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variant subspace, and the heterogeneity amongst the networks is captured by a set of
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simulations. Finally, we demonstrate the use of our algorithm on larval Drosophila
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1 Introduction

The discipline of studying random networks has been of importance to various fields like

neuroscience ([1]), biology and social studies ([2]) for a long time. Stochastic blockmodels

([2]), where each node is assigned membership to a community and the chance of forma-

tion of an edge between two nodes depends only on their community memberships, form a

popular generative model for random networks. Random dot product graphs ([3], [4]) are

a generalization to stochastic blockmodels, where each node is assigned a feature vector

also known as the latent position, and the probability of formation of an edge between

two nodes equals the inner product of the corresponding latent positions. Generalized ran-

dom dot product graphs ([5]) are further generalization to the random dot product graphs,

where the the inner product between latent positions of two nodes is replaced with indefi-

nite inner product, to determine the probability of formation of an edge between the nodes.

While the majority of focus in this area has been on deriving results in settings with

single graphs ([5]), recently, scientists have also started to study the setting of multiple

graphs ([6],[7],[8]). In [7], the authors propose a generative model of multiple graphs with

a common invariant subspace. In [8], an embedding method is proposed for feature ex-

traction in multiple graphs. Works in [9] propose a method of embedding multiple random

dot product graphs and establish a central limit theorem for the embeddings. A particular

model of multiple graphs is proposed in [10]. In [11], a spectral clustering method is pro-

posed for community detection in multiple sparse stochastic blockmodels. Novel methods

for network dimensionality reduction are proposed in [12] and [13].

In this article, we consider a model of multiple graphs with a common invariant sub-
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space, where the heterogeneity amongst the graphs is explained by a set of low-dimensional

symmetric matrices ([7]). We additionally assume that the scaled versions of these low-

dimensional matrices correspond to points on a further lower-dimensional manifold. In a

setting where some of the graphs are associated with scalar responses, we propose a method

which exploits the presence of the underlying lower-dimensional structure to predict the

response at an out-of-sample network via a linear regression model ([14]).

We illustrate the application of our theoretical results to real data ([15], [16]). A dataset

of networks of larval Drosophila connectome, associated with responses, is analyzed. Upon

careful inspection, the presence of an underlying low-dimensional manifold structure em-

bedded in higher dimensional ambient space is detected amongst the networks. To be more

specific, we treat the collection of networks to be a sample from a particular multiple graph

model (the common subspace independent edge graph model, details in Section 2 and [7])

and obtain low-dimensional matrices to represent the heterogeneity amongst the graphs.

We compute the correlation coefficient between all pairs of entries of these matrices and

observing that the highest degree of correlation between a pair indicates a strong relation-

ship, insinuating the presence of an underlying manifold structure, we learn the manifold

by applying isomap (for details see Section 2.2). A scatterplot between the responses and

the one-dimensional isomap embeddings indicate that a simple linear regression model can

be used to explain their relationship, and an F -test confirms that. In Figure 1, we present

the scatterplot of the components of the score matrices that exhibit the highest degree of

correlation, along with the scatterplot of the responses against the one-dimensional isomap

embeddings with a fitted regression line. We use our theoretical results to establish that

a simple linear regression model can be used to capture the relationship between the re-
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Figure 1: Application of our response prediction method to connectome data from Drosophila. A set of networks, upon

transformation through censoring, is treated as a sample from the common subspace independent edge model. Estimates of

scaled score matrices, representing heterogeneity in the model, are obtained by multiple adjacency spectral embedding. The

scatterplots and correlation coefficients obtained for all pairs of entries of the estimates of the scaled score matrices (the pair

((1, 1)-th entry and (1, 3)-th entry admits the maximal degree of correlation 0.780) indicate an underlying manifold structure.

The six independent components of the estimated sclaed score matrices are subsequently concatenated into six-component

vectors, and isomap is used to learn the underlying manifold. The scatterplot between the (1, 1)-th entries and the (1, 3)-th

entries, the pair that admits the maximal degree of correlation ( 0.780), is given on the left-hand side. The scatterplot

between the responses and the one-dimensional isomap embeddings, along with a fitted regression line, is given on the right-

hand side. An F -test for checking the usefulness of simple linear regression model yields a p-value of 0.0004, suggesting that

a simple linear regression model captures the relationship between the responses and the scalar pre-images of the points on

the manifold.

sponses and the pre-images of the points on the manifold.

We introduce the relevant notions and notations in Section 2. We state the preliminaries

regarding our model and multilayer stochastic blockmodel in Section 2.1, and give a brief

introduction to the manifold learning technique isomap ([17]) in Section 2.2. In Section 3

we give an elaborate introduction to our model and then we formally state our proposed

algorithm. We state the theoretical justifications for our algorithm in Section 4. The nu-

merical results validating our theory are given in Section 5. We show the application of
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our model to real data ([15], [16]) in Section 6. Section 7 concludes by discussing cer-

tain recommendations in specific cases of deviation from our model assumptions and some

possible future extensions. Finally, the proofs of our theoretical results are given in the

supplemental materials.

2 Important definitions and results

Discussed in this section are some important definitions and notions that we will frequently

encounter in this paper.

2.1 Preliminiaries on stochastic blockmodels (SBM) and com-

mon subspace independent edge (COSIE) random graphs

A graph is an ordered pair (V,E) where V is the set of vertices and E ⊂ V × V is the set

of edges. An adjacency matrix A of a graph is defined as Aij = 1 if (i, j) ∈ E, and Aij = 0

otherwise. Here, we deal with hollow and undirected graphs, hence Aii = 0 for all i and

is symmetric. Latent position random graphs are those each of whose nodes is associated

with a vector that is called its latent position. We denote by xi the latent position of the

i-th node.

First, we state the definition of the common subspace independent edge (COSIE) graph

model, from which the graphs in our paper will be sampled.

Definition 1. ([7]) Suppose we observe the graphs G1, . . . GN , or equivalently, their adja-

cency matrices A(1), . . .A(N) ∈ Rn×n. We say (A(1), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N)),

where V ∈ Rn×d is a matrix of orthonormal columns, and R(k) ∈ Rd×d, k ∈ [N ] are symmet-
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ric matrices, also known as score matrices, if for all k ∈ [N ], P(k) = E(A(k)) = VR(k)V,

A
(k)
ij ∼ Bernoulli(P

(k)
ij ) for i < j and A

(k)
ji = A

(k)
ij .

In real life, many networks are sparse, meaning the number of edges grow slowly with

the number of nodes. To account for sparsity, the definition of COSIE model is modified

and stated below.

Definition 2. In the setting of Definition 1, suppose we observe adjacency matrices A(1), . . .A(N).

We say (A(1), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N); ρn) if for all k ∈ [N ], P(k) = E(A(k)) =

ρnVR(k)VT , A
(k)
ij ∼ Bernoulli(P

(k)
ij ) for i < j independently and A

(k)
ji = A

(k)
ij , where ρn → 0

as n→ ∞.

Remark 1. Observe that setting ρn = 1 in Definition 2 recovers Definition 1.

Remark 2. In our paper, henceforth, whenever we encounter (A(1), . . .A(N)) ∼

COSIE(V;R(1), . . .R(N); ρn), we shall assume for all k ∈ [N ], for all i ̸= j,
(
VR(k)VT

)
ij
=

VT
i∗R

(k)Vj∗ = 1. Observe that this can be assumed without loss of generality.

We state below the algorithm to estimate the parameters of a sparse common subspace

independent edge model.

Algorithm 1a SparseMASE((A(1), . . .A(N)), d)
.

1: Estimate the sparsity parameter by ρ̂n = 1

N(n2)

∑N
k=1

∑
i<j A

(k)
ij .

2: For all k ∈ [N ], compute V̂(k) ∈ Rn×d, whose columns are the top d left singular vectors

of A(k).

3: Construct V̂∗ = [V̂(1)| . . . V̂(N)], and compute V̂ ∈ Rn×d, the matrix whose columns

are top d left singular vectors of V̂∗.

4: For all k ∈ [N ], compute R̂(k) = 1
ρ̂n
(V̂(k))TA(k)V̂(k).

5: return (R̂(1), . . . R̂(N)).
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Remark 3. The rationale behind estimating the sparsity parameter in the way mentioned

above is justified by results from [18] and [19].

Next, we state the definition of stochastic blockmodels, which comprise a specific cate-

gory of the common subspace independent edge model. The idea behind stochastic block-

model is to model networks for which interaction probabilities between nodes depend only

upon the communities to which the nodes belong.

Definition 3. ([2]) Suppose the adjacency matrix A ∈ {0, 1}n×n of an undirected graph

with n nodes, satisfies

E(A) = ZBZT

where B ∈ [0, 1]K×K is symmetric and Z ∈ {0, 1}n×K is such that for all i ∈ [n],
∑K

j=1 Zij =

1. Then it is said that the graph is a stochastic blockmodel with community membership

matrix Z and block connection probability matrix B, and is given by A ∼ SBM(Z;B). The

matrix Z is such that Zik = 1 if the i-th node belongs to the k-th community, and Zik = 0

otherwise, i ∈ [n], k ∈ [K]. The matrix B is such that Bhk is the probability of formation

of an edge between two nodes, one of which belongs to the h-th community and the other to

the k-th community.

Secondly, we state the formal definition of multilayer stochastic blockmodel.

Definition 4. ([2]) Suppose we have N graphs with adjacency matrices (A(1), . . .A(N)) ∈

{0, 1}n×n, such that for all k ∈ [N ],

E(A(k)) = ZB(k)ZT

where for all k ∈ [N ], B(k) ∈ [0, 1]K×K is symmetric and Z ∈ {0, 1}n×K is such that for

all i ∈ [n],
∑K

j=1 Zij = 1. Then we say that the graphs are jointly distributed as multilayer
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stochastic blockmodel, represented as (A(1), . . .A(N)) ∼ MSBM(Z;B(1), . . .B(N)). Thus, a

multilayer stochastic blockmodel defines a collection of graphs on a common set of ver-

tices, where every vertex belongs to a unique community irrespective of the layer, but the

probability of formation of edge between vertices from different communities changes across

layers.

Remark 4. Common subspace independent edge graph model is a generalization of mul-

tilayer stochastic blockmodel, that is, any set of graphs jointly distributed as multilayer

stochastic blockmodel can be represented as common subspace independent edge model.

If adjacency matrices (A(1), . . .A(N)) ∼ MSBM(Z;B(1), . . .B(N)) then (A(1), . . .A(N)) ∼

COSIE(V;R(1), . . .R(N)) where V = Z(ZTZ)−
1
2 and for all k ∈ [N ], R(k) = (ZTZ)

1
2B(k)(ZTZ)

1
2

(for detailed proof, see Appendix A.1 in [7]).

Stochastic blockmodel has an intuitive appeal, where every node belongs to a commu-

nity and the chance of interaction between two nodes depends on the community mem-

berships of the corresponding nodes. Network data arising from different fields of real life

can be modeled by multilayer stochastic blockmodel. The common subspace independent

edge model is a generalization to multilayer stochastic blockmodel. The common subspace

independent edge model is capable of capturing the heterogeneity of real-world multiple

network data, while being simple enough to be amenable to algebraic treatments. This is

what motivates us to use this model for our study.

2.2 Manifold learning by isomap

Our model involves a sequence of COSIE random graphs, each associated with a scalar

response, and each graph corresponding to a point on an unknown one-dimensional manifold

in a higher dimensional ambient space. In order to predict the response corresponding
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to an out-of-sample graph from the same model, we wish to learn the manifold using

the procedure isomap ([17]). The problem of manifold learning involves estimating the

geodesic distance between a given pair of points on the manifold. Given points q1, . . .qn ∈

M ⊂ RD where M is a one-dimensional compact Riemannian manifold, the goal is to find

scalars ẑ1, . . . ẑn such that the pairwise interpoint distances between the ẑi approximate

the corresponding pairwise geodesic distances between qi. The following theorem ([20])

demonstrates how to estimate the interpoint geodesic distance between a given pair of

points on the manifold.

Theorem 1. ([21],[20]) Let datapoints q1, . . .qn ∈ RD be given on a one-dimensional

compact Riemannian manifold M in ambient space RD, for which r0 and s0 be the minimum

radius of curvature and minimum branch separation respectively. Assume ν is given and

λ > 0 is chosen such that λ < s0 and λ < 2
π
r0
√
24ν. Additionally, suppose there exists

δ > 0 such that for every u ∈ M, there exists i ∈ [n] for which dM(u,qi) < δ. A localization

graph is constructed on the datapoints qi as nodes by the following rule: two points qi and

qj are joined by an edge if ∥qi − qj∥ < λ. Assuming δ < νλ
4
, the following condition holds

for all i ∈ [n],

(1− ν)dM(qi,qj) < dn,λ(qi,qj) < (1 + ν)dM(qi,qj)

where dn,λ(qi,qj) is the shortest path distance between the points qi and qj.

Given the dissimilarity matrix ∆ = (dn,λ(qi,qj))
n
i,j=1, the raw stress at the point

(z1, . . . zn) is defined as

σ(z1, . . . zn) =
n∑

i,j=1

wij (|zi − zj| − dn,λ(qi,qj))
2

where wij are weights. Setting wij = 1, the isomap embeddings are given by

(ẑ1, . . . ẑn) = argmin
n∑

i,j=1

(|zi − zj| − dn,λ(qi,qj))
2 .
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The procedure for isomap (by raw stress minimization) is formally stated in the following

algorithm.

Algorithm 1b ISOMAP(
{
q(k)
}N
k=1

, λ, l)

1: Construct a localization graph on the points q(k) as nodes by the following rule: join

two nodes q(h) and q(k) with an edge if
∥∥q(h) − q(k)

∥∥ < λ.

2: For every h, k ∈ [N ], compute the shortest path distance dN,λ(q
(h),q(k)).

3: Obtain (ẑ1, ....ẑl) = arg min
∑l

h=1

∑l
k=1(|zh − zk| − dN,λ(q

(h),q(k)))2.

4: return (ẑ1, . . . ẑl).

Remark 5. As pointed out in [20], isomap operates in two steps: approximating the

geodesic distances with shortest path distances and finding low-dimensional embeddings

whose pairwise Euclidean distances can well approximate the shortest path distances. Orig-

inally in [17], the second step, that is, the process of finding low-dimensional embeddings

for a given dissimilarity matrix of shortest path distances, was proposed to be performed by

classical multidimensional scaling. However, [20] points out that such need not be the only

way as there can be other ways to approximate the given dissimilarity matrix of shortest

path distances, such as raw stress minimization.

Remark 6. The process of minimizing the raw stress function is done by iterative ma-

jorization (for details, see Chapter 8 of [22]). Sometimes the algorithm can get trapped in

nonglobal minimum, and it can be usually avoided by initializing the algorithm by classical

multidimensional scaling outputs. In our paper for theoretical purposes, we assume that the

global minima is reached.

More generally, isomap finds a set of vectors whose pairwise Euclidean distances opti-

mize some loss function with respect to a given dissimilarity matrix. We will now formally

generalize this notion. First, we will state a few important definitions.
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Definition 5. A matrix D ∈ Rl×l is called EDM-1 if there exists p ∈ N and points

z1, . . . zl ∈ Rp such that for all i, j ∈ [l], Dij = ∥zi − zj∥. The smallest such p is called the

embedding dimension of D.

Then, given the dissimilarity matrix ∆ of shortest path distances, isomap solves the

problem of argminD∈Yl
∥D−∆∥ where Yl denotes the closed cone of all l × l EDM-1 ma-

trices of embedding dimension less than or equal to d.

The next section describes in detail our model and the proposed algorithm.

3 Model and Methodology

Our model involves a sequence of common subspace independent edge random graphs

(A(1), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N); ρn) where V ∈ Rn×d is the common subspace

matrix and R(k) ∈ Rd×d are the symmetric score matrices. In our model, we assume d to be

known. By definition, the columns of V are orthonormal vectors. The probability matrices

are given by P(k) = ρnVR(k)VT , k ∈ [N ], where ρn is the sparsity parameter satisfying

ρn → 0 as n→ ∞. The following assumptions are made about our model.

Assumption 1. There exist constants c1, c2 and an orthogonal matrix W ∈ O(d), such

that for every i ∈ [n], j ∈ [d],

c1√
n
< (VW)ij <

c2√
n
.

The above assumption ensures that the score matrices influence the connectivity of

enough edges in the graph, and (Assumption 1) is satisfied by various networks, for instance

by Erdos-Renyi graphs and by stochastic blockmodels whose community sizes grow linearly

with the number of nodes ([7]).

11



Assumption 2. For all k ∈ [N ],

s2(P(k)) =
n∑

i,j=1

P
(k)
ij (1−P

(k)
ij ) = ω(1)

and for p ̸= q,

n∑
i,j=1

P
(k)
ij (1−P

(k)
ij )(nVipVjq + nVjpViq)

2 = ω(1).

A balanced multilayer stochastic blockmodel for which the edge formation probabilities

grow at par with the number of nodes, will satisfy the above condition (Assumption 2).

Assumption 3. Define

Σ
(k)
2p+q(q−1)

2
,
2r+s(s−1)

2

=
n−1∑
i=1

n∑
j=i+1

P
(k)
ij (1−P

(k)
ij )(VipVjq +VjpViq)(VirVjs +VjrVis).

Then, for all k ∈ [N ],

λmin(Σ
(k)) = ω(n−2).

The assumption stated above (Assumption 3) serves as a sufficient condition to ensure

that the joint distribution of the entries in upper triangle of the estimated score matrices

can be derived, which in turn leads to the key result of [7], upon which our results are

pivoted.

Assumption 4. We assume

ϵ =

√√√√ 1

ρ2nN

N∑
k=1

δ(P(k))

λ2min(R
(k))

= o(1)

and

min
k∈[N ]

δ(P(k)) = ω(log(n)).

The condition stated above controls the sparsity of the graphs, and networks that are

extremely sparse will fail to satisfy Assumption 4.
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Assumption 5. It is assumed that for all k, the quantity 1
n
R(k) does not depend on n.

Balanced multilayer stochastic blockmodels will satisfy Assumption 5, and a multilayer

stochastic blockmodel where the growth of community sizes vary widely from one another

will fail to satisfy it.

Define the scaled score matrices to be Q(k) = 1
n
R(k) and subsequently define q(k) =

vec(Q(k)) ∈ RD for k ∈ [N ], where D = d2. For all k, it is assumed that the vectors

q(k) ∈ M, where M = ψ([0, L]) is a one-dimensional compact Riemannian manifold in

ambient space RD, ψ : [0, L] → RD being a bijective and sufficiently well-behaved function.

Denote the scalar pre-image of q(k) by tk for all k ∈ [N ], that is, q(k) = ψ(tk). Suppose for

all k ∈ [s], where s ≪ N is fixed, A(k) is associated with response yk, and the following

regression model is assumed to hold:

yk = α + βtk + ϵk

where ϵk ∼iid N(0, σ2
ϵ ) for k ∈ [s]. Our goal is to predict the response yr corresponding to

the graph A(r), r > s. The procedure is stated in the following algorithm.
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Algorithm 1c PredGraphResp(
{
A(k)

}N
k=1

, {yk}sk=1 , d, λ, l, N
∗, r)

1: Obtain the estimates (upto orthogonal rotation) of the score matrices, (R̂(1), . . . R̂(N)) =

SparseMASE(A(1), . . .A(N), d), and compute Q̂(k) = 1
n
R̂(k), and subsequently q̂(k) =

vec(Q̂(k)) for all k ∈ [N ].

2: Construct a localization graph with
{
q̂(k)
}N∗

k=1
as vertices by the following rule: join

two vertices q̂(h), q̂(k) if and only if
∥∥q̂(h) − q̂(k)

∥∥ < λ.

3: For every h, k ∈ [N∗], compute the shortest path distance dN∗,λ(q̂
(h), q̂(k)).

4: Obtain (ẑ1, ....ẑl) = arg min
∑l

h=1

∑l
k=1(|zh − zk| − dN∗,λ(q̂

(h), q̂(k)))2.

5: Compute b̂ =
∑s

i=1(yi−ȳ)(ẑi−¯̂z)∑s
i=1(ẑi−¯̂z)2

and â = ȳ − b̂¯̂z.

6: Compute ỹr = â+ b̂ẑr.

7: return ỹr.

Remark 7. If the graphs are sampled from a balanced multilayer stochastic blockmodel (that

is, a multilayer stochastic blockmodel where a node is equally likely to belong to any of the

communities), then the scaled score matrices are same as the block connection probability

matrices. In this particular setting our model basically assumes that the block connection

probability matrices are functions of some scalar values, and the responses are linked to

these scalar pre-images via a simple linear regression model.

Next, we discuss the theoretical results that justify the use of our proposed Algorithm

1c.

4 Theoretical results

In this section, we state our key theoretical results. Our results are pivoted primarily

on two results in the literature: asymptotic normality of the estimated score matrices
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by multiple adjacency spectral embedding ([7]) and a continuity theorem on raw-stress

embeddings ([23]). From the following result in [7], we know that the estimates R̂(k)

exhibit an asymptotic normality property.

Theorem 2. ([7]) Suppose adjacency matrices (A(1), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N); ρn),

where V ∈ Rn×d, R(k) ∈ Rd×d for all k ∈ [N ] and the sparsity parameter ρn → 0 as n→ ∞.

Assume that Assumptions 1, 2, 3, 4, 5 hold. Then there exists a sequence of matrices

W ∈ O(d), such that for all k ∈ [N ] and i, j ∈ [d], as n→ ∞,

1

σk,i,j

(
ρ̂nR̂

(k) − ρnW
TR(k)W +H(k)

)
ij
→d N(0, 1),

where E(
∥∥H(k)

∥∥
F
) = O( d√

N
) and σ2

k,i,j = O(1).

From the above theorem 2, it can be established that Q̂(k) = 1
n
R̂(k) estimates Q(k) =

1
n
R(k) consistently as n → ∞, N → ∞ under appropriate regularity assumptions, upto

an orthogonal transformation. This enables us to establish that the pairwise Frobenius

distances among a fixed set of Q̂(k) will consistently estimate the corresponding Frobenius

distances among the Q(k) (see Lemma 2). This, in turn, leads us to conclude that pairwise

shortest path distances in a localization graph constructed on q̂(k) as vertices approach

the corresponding pairwise shortest path distances in a localization graph constructed on

q(k) as vertices, as total number of graphs go to infinity. This argument is formally stated

below.

Proposition 1. Let N∗ ∈ N be fixed and suppose (A(1), . . .A(N∗), . . .A(N)) ∼

COSIE(V;R(1), . . .R(N∗), . . .R(N); ρn) where V ∈ Rn×d is the common subspace matrix,

ρnR
(k), k ∈ [N ] are the symmetric score matrices where ρn → 0 as n → ∞, and

let q(k) = vec( 1
n
R(k)) for all k ∈ [N ]. Denote the multiple adjacency spectral embed-

ding outputs by (R̂(1), . . . R̂(N)) = SparseMASE(A(1), . . .A(N), d) and subsequently define
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q̂(k) = vec( 1
n
R̂(k)) for k ∈ [N ]. Assume that dĜ,λ(q̂

(h), q̂(k)) denotes the shortest path

distance between q̂(h) and q̂(k) in the localization graph Ĝ with neighbourhood parameter

λ constructed on the points
{
q̂(k)
}N∗

k=1
, and dG̃,λ(q

(h),q(k)) denotes the shortest path dis-

tance between q(h) and q(k) in the localization graph G̃ with neighbourhood parameter λ

constructed on the points
{
q(k)
}N∗

k=1
. Define

∆̂ =
(
dĜ,λ(q̂

(h), q̂(k))
)l
h,k=1

, ∆̃ =
(
dG̃,λ(q

(h),q(k))
)l
h,k=1

∈ Rl×l.

For any λ > 0, as n→ ∞ and N → ∞,∥∥∥∆̂− ∆̃
∥∥∥
F
→ 0.

Recall that from Theorem 1, we know that the pairwise shortest path distances between

the points q(k) converge to the corresponding geodesic distances on a sequence of appro-

priately constructed localization graphs. Hence, Proposition 1 leads us to infer that the

pairwise shortest path distances between the points q̂(k) approach the corresponding true

geodesic distances between the points q(k), which is formally stated below.

Proposition 2. Let l ∈ N be fixed. Using the notation from Proposition 1, suppose

(A(1), . . .A(N∗), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N∗), . . .R(N); ρn). Assume that for all

k the points q(k) lies on an one-dimensional non-self-intersecting compact Riemannian

manifold M, and let dM(q(h),q(k)) denote the geodesic distance between the points q(h)

and q(k). Additionally, assume that Assumptions 1, 2, 3, 4, 5 hold. There exist sequences

{λK}∞K=1 of neighbourhood parameters, {nK}∞K=1 of graph size, {NK}∞K=1 of total number of

graphs and {N∗
K}

∞
K=1 of number of graphs for isomap, satisfying λK → 0, nK → ∞, N∗

K →

∞, NK → ∞, NK = ω(N∗
K) as K → ∞, such that when K → ∞,∥∥∥∆̂−∆

∥∥∥→ 0

where ∆ =
(
dM(q(h),q(k))

)l
h,k=1

and ∆̂ = dN∗
K ,λK

(q̂(h), q̂(k)).
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So far, we are able to prove that the dissimilarity matrix ∆̂ =
(
dĜ,λ(q̂

(h), q̂(k))
)l
h,k=1

of

shortest path distances obtained from the vectorized scaled estimated score matrices q̂(k)

approach the dissimilarity matrix ∆ =
(
dM(q(h),q(k))

)l
h,k=1

of the true geodesic distances

between the images q(k) = ψ(tk) of the regressors tk. We wish to use this to show that

the pairwise distances between the isomap embeddings obtained from the vectorized scaled

estimated score matrices q̂(k) approach the pairwise distances between the true regressors tk,

which are equal to pairwise geodesic distances between the corresponding images owing to

the fact that the manifold M = ψ([0, L]) is arclength-parameterized. We need a continuity

theorem to establish our argument, which is provided by the following theorem ([23]) which

enables us to use the above argument to establish the consistency of isomap embeddings.

Theorem 3. [23]) Let
{
∆(K)

}∞

K=1
be a sequence of dissimilarity matrices such that for

each K ∈ N, ∆(K) ∈ Rl×l, and limK→∞

∥∥∥∆(K) −∆(0)
∥∥∥
F
= 0. For any dissimilarity matrix

∆ ∈ Rl×l, define the set of globally minimizing EDM-1 matrices for ∆ to be Min(∆) =

{D ∈ Yl : σl(D,∆) = infD∈Yl
σl(D,∆)} where Yl is the closed cone of all EDM-1 matrices

of embedding dimension one. If for all k ∈ N, D(K) ∈ Min(∆(K)), then the sequence{
D(K)

}∞
K=1

has an accumulation point D(0) such that D(0) ∈ Min(∆(0)).

We use the abovementioned Theorem 3 to prove that the pairwise distances between

the isomap embeddings ẑk obtained from the q̂(k) approach the corresponding geodesic

distances between the q(k), which equal pairwise distances between the true regressors

tk. Finally, using the above arguments, we establish the convergence guarantee for the

predicted response obtained from the isomap embeddings, which is formally stated below

in Theorem 4.

Theorem 4. Suppose we have N graphs with adjacency matrices (A(1), . . .A(N)) ∼

COSIE(V;R(1), . . .R(N), ρn). Define q(k) = vec(Q(k)) where Q(k) = 1
n
R(k), and assume
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for all k, q(k) = ψ(tk) lies on the one-dimensional manifold M = ψ([0, L]). Let s ≪ N

be fixed and responses y1, . . . ys are recorded at the first s graphs, and assume the following

regression model holds:

yi = α + βti + ϵi

where ϵi ∼iid N(0, σ2
ϵ ) for i ∈ [s]. Suppose Assumptions 1, 2, 3, 4, 5 hold. Denote

by q̂(k) = vec(Q̂(k)), where Q̂(k) = 1
n
R̂(k). There exists a sequence NK of total number of

graphs, N∗
K = o(NK) of number of graphs for isomap, and λK of neighbourhood parameters,

for which N∗
K → ∞, NK → ∞ and λK → 0 as K → ∞, such that for a fixed l ∈ N, the

predicted response ỹr = PredGraphResp(
{
A(k)

}NK

k=1
, {yk}sk=1 , d, λK , N

∗
K , l, r) (see Algorithm

1c) will satisfy: for every r ≤ l, as K → ∞,

|ỹr − ŷr| →P 0

where ŷr is the predicted response for the r-th network based on the true regressors tk.

Thus, in the absence of the true regressors, the isomap embeddings can be used as proxy

regressors to predict the responses, the convergence guarantee for which is established in

the above Theorem 4. In order to test the validity of the simple linear regression model

yk = α + βtk + ϵk, k ∈ [s] where ϵk ∼iid N(0, σ2
ϵ ), we conduct statistical hypothesis testing

of H0 : β = 0 versus H1 : β ̸= 0. We use a test statistic that depends on the observed

responses yk and the predicted responses ŷk based on the true regressors tk. However, in

the absence of the true regressors tk, we can use their approximations ỹk, the predicted

responses based on the isomap embeddings ẑk. The corollary stated below, as a direct

consequence of Theorem 4, justifies this argument by formally establishing that the power

of the test involving the predicted responses based on the isomap embeddings approach the

power of the test based on the true regressors.
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Corollary 1. In the setting of Theorem 4, suppose we are to conduct the test H0 : β = 0

against H1 : β ̸= 0 at level of significance α̃. Define the following test statistics:

F ∗ = (s− 2)

∑s
k=1(ŷk − ȳ)2∑s
k=1(yk − ŷk)2

, F̂ = (s− 2)

∑s
k=1(ỹk − ȳ)2∑s
k=1(yk − ỹk)2

.

Suppose π∗ is the power of the test done by the rule: reject H0 if F ∗ > cα̃, and let π̂ be the

power of the test done by the rule: reject H0 if F̂ > cα̃. Then, for every (α, β), |π̂−π∗| → 0

as K → ∞.

Thus, we can test the validity of the regression model using the isomap embeddings

with power approximately same as that of the test that uses the true regressors.

Remark 8. Our paper essentially establishes that if the vectors q(k) = vec( 1
n
R(k)) lie on

a sufficiently well-behaved one-dimensional manifold, then the isomap embeddings obtained

from
{
q̂(k)
}
can be used as proxy regressors. Our key result is pivoted on Propositions 1 and

2, which establish that the pairwise shortest path distances of
{
q̂(k)
}
approach the pairwise

geodesic distances between
{
q(k)
}
. If, I ⊂ [d] × [d], and if the vectors q

(k)
I = vec( 1

n
R

(k)
I )

satisfy the criterion of lying on a one-dimensional manifold instead of the vectors q(k), then

similar results will hold: the pairwise shortest path distances between the MASE outputs{
q̂
(k)
I

}
will approach the pairwise geodesic distances between

{
q
(k)
I

}
.

Remark 9. We draw the attention of the reader to the fact that to apply our algorithm,

we are requiring two sets of auxiliary graphs, one set to help us learn the manifold well and

another set to help us estimate the points on the manifold with vanishing error. This makes

our process somewhat wasteful, although the reason lies in the fact that in Theorem 2, the

bound on the [Frobenius] norm of the bias matrix is pointwise. Had it been a uniform bound,

we could have worked with one set of auxiliary graphs. Alternatively, if an improvement

over isomap is provided that offers us uniform bound instead of pointwise bound on the error
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of estimating pairwise geodesic distances, that would also help us work with one, instead of

two, set of auxiliary graphs.

Having theoretically justified our method, we now move on to the next section to discuss

the numerical results we obtained that support our theory.

5 Simulations

In this section, we describe our simulation experiment. We conduct a simulation experi-

ment to provide numerical support for Theorem 4. We take the number of labeled graphs

to be fixed at s = 5, set the regression parameters to be α = 2.0, β = 5.0 and σϵ = 0.01,

and choose r = 6. We define the manifold to be M = ψ[0.25, 1] where ψ : R → RD

is defined as ψ(t) = (t/a, t/b, t/b, t/a), where a =
√
2

sin(1)
, b =

√
2

cos(1)
. We define an index

K such that the total number of graphs NK → ∞, the number of graphs for isomap

N∗
K → ∞, the size of each graph nK → ∞ and the neighbourhood parameter λK → 0

as K → ∞. We vary K over the range {1, 2, . . . 12}, and set nK = 500 + 150(K − 1),

NK = 15 + (K − 1), N∗
K =

⌊
N

3
4
K

⌋
and λK = 2.0 × 0.99K−1. For every K, we generate

100 Monte Carlo samples of random graphs and perform the following procedure on each

sample. We generate t1, . . . ts, ts+1, . . . tNK
∼iid Uniform(0.25, 1) and set t = (t1, . . . tNK

).

For each ti, we form the matrix B ≡ B(ti) ∈ Rd×d whose diagonal elements are ti/a and

the off-diagonal elements are ti/b. We also form the common community membership ma-

trix Z ∈ RnK×d by the following rule: the first nK/2 rows of Z are all (1, 0)T and the

rest nK/2 rows are all (0, 1)T . Then we form NK probability matrices P(ti) = ZB(ti)Z
T ,

and we sample NK symmetric adjacency matrices A(k) such that for all k ∈ [NK ], and

for all i < j, i, j ∈ [n], A
(k)
ij ∼ Bernoulli(P

(k)
ij ). . We know that COSIE model is a

generalized version of stochastic blockmodel with fixed community memberships, hence
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A(1), . . .A(NK) ∼ COSIE(V;R(1), . . .R(NK)) for some V with orthonormal columns and

some R(k), k ∈ [NK ]. We then compute (R̂(1), . . . R̂(NK)) = SparseMASE(A(1), . . .A(NK)).

Subsequently, for k ∈ [NK ], we obtain q̂(k) = vec( 1
nK

R̂(k)). We construct a localization

graph with neighbourhood parameter λK on the points
{
q̂(k)
}N∗

K

k=1
as vertices, and then

obtain the isomap embeddings (ẑ1, . . . ẑl) where l = 6. We added the plot obtained from

the simulation in Figure 2.
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ŷ t

ru
e)2

Figure 2: Plot showing the mean squared difference between predicted response based on the isomap embeddings and the

predicted response based on the true regressors approach zero as the number of graphs and the number of nodes in each graph

increases. For every term in a sequence of number of graphs and size of the graphs, 100 Monte Carlo samples are generated

from a balanced multilayer stochastic blockmodel, which is a special case of COSIE model, and the scaled score matrices are

estimated to approximate the points on the manifold. Subsequently isomap is used to learn the manifold and the embddings

are used as proxy regressors to predict the response at an unlabeled graph. The plot shows that the mean squared difference

between the predicted responses based on the isomap embeddings and the true regressors approach zero.

Our next simulation experiment is carried out to support Corollary 1. We take the num-

ber of graphs associated with responses to be s = 5, and set the regression parameters at

α = 2.0, β = 5.0 and σϵ = 0.1. As before, we define the manifold to be M = ψ([0.25, 1])

where ψ : R → RD is ψ(t) = (t/a, t/b, t/b, t/a). Just as in our previous simulation, we

define index K such that the number of nodes nK = 16+4(K− 1), total number of graphs

NK = 12+(K−1), number of graphs for isomap N∗
K = ⌊N0.85

K ⌋ and neighbourhood param-

eter λK = 0.95× 0.99K−1 as K varies in the range {1, 2, ..., 20}. For every K, we generate
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100 Monte Carlo samples of a sequence of COSIE graphs and perform the following pro-

cedure on every sample. We generate t1, . . . tNK
∼iid Uniform(0.25, 1), and for k ∈ [s], we

generate the responses yk = α + βtk + ϵk, where ϵk ∼iid N(0, σ2
ϵ ). We also compute the

predicted responses ŷk, k ∈ [s] and the F -statistic given by F ∗ = (s − 2)
∑s

k=1(ŷk−ȳ)2∑s
k=1(yk−ŷk)2

. For

each ti, we form the block connection probability matrix B(ti) whose diagonal elements

are ti
2
and the off-diagonal elements are ti

5
. We form the common community membership

matrix Z ∈ RnK×d by the following rule: the first nK

2
rows are all (1, 0)T and the rest nK

2

rows are all (0, 1)T . Thereafter we construct the probability matrices P(k) = ZB(tk)Z
T ,

and we sample the adjacency matrices A(k) such that for all k ∈ [NK ], and for all

i < j, i, j ∈ [nK ], A
(k)
ij ∼ Bernoulli(P

(k)
ij ). Since COSIE model is generalization to multi-

layer stochastic blockmodel, we have (A(1), . . .A(NK) ∼ COSIE(V,R(1), . . .R(NK))) where

V ∈ RnK×d has orthonormal columns and every R(k) is symmetric. After that, we obtain

(R̂(1), . . . R̂(NK)) = SparseMASE(A(1), . . .A(NK), d) and then compute q̂(k) = vec( 1
nK

R(k))

for all k ∈ [NK ]. We construct a localization graph with neighbourhood parameter λK on

the points
{
q̂(k)
}N∗

K

k=1
, and compute the isomap embeddings (ẑ1, . . . ẑs). Using a linear regres-

sion model on (yk, ẑk)
s
k=1 we calculate the predicted responses ỹk, k ∈ [s] and subsequently

compute the approximate F -statistic given by F̂ = (s − 2)
∑s

k=1(ỹk−ȳ)2∑s
k=1(yk−ỹk)2

. We compute the

empirical estimates π∗ and π̂ of the powers of the tests by calculating the proportions (out

of 100 Monte Carlo samples) F ∗ and F̂ exceed a threshold cα̃, where cα̃ is the (1 − α̃)-th

quantile of the F1,s−2 distribution and the level of significance is taken α̃ = 0.05. The plot

is given in Figure 3.

The following section demonstrates the use of our proposed algorithm on real-world data.
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Figure 3: Plot showing the difference between the empirical powers of the tests going to zero as the number of graphs and

number of nodes in each graph go to infinity. As before, 100 Monte Carlo samples are generated from a balanced multilayer

stochastic blockmodel, which is a special case of COSIE model, and the scaled score matrices are estimated to approximate

the points on the manifold, and isomap is applied to obtain the scalar embeddings which are subsequently used as proxy

regressors. The approximate F -statistic is computed from the embeddings and finally, the powers of the tests based on the

true and the approximate F -statistic are empirically estimated and compared.

6 Analysis of biological learning networks

In this section, we demonstrate the use of our methodology for analysing functional activity

in biological learning networks of the Drosophila larvae. The complete wiring diagram (or

‘connectome’) of the larval brain was recently completed ([15]), allowing the generation of

biologically realistic models of these neural circuits based on known anatomical connec-

tivity [16]). Recent papers have studied how learning networks in this larval brain might

operate in the real animal, by training connectome-constrained models to perform associa-

tive learning in simulations. In these simulations, a given sequence of stimuli is delivered

to the network, that are understood to generate a certain network output in the real ani-

mal (e.g. when an odor is paired with pain, the odor becomes less attractive to the animal).

Specifically, we train the network models to perform extinction learning. This is the phe-

nomenon where, after learning an association between a conditioned stimulus (CS; e.g. an
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odor) and reinforcement (pain or reward), that association is weakened by exposure to the

same stimulus in the absence of reinforcement. To do this, we simulate the activity of the

network for 160 time points, constituting a time series which corresponds to a single extinc-

tion learning trial. We perform 143 such trials corresponding to 11 replications (from 11

different randomization seeds) of each of 13 different models, where each model originates

from removal of a single synapse from the parent network (multiple violin plots of learnig

scores against models are given in Figure 5). In each trial, at t = 16, a random odor is

delivered to the neurons in the mushroom body (CS1). At t = 20, either a punishment or

a reward is delivered to the mushroom body neurons. All stimuli lasted for 3 time points.

After this pairing of odor with reinforcement, the odor was delivered again at t = 80 (CS2)

and t = 140 (CS3) (see Figure 4B).
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Figure 4: Computational model of the associative learning networksDrosophila larvae brains. A) A schematic of the mushroom

body (MB), a learning structure in the insect brain composed of the vertical and medial lobes (adapted from [16]). B) Example

model output during a extinction learning trial (defined as the ratio of strength of activity in neurons responsible for attraction

to strength of activity in neurons responsible for aversion).

For every extinction learning trial, a learning score is recorded. It is defined as the ratio of

network response at the third conditioned stimulus to that at the second conditioned stim-

ulus, where network response at a particular time-point is defined as the ratio of the degree

of aversion to that of attraction (for further details about the training of these models, see
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[16]).

We thus obtain 143 different time series, each consisting of 160 networks and correspond-

ing to a learning score (where each network has 140 nodes). In our paper, we select one

particular graph from each time series , and consider the set of graphs thus selected, as-

sociated with the corresponding learning scores. We wish to investigate if the graphs in

some manner correspond to points on a low-dimensional manifold in a higher-dimensional

ambient space, and if so, find an appropriately simple model to explain the relationship

between the learning scores and the pre-images of the points on the manifold.
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Figure 5: Multiple violin plots of learning scores against corresponding models. Each model of the larval drosophila connectome

has 11 replications, and there are 13 such models. The violin plots indicate that the learning scores vary significantly across

models.

Each time series of graphs has 160 directed and weighted graphs where each graph consists

of 140 nodes. From each time series, we select the 40-th graph and thus form a collection of
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143 weighted and directed graphs, each associated with a response. We then transform the

graphs into undirected graphs by ignoring the direction of their edges, and we transform

each graph into an unweighted graph by the following rule: if the modulus of the edge

weights exceed a particular threshold, then it is stored as one, and otherwise it is stored

as zero. The threshold for censoring the adjacency matrices is chosen to be the 25-th

percentile of the absolute values of the non-zero entries of the weighted adjacency matrix.

Upon obtaining the unweighted and binarized form of the adjacency matrices, we apply

Algorithm 1a to get 3 × 3 scaled score matrices. Since the score matrices are symmetric,

the six entries in the upper triangle (including the diagonal) determines the entire matrix.

We obtain a 6× 6 matrix of scatterplots between all the pairs of components in the upper

triangle (including the diagonal) of the estimated scaled score matrices, along with the

corresponding correlation coefficients. The plot is given in Figure 6.

Suspecting an underlying manifold structure, we obtain 143 six-dimensional vectors by

concatenating the entries in the upper triangle of the estimated scaled score matrices, and

embed them into one-dimension by using isomap. We then link the responses with the

one-dimensional embeddings via a simple linear regression model, and test for the useful-

ness of the model using F -test. The p-value is found to be approximately 0.0004, thus

letting us conclude at 0.05 level of significance that the simple linear regression model can

be used to explain the relationship between the responses and the isomap embeddings. By

virtue of Corollary 1, this implies that the responses are linked to the pre-images of the
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Figure 6: Matrix of scatterplots of (in lower diagonal) and correlation coefficients (in upper diagonal) of all possible pairs in

the upper triangle (including diagonal) of the estimated scaled 3 × 3 score matrices. The scatterplot indicates the presence

of an underlying manifold structure.

score matrices via a simple linear regression model. A scatterplot of the responses against

the one-dimensional isomap embeddings, along with the fitted regression line, is given in

Figure 7. We repeat the abovementioned procedure (previously applied on the collection

of graphs at the 40-th positions of all the time series) for the collection of the networks

located at the 17-th positions of all the time series, and then for the collection of networks

at the 30-th positions of all the time series. For both the cases, we conclude (at 0.05 level

of significance) that a simple linear regression model can capture the relationship between

the learning scores and the one-dimensional isomap embeddings. The plots are given in

Figure 8 and Figure 9.
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R = 0.29, n = 143, P < 0.001, R2 = 0.09
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Figure 7: Scatterplot of the learning scores as responses and the one-dimensional isomap embeddings as regressors, along

with the fitted linear regression line, when the graphs are selected from the 40-th positions of the time series. The p-

value corresponding to the F -test is approximately 0.0004, suggesting that a simple linear regression model can be used to

explain the relationship between the learning scores and the isomap embeddings. The predicted responses are obtained by

ŷz = 1.30 + 0.74z.

R = 0.32, n = 143, P < 0.001, R2 = 0.10
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Figure 8: Scatterplot of the learning scores as responses and the one-dimensional isomap embeddings as regressors, along

with the fitted linear regression line, when the graphs are selected from the 17-th position of the time series. The p-value

corresponding to the F -test is approximately 0.00009, suggesting that a simple linear regression model can be used to

explain the relationship between the learning scores and the isomap embeddings. The predicted responses are obtained by

ŷz = 1.30 + 0.78z.

The above demonstrations show how our method can be used to capture the relationship

between the learning scores and the collection of networks from 11 different replications
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R = 0.27, n = 143, P = 0.001, R2 = 0.07
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Figure 9: Scatterplot of the learning scores as responses and the one-dimensional isomap embeddings as regressors, along

with the fitted linear regression line, when the graphs are selected from the 30-th position of the time series. The p-

value corresponding to the F -test is approximately 0.001, suggesting that a simple linear regression model can be used to

explain the relationship between the learning scores and the isomap embeddings. The predicted responses are obtained by

ŷz = 1.30 + 0.67z.

of 13 different models at some specified time. In all the three abovementioned cases, our

method suggests that a simple linear regression model can be used to predict the learning

score for a newly obtained graph. The following section discusses concisely the overall

contribution of this paper, along with certain recommendations in specific scenarios and

some possible future extensions.

7 Discussion

In this article, we propose a method to predict responses corresponding to networks in

a semisupervised setting under particular model assumptions. We assume that a large

number of networks sampled from the common subspace independent edge model ([7]) are

observed and corresponding to only a few amongst them, responses are recorded. Assum-

ing that the networks correspond to points on an unknown one-dimensional manifold in

a higher dimensional ambient space, we propose an algorithm exploiting the underlying
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manifold structure to consistently predict the response at an unlabeled network.

We demonstrate the application of our methodology in real-world data in Section 6. A

connectome dataset ([15], [16]) of larval Drosophila is considered to demonstrate the use

of our algorithm. In a collection of networks associated with responses, we find particular

entries of the representative matrices that can be viewed as noisy versions of points on

an one-dimensional manifold. By virtue of our results, we conclude that a simple linear

regression model can be used to capture the relationship between the responses and scalar

pre-images of the points on the manifold.

The justification for our method rests on the theoretical guarantee of vanishing uniform

bound on the regressors. This guarantee can help extend the results to the regime where

the responses are linked to scalar pre-images via a nonparametric regression model instead

of a simple linear regression. We provide an example from our real data analysis of using

a nonparametric regression model to predict the responses. We fit a nonparametric (local

linear) regression model to the data obtained from selecting the networks at the 40-th po-

sitions of all the time series from our connectome dataset (described in Section 6). To be

more specific, we select the graph at the 40-th position from each of the 143 available time

series, estimate the scaled 3×3 score matrices, vectorize the entries in the upper triangles of

143 such matrices, apply isomap to the 143 six-dimensional vectors, and fit a nonparamet-

ric regression model with the learning scores as responses and the one-dimensional isomap

embeddings as regressors. The plot is attached below in Figure 10.

While our work establishes asymptotic convergence guarantees for the proposed algorithm,
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Figure 10: Scatterplot of the learning scores as responses and the one-dimensional isomap embeddings as regressors, along

with the fitted nonparametric locally linear regression line, when the graphs are selected from the 40-th position of the time

series. The bandwidth is 0.03. The value of R-square is 0.24.

in real-life one may be constrained to deal with only a small number of graphs, which is

why we believe making finite-sample improvements to our algorithm involves an interest-

ing research problem. Moreover, the underlying manifold can have innate dimension higher

than one, and investigating that regime and generalizing our work to that extended regime

is an open problem.
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8 Appendix

8.1 Notations

In this paper, we shall denote every vector by a bold lower case letter, for instance u. Any

vector u, by default, is a column vector. We will use bold upper case letters like H to repre-

sent matrices. The i-th row of matrix H will be denoted by HT
i∗, and the j-th column of the

same matrix will be denoted by H∗j. The Frobenius norm of a matrix H will be given by

∥H∥F . For a matrix H ∈ Rn×d with columns h1, . . .hn, we denote vec(H) = [hT
1 , . . .h

T
n ]

T ,

that is, vec(H) ∈ Rnd is the vector formed by stacking the columns one below another. The

(i, j)-th element of H will be denoted as Hij. The N ×N identity matrix is denoted as IN ,

and JN denotes the N × N matrix of all ones. The notation 0m,n will be used to denote

an m× n matrix whose each entry is zero. Random vectors will be denoted by upper case

(but not bold-faced) letters like Z. For any natural number n, the set {1, 2, . . . n} will be

denoted as [n]. The set of all d × d orthogonal matrices will be represented as O(d). For

any matrix P ∈ Rm, the eigenvalues of H will be given by λ1(P) ≥ · · · ≥ λm(P). If there

is no reason for ambiguity, we will omit the P and will simply denote the eigenvalues by

λ1 ≥ · · · ≥ λm. The largest and the smallest non-zero eigenvalues of P may also be respec-

tively denoted by λmax(P) and λmin(P). The maximum row sum of any matrix H ∈ Rm×n

will be denoted by δ(H) = maxi∈[m]

∑n
j=1Hij.
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8.2 Proofs

Lemma 1. Suppose we observe n×n adjacency matrices (A(1), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N); ρn).

Define

ρ̂n =
1

N
(
n
2

) N∑
k=1

∑
i<j

A
(k)
ij

. Then |ρ̂n − ρn| → 0 as n→ ∞, N → ∞.

Proof: Define for every k ∈ [N ], ρ̂
(k)
n = 1

(N2 )

∑
i<j A

(k)
ij . From Lemma 5 of [18], we

know that for every k ∈ [N ], limn→∞(ρ̂
(k)
n − ρn) = 0. Thus, for every fixed N ∈ N,

limn→∞
1
N

∑N
k=1(ρ̂

(k)
n − ρn) = 0 =⇒ limn→∞( 1

N

∑N
k=1 ρ̂

(k)
n − ρn) = 0. From [19], we have

limN,→∞,n→∞( 1
N

∑N
k=1 ρ̂

(k)
n − ρn) = 0, that is, limN→∞,n→∞(ρ̂n − ρn) = 0.

Lemma 2. Let N∗ ∈ N be fixed and suppose we observe N = N∗+Ñ graphs with adjacency

matrices (A(1), . . .A(N∗), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N∗), . . .R(N); ρn), where V ∈

Rn×d and for all k ∈ [N ], R(k) ∈ Rd×d. Assume that Assumptions 1, 2, 3, 4, 5 hold. Define

(R̂(1), . . . R̂(N)) = SparseMASE(A(1), . . .A(N), d). As n→ ∞, Ñ → ∞, for all k, l ∈ [N∗],

∥∥∥Q̂(h) − Q̂(k)
∥∥∥
F
−
∥∥Q(h) −Q(k)

∥∥
F
→P 0,

where Q(k) = 1
n
R(k) and Q̂(k) = 1

n
R̂(k) for k ∈ [N ].

Proof: From Theorem 2, we know that there exists a sequence of matrices W ∈ O(d),

such that as n→ ∞, for all i, j ∈ [d],

1

σk,i,j

(
ρ̂nR̂

(k) − ρnW
TR(k)W +H(k)

)
ij
→d N(0, 1),
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where E(
∥∥H(k)

∥∥
F
) = O( d√

N
) and σ2

k,i,j = O(1). Observe that limn→∞
ρ̂n
ρn

= 1 =⇒

limn→∞
ρn−ρ̂n
σk,i,j

= 0. Hence, as n→ ∞, for all i, j ∈ [d],

1

σk,i,j

(
ρ̂nR̂

(k) − ρ̂nW
TR(k)W +H(k)

)
ij
→d N(0, 1).

Recalling that ρn = Ω( 1
n
), observe that E

(
∥H(k)∥

F

nρ̂n

)
→ 0 as n → ∞, N → ∞. Note that

using the fact that limn→∞
ρ̂n
ρn

= 1 (from Lemma 5 of [18]), we have
σ2
k,i,j

n2ρ̂2n
→ 0 as n → ∞.

Thus, for every k ∈ [N∗], as n→ ∞ and N → ∞,

(Q̂(k) −WTQ(k)W) →P 0d,d entrywise.

Hence, we have for all h, k ∈ [N∗], as N → ∞,(
(Q̂(h) − Q̂(k))−WT (Q(h) −Q(k))W

)
→P 0d,d entrywise

=⇒
(∥∥∥Q̂(h) − Q̂(k)

∥∥∥
F
−
∥∥Q(h) −Q(k)

∥∥
F

)
→P 0.

Proposition 1. Let N∗ ∈ N be fixed and suppose (A(1), . . .A(N∗), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N∗), . . .R(N); ρn)

where V ∈ Rn×d is the common subspace matrix and the matrices R(k) are the symmetric

score matrices, and let q(k) = vec( 1
n
R(k)) for all k ∈ [N ]. Denote the multiple adjacency

spectral embedding outputs by (R̂(1), . . . R̂(N)) = SparseMASE(A(1), . . .A(N), d) and sub-

sequently define q̂(k) = vec( 1
n
R̂(k)) for k ∈ [N ]. Assume that dĜ,λ(q̂

(h), q̂(k)) denotes the

shortest path distance between q̂(h) and q̂(k) in the localization graph Ĝ with neighbourhood

parameter λ constructed on the points
{
q̂(k)
}N∗

k=1
, and dG̃,λ(q

(h),q(k)) denotes the shortest

path distance between q(h) and q(k) in the localization graph G̃ with neighbourhood parameter

λ constructed on the points
{
q(k)
}N∗

k=1
. Define

∆̂ =
(
dĜ,λ(q̂

(h), q̂(k))
)l
h,k=1

, ∆̃ =
(
dG̃,λ(q

(h),q(k))
)l
h,k=1

∈ Rl×l.
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For any λ > 0, as n→ ∞ and N → ∞,

∥∥∥∆̂− ∆̃
∥∥∥
F
→ 0.

Proof: Note that
∥∥q̂(h) − q̂(k)

∥∥ =
∥∥∥Q̂(h) − Q̂(k)

∥∥∥
F

and
∥∥q(h) − q(k)

∥∥ =
∥∥Q(h) −Q(k)

∥∥
F

for all h, k. Thus, for fixed λ > 0,
(∥∥q̂(h) − q̂(k)

∥∥− ∥∥q(h) − q(k)
∥∥) →P 0 as n → ∞

and N → ∞. Now, consider the λ-neighbourhood localization graphs, namely G̃ on the

points
{
q(k)
}N∗

k=1
and Ĝ on the points

{
q̂(k)
}N∗

k=1
. With overwhelming probability, existence

(or non-existence) of an edge between q(h) and q(k) in G̃ will imply existence (or non-

existence) of an edge between q̂(h) and q̂(k) in Ĝ for sufficiently large N . Suppose there

are total p0 many possible paths between q(h) and q(k) in G̃, and suppose the p-th path

is along
{
q(ip0),q(ip1), . . .q(ipvp )

}
where i0 = h and ipvp = k, for all p ∈ [p0]. Without loss of

generality assume that p = 1 corresponds to the shortest path. For sufficiently large N ,

with overwhelming probability, there will exist only p0 many possible paths between q̂(h)

and q̂(k) in Ĝ. Moreover, for all p ∈ [p0],(
vp∑
j=1

∥∥∥q̂(ipj ) − q̂(ipj−1)
∥∥∥− vp∑

j=1

∥∥∥q(ipj ) − q(ipj−1)
∥∥∥)→P 0

asN → ∞. Assuming there are no ties in lengths of paths and denoting L1 = dG̃,λ(q
(h),q(k)) =∑v1

j=1

∥∥∥q(i1j ) − q(i1j−1)
∥∥∥, we can see that

(∑v1
j=1

∥∥∥q̂(i1j ) − q̂(i1j−1)
∥∥∥− L1

)
→P 0 as N → ∞, and

for sufficiently large N ,
∑vp

j=1

∥∥∥q̂(ipj ) − q̂(ipj−1)
∥∥∥ > L1 with overwhelming probability, when

p ∈ {2, . . . p0}. Thus,
(
dĜ,λ(q̂

(h), q̂(k))− dG̃,λ(q
(h),q(k))

)
→P 0 as N → ∞. Since we can

choose arbitrary h, k ∈ [l], we have
∥∥∥∆̂− ∆̃

∥∥∥
F
→ 0 as N → ∞.

Proposition 2. Let l ∈ N be fixed. Using the notation from Proposition 1, suppose

38



(A(1), . . .A(N∗), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N∗), . . .R(N); ρn). Assume that for all k

the points q(k) lies on an one-dimensional non-self-intersecting compact Riemannian man-

ifold M, and let dM(q(h),q(k)) denote the geodesic distance between the points q(h) and

q(k). There exist sequences {λK}∞K=1 of neighbourhood parameters, {nK}∞K=1 of graph size,

{NK}∞K=1 of total number of graphs and {N∗
K}

∞
K=1 of number of graphs for isomap, satis-

fying λK → 0, nK → ∞, N∗
K → ∞, NK → ∞, NK = ω(N∗

K) as K → ∞, such that when

K → ∞,

∥∥∥∆̂−∆
∥∥∥→ 0

where ∆ =
(
dM(q(h),q(k))

)l
h,k=1

and ∆̂ = dN∗
K ,λK

(q̂(h), q̂(k)).

Proof: Note that by triangle inequality, we have
∥∥∥∆̂−∆

∥∥∥ ≤
∥∥∥∆̂− ∆̃

∥∥∥+∥∥∥∆̃−∆
∥∥∥. Ob-

serving that ∆, ∆̂ and ∆̃ are in general functions of total number of graphs N , number of

graphs for isomap N∗, graph size n and neighbourhood parameter λ, denote by aλ,N∗,N,n =∥∥∥∆̂−∆
∥∥∥, bλ,N∗,N,n =

∥∥∥∆̂− ∆̃
∥∥∥ and cλ,N∗,N,n =

∥∥∥∆̃−∆
∥∥∥ when ∆̂ and ∆̃ are dissimilar-

ity matrices of shortest path distances in localization graphs constructed on
{
q̂(k)
}N∗

k=1
and{

q(k)
}N∗

k=1
respectively, with q̂(k) = vec( 1

n
R̂(k)) being the vectorized forms of scaled multiple

adjacency spectral embedding outputs (R̂(1), . . . R̂(N)) = SparseMASE(A(1), . . .A(N), d),

where the adjacency matrices (A(1), . . .A(N)) ∼ COSIE(V;R(1), . . .R(N)), V ∈ Rn×d being

the common subspace matrix and R(k) ∈ Rd×d for all k ∈ [N ] being the symmetric score

matrices. Observe that for every fixed λ > 0 and N∗ ∈ N, limN→∞,n→∞ bλ,N∗,N,n = 0

from Proposition 1. Moreover, observe that by virtue of Assumption 5, cλ,N∗,N,n does not

depend on n or N , and hence for every N ∈ N, , n ∈ N, cλ,N∗ ≡ cλ,N∗,N,n → 0 as λ → 0

and N∗ → ∞, from Theorem 1. Define dλ,N∗,N,n = bλ,N∗,N,n + cλ,N∗,N,n. For any arbitray

ϵ > 0, we have

(i) for every λ > 0 and N∗ ∈ N, there exists N ′ ≡ N ′(λ,N∗, ϵ) ∈ N such that whenever
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N > N ′, n > N ′, bλ,N∗,N,n <
ϵ
2
.

(ii) for every tuple (N, n) ∈ N2, there exists λ′′ ≡ λ′′(ϵ) > 0 and N ′′ ≡ N ′′(ϵ) ∈ N such that

whenever λ < λ′′ and N∗ > N ′′, cλ,N∗,N,n <
ϵ
2
(since cλ,N∗,N,n does not depend on n or N ,

nor does N ′′).

Thus, whenever λ < λ′′(ϵ), N∗ > N ′′(ϵ) and N, n > N ′(N∗, ϵ), dλ,N∗,N,n < ϵ. This

means there exist sequences {NK}∞K=1, {N∗
K}

∞
K=1, {nK}∞K=1 and {λK}∞K=1 satisfying NK →

∞, N∗
K → ∞, nK → ∞, λK → 0 as K → ∞, such that limK→∞ dλK ,N∗

K ,NK ,nK
= 0. Noting

that 0 ≤ aλK ,N∗
K ,NK ,nK

≤ dλK ,N∗
K ,NK ,nK

, we can say limK→∞ aλK ,N∗
K ,NK ,nK

= 0.

Theorem 4. Suppose we have N graphs with adjacency matrices (A(1), . . .A(N)) ∼

COSIE(V;R(1), . . .R(N), ρn). Define q(k) = vec(Q(k)) where Q(k) = 1
n
R(k), and assume for

all k, q(k) = ψ(tk) lies on the one-dimensional manifold M = ψ([0, L]). Let s ≪ N be

fixed and responses y1, . . . ys are recorded at the first s graphs, and assume the following

regression model holds:

yk = α + βtk + ϵk

where ϵk ∼iid N(0, σ2
ϵ ) for all k ∈ [s]. Suppose Assumptions 1, 2, 3, 4, 5 hold. Denote

by q̂(k) = vec(Q̂(k)), where Q̂(k) = 1
n
R̂(k). There exists a sequence NK of total number of

graphs, N∗
K = o(NK) of number of graphs for isomap, and λK of neighbourhood parameters,

for which N∗
K → ∞, NK → ∞ and λK → 0 as K → ∞, such that for a fixed l ∈ N, the

predicted response ỹr = PredGraphResp(
{
A(k)

}NK

k=1
, {yk}sk=1 , d, λK , N

∗
K , l, r) (see Algorithm

1c) will satisfy: for every r ≤ l, as K → ∞,

|ỹr − ŷr| →P 0

where ŷr is the predicted response for the r-th network based on the true regressors tk.
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Proof: Note that the predicted response ỹr = PredGraphResp(
{
A(k)

}NK

k=1
, {yk}sk=1 , N

∗
K , λK , d, l, r)

is the predicted response corresponding to ẑr when the bivariate data is (yk, ẑk)
s
k=1, and

recall that ŷr is the predicted response corresponding to tr when the bivariate training set

is (yk, tk)
s
k=1. From Proposition 2, we can see that

∥∥∥∆̂−∆
∥∥∥ → 0 as K → ∞. Using

Theorem 3, we can obtain embeddings (ẑ1, . . . ẑl) = ISOMAP(
{
q̂(k)
}N∗

K

k=1
, λK , l) such that

for every h, k ∈ [l],

|ẑh − ẑk| − |th − tk| → 0.

Thus, as K → ∞, the isomap embeddings ẑk are getting arbitrarily closer to some affine

transformation on the true regressors tk, and in the setting of simple linear regression the

predicted response value remains invariant to affine transformations on regressors. Thus,

as K → ∞, |ỹr − ŷr| → 0.

Corollary 1: In the setting of Theorem 4, suppose we are to conduct the test H0 : β = 0

against H1 : β ̸= 0 at level of siginificance α̃. Define the following test statistics:

F ∗ = (s− 2)

∑s
k=1(ŷk − ȳ)2∑s
k=1(yk − ŷk)2

, F̂ = (s− 2)

∑s
k=1(ỹk − ȳ)2∑s
k=1(yk − ỹk)2

.

Suppose π∗ is the power of the test done by the rule: reject H0 if F ∗ > cα̃, and let π̂ be the

power of the test done by the rule: reject H0 if F̂ > cα̃. Then, for every (α, β), |π̂−π∗| → 0

as K → ∞.

Proof: We know, from Theorem 4 that for any (α, β) ∈ R2, for all r ∈ [s], |ỹr − ŷr| →P 0

as K → ∞. Hence, we must have for any (α, β) ∈ R2, |F̂ − F ∗| →P 0 as K →

∞, and consequently for all (α, β) ∈ R2 and for all α̃ ∈ (0, 1), we have |π̂ − π∗| =∣∣∣Pα,β[F̂ > cα̃]− Pα,β[F
∗ > cα̃]

∣∣∣→ 0 as K → ∞.
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