangulated equivalence W(T ∗Dn) ≃ A1(i) for any i, where A1(i) is the
semifree dg category with a single object Ki (representing a cotangent fiber) and no generating
morphisms. Note that we use i just to distinguish multiple A1’s.

Case n = 1: We have the pretriangulated equivalence W(T ∗S0) ≃ A1(3) ∐A1(4) because S0 is
a disjoint union of two points, hence (7.1) becomes

W(T ∗S1) ≃ hocolim(Tw(A1(1))← Tw(A1(3) ∐A1(4))→ Tw(A1(2)))

≃ hocolim(A1(1)← A1(3) ∐A1(4)→ A1(2)).

The second pretriangulated equivalence makes sense since the functors Tw(A1(3) ∐ A1(4)) →
Tw(A1(i)) for i = 1, 2 are induced by the dg functors

A1(3) ∐A1(4)→ A1(i)

K3,K4 7→ Ki.

Then [KL21] (or Theorem 5.3(1)) gives the pretriangulated equivalence

W(T ∗S1) ≃ C′1[{tK3 , tK4}
−1]

where C′1 is the semifree dg category given as follows:

(i) Objects: K1,K2.
(ii) Generating morphisms: tK3 , tK4 ∈ hom∗(K1,K2).
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(iii) Degrees: |tK3 | = |tK4 | = 0.
(iv) Differentials: dtK3 = dtK4 = 0.

Since K1 and K2 are homotopy equivalent in C′1[t
−1
K4

], we have the quasi-equivalence

C′1[t
−1
K4

]
∼
−→ C1

K1,K2 7→ L, tK3 7→ z, tK4 7→ 1L

hence we have the quasi-equivalence

C′1[{tK3 , tK4}
−1] ≃ C1[z

−1]

which then gives the pretriangulated equivalence

W(T ∗S1) ≃ C1[z
−1].

Case n = 2: By the previous case (by renaming z by x for notational purposes), (7.1) becomes

W(T ∗S2) ≃ hocolim(Tw(A1(1))← Tw(C1[x
−1])→ Tw(A1(2)))

≃ hocolim(A1(1)← C1[x
−1]→ A1(2)).

The second pretriangulated equivalence makes sense since the functors Tw(C1[x
−1]) → Tw(A1(i))

for i = 1, 2 are induced by the dg functors

C1[x
−1]→ A1(i)

L 7→ Ki, x 7→ 1Ki
.

Then [KL21] (or Theorem 5.7(1)) gives the pretriangulated equivalence

W(T ∗S2) ≃ C′2[t
−1
L ]

where C′2 is the semifree dg category given as follows:

(i) Objects: K1,K2.
(ii) Generating morphisms: tL, tx ∈ hom∗(K1,K2).
(iii) Degrees: |tL| = 0, |tx| = −1.
(iv) Differentials: dtL = 0, dtx = tL − tL = 0.

Since K1 and K2 are homotopy equivalent in C′2[t
−1
L ], we have the quasi-equivalence

C′2[t
−1
L ]

∼
−→ C2

K1,K2 7→ L, tL 7→ 1L, tx 7→ z

which then gives the pretriangulated equivalence

W(T ∗S2) ≃ C2.

Case n ≥ 3: Assume the proposition holds for n−1, i.e. we have the pretriangulated equivalence
W(T ∗Sn−1) ≃ Cn−1 (rename z in Cn−1 by x for notational purposes). Then (7.1) becomes

W(T ∗Sn) ≃ hocolim(Tw(A1(1))← Tw(Cn−1)→ Tw(A1(2)))

≃ hocolim(A1(1)← Cn−1 → A1(2)).

The second pretriangulated equivalence makes sense since the functors Tw(Cn−1)→ Tw(A1(i)) for
i = 1, 2 are induced by the dg functors

Cn−1 → A1(i)

L 7→ Ki, x 7→ 0.
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Then [KL21] (or Theorem 5.3(1)) gives the pretriangulated equivalence

W(T ∗Sn) ≃ C′n[t
−1
L ]

where C′n is the semifree dg category given as follows:

(i) Objects: K1,K2.
(ii) Generating morphisms: tL, tx ∈ hom∗(K1,K2).
(iii) Degrees: |tL| = 0, |tx| = 1− n.
(iv) Differentials: dtL = 0, dtx = 0.

Since K1 and K2 are homotopy equivalent in C′n[t
−1
L ], we have the quasi-equivalence

C′n[t
−1
L ]

∼
−→ Cn

K1,K2 7→ L, tL 7→ 1L, tx 7→ z

which then gives the pretriangulated equivalence

W(T ∗Sn) ≃ Cn.

�

7.3. The reflection functor on W(T ∗Sn). There is a reflection map

rn : T
∗
R
n+1 → T ∗

R
n+1

(x1, x2, . . . , xn+1, y1, y2, . . . , yn+1) 7→ (−x1, x2, . . . , xn+1,−y1, y2, . . . , yn+1)

where xi are the base coordinates and yi are fiber coordinates. By considering its restriction to
T ∗Sn via

∑n
i=1 x

2
i = 1 and

∑n
i=1 xiyi = 0, we get an exact symplectomorphism

rn : T
∗Sn → T ∗Sn.

Since rn is an exact symplectomorphism, it induces an A∞-quasi-equivalence

Rn : W(T ∗Sn)→W(T ∗Sn).

For convenience, we will use the term “the reflection map/functor” to denote the exact symplecto-
morphism rn and its induced functor Rn. Our goal in the subsection is to understand the reflection
functor Rn explicitly using the pretriangulated equivalencesW(T ∗S1) ≃ C1[z

−1] andW(T ∗Sn) ≃ Cn
for n ≥ 2 given by Proposition 7.5. We will use Theorem 5.3 and 5.7 to achieve this. The result is
given by the following proposition:

Proposition 7.7. The reflection map rn : T
∗Sn → T ∗Sn induces a dg functor (up to A∞-natural

equivalence)

Rn : W(T ∗Sn)→W(T ∗Sn)

which is given as follows:

(1) If n = 1, then

R1 : Tw(C1[z
−1])→ Tw(C1[z

−1])

L 7→ L

z 7→ z′

where C1 is the semifree dg category defined in Proposition 7.5, and z′ is the inverse of z up
to homotopy.
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(2) If n ≥ 2, then

Rn : Tw(Cn)→ Tw(Cn)

L 7→ L

z 7→ −z

where Cn is the semifree dg category defined in Proposition 7.5.

Proof. The reflection map rn : T
∗Sn → T ∗Sn sends a cotangent fiber to a cotangent fiber, hence

Rn(L) = L[m] for some m ∈ Z. Since rn ◦ rn = 1, we have Rn ◦Rn ≃ 1, and consequently, we must
have m = 0. Hence, Rn(L) = L.

Since L generates W(T ∗Sn), Rn is determined by Rn : hom∗(L,L) → hom∗(L,L), i.e., we need
to understand the A∞-functors

R1 : C1[z
−1]→ C1[z

−1] and Rn : Cn → Cn for n ≥ 2

by Proposition 7.5. In fact, we can regard Rn as a dg functor, since Cn is a semifree dg category (in
particular, cofibrant).

To determine Rn, first divide Sn with the hyperplane {xn+1 = 0} into two n-dimensional closed
disks Dn whose intersection is Sn−1. This induces the gluing diagram of Weinstein sectors for T ∗Sn

T ∗Dn ← T ∗Sn−1 → T ∗Dn.

The reflection map rn : T
∗Sn → T ∗Sn can be restricted to the gluing diagram such that the maps

(rn)T ∗Dn : T ∗Dn → T ∗Dn and (rn)T ∗Sn−1 = rn−1 : T
∗Sn−1 → T ∗Sn−1 are reflection maps, and the

following diagram commutes:

T ∗Dn T ∗Sn−1 T ∗Dn

T ∗Dn Sn−1 T ∗Dn

(rn)T∗Dn rn−1 (rn)T∗Dn

The induced functor by (rn)T ∗Dn is clearly identity on W(T ∗Dn). Hence, the crucial data is the
induced functor Rn−1 : W(T ∗Sn−1)→W(T ∗Sn−1), or equivalently, the dg functors

• R0 : A1(3) ∐ A1(4) → A1(3) ∐ A1(4) when n = 1, where A1(i) is the semifree dg category
with a single object Ki with no generating morphisms,
• R1 : C1[z

−1]→ C1[z
−1] when n = 2,

• Rn−1 : Cn−1 → Cn−1 when n ≥ 3.

There is the induced morphism between diagrams

(7.2)

A1(1) Cn−1 A1(2)

A1(1) Cn−1 A1(2)

1 Rn−1 1

for n ≥ 3 (replace Cn−1 and Rn−1 with C1[z
−1] and R1 when n = 2, and with A1(3) ∐ A1(4)

and R0 when n = 1), and the homotopy colimit functor sends it to Rn : Cn → Cn when n ≥ 2
(R1 : C1[z

−1]→ C1[z
−1] when n = 1). So, using the homotopy colimit functor described in Theorem

5.3 and Theorem 5.7, we can determine Rn inductively.
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Case n = 1: There is the pretriangulated equivalence W(T ∗S0) ≃ A1(3) ∐ A1(4). Then, it is
easy to see that the reflection map r0 : T

∗S0 → T ∗S0 induces the dg functor

R0 : A1(3) ∐A1(4)→ A1(3) ∐A1(4)

K3 7→ K4, K4 7→ K3.

We note that K3 may be actually mapped toK4[m] for somem ∈ Z, and K4 to K3[−m], however, we
can rename K4[m] as K4 in that case. By the proof of Proposition 7.5, we have the quasi-equivalence

hocolim(A1(1)← A1(3) ∐A1(4)→ A1(2)) ≃ C
′
1[{tK3 , tK4}

−1]

where C′1 is defined in the proof. Then, by applying the homotopy colimit functor to the morphism
of diagrams in (7.2) for n = 1, Theorem 5.3 gives us

R1 : C
′
1[{tK3 , tK4}

−1]→ C′1[{tK3 , tK4}
−1]

K1 7→ K1, K2 7→ K2, tK3 7→ tR0(K3) = tK4 , tK4 7→ tR0(K4) = tK3 ,

t′K3
, t̂K3 , ťK3 , t̄K3 7→ t′K4

, t̂K4 , ťK4 , t̄K4 respectively,

t′K4
, t̂K4 , ťK4 , t̄K4 7→ t′K3

, t̂K3 , ťK3 , t̄K3 respectively.

Finally, we need to interpret this functor on C1[z
−1] using the quasi-equivalence given in the proof

of Proposition 7.5:

C′1[{tK3 , tK4}
−1]

∼
−→ C1[z

−1]

K1 7→ L, K2 7→ L, tK3 7→ z, tK4 7→ 1L

(implies t′K3
7→ z′and t′K4

7→ 1L)

It has a quasi-inverse

C1[z
−1]

∼
−→ C′1[{tK3 , tK4}

−1]

L 7→ K1, z 7→ t′K4
tK3 .

This gives us the dg functor

R1 : C1[z
−1]

∼
−→ C′1[{tK3 , tK4}

−1]
R1−−→ C′1[{tK3 , tK4}

−1]
∼
−→ C1[z

−1]

L 7→ K1 7→ K1 7→ L

z 7→ t′K4
tK3 7→ t′K3

tK4 7→ z′

as desired.

Case n = 2: We know that W(T ∗S1) ≃ C1[x
−1] (note that we replaced z with x for notational

purposes), and from the case n = 1, we have the functor R1 : C1[x
−1]→ C1[x

−1] such that R1(L) = L
and R1(x) = x′. By the proof of Proposition 7.5, we have the quasi-equivalence

hocolim(A1(1)
α
←− C1[x

−1]
β
−→ A1(2)) ≃ C

′
2[t

−1
L ]

where C′2 is defined in the proof. Then, by applying the homotopy colimit functor to the morphism
of diagrams in (7.2) for n = 2, Theorem 5.7 gives us

R2 : C
′
2[t

−1
L ]→ C′2[t

−1
L ]

K1 7→ K1, K2 7→ K2, tL 7→ tR1(L) = tL, tx 7→ tR1(x) = tx′ ,

t′L, t̂L, ťL, t̄L 7→ t′L, t̂L, ťL, t̄L respectively,
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where tx′ is determined by the formula in (4.7) (after replacing i1 with α, i2 with β). It is given by

tx′ = −β(x′) ◦ tx ◦ α(x
′)− β(x̂) ◦ tL ◦ α(x

′) + β(x′) ◦ tL ◦ α(x̌) + β(x̂ ◦ x′ − x′ ◦ x̌) ◦ tL

= −1K2 ◦ tx ◦ 1K1 − 0 ◦ tL ◦ 1K1 + 1K2 ◦ tL ◦ 0 + 0 ◦ tL

= −tx,

since α(x) = α(x′) = 1K1 , β(x) = β(x′) = 1K2 , and α(x̂) = α(x̌) = β(x̂) = β(x̌) = 0. Finally, we
need to interpret this functor on C2 using the quasi-equivalence given in the proof of Proposition
7.5:

C′2[t
−1
L ]

∼
−→ C2

K1 7→ L, K2 7→ L, tL 7→ 1L, tx 7→ z

(implies t′L 7→ 1L)

It has a quasi-inverse

C2
∼
−→ C′2[t

−1
L ]

L 7→ K1, z 7→ t′Ltx.

This gives us the dg functor

R2 : C2
∼
−→ C′2[t

−1
L ]

R2−−→ C′2[t
−1
L ]

∼
−→ C2

L 7→ K1 7→ K1 7→ L

z 7→ t′Ltx 7→ −t′Ltx 7→ −z

as desired.

Case n ≥ 3: We know that W(T ∗Sn−1) ≃ Cn−1 (note that we replaced z in Cn−1 with x for
notational purposes), and by the induction hypothesis, we have the functor Rn−1 : Cn−1 → Cn−1

such that Rn−1(L) = L and Rn−1(x) = −x. By the proof of Proposition 7.5, we have the quasi-
equivalence

hocolim(A1(1)
α
←− Cn−1

β
−→ A1(2)) ≃ C

′
n[t

−1
L ]

where C′n is defined in the proof. Then, by applying the homotopy colimit functor to the morphism
of diagrams in (7.2) for n ≥ 3, Theorem 5.3 gives us

Rn : C
′
n[t

−1
L ]→ C′n[t

−1
L ]

K1 7→ K1, K2 7→ K2, tL 7→ tRn−1(L) = tL, tx 7→ tRn−1(x) = t−x = −tx,

t′L, t̂L, ťL, t̄L 7→ t′L, t̂L, ťL, t̄L respectively,

where t−x = −tx is determined by the formula in Definition 4.6. Finally, we need to interpret this
functor on Cn using the quasi-equivalence given in the proof of Proposition 7.5:

C′n[t
−1
L ]

∼
−→ Cn

K1 7→ L, K2 7→ L, tL 7→ 1L, tx 7→ z

(implies t′L 7→ 1L)

It has a quasi-inverse

Cn
∼
−→ C′n[t

−1
L ]

L 7→ K1, z 7→ t′Ltx.
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This gives us the dg functor

Rn : Cn
∼
−→ C′n[t

−1
L ]

Rn−−→ C′n[t
−1
L ]

∼
−→ Cn

L 7→ K1 7→ K1 7→ L

z 7→ t′Ltx 7→ −t′Ltx 7→ −z

as desired. This concludes the proof. �
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