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This paper considers smooth strongly convex and strongly concave (SC-SC) stochastic saddle point (SSP)

problems. Suppose there is an arbitrary oracle that in expectation returns an ǫ-solution in the sense of

certain gaps, which can be the duality gap or its weaker variants. We propose a general PB-SSP framework

to guarantee an ǫ small duality gap solution with high probability via only O
(

log 1

p
· poly(logκ)

)

calls of

this oracle, where p ∈ (0,1) is the confidence level and κ is the condition number. When applied to the

sample average approximation (SAA) oracle, in addition to equipping the solution with high probability, our

approach even improves the sample complexity by a factor of poly(κ), since the high-probability argument

enables us to circumvent some key difficulties of the uniform stability analysis of SAA.

Key words : stochastic saddle point problem, sample average approximation, high-probability guarantee,

sample complexity bound.

1. Introduction

In this paper, we consider the stochastic saddle point problem

min
x∈X

max
y∈Y

Φ(x, y) :=E [Φξ(x, y)] , (1)

where X and Y are closed and convex sets, and ξ is a random variable satisfying an unknown

distribution P. This formulation finds a wide range of applications in adversarial learning [12, 36],

reinforcement learning [33, 38], robust optimization [24], and game theory [37, 34], and so on. We

will focus on the basic setting where Φξ(·, ·) is smooth, convex in x and concave in y for almost

every ξ ∼P. For any feasible solution (x̂, ŷ)∈X ×Y, we denote the duality gap as

∆Φ(x̂, ŷ) :=max
y∈Y

Φ(x̂, y)−min
x∈X

Φ(x, ŷ).

The standard results on convex-concave (C-C) SSP problems usually upper bound the total num-

ber of required samples for finding solutions with ǫ small expected duality gap, recent examples

include stochastic approximation (SA) type algorithms [26, 35, 43, 41] and the sample average

approximation (SAA) method [42], to name a few. Despite the bulk of literature that guarantees
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the small duality gap in expectation, the high-probability results are rare. Now, let us consider a

weaker variant of the duality gap:

∆w
Φ(x̂, ŷ) := Φ(x̂, y∗)−Φ(x∗, ŷ),

where (x∗, y∗) is the optimal solution to (1). For µx-strongly convex and µy-strongly concave saddle

point problem, it is not hard to see that

µx

2
‖x̂−x∗‖2 + µy

2
‖ŷ− y∗‖2 ≤∆w

Φ(x̂, ŷ)≤∆Φ(x̂, ŷ).

Therefore, for SC-SC saddle point problems, given an arbitrary oracle that returns a solution

(x̂, ŷ)∈X ×Y such that

E[∆Φ(x̂, ŷ)]≤ ǫ or E[∆w
Φ(x̂, ŷ)]≤ ǫ.

The goal of this research is to produce a solution (x̄, ȳ)∈X ×Y such that

P [∆Φ(x̄, ȳ)≤ ǫ]≥ 1− p (2)

via only a few executions of this oracle, where p∈ (0,1) is the confidence level.

Indeed, there are few naive approaches to achieve (2) for general oracles, without relying on

the additional light-tail noise assumptions. The first method is to apply the oracle to generate

a solution (x̂, ŷ) such that E[∆Φ(x̂, ŷ)] ≤ p · ǫ, then (2) is immediately guaranteed by Markov’s

inequality. However, the sample complexity to compute such a pǫ-accurate solution is often propor-

tional to (pǫ)−1 for SC-SC problems. Naively applying Markov’s inequality will amplify the sample

complexity by an addition O
(
1
p

)
factor. The second approach is to generate a group of solutions

{(x̂i, ŷi)}mi=1 with ǫ expected duality gap. Then if one can evaluate the ∆Φ(x̂i, ŷi) to ǫ accuracy,

then the pair (x̂i∗ , ŷi∗) with minimal estimated duality gap will satisfy (2) as long as m=Ω
(
ln 1

p

)
.

This resolves the unfavorable dependence on O
(
1
p

)
, yet evaluating the duality gap for each solution

will itself consume O(ǫ−2) samples, which is much more expensive than the usual Õ(ǫ−1) sample

complexity of the oracle itself. It is also possible to apply the robust distance estimation technique

for unconstrained SC-SC SSP problems, but that will often bring in additional κ factors in the

sample complexity, see detailed discussion in Section 2.

Therefore, we would like to propose a general meta-framework to generate solutions satisfying

(2) while only suffering an O
(
ln 1

p
· poly(lnκ)

)
overhead in the sample complexity. The proposed

framework generalizes the previous ProxBoost algorithm [8] for minimization problems to the more

general Stochastic Saddle Point problems, thus we call the framework PB-SSP.
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1.1. Main contribution

Given any SSP oracle that bounds the duality gap ∆Φ(x̂, ŷ) or its weaker variant ∆w
Φ(x̂, ŷ) in

expectation, we provide a general meta framework called PB-SSP to equip this oracle with high-

probability guarantees in the sense of (2), while only increasing sample complexity by a factor

of O
(
log 1

p
· poly(logκ)

)
. More formally, for an arbitrary SSP oracle M, we denote Mw(Φ, δ)

as the operation of calling M to generate a solution (x̂, ŷ) s.t. E [∆w
Φ(x̂, ŷ)] ≤ δ, and we denote

the corresponding sample complexity as Cw
M(Φ, δ). Similarly, we denote M(Φ, δ) as the operation

of generating (x̂, ŷ) s.t. E [∆Φ(x̂, ŷ)] ≤ δ, and the corresponding sample complexity as CM(Φ, δ).

Apparently, for the same oracle M, we have Cw
M(Φ, δ)≤CM(Φ, δ). In particular, when M is the

SAA oracle [42], we have CM(Φ, δ) = κ ·Cw
M(Φ, δ). By operating Mw(·) for a sequence of perturbed

proximal point subproblems, the PB-SSP framework proposed in this paper will return a point

(x̄, ȳ) satisfying (2) with a sample complexity of

ln

(
ln(κ)

p

)
ln(κ) ·Cw

M

(
Φ,

ǫ

ln(κ)

)
.

An interesting application of our PB-SSP framework is the sample average approximation (SAA)

oracle, which is frequently used in practice. In the SAA oracle, the user is provided with some

offline dataset Γ := {ξ1, ξ2, · · · , ξn} drawn i.i.d. from P. Then SAA generates the output by solving

(x̂, ŷ) = argmin
x∈X

argmax
y∈Y

Φ̂n(x, y) :=
1

n

n∑

i=1

Φξi(x, y), (3)

regardless of the detailed saddle point algorithms. Existing work [42] analyzes the SAA oracle

by leveraging the uniform stability arguments. For SSP problems with SC-SC modulus µ > 0

and function Lipschitz constant ℓ, an O
(

ℓ2

nµ

)
bound on E

[
∆w

Φ(x̂, ŷ)
]
is proved. With addition L-

Lipschitz assumption on the gradients, an O
(
κ · ℓ2

nµ

)
bound on E

[
∆Φ(x̂, ŷ)

]
can be guaranteed.

By incorporating the PB-SSP framework, we are able to circumvent some key difficulties in the

uniform stability analysis and yield an Õ
(

ℓ2

nµ

)
bound on ∆Φ(x̂, ŷ) with high probability, where the

condition number κ only appears in the logarithmic factors. Compared to the original SAA oracle,

the PB-SSP not only provides a high-probability guarantee but also improves the bound by a factor

of κ. This improvement can be huge if κ≫ 1. In particular, when the SC-SC modulus comes from

the +µ
2
‖x‖2 − µ

2
‖y‖2 regularization added to some general convex-concave problem, the PB-SSP

can improve the bound on the duality gap from O(1/ 3
√
n) in expectation to Õ(1/

√
n) with high

probability. We summarize the improvement for SAA oracle in Table 1.
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Table 1 Sample complexity bounds for SAA oracles on SSP problems.

SAA [42] SAA + PB-SSP (this paper)

Problems
Bounds Expectation guarantees high-probability guarantees

∆w
Φ ∆Φ ∆Φ

SC-SC unconstrained O
(

Cκ4

µǫ

)
O
(

Cκ4

µǫ

)
O
(
ln(κ) ln

(
ln(κ)

p

)
Cκ2

µǫ

)

SC-SC constrained O
(

ℓ2

µǫ

)
O
(

ℓ2κ
µǫ

)
O
(
ln2(κ) ln

(
ln(κ)

p

)
ℓ2

µǫ

)

C-C constrained O
(

ℓ2D2

ǫ2

)
O
(

ℓ2LD4

ǫ3

)†
O
(
ln2
(

LD2

ǫ

)
ln
(

ln(LD2/ǫ)

p

)
ℓ2D2

ǫ2

)

† This bound is not provided in [42], we derived it based on the analysis of [42, Theorem 2 & Theorem 3].

1.2. Related works

Currently, most existing SSP algorithms belong to stochastic approximation (SA) approach. Let

n be the number of samples consumed by the algorithm. When the SSP problem is only convex-

concave, to our best knowledge, Nemirovski and Rubinstein [27] are the first to establish an

O(1/
√
n) bound on duality gap by extending Polyak’s method [32]. Similar bounds are also obtained

for the stochastic mirror descent ascent algorithm in [26]. Chen et al. [6] considered a class of SSP

problems with a bilinear coupling term and leveraged Nesterov’s smoothing [29] scheme to accel-

erate the primal-dual methods. Their work retains the O (1/ǫ2) sample complexity for ensuring an

ǫ small duality gap while improving the dependence on several parameters. Zhao [44] considered

SSP problems with a three-composite structure and also reached the O(1/
√
n) bound. Besides,

Beznosikov et al. [3] developed zeroth-order methods for general non-smooth C-C SSP problems.

Under a more general setting, SSP problems fall into a special case of stochastic variational inequal-

ity (SVI) problems. When the operator is monotone, O(1/
√
n) bound can be established. For

example, Juditsky et al. [19] proposed the stochastic mirror-prox algorithm, and Chen et al. [7]

accelerated it for a special class of SVI problems. More recent works on monotone SVI problems

include [18, 11, 2, 15, 23, 13].

When it comes to SC-SC SSP (or strong monotone SVI) problems, tighter bounds can be

expected. For example, given n samples, [25, 14, 9, 17, 13] derived O(1/n) bounds for the squared

distance from the saddle point (i.e., ‖x̂ − x∗‖2 + ‖ŷ − y∗‖2). Yan et al. [41] and Yan et al. [40]

provided O(1/n) bound for the primal gap (i.e., maxy∈Y Φ(x̂, y)−Φ(x∗, y∗)) and duality gap respec-

tively. There also exist some works considering saddle point problems with finite-sum structure

and applying stochastic primal-dual methods, e.g., see [35, 31, 43, 4, 21, 1]. It is worth noting the

finite-sum structures are often the direct result of sample average approximation of the stochastic

objective functions. Therefore, these methods can be considered as the subroutines for solving the

deterministic empirical problem constructed by SAA.

Finally, concerning the SAA approach for SSP or SVI problems, the research is extremely lim-

ited. Xu [39] investigated the SAA solution of general SVI problems and showed the asymptotic
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convergence without any finite sample analysis. Recently, Zhang et al. [42] utilized the uniform

stability-based approach and bounded the E
[
∆w

Φ(x̂, ŷ)
]
by O(1/

√
n) for C-C SSP problems and

the E
[
∆Φ(x̂, ŷ)

]
by O(1/n) for SC-SC problems respectively. Lei et al. [20] established stability

bounds for gradient-based algorithms when applied to the SAA counterpart of SSP problems.

Similar stability results of gradient-based algorithms appear in [10].

There are also very few high-probability results for SSP problems in the literature, and most

of them heavily rely on the sub-Gaussian assumption for the stochastic gradient. For example, to

obtain a solution with ǫ small duality gap with high probability, Nemirovski et al. [26] bounded the

sample complexity by O
(
ln2
(

1
p

)
1
ǫ2

)
for C-C SSP problems. Juditsky et al. [19] derived similar

results for monotone SVI problems. Yan et al. [40] proposed an Epoch-GDA algorithm for SC-

SC cases and derived O
(
ln
(

ln(1/ǫ)

p

)
1
ǫ

)
sample complexity bound to guarantee the duality gap

is ǫ small. Chen et al. [6, 7] and Zhao [44] also gave high-probability results for various SSP

problems with special structures like bilinear coupling and smooth components. Under stronger

assumption that the stochastic gradients are almost surely bounded, [41] investigates a special

class of SC-SC SSP problems where the primal-dual coupling term is linear in the dual variable.

It proposes a restart scheme and provides high-probability guarantees for the primal gap. All the

results mentioned above need the sub-Gaussian or even stronger assumptions, except for Gorbunov

et al. [13] that derived the high-probability results for unconstrained SVI problems, where the

authors modified several first-order methods with the gradient clipping technique. As a result,

high-probability guarantees are established for the duality gap and the squared distance in the

monotone and strong monotone cases respectively. Compared with [13] which is unconstrained and

algorithm-dependent, our procedure establishes a more general framework and allows us to handle

constrained problems.

2. Preliminaries

Basic Assumptions. First, let us formally state a few fundamental assumptions of the objective

function. Unless otherwise stated, they are always assumed throughout this paper.

Assumption 1. ∃ µx, µy > 0 s.t. for almost every ξ ∼P and ∀x∈X ,∀y ∈ Y, the function Φξ(·, y)
is µx-strongly convex and the function Φξ(x, ·) is µy-strongly concave. Namely,

Φξ(x2, y)≥Φξ(x1, y)+ 〈∇xΦξ(x1, y), x2 −x1〉+
µx

2
‖x1 −x2‖2, ∀x1, x2 ∈X , y ∈ Y,

Φξ(x, y2)≤Φξ(x, y1)+ 〈∇yΦξ(x, y1), y2 − y1〉−
µy

2
‖y1 − y2‖2, ∀y1, y2 ∈Y, x∈X .

Consequently, we say Φ is SC-SC with modulus (µx, µy).
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Assumption 2. ∃ Lx,Ly,Lxy > 0 s.t. for ∀x1, x2 ∈X and ∀y1, y2 ∈Y, we have

‖∇xΦ(x1, y1)−∇xΦ(x2, y1)‖ ≤Lx‖x1 −x2‖, ‖∇yΦ(x1, y1)−∇yΦ(x1, y2)‖≤Ly‖y1 − y2‖,

‖∇xΦ(x1, y1)−∇xΦ(x1, y2)‖ ≤Lxy‖y1 − y2‖, ‖∇yΦ(x1, y1)−∇yΦ(x2, y1)‖≤Lxy‖x1 −x2‖.

Assumption 3. The feasible regions X and Y are closed and convex. ∃ ℓx, ℓy > 0 s.t. for almost

every ξ∼P, it holds that

|Φξ(x2, y)−Φξ(x1, y)| ≤ ℓx‖x1 −x2‖ and |Φξ(x, y1)−Φξ(x, y2)| ≤ ℓy‖y1 − y2‖.

for ∀x1, x2, x∈X and ∀y1, y2, y ∈Y.

In the case of SC-SC SSP problems, Assumption 3 typically applies when the feasible regions are

compact. In the upcoming Section 3, we will first address the simpler setting with unbounded

domains, and Assumption 3 will be temporarily dropped in this setting. The above and subsequent

‖ · ‖ denotes the Euclidean norm. To simplify notation, we further denote µ := min{µx, µy}, L :=

max{Lx,Ly,Lxy}, ℓ :=max{ℓx, ℓy}. The condition number of Φ is denoted by κ :=L/µ.

Robust Distance Estimation with Pseudometrics. The robust distance estimation (RDE)

[28, 16] is the key tool of the PB-SSP framework. Consider any pseudometric ρ :X ×X →R that

is non-negative, symmetric, and satisfies the triangle inequality, that is, ρ(x1, x2)≥ 0, ρ(x1, x1) =

0, ρ(x1, x2) = ρ(x2, x1), and ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2), for ∀x1, x2, x3 ∈ X . Denote Bρ
r (x) =

{y ∈ X : ρ(x, y)≤ r} the r-radius ball around x under pseudometric ρ. Then the robust distance

estimation technique extracts the candidate “centers” from a group of points by Algorithm 1. With

Algorithm 1: Extract({xj}mj=1, ρ)

Input: A list of m points X = {x1, . . . , xm} ⊂X , a pseudometric ρ on X .

for j = 0, . . . ,m compute: rj =min{r≥ 0 : |Bρ
r (xj)∩X|> m

2
}.

Compute the median radius r̂=median(r1, . . . , rm).

Return: I = {k ∈ [1,m] : rk ≤ r̂}.

slight abuse, median(r1, ..., rm) in Algorithm 1 denotes the
⌈
m
2

⌉
’th entry in the ordered list, so the

algorithm will return at least m/2 points. Lemma 1 illustrates how the RDE boosts the confidence

for a collection of candidate points within a pseudometric space.

Lemma 1. ([8, Lemma 11]) Let ρ and X = {x1, . . . , xm} be the input of Algorithm 1. Suppose

the point x∗ satisfies P[ρ(xj, x
∗)≤ δ]≥ 2/3 for some δ > 0, ∀j. Then w.p. at least 1− exp

(
−m

18

)
,

it holds that the event E := {|Bρ
δ (x

∗) ∩X| > m
2
} happens, and E ensures ρ(xk, x

∗) ≤ 3δ for all

k ∈Extract(X,ρ).
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The Primal and Dual Functions. Back to the saddle point problem (1), for the objective

function Φ(x, y), we define its primal function as f(x) := maxy∈Y Φ(x, y) and the dual function as

g(y) :=minx∈X Φ(x, y). For SC-SC saddle point problems, the strong duality indicates that f(x∗) =

g(y∗) = Φ(x∗, y∗). It is commonly known that (e.g., see Lemma A.5 of [30]), f(x) is µx-strongly

convex and Lf -smooth, and g(y) is µy-strongly concave and Lg-smooth, where

Lf :=Lx +L2
xy/µy and Lg :=Ly +L2

xy/µx. (4)

Then, we have the following two-sided bounds for any (x, y)∈X ×Y.

∆w
Φ(x, y) = Φ(x, y∗)−Φ(x∗, y∗)+Φ(x∗, y∗)−Φ(x∗, y) (5)

(a)

≥ µx

2
‖x−x∗‖2 + 〈∇xΦ(x

∗, y∗), x−x∗〉+ µy

2
‖y− y∗‖2 −〈∇yΦ(x

∗, y∗), y− y∗〉,

and

∆Φ(x, y) = f(x)− f(x∗)+ g(y∗)− g(y) (6)
(b)

≤ Lf

2
‖x−x∗‖2 + 〈∇xΦ(x

∗, y∗), x−x∗〉+ Lg

2
‖y− y∗‖2 −〈∇yΦ(x

∗, y∗), y− y∗〉.

The step (a) is due to the SC-SC property in Assumption 1, and the step (b) is due to the

Lipschitz smoothness of∇f(x) and∇g(y) in (4) and the Danskin’s theorem which implies∇f(x∗) =

∇xΦ(x
∗, y∗) and ∇g(y∗) =∇yΦ(x

∗, y∗). In particular, for unconstrained problems where X and Y
are the full Euclidean spaces, both ∇xΦ(x

∗, y∗) and ∇yΦ(x
∗, y∗) are equal to 0.

Note that for unconstrained saddle point problems where ∇xΦ(x
∗, y∗) = ∇yΦ(x

∗, y∗) = 0, the

duality gap is only upper bounded by the squared distance. This implies that, with the above

inequalities and the robust distance estimation technique, one is already able to provide a high-

probability solution without the extra overhead of O(1/p) or O(1/ǫ) for unconstrained prob-

lems. Firstly, call m = ⌈18 ln(1/p)⌉ times of Mw(Φ, δ) to obtain a sequence of candidate points

{x̂j , ŷj}mj=1. Then (5) together with Markov’s inequality implies P[‖x̂j − x∗‖ ≤
√
6δ/µ]≥ 2/3 and

P[‖ŷj − y∗‖ ≤
√
6δ/µ]≥ 2/3, ∀j. Secondly, set ρ to be Euclidean norm and use Algorithm 1 to get

Ix =Extract({x̂j}mj=1, ρ) and Iy =Extract({ŷj}mj=1, ρ). Next, pick arbitrary k1 ∈ Ix and k2 ∈ Iy and

set (x̄, ȳ) = (x̂k1 , ŷk2). If the problem is unconstrained, by Lemma 1 and applying the upper bound

in (6), we can ensure P [∆Φ(x̄, ȳ)≤ 54(κ2+κ)δ]≥ 1− p, then setting δ = ǫ/54(κ2+κ) provides the

final result. The total computation cost will be

O
(
ln

(
1

p

)
·Cw

M

(
Φ,

ǫ

κ2

))
. (7)

We name this plausible way to generate solutions with high-probability guarantees as the RDE

approach in the paper. Since Cw
M (Φ, δ) is often of order Õ(1/δ) for SC-SC problems, the RDE
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approach introduces an extra κ2 factor to the overall computation cost. Moreover, the RDE

approach is not directly applicable to the constrained problem due to the gradient terms in (6).

This key drawback motivates us to adopt the inexact proximal point method in [8].

Inexact Proximal Point Algorithm. The inexact proximal point algorithm (IPPA) is a classical

optimization method. For any objective function h(·), given an initial proximal center xc
0, IPPA

approximately solves a sequence of proximal point subproblems:

minhi(x) := h(x)+
λi

2
‖x−xc

i‖2, for i= 0,1, · · · , T,

where the next proximal center xc
i+1 is often chosen as some approximate minimizer of hi(x). By

standard arguments (e.g., see Theorem 2 of [8]), IPPA satisfies the following lemma.

Lemma 2. For arbitrary sequences of {λi}Ti=0 and {xc
i}Ti=0, denote x∗

i+1 := argminx h
i(x) as the

exact minimizer of hi(x) and default x∗
0 = x∗ := argminx h(x). Then we have

h(xc
t+1)−h(x∗)≤ ht(xc

t+1)−ht(x∗
t+1)+

t∑

i=0

λi

2
‖xc

i −x∗
i ‖2, for t= 0,1, . . . , T.

3. Unconstrained SSP problems

A key idea of our procedure is to bound ∆Φ(x̄, ȳ) by controlling f(x̄)− f(x∗) and g(y∗)− g(ȳ)

separately. Noting f(x) is convex, and g(y) is concave, the inexact proximal point method can be

adapted to mitigate the dependence on κ. Naturally, we extend the IPPA to SSP problems, which

forms a pillar for our procedure. Fix an increasing sequence of penalties λ0
x, . . . , λ

T
x and λ0

y, . . . , λ
T
y ,

and a sequence of centers xc
0, . . . , x

c
T and yc

0, . . . , y
c
T . For i= 0, . . . , T , we define a series of perturbed

functions together with their solutions as

Φi
x(x, y) := Φ(x, y)+

λi
x

2
‖x−xc

i‖2, f i(x) :=max
y∈Y

Φi
x(x, y) = f(x)+

λi
x

2
‖x−xc

i‖2,

Φi
y(x, y) := Φ(x, y)−

λi
y

2
‖y− yc

i‖2, gi(y) :=min
x∈X

Φi
y(x, y) = g(y)−

λi
y

2
‖y− yc

i‖2;

(x∗
i+1, y

∗
x,i+1) := argmin

x∈X
argmax

y∈Y
Φi

x(x, y), (x∗
y,i+1, y

∗
i+1) := argmax

y∈Y
argmin

x∈X
Φi

y(x, y). (8)

We set λ−1
x = λ−1

y = 0 throughout the paper such that Φ−1
x = Φ−1

y = Φ, x∗
0 = x∗, y∗

0 = y∗. It is

easy to verify that Φi
x(x, y) is SC-SC modulus (µx+λi

x, µy), and it is Lipschitz smooth in terms of

(Lx + λi
x,Ly,Lxy). The situation for Φi

y(x, y) is similar. Hence, we deduce that f i(x) is (µx + λi
x)-

strongly convex and Li
f -smooth, and gi(y) is (µy +λi

y)-strongly concave and Li
g-smooth, where

Li
f :=Lx +L2

xy/µy +λi
x and Li

g :=Ly +L2
xy/µx +λi

y. (9)

The two-sided bounds in (5) and (6) can also be easily extended to Φi
x and Φi

y, i = 0, . . . , T , by

replacing the notation accordingly. Applying Lemma 2 to f and g yields the following proposition.
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Proposition 1. Set λ−1
x = λ−1

y =0, x∗
0 = x∗ := argminx∈X f(x) and y∗

0 = y∗ := argmaxy∈Y f(y). x∗
i

and y∗
i are defined by (8). For t=0, . . . , T , the following estimate holds:

f(xc
t+1)− f(x∗)≤ f t(xc

t+1)− f t(x∗
t+1)+

t∑

i=0

λi
x

2
‖xc

i −x∗
i ‖2,

g(y∗)− g(yc
t+1)≤ gt(y∗

t+1)− gt(yc
t+1)+

t∑

i=0

λi
y

2
‖yc

i − y∗
i ‖2.

Proposition 1 provides guidance for bounding the duality gap using the inexact proximal point

method. If the estimated solutions, xc
T+1 and yc

T+1, of the last pair of perturbed functions, fT (x)

and gT (y), are returned as (x̄, ȳ), the overall duality gap, ∆Φ(x̄, ȳ) = f(x̄)− g(ȳ), can be upper

bounded by the suboptimality in the last pair of perturbed functions and the errors incurred along

the way over both streams.

3.1. The PB-SSP framework

We are now prepared to outline our method. For the ease of understanding, we shall start with the

unconstrained SSP problems and then extend the methodology to constrained problems in Section

4. In the unconstrained setting, both X and Y in problem (1) are full Euclidean spaces, and hence

Assumption 3 will be dropped in this section due to the lack of domain compactness. The bounds

in this section shall be derived under Assumptions 1 and 2. Note that in this setting, we have

∇xΦ(x
∗, y∗) =∇xΦ(x

∗, y∗) = 0, and the two-sided bounds (5) and (6) reduce to

µx

2
‖x−x∗‖2 + µy

2
‖y− y∗‖2 ≤∆w

Φ(x, y)≤∆Φ(x, y)≤
Lf

2
‖x−x∗‖2 + Lg

2
‖y− y∗‖2. (10)

To achieve a high-probability guarantee for the duality gap, we will monitor the overall function

error and the total computation cost over a sequence of perturbed optimization problems. Since

λi
x and λi

y are increasing, we may gradually decrease the tolerance on the errors ‖xc
i − x∗

i ‖ and

‖yc
i −y∗

i ‖, along with which the condition numbers
Lf+λi

x

µx+λi
x
and

Lg+λi
y

µy+λi
y
of the perturbed functions are

decreasing to O(1). With this in mind, we introduce the PB-SSP algorithm as a general framework

to boost the confidence of any SSP oracle M.

Note that, this algorithm also depends on the undefined sequence {λi
x}Ti=0 and {λi

y}Ti=0. To

simplify notation, we treat them as global parameters specified in theorems rather than as the

algorithm input. The following Theorem 1 summarizes the guarantees of the PB-SSP algorithm.
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Algorithm 2: PB-SSP(δ, p,T )

Input: δ > 0, p∈ (0,1), T ∈N.
Set λ−1

x = λ−1
y = 0, xc

−1 = yc
−1 = 0.

for i=0, . . . , T do

Set ǫix =
√

2δ

µx+λi−1
x

and ǫiy =
√

2δ

µy+λi−1
y

.

Generate a point (xc
i , y

c
i ) satisfying

P[‖xc
i −x∗

i ‖ ≤ ǫix]≥ 1− p

2T +4
and P[‖yc

i − y∗
i ‖ ≤ ǫiy]≥ 1− p

2T +4
, (11)

where x∗
i := argminx∈X f i−1(x) and y∗

i := argmaxy∈Y gi−1(y).
end
Generate a point (xc

T+1, y
c
T+1) satisfying

P[fT (xc
T+1)− fT (x∗

T+1)≤ δ]≥ 1− p

2T +4
and P[gT (y∗

T+1)− gT (yc
T+1)≤ δ]≥ 1− p

2T +4
.

(12)
Return: (xc

T+1, y
c
T+1)

Theorem 1 (Proximal Boost of SSP). Fix a target relative accuracy δ > 0, a probability of

failure p∈ (0,1), and an integer T > 0. Then with probability at least 1−p, the point (xc
T+1, y

c
T+1) =

PB-SSP(δ, p,T ) satisfies

∆Φ(x
c
T+1, y

c
T+1)≤ δ

(
2+

T∑

i=0

λi
x

µx +λi−1
x

+
λi
y

µy +λi−1
y

)
. (13)

Proof Denote the events Ei
x := {‖xc

i − x∗
i ‖ ≤ ǫix} and Ei

y := {‖yc
i − y∗

i ‖ ≤ ǫiy}, i= 0, . . . , T . Also

denote ET+1
x := {fT (xc

T+1)− fT (x∗
T+1)≤ δ} and ET+1

y := {gT (y∗
T+1)− gT (yc

T+1)≤ δ}. We deduce

P

[
T+1⋂

i=0

(
Ei

x ∩Ei
y

)
]
= 1−P

[
T+1⋃

i=0

(
(Ei

x)
c ∪ (Ei

y)
c
)
]
≥ 1−

T+1∑

i=0

(
p

2T +4
+

p

2T +4

)
= 1− p.

Given the occurrence of the event
{⋂T+1

i=0

(
Ei

x ∩Ei
y

)}
, Proposition 1 and (10) indicates that

∆Φ(x
c
T+1, y

c
T+1) =f(xc

T+1)− f(x∗)+ g(y∗)− g(yc
T+1)

≤fT (xc
T+1)− fT (x∗

T+1)+ gT (x∗
T+1)− gT (yc

T+1)+
T∑

i=0

λi
x

2
‖xc

i −x∗
i ‖2 +

λi
y

2
‖yc

i − y∗
i ‖2

≤δ

(
2+

T∑

i=0

λi
x

µx +λi−1
x

+
λi
y

µy +λi−1
y

)
,

where the last inequality uses the definition of ǫjx and ǫjy. This completes the proof. �

Looking at (13), we follow the choice from [8] to let λi
x = µxν

i and λi
y = µyν

i for some constant

base number ν. After only T = O(logν κ) iterations, the condition numbers of fT and gT , i.e.,
Lf+λT

x

µx+λT
x

and
Lg+λT

y

µy+λT
y
, will reduce to O(1). Therefore, based on Proposition 1, we only need to bound



Li, Li, and Zhang: High-Probability Guarantees for Stochastic Saddle Point Problems 11

distances for the first T +1 iterations via standard robust distance estimation, while applying the

RDE approach to bound the function gaps for the last iteration. But the difference is that, for the

last iteration where the problem condition numbers are O(1), the dependence on squared condition

numbers of RDE (7) becomes no longer an issue. Corollary 1 provides parameter settings along

with the sample complexity bound for achieving the desirable high-probability guarantee.

Corollary 1 (Proximal Boost of SSP with geometric decay). Let us fix an arbitrary tar-

get accuracy ǫ > 0, and a probability of failure p∈ (0,1). Define the algorithm parameters:

T =

⌈
logν

(
max

(
L2

xy/µy +Lx

µx

,
L2

xy/µx+Ly

µy

))⌉
,

δ =
ǫ

4+4T
, λi

x = µxν
i and λi

y = µyν
i with ν =2 ∀i∈ {0,1, · · · , T}.

Then the point (xc
T+1, y

c
T+1) =PB-SSP(δ, p,T ) satisfies P

(
∆Φ(x

c
T+1, y

c
T+1)≤ ǫ

)
≥ 1−p and the total

computational cost is upper bounded by

O
(
ln

(
ln(κ)

p

)
ln(κ) ·Cw

M

(
Φ,

ǫ

ln(κ)

))
.

proof To generate (xc
i , y

c
i ) satisfying (11) at round i= 0, . . . , T , we can call m=

⌈
18 ln

(
2T+4

p

)⌉

times of Mw (Φi−1
x , δ/27) and Mw(Φi−1

y , δ/27) to get two sets of candidate points X = {x̂j}mj=1

and Y = {ŷj}mj=1, respectively. By applying the Markov’s inequality and the lower side of

(10), we can ensure these candidate points satisfy P

[
‖x̂j −x∗

i ‖ ≤
√
2δ/9(µx+λi−1

x )
]
≥ 2/3 and

P

[
‖ŷj − y∗

i ‖ ≤
√
2δ/9(µy +λi−1

y )
]
≥ 2/3. Then we use Algorithm 1 to extract eligible (xc

i , y
c
i ), and

(11) is guaranteed by applying Lemma 1. The way to generate (xc
T+1, y

c
T+1) at round T +1 is sim-

ilar, where Mw
(
ΦT

x ,
δ(µx+λT

x )

27(Lf+λT
x )

)
and Mw

(
ΦT

y ,
δ(µy+λT

y )

27(Lg+λT
y )

)
are called, and the upper side of (10) is

further applied. Noting that both
Lf+λT

x

µx+λT
x
and

Lg+λT
y

µy+λT
y
are less than 2 according to the above setting,

the total sample complexity is less than

⌈
18 ln

(
2T +4

p

)⌉( T∑

i=0

(
Cw

M(Φi−1
x , δ/27)+Cw

M(Φi−1
y , δ/27)

)
+Cw

M(ΦT
x , δ/54)+Cw

M(ΦT
y , δ/54)

)
.

Moreover, since Φi−1
x and Φi−1

y are constructed by adding quadratic regularization terms to Φ, it

generally holds that

Cw
M(Φi−1

x , δ)≤Cw
M(Φ, δ) and Cw

M(Φi−1
y , δ)≤Cw

M(Φ, δ), i= 0, . . . , T +1.

Hence, the desirable high-probability guarantee and total sample complexity bound are achieved

by substituting the above parameter settings. �

Remark 1. In the analysis of this paper, we choose the base number ν to be 2 for ease of deriving

the bound. Nevertheless, it can take other values without changing the order of the bound.
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3.2. Consequences for SAA solutions

In this part, we examine the consequences of PB-SSP for a specific SSP oracle based on SAA

solutions returned by solving (3). The central question is to determine the total sample size, such

that the estimated solution (x̄, ȳ) satisfies the high-probability guarantees as (2). Following [42],

we make one more assumption, and the Lemma 3 characterizing the oracle follows.

Assumption 4. There exists a constant C s.t. Eξ[‖∇Φξ(x
∗, y∗)‖2]≤C <+∞.

Lemma 3. ([42, Theorem 4]) Suppose Assumption 1, 2 and 4 hold. Given n i.i.d. samples

{ξi}ni=1, the solution (x̂, ŷ) to the SAA empirical problem (3) satisfies

E[‖x̂−x∗‖2]≤
32CL2

xy

nµ2
xµ

2
y

and E[‖ŷ− y∗‖2]≤
32CL2

xy

nµ2
xµ

2
y

,

where (x∗, y∗) is the saddle point to the true objective function Φ.

This result directly bounds the Euclidean distance between the estimated solutions and

the optimal solutions. By Markov’s inequality, we have P

[
‖x̂−x∗‖ ≤

√
96CL2

xy

nµ2
xµ

2
y

]
≥ 2/3 and

P

[
‖ŷ− y∗‖ ≤

√
96CL2

xy

nµ2
xµ

2
y

]
≥ 2/3, which enables us to boost the confidence of the SAA oracle for

unconstrained SSP problems by incorporating Algorithm 2. Next, we show how we should specify

the parameters of the SAA in Algorithm 2 so that the confidence of the oracle can be efficiently

boosted. For ease of notation, let us define the SAA oracle with proximity terms as follows.

Algorithm 3: SAA(n,λx, λy, x
c, yc)

Input: sample count n∈N, amplitude λx, λy ≥ 0, center xc ∈X , yc ∈ Y.
Generate i.i.d. samples ξ1, . . . , ξn ∼P and compute the solution (x̂, ŷ) of

min
x∈X

max
y∈Y

1

n

n∑

i=1

Φξi(x, y)+
λx

2
‖x−xc‖2 − λy

2
‖y− yc‖2.

Return: (x̂, ŷ)

Now let us show how (11) of the PB-SSP method can be ensured. Let us still adopt previous

notations in Algorithm 2. Then we should have x∗
i := argminx∈X maxy∈Y Φ(x, y)+ λi−1

x

2
‖x−xc

i−1‖2.
Now, given an arbitrary batch of n i.i.d. samples {ξi}ni=1, we set

x̂=argmin
x∈X

max
y∈Y

1

n

n∑

j=1

Φξj (x, y)+
λi−1
x

2
‖x−xc

i−1‖2.

In other words, we set (x̂,∼) = SAA(n,λi−1
x ,0, xc

i−1,null). By Lemma 3, we immediately have

P

[
‖x̂−x∗

i ‖ ≤
√

96CL2
xy

n(µx+λi−1
x )2µ2

y

]
≥ 2/3. (14)
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Similarly, with the definition that y∗
i := argmaxy∈Y minx∈X Φ(x, y)− λi−1

y

2
‖y − yc

i−1‖2 and we set

(∼, ŷ) = SAA(n,0, λi−1
y ,null, yc

i−1), then Lemma 3 also indicates that

P

[
‖ŷ− y∗

i ‖ ≤
√

96CL2
xy

nµ2
x(µy +λi

y)
2

]
≥ 2/3. (15)

Consequently, we can apply robust distance estimation to find the high-probability solutions xc
i

and yc
i that satisfy (11) in Algorithm 2. For ease of notation, we define the following algorithm

that combines the SAA oracle and the robust distance estimation.

Algorithm 4: RobustSAA(n,m,λx, λy, x
c, yc)

Input: sample count n∈N, trial count m∈N, amplitude λx, λy ≥ 0, center xc ∈X , yc ∈ Y.
Let X = { } and Y = { } be two empty lists, and set ρ to be Euclidean norm.

Call m times SAA(n,λx, λy, x
c, yc), and add solutions {x̂j, ŷj}mj=1 into X and Y respectively.

Compute Ix =Extract(X,ρ), and pick an arbitrary k1 ∈ Ix.

Compute Iy =Extract(Y,ρ), and pick an arbitrary k2 ∈ Iy.

Return: (x̂k1, ŷk2)

By Lemma 1, (14), and (15), setting (xc
i ,∼) =RobustSAA(ni−1

x ,m,λi−1
x ,0, xc

i−1,null) and (∼, yc
i ) =

RobustSAA(ni−1
y ,m,0, λi−1

y ,null, yc
i−1) with m=

⌈
18 ln

(
2T+4

p

)⌉
, ni−1

x =

⌈
432CL2

xy

(µx+λi−1
x )µ2

yδ

⌉
, and ni−1

y =
⌈

432CL2
xy

µ2
x(µy+λi−1

y )δ

⌉
is sufficient to guarantee (11). For (12), the bound can be obtained by finding the

high-probability bounds on ‖xc
T+1 −x∗

T+1‖ and ‖yc
T+1 − y∗

T+1‖ and then applying the upper side of

(10). We summarize the discussion as the following algorithm and Theorem 2 gives the guarantee.

Algorithm 5: BoostSAA(δ, p,T )

Input: δ > 0, p∈ (0,1), T ∈N.

Set λ−1
x = λ−1

y = 0, xc
−1 = yc

−1 =null and m=
⌈
18 ln

(
2T+4

p

)⌉
.

for i=0, . . . , T do

Set ni−1
x =

⌈
432CL2

xy

(µx+λi−1
x )µ2

yδ

⌉
and ni−1

y =
⌈

432CL2
xy

µ2
x(µy+λi−1

y )δ

⌉
.

xc
i =RobustSAA(ni−1

x ,m,λi−1
x ,0, xc

i−1,null), y
c
i =RobustSAA(ni−1

y ,m,0, λi−1
y ,null, yc

i−1).
end

Set nT
x =

⌈
L2
xy/µy+Lx+λT

x

µx+λT
x

· 432CL2
xy

(µx+λT
x )µ2

yδ

⌉
and nT

y =
⌈
L2
xy/µx+Ly+λT

y

µy+λT
y

· 432CL2
xy

µ2
x(µy+λT

y )δ

⌉
.

Return: xc
T+1 =RobustSAA(nT

x ,m,λT
x ,0, x

c
T ,null)

yc
T+1 =RobustSAA

(
nT
y ,m,0, λT

y ,null, y
c
T

)
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Theorem 2 (Efficiency of BoostSAA). Fix a target relative accuracy δ > 0, a probability of

failure p ∈ (0,1), and a natural number T ∈ N. Then with probability at least 1 − p, the point

(xc
T+1, y

c
T+1) = BoostSAA(δ, p,T ) satisfies

∆Φ(x
c
T+1, y

c
T+1)≤ δ

(
2+

T∑

i=0

λi
x

µx +λi−1
x

+
λi
y

µy +λi−1
y

)
.

Proof We will verify that Algorithm 5 fits the framework of Algorithm 2. Specifically, we check

that (11) and (12) are satisfied. During round i, i= 0, . . . , T , Theorem 3 and the definition of ni−1
x

guarantee

P

[
‖x̂j −x∗

i ‖ ≤
√

2δ

9(µx+λi−1
x )

]
≥ 2/3, j = 1, . . . ,m

for all the x̂j in the list X inside the RobustSAA algorithm. Then by a direct application of Lemma

1, we deduce that

P

[
‖xc

i −x∗
i ‖ ≤

√
2δ

µx +λi−1
x

]
≥ 1− exp

(
−m

18

)
≥ 1− p

2T +4
,

where the second inequality is due to the setting of m. In the last round T +1, Theorem 3 and the

definition of nT
x guarantee

P

[
‖x̂j −x∗

T+1‖ ≤
√

2δ

9(L2
xy/µy +Lx +λT

x )

]
≥ 2/3, j =1, . . . ,m

for all the x̂j in the list X inside the RobustSAA algorithm. Lemma 1 guarantees

P

[
‖xc

T+1 −x∗
T+1‖ ≤

√
2δ

L2
xy/µy +Lx +λT

x

]
≥ 1− exp

(
−m

18

)
≥ 1− p

2T +4
.

Note that, we have fT (xc
T+1)− fT (x∗

T+1)≤ 1
2

(
L2

xy/µy +Lx +λT
x

)
‖xc

T+1 − x∗
T+1‖2 due to the Lips-

chitz smoothness of fT (x) characterized in (9). Thus, we deduce that

P
[
fT (xc

T+1)− fT (x∗
T+1)≤ δ

]
≥ 1− p

2T +4
.

The other part for yc
i , i=0, . . . , T +1 can be proved through a completely parallel way. Thus, both

(11) and (12) are realized in Algorithm 5, and the proof completes. �

Likewise, the following parameter setting yields the high-probability guarantee.

Corollary 2 (Efficiency of BoostSAA with geometric decay). Fix a target accuracy ǫ >

0, and a probability of failure p∈ (0,1). Define the algorithm parameters:

T =

⌈
logν

(
max

(
L2

xy/µy +Lx

µx

,
L2

xy/µx+Ly

µy

))⌉
,

δ =
ǫ

4+4T
, λi

x = µxν
i and λi

y = µyν
i with ν =2 ∀i∈ [0, T ].
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Then the point (xc
T+1, y

c
T+1) = BoostSAA(δ, p,T ) satisfies

P
(
∆Φ(x

c
T+1, y

c
T+1)≤ ǫ

)
≥ 1− p.

Moreover, the total number of samples used by the algorithm can be calculated as

m

(
T∑

i=0

(ni−1
x +ni−1

y )+nT
x +nT

y

)

≤
432mCL2

xy

µ2
yδ

·
(

T∑

i=0

1

µx +λi−1
x

+
2

µx +λT
x

)
+

432mCL2
xy

µ2
xδ

·
(

T∑

i=0

1

µy +λi−1
y

+
2

µy +λT
y

)
.

Noting that

T∑

i=0

1

µx +λi−1
x

+
2

µx +λT
x

=
1

µx

+
T∑

i=1

1

µx +µx2i−1
+

2

µx +µx2T
≤ 1

µx

+
T∑

i=1

1

µx2i−1
+

2

µx2T
≤ 3

µx

,

we conclude the total sample complexity is bounded by

O
(
ln(κ) ln

(
ln(κ)

p

)
Cκ2

µǫ

)
.

The κ2 appearing in the last term roots in the SAA oracle characterized by Lemma 3. Therefore,

this dependence cannot be mitigated by our procedure.

Finally, it is worth noting that if we do not use the inexact proximal point iterations of PB-SSP,

we can directly apply the RDE approach to generate (x̄, ȳ) =RobustSAA(n,m,0,0,null,null), with

n=
⌈
432CL2

xy

ǫµ2
xµ

2
y

(
L2
xy

µy
+

L2
xy

µx
+Lx +Ly

)⌉
and m= ⌈18 ln (2/p)⌉. The high-probability guarantee (2) is

still achieved, but the overall sample complexity will be

m ·n=O
(
ln

(
1

p

)
Cκ4

µǫ

)
,

which is worse than PB-SSP by a κ2 factor in terms of sample efficiency.

4. Extension to constrained problems

We now consider the constrained SSP problem, where both X and Y are compact and convex sets,

and Assumption 3 is satisfied. However, the techniques in Section 3 are not directly extendable

in this scenario due to the nonvanishing gradient terms in the two-sided bounds (5) and (6):

〈∇xΦ(x
∗, y∗), x−x∗〉 and 〈∇yΦ(x

∗, y∗), y−y∗〉. While we can use an SSP oracle to ensure that these

quantities are small in expectation, we cannot directly use robust distance estimation to extract

candidate points because they are not well-defined pseudometrics. Such a difficulty further prevents

us from generating (xc
T+1, y

c
T+1) that satisfies (12) in the last round if we still want to follow the

framework of PB-SSP. Nevertheless, we can still apply the techniques presented in Section 3 to

generate (xc
i , y

c
i ) for round i=0, . . . , T , since the additional two quantities are always non-negative

due to the optimality conditions, and the lower bound of Equation (10) still holds for constrained

SSP problems.
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4.1. Robust estimation for constrained setting

To overcome the above difficulty, let us consider the following procedure. Assume we have the exact

values of ∇xΦ(x
∗, y∗) and ∇yΦ(x

∗, y∗), we can define two pseudometrics:

ρx(x1, x2) = |〈∇xΦ(x
∗, y∗), x1 −x2〉| and ρy(y1, y2) = |〈∇yΦ(x

∗, y∗), y1 − y2〉|.

Of course, the exact values of ∇xΦ(x
∗, y∗) and ∇yΦ(x

∗, y∗) are not accessible, so we will replace

them with reasonable estimators and define two alternative pseudometrics. We will see later that

in order to control the function errors within an acceptable magnitude, it suffices to approximate

∇xΦ(x
∗, y∗) and ∇yΦ(x

∗, y∗) up to a very loose accuracy, and the extra computation cost is negli-

gible compared with that of calling the SSP oracle. More formally, we make one more assumption

for the stochastic gradient of Φ.

Assumption 5. Fix a probability space (Ω,F ,P) and let Gx : Rdx × R
dy × Ω → R

dx and Gy :

R
dx ×R

dy ×Ω→R
dy be two measurable maps satisfying

EξGx(x, y, ξ) =∇xΦ(x, y), Eξ‖Gx(x, y, ξ)−∇xΦ(x, y)‖2 ≤ σ2
x,

EξGy(x, y, ξ) =∇yΦ(x, y), Eξ‖Gy(x, y, ξ)−∇yΦ(x, y)‖2 ≤ σ2
y,

where dx and dy are the dimensions of X and Y respectively.

Under this assumption, we can define two gradient oracles Gσx(·, ·, δG) and Gσy(·, ·, δG) as the average
of a finite sample of stochastic gradients, i.e., for any x∈X and y ∈Y,

Gσx(x, y, δG) :=
1

nx

nx∑

i=1

Gx(x, y, ξi) where nx =

⌈
3σ2

x

δ2G

⌉
,

Gσy(x, y, δG) :=
1

ny

ny∑

i=1

Gy(x, y, ξi) where ny =

⌈
3σ2

y

δ2G

⌉
.

Using Markov’s inequality, we have

P



∥∥∥∥∥
1

nx

nx∑

i=1

Gx(x, y, ξi)−∇xΦ(x, y)

∥∥∥∥∥

2

≤ δ2G


≥ 1− σ2

x/nx

δ2G
≥ 2

3
,

P



∥∥∥∥∥
1

ny

ny∑

i=1

Gy(x, y, ξi)−∇yΦ(x, y)

∥∥∥∥∥

2

≤ δ2G


≥ 1−

σ2
y/ny

δ2G
≥ 2

3
.

Based on the two gradient oracles, we can apply Algorithm 1 to generate gradient estimators with

high-probability guarantees, which is encoded in Algorithm 6.
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Algorithm 6: Gradient(x, y, δG,m,Flag)

Input: a point (x, y), δG > 0, trial count m∈N, Flag ∈ {0,1}.
if Flag = 1 then

Define the map G :=Gx, and σ := σx.
else

Define the map G :=Gy, and σ := σy.
end

Let G̃ = { } be an empty list and n= ⌈3σ2/δ2G⌉.
for j = 1, . . . ,m do

Generate i.i.d. samples ξ1, . . . , ξn ∼P and compute

Gj
σ(x, y, δG) =

1

n

n∑

i=1

G(x, y, ξi).

Add Gj
σ(x, y, δG) into G̃.

end

Set ρ to be Euclidean norm and compute IG =Extract(G̃, ρ). Pick an arbitrary k ∈ IG.
Return: Gk

σ(x, y, δG)

Let ∇̃xΦ(x, y) and ∇̃yΦ(x, y) denote the outputs of Algorithm 6 by setting Flag = 1 and 0

respectively. A direct application of Lemma 1 yields

P[‖∇̃xΦ(x, y)−∇xΦ(x, y)‖ ≤ 3δG]≥ 1− exp(−m/18),

P[‖∇̃yΦ(x, y)−∇yΦ(x, y)‖ ≤ 3δG]≥ 1− exp(−m/18).

Also, we can extend the above to robustly estimate the gradient for all perturbed functions. Define

∇̃xΦ
i
x(x, y) := ∇̃xΦ(x, y) + λi

x(x − xc
i) and ∇̃yΦ

i
y(x, y) := ∇̃yΦ(x, y) − λi

y(y − yc
i ). The following

results hold for i=−1,0, . . . , T .

P[‖∇̃xΦ
i
x(x, y)−∇xΦ

i
x(x, y)‖≤ 3δG]≥ 1− exp(−m/18),

P[‖∇̃yΦ
i
x(x, y)−∇yΦ

i
x(x, y)‖≤ 3δG]≥ 1− exp(−m/18).

We then propose the Algorithm 7 to robustly estimate the gap fT (x)− fT (x∗
T+1) and gT (y∗

T+1)−
gT (y), and the theorem follows.

Theorem 3 (Robust function gap estimation). With probability at least 1− 2 exp(−m
18
), the

point x=FunctionGap(Mw(·, ·), δ,m,Flag= 1) satisfies the guarantee

fT (x)− fT (x∗
T+1)≤

(
3+ (18

√
2+45)

Lx+λT
x

µx +λT
x

+
36Lxy√

(µx +λT
x )µy

+
9L2

xy

(µx +λT
x )µy

)
δ.

Likewise, with probability at least 1− 2 exp(−m
18
), the point y=FunctionGap(Mw(·, ·), δ,m,Flag=

0) satisfies the guarantee

gT (y∗
T+1)− gT (y)≤


3+ (18

√
2+45)

Ly +λT
y

µy +λT
y

+
36Lxy√

µx(µy +λT
y )

+
9L2

xy

µx(µy +λT
y )


δ.
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Algorithm 7: FunctionGap(Mw(·, ·), δ,m,Flag)

Input: Oracle Mw(·, ·), target relative accuracy δ > 0, an odd number m∈N, Flag ∈ {0,1}.
if Flag = 1 then

Define the objective function ΦT := ΦT
x , and δG := (Lx +λT

x )
√
δ/(µx+λT

x ).

else

Define the objective function ΦT := ΦT
y , and δG := (Ly +λT

y )
√
δ/(µy +λT

y ).

end

Independently generate (x̂1, ŷ1), . . . , (x̂m, ŷm) by calling Mw(ΦT , δ/3) such that

P[∆w
ΦT

(x̂j, ŷj)≤ δ]≥ 2

3
, for all j ∈ [1,m].

Set ρ1 = ‖ · ‖ to be Euclidean norm and compute

I1 =Extract({x̂j}mj=1, ρ1) and I2 =Extract({ŷj}mj=1, ρ1).

Fix arbitrary k1 ∈ I1, k2 ∈ I2 and set xG := x̂k1 , yG := ŷk2 .

if Flag = 1 then

Compute ∇̃ΦT (xG, yG) =Gradient (xG, yG, δG,m,Flag)+λT
x (xG −xc

T ).

Define the pseudometric ρ2(x1, x2) := |〈∇̃ΦT (xG, yG), x1 −x2〉| on X .

Compute I3 =Extract({x̂j}mj=1, ρ2), and pick an arbitrary k3 ∈ I1 ∩I3.

Return: x̂k3

else

Compute ∇̃ΦT (xG, yG) =Gradient (xG, yG, δG,m,Flag)−λT
y (yG− yc

T ).

Define the pseudometric ρ2(y1, y2) := |〈∇̃ΦT (xG, yG), y1− y2〉| on Y.
Compute I3 =Extract({ŷj}mj=1, ρ2), and pick an arbitrary k3 ∈ I2 ∩I3.

Return: ŷk3
end

Proof We first show the detailed proof for the results when Flag = 1. We have ΦT := ΦT
x

and denote ∇̃ΦT = ∇̃xΦ
T
x to avoid confusion. Define the index set J = {j ∈ [1,m] : ∆w

ΦT
x
(x̂j, ŷj) :=

ΦT
x (x̂j, y

∗
x,T+1)−ΦT

x (x
∗
T+1, ŷj)≤ δ} and the event

E1 :=
{
|J |> m

2

}
.

Hoeffding’s inequality for Bernoulli random variable guarantees P[E1]≥ 1−exp(−m/18). Moreover,

using the lower bound (5), we deduce it holds for all j ∈ J that

‖x̂j −x∗
T+1‖ ≤

√
2δ

(µx+λT
x )

, ‖ŷj − y∗
x,T+1‖ ≤

√
2δ

µy

and 〈∇xΦ
T
x (x

∗
T+1, y

∗
x,T+1), x̂j −x∗

T+1〉 ≤ δ.
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Henceforth, suppose that the event E1 occurs. Then Lemma 1 implies

‖x̂k1 −x∗
T+1‖ ≤ 3

√
2δ

(µx +λT
x )

for all k1 ∈ I1, ‖ŷk2 − y∗
x,T+1‖ ≤ 3

√
2δ

µy

for all k2 ∈ I2.

Define the event

E2 :=
{
‖∇̃ΦT

x (xG, yG)−∇xΦ
T
x (xG, yG)‖≤ 3δG =3(Lx +λT

x )
√
δ/(µx+λT

x )
}
,

and we know that P[E2]≥ 1− exp(−m/18). Suppose that E1 ∩E2 occurs. Then, we compute

‖∇̃xΦ
T
x (xG, yG)−∇xΦ

T
x (x

∗
T+1, y

∗
x,T+1)‖

≤‖∇̃xΦ
T
x (xG, yG)−∇xΦ

T
x (xG, yG)‖+ ‖∇xΦ

T
x (xG, yG)−∇xΦ

T
x (x

∗
T+1, y

∗
x,T+1)‖

≤3(Lx+λT
x )
√
δ/(µx+λT

x )+ (Lx +λT
x )‖xG −x∗

T+1‖+Lxy‖yG − y∗
x,T+1‖

≤3(Lx+λT
x )
√
δ/(µx+λT

x )+ 3
√
2(Lx+λT

x )
√
δ/(µx+λT

x )+ 3Lxy

√
2δ/µy

=(3+3
√
2)(Lx+λT

x )
√
δ/(µx+λT

x )+ 3Lxy

√
2δ/µy.

Consequently, for each index j ∈J , we successively deduce

ρ2(x̂j, x
∗
T+1) = |〈∇̃xΦ

T
x (xG, yG), x̂j −x∗

T+1〉|

≤ 〈∇xΦ
T
x (x

∗
T+1, y

∗
x,T+1), x̂j −x∗

T+1〉+ |〈∇̃xΦ
T
x (xG, yG)−∇xΦ

T
x (x

∗
T+1, y

∗
x,T+1), x̂j −x∗

T+1〉|

≤ δ+

(
(3+3

√
2)(Lx+λT

x )
√
δ/(µx+λT

x )+ 3Lxy

√
2δ/µy

)√
2δ/(µx+λT

x )

=

(
1+ (3

√
2+6)(Lx+λT

x )/(µx+λT
x )+ 6Lxy/

√
(µx+λT

x )µy

)
δ.

Therefor, in the event E1 ∩E2, we conclude

ρ2(x̂j, x
∗
T+1)≤

(
3+ (9

√
2+18)(Lx+λT

x )/(µx+λT
x )+ 18Lxy/

√
(µx+λT

x )µy

)
δ for all j ∈ I3.

Finally, fix an arbitrary index k3 ∈ I1 ∩I3. We therefore deduce

〈∇xΦ
T
x (x

∗
T+1, y

∗
x,T+1), x̂k3 −x∗

T+1〉

≤ρ2(x̂k3 , x
∗
T+1)+ |〈∇xΦ

T
x (x

∗
T+1, y

∗
x,T+1)−∇̃xΦ

T
x (xG, yG), x̂k3 −x∗

T+1〉|

≤
(
3+ (9

√
2+18)(Lx+λT

x )/(µx+λT
x )+ 18Lxy/

√
(µx+λT

x )µy

)
δ+

(
(3+3

√
2)(Lx+λT

x )
√
δ/(µx+λT

x )+ 3Lxy

√
2δ/µy

)
3
√
2δ/(µx+λT

x )

=

(
3+ (18

√
2+36)(Lx+λT

x )/(µx+λT
x )+ 36Lxy/

√
(µx +λT

x )µy

)
δ.

Using the upper bound of (6), we therefore conclude

fT (x̂k3)− fT (x∗
T+1)

≤1

2

(
L2

xy

µy

+Lx +λT
x

)
‖x̂k3 −x∗

T+1‖2 + 〈∇xΦ
T
x (x

∗
T+1, y

∗
x,T+1), x̂k3 −x∗

T+1〉

≤
(
3+ (18

√
2+45)(Lx+λT

x )/(µx+λT
x )+ 36Lxy/

√
(µx +λT

x )µy +9L2
xy/((µx+λT

x )µy)

)
δ.
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Noting P[E1∩E2]≥ 1− 2 exp(−m/18), the proof for Flag = 1 completes. The results of the second

part can be proved in a completely parallel way. �

The intuition behind Algorithm 7 is that, the returned x̂k3 with k3 ∈ I1 ∩ I3 simultaneously

achieves low values of ‖x̂k3 − x∗
T+1‖ and 〈∇xΦ(x

∗
T+1, y

∗
x,T+1), x̂k3 − x∗

T+1〉 with high probability.

Recall that Algorithm 1 produces at least m/2 points, so m must be an odd number to ensure

I1 ∩I3 is not empty. Similar arguments hold for the returned yk. With Algorithm 7 on hand, we

can generate (xc
T+1, y

c
T+1) satisfying (12). Besides, note that Algorithm 7 can also be applied to

robustly estimate f(x)− f(x∗) and g(y∗)− g(y). To make it happen, we can simply change the

index T to −1, set λ−1
x = λ−1

y = 0 such that x∗
0 = x∗, y∗

0 = y∗, and Theorem 3 adapts accordingly.

4.2. Consequences for SAA solutions

In this part, we examine the results for a specific SSP oracle based on SAA solutions. We will

still follow the general framework of PB-SSP outlined in Section 3.1, whereas Algorithm 7 will be

in place to generate (xc
T+1, y

c
T+1) in the last round. To formally characterize this SAA oracle for

constrained SSP problems, we provide the following lemma.

Lemma 4 ([42, Theorem 1 and Lemma 2]). Fix an i.i.d. sample ξ1, ξ2, . . . , ξn. Under Assump-

tion 1 and 3, the solution (x̂, ŷ) to the SAA problem Φ̂n defined by (3) satisfies the bound:

E[∆w
Φ(x̂, ŷ)]≤

2

n

(
ℓ2x
µx

+
ℓ2y
µy

)
.

Moreover, denote (x̂, ŷx) and (x̂y, ŷ) the solutions to the SAA problems adding regularization terms

Φ̂n +
λi
x

2
‖x−xc

i‖2 and Φ̂n − λi
y

2
‖y− yc

i‖2 respectively. They are bounded by

E[∆w
Φi
x
(x̂, ŷx)]≤

2

n

(
ℓ2x

µx +λi
x

+
ℓ2y
µy

)
,

E[∆w
Φi
y
(x̂y, ŷ)]≤

2

n

(
ℓ2x
µx

+
ℓ2y

µy +λi
y

)
.

Note that ℓx and ℓy originate from Φ, and the Lipschitz constant of the regularization terms will

not contribute to the above bounds.

The above oracle can bound the weaker variant of the duality gap. Use Algorithm 3 and 4 in

Section 3 without any change, and consider the returned solution (x̂,∼) = SAA(n,λi−1
x ,0, xc

i−1,null).

By Markov’s inequality and applying the lower bound (5), Lemma 4 implies

P

[
‖x̂−x∗

i ‖ ≤
√

12

n

(
ℓ2x

(µx +λi−1
x )2

+
ℓ2y

(µx+λi−1
x )µy

)]
≥ 2/3. (16)

Similarly, setting (∼, ŷ) = SAA(n,0, λi−1
y ,null, yc

i−1), we deduce

P

[
‖ŷ− y∗

i ‖ ≤
√

12

n

(
ℓ2x

µx(µy +λi−1
y )

+
ℓ2y

(µy +λi−1
y )2

)]
≥ 2/3. (17)
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Consequently, we can leverage the robust distance estimation to generate (xc
i , y

c
i ) satisfying (11)

in Algorithm 2. That is, setting (xc
i ,∼) = RobustSAA(ni−1

x ,m,λi−1
x ,0, xc

i−1,null) and (∼, yc
i ) =

RobustSAA(ni−1
y ,m,0, λi−1

y ,null, yc
i−1) with m =

⌈
18 ln

(
2T+4

p

)⌉
, ni−1

x =
⌈
54
δ

(
ℓ2x

µx+λi−1
x

+
ℓ2y
µy

)⌉
, and

ni−1
y =

⌈
54
δ

(
ℓ2x
µx

+
ℓ2y

µy+λi−1
y

)⌉
. Then, Lemma 1, and the above two inequalities (16) and (17) guaran-

tee (11).

To generate (xc
T+1, y

c
T+1) satisfying (12), we need to use Algorithm 7. Recall the definition of SSP

oracles M in Section 1.1, we define the following two operations of the above SAA oracle when

applied to ΦT
x and ΦT

y .

Mw(ΦT
x , δ) := SAA(n,λT

x ,0, x
c
T ,null) with Cw

M(ΦT
x , δ) := n=

⌈
2

δ

(
ℓ2x

µx +λT
x

+
ℓ2y
µy

)⌉
,

Mw(ΦT
y , δ) := SAA(n,0, λT

y ,null, y
c
T ) with Cw

M(ΦT
y , δ) := n=

⌈
2

δ

(
ℓ2x
µx

+
ℓ2y

µy +λT
y

)⌉
.

(18)

To estimate the gradient, we simply declare

Gx(x, y, ξ) :=∇xΦξ(x, y) and Gy(x, y, ξ) :=∇yΦξ(x, y).

Then we can upper-bound the variance by the second moment

Eξ‖Gx(x, y, ξ)−∇xΦ(x, y)‖2 ≤ 2
(
Eξ‖∇xΦξ(x, y)‖2 +Eξ‖∇xΦ(x, y)‖2

)
≤ 4ℓ2x,

Eξ‖Gy(x, y, ξ)−∇yΦ(x, y)‖2 ≤ 2
(
Eξ‖∇yΦξ(x, y)‖2 +Eξ‖∇yΦ(x, y)‖2

)
≤ 4ℓ2y.

In addition, we define the following two quantities for ease of notation.

MT
x := 3+ (18

√
2+45)(Lx+λT

x )/(µx+λT
x )+ 36Lxy/

√
(µx+λT

x )µy +9L2
xy/
(
(µx +λT

x )µy

)
,

MT
y := 3+ (18

√
2+45)(Ly +λT

y )/(µy +λT
y )+ 36Lxy/

√
µx(µy +λT

y )+ 9L2
xy/
(
µx(µy +λT

y )
)
.

By letting λT
x and λT

y sufficient large, MT
x and MT

y will reduce to O(1). Next, we can call Algo-

rithm 7 to independently generate xc
T+1 = FunctionGap(Mw(·, ·), δ/MT

x ,m,Flag = 1) and yc
T+1 =

FunctionGap(Mw(·, ·), δ/MT
y ,m,Flag = 0) with Mw(·, ·) defined in (18) and m=

⌈
18 ln

(
2T+4

p

)⌉
.

Theorem 3 guarantees (12), with a slight deviation that the right-hand sides of the two inequalities

become 1− 2p
2T+4

. The reason is that Algorithm 7 and Theorem 3 rely on the occurrence of two high-

probability events, while robust distance estimation only depends on one. We can easily fix this by

modifying m to be
⌈
18 ln

(
2T+6

p

)⌉
for all rounds. This way, the probability of all events occurring

is still lower bounded by 1− p, and the order of computation cost remains unaffected. Besides,

recall that m must be set as an odd number. We summarize the above discussion into the Algo-

rithm 8. The following theorem and its corollary are immediate consequences of Theorem 1 and 3.
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Algorithm 8: BoostSAA-C(δ, p,T )

Input: δ > 0, p∈ (0,1), T ∈N

Set λ−1
x = λ−1

y = 0, xc
−1 = yc

−1 = 0 and m=
⌈
18 ln

(
2T+6

p

)⌉
or
⌈
18 ln

(
2T+6

p

)⌉
+1.

for i=0, . . . , T do

Set ni−1
x =

⌈
54
δ

(
ℓ2x

µx+λi−1
x

+
ℓ2y
µy

)⌉
and ni−1

y =
⌈
54
δ

(
ℓ2x
µx

+
ℓ2y

µy+λi−1
y

)⌉
.

xc
i =RobustSAA(ni−1

x ,m,λi−1
x ,0, xc

i−1,null), y
c
i =RobustSAA(ni−1

y ,m,0, λi−1
y ,null, yc

i−1).
end
Return: xc

T+1 =FunctionGap(Mw(·, ·), δ/MT
x ,m,Flag= 1)

yc
T+1 =FunctionGap

(
Mw(·, ·), δ/MT

y ,m,Flag= 0
)

Theorem 4 (Efficiency of BoostSAA-C). Fix a target relative accuracy δ > 0, a probability

of failure p ∈ (0,1), and natural numbers T ∈ N. Then with probability at least 1 − p, the point

(xc
T+1, y

c
T+1) = BoostSAA-C(δ, p,T ) satisfies

∆Φ(x
c
T+1, y

c
T+1)≤ δ

(
2+

T∑

i=0

λi
x

µx +λi−1
x

+
λi
y

µy +λi−1
y

)
.

Corollary 3 (Efficiency of BoostSAA-C with geometric decay). Fix a target accuracy

ǫ > 0, and a probability of failure p∈ (0,1). Define the algorithm parameters:

T =

⌈
logν

(
max

(
Lx

µx

,
Ly

µy

,
L2

xy

µxµy

))⌉
,

δ =
ǫ

4+4T
, λi

x = µxν
i and λi

y = µyν
i with ν =2 ∀i∈ [0, T ].

Then the point (xc
T+1, y

c
T+1) = BoostSAA-C(δ, p,T ) satisfies

P
(
∆Φ(x

c
T+1, y

c
T+1)≤ ǫ

)
≥ 1− p.

Given the above parameter setting, we have (Lx + λT
x )/(µx + λT

x ) ≤ 2, (Ly + λT
y )/(µy + λT

y ) ≤
2,L2

xy/ ((µx+λT
x )µy)≤ 1, and L2

xy/
(
µx(µy +λT

y )
)
≤ 1. Hence,MT

x and MT
y are both upper bounded

by 138+36
√
2, and the total number of samples used by Algorithm 8 can be calculated as

m

(
T∑

i=0

(ni−1
x +ni−1

y )+Cw
M

(
ΦT

x ,
δ

3MT
x

)
+Cw

M

(
ΦT

y ,
δ

3MT
y

))
+

m

(
3MT

x (µx +λT
x )σ

2
x

(Lx +λT
x )

2δ
+

3MT
y (µy +λT

y )σ
2
y

(Ly +λT
y )

2δ

)

=m
T∑

i=0

(
54

δ

(
ℓ2x

µx +λi−1
x

+
ℓ2y
µy

+
ℓ2x
µx

+
ℓ2y

µy +λi−1
y

))
+

m

(
6MT

x

δ

(
ℓ2x

µx +λT
x

+
ℓ2y
µy

)
+

6MT
y

δ

(
ℓ2x
µx

+
ℓ2y

µy +λT
y

)
+

3MT
x (µx+λT

x )σ
2
x

(Lx +λT
x )

2δ
+

3MT
y (µy +λT

y )σ
2
y

(Ly +λT
y )

2δ

)

≤m

δ

(
T∑

i=0

(
108ℓ2x
µx

+
108ℓ2y
µy

)
+

12MT
x ℓ

2
x

µx

+
12MT

y ℓ
2
y

µy

+
6MT

x ℓ
2
x

Lx

+
6MT

y ℓ
2
y

Lx

)

≤m

δ

(
(108T +12MT

x )ℓ
2
x

µx

+
(108T +12MT

y )ℓ
2
y

µy

+
6MT

x ℓ
2
x

Lx

+
6MT

y ℓ
2
y

Lx

)
.
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In the first row, the two terms of Cw
M(·, ·) as defined in (18) correspond to the cost of calling the

SAA oracle in the last round, and the last two terms measure the cost to execute the two gradient

oracles. After substituting the parameters, we conclude the total sample complexity is bounded by

O
(
ln2(κ) ln

(
ln(κ)

p

)
ℓ2

µǫ

)
. (19)

As before, we can also directly use Algorithm 7 to generate (x̄, ȳ) with high-probability guaran-

tees, which is the RDE approach for constrained settings. Denote

Mx := 3+ (18
√
2+45)Lx/µx+36Lxy/

√
µxµy +9L2

xy/ (µxµy) ,

My := 3+ (18
√
2+45)Ly/µy +36Lxy/

√
µxµy +9L2

xy/ (µxµy) ,

both of which have the order of O(κ2). Let m= ⌈18 ln (4/p)⌉ or m= ⌈18 ln (4/p)⌉+1, δ = ǫ/(Mx+

My). We can then independently generate x̄ = FunctionGap(Mw(·, ·), δ,m,Flag = 1) and ȳ =

FunctionGap(Mw(·, ·), δ,m,Flag= 0) by letting all index T be −1 in Algorithm 7, while the high-

probability guarantee of (2) is ensured by Theorem 3. Noting the two executions of Algorithm 7

can share the effort for calling the oracle, we calculate the number of samples used to be

m ·Cw
M

(
Φ,

ǫ

3(Mx+My)

)
+m · (Mx +My) ·

(
3σ2

xµx

L2
xǫ

+
3σ2

yµy

L2
yǫ

)
,

which is on the order of

O
(
ln

(
1

p

)
ℓ2κ2

µǫ

)
.

Similar to the results in Section 3, this RDE approach is worse than our PB-SSP due to the extra

κ2 factor of the sample complexity.

4.3. Extension to general convex and concave problems

Now we extend our analysis of the above SSA oracle to C-C SSP problems, i.e., µx = µy = 0.

To make the above results applicable, we consider an alternative objective function by adding

regularization terms to Φ, given by

Φα(x, y) := Φ(x, y)+
αx

2
‖x−x′‖2 − αy

2
‖y− y′‖2,
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where (x′, y′) is an arbitrary point in X ×Y. Obviously, Φα is SC-SC modulus (αx, αy). Denote the

diameter of X and Y by Dx and Dy respectively, and define D2 :=D2
x+D2

y. We have the following

inequality about duality gaps for any returned solution (x̄, ȳ), given by

∆Φα(x̄, ȳ)

=

(
max
y∈Y

Φ(x̄, y)+
αx

2
‖x̄−x′‖2 − αy

2
‖y− y′‖2

)
−
(
min
x∈X

Φ(x, ȳ)+
αx

2
‖x−x′‖2 − αy

2
‖ȳ− y′‖2

)

≥
(
max
y∈Y

Φ(x̄, y)− αy

2
‖y− y′‖2

)
−
(
min
x∈X

Φ(x, ȳ)+
αx

2
‖x−x′‖2

)

≥max
y∈Y

Φ(x̄, y)−min
x∈X

Φ(x, ȳ)−
(αxD

2
x +αyD

2
y)

2

=∆Φ(x̄, ȳ)−
(αxD

2
x +αyD

2
y)

2
.

Hence, we can set an alternative accuracy ǫ′ > 0 and apply Algorithm 8 to Φα instead. The returned

solution (x̄, ȳ) satisfies

P
(
∆Φ(x̄, ȳ)≤ ǫ′ +(αxD

2
x+αyD

2
y)/2

)
≥ 1− p.

After substituting some parameters in (19), we deduce the sample complexity is bounded by

O
(
ln2(L/α) ln

(
ln(L/α)

p

)
ℓ2

αǫ′

)
,

where α :=min(αx, αy). Recalling the remark below Lemma 4, ℓ appearing in the above bound is

not affected by the regularization terms. Finally, the following corollary illustrates how to properly

set the regularization terms and the alternative accuracy, and establishes the high-probability

guarantees for C-C SSP problems.

Corollary 4 (Efficiency of BoostSAA-C to C-C problems). Fix a target accuracy ǫ > 0,

and a probability of failure p∈ (0,1). Set an alternative accuracy ǫ′ = ǫ/2, the regularization param-

eter αx = ǫ/2D2
x and αy = ǫ/2D2

y. The point (x̄, ȳ) returned by applying Algorithm 8 to Φα satisfies

P (∆Φ(x̄, ȳ)≤ ǫ)≥ 1− p,

and the total number of samples is bounded by

O
(
ln2(LD2/ǫ) ln

(
ln(LD2/ǫ)

p

)
ℓ2D2

ǫ2

)
.

Meanwhile, directly applying Algorithm 7 to Φα and properly choosing parameters can also provide

high-probability guarantees, while the sample complexity is on the order of

O
(
ln

(
1

p

)
ℓ2L2D6

ǫ4

)
.
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5. Compatibility with first-order oracles

The previous discussion is mainly based on the SAA oracle, which works by first constructing an

empirical SSP problem and then solving it by arbitrary algorithms such as extra gradient method.

However, as PB-SSP is a general framework that may accommodate arbitrary qualified oracles,

in this section, we would like to illustrate its compatibility with stochastic first-order oracles for

SC-SC unconstrained and constrained SSP problems, respectively.

5.1. Unconstrained SSP problems

For unconstrained SSP problems, we consider the multistage stochastic optimistic gradient descent

ascent (MOGDA) method by Fallah et al. [9] as our oracle because it shares identical assumptions

with us. The MOGDA method can provide in expectation guarantees for the squared distance to

the saddle point, and we summarize it in the following lemma.

Lemma 5. ([9, Corollary V.3.]) Suppose Assumption 1, 2 and 5 hold. Denote σ2 :=max{σ2
x, σ

2
y}

and ∆in := ‖x0 − x∗‖2 + ‖y0 − y∗‖2. Let (xn, yn) be the solution returned by the MOGDA method

after taking n samples, then it satisfies

E

[
‖xn −x∗‖2 + ‖yn − y∗‖2

]
≤O

(
exp

(
−Θ(n)

κ

)
∆in +

σ2

nµ2

)

where (x0, y0) is the initial point and (x∗, y∗) is the saddle point to the true objective function Φ.

The above lemma implies a sample complexity of O
(
κ ln

(
∆in

ǫ

)
+ σ2

µ2ǫ

)
to guarantee an ǫ-solution

in the sense of squared distance. Similar to our discussion in Section 3.2, we can leverage the

framework of Algorithm 2 to equip MOGDA with the high-probability guarantee for the duality

gap. A minor issue is that we need to provide an initial point to the oracle when solving the sequence

of subproblems. Naturally, we choose to adopt the solution obtained from the previous iteration as

the initial point for the next subproblem. Denote MOGDA(δ,Φ, x0, y0) as the operation to use the

MOGDA algorithm to generate a solution with δ small squared distance in expectation starting

from the initial point (x0, y0). We summarize the procedure to equip MOGDA with high-probability

guarantees in the following algorithms, and the corollary is a direct application of Corollary 1.
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Algorithm 9: RobustMOGDA(δ,Φ, x0, y0,m)

Input: δ > 0, Φ, x0 ∈X , y0 ∈ Y, m∈N.
Let Z = { } be an empty lists, and set ρ to be Euclidean norm.
Call m times MOGDA(δ,Φ, x0, y0), and add solutions {(x̂j, ŷj)}mj=1 into Z.
Compute I =Extract(Z,ρ), and pick an arbitrary k ∈ I.
Return: (x̂k, ŷk)

Algorithm 10: BoostMOGDA(δ, p,T,x0, y0)

Input: δ > 0, p∈ (0,1), T ∈N, x0 ∈X , y0 ∈ Y.
Set λ−1

x = λ−1
y = 0, xc

−1 = yc
−1 =null, x−1

0,x = x−1
0,y = x0, y

−1
0,x = y−1

0,y = y0 and m=
⌈
18 ln

(
2T+4

p

)⌉
.

for i=0, . . . , T do
Set δi−1

x = 2δ

27(µx+λi−1
x )

and δi−1
y = 2δ

27(µy+λi−1
y )

.

(xc
i , y

c
x,i) =RobustMOGDA

(
δi−1
x ,Φi−1

x , xi−1
0,x , y

i−1
0,x ,m

)
, and set (xi

0,x, y
i
0,x) = (xc

i , y
c
x,i).

(xc
y,i, y

c
i ) =RobustMOGDA

(
δi−1
y ,Φi−1

y , xi−1
0,y , y

i−1
0,y ,m

)
, and set (xi

0,y, y
i
0,y) = (xc

y,i, y
c
i ).

end
Set δTx = 2δ

27(L2
xy/µy+Lx+λT

x )
and δTy = 2δ

27(L2
xy/µx+Ly+λT

y )
.

Return: xc
T+1 =RobustMOGDA

(
δTx ,Φ

T
x , x

T
0,x, y

T
0,x,m

)

yc
T+1 =RobustMOGDA

(
δTy ,Φ

T
y , x

T
0,y, y

T
0,y,m

)

Corollary 5 (Efficiency of BoostMOGDA). Fix a target accuracy ǫ > 0, and a probability

of failure p∈ (0,1). Define the algorithm parameters:

T =

⌈
logν

(
max

(
L2

xy/µy +Lx

µx

,
L2

xy/µx+Ly

µy

))⌉
,

δ =
ǫ

4+4T
, λi

x = µxν
i and λi

y = µyν
i with ν =2 ∀i∈ [0, T ].

Then the point (xc
T+1, y

c
T+1) = BoostMOGDA(δ, p,T ) satisfies

P
(
∆Φ(x

c
T+1, y

c
T+1)≤ ǫ

)
≥ 1− p.

Note that to evaluate the sample complexity for BoostMOGDA, we need to monitor the initial

squared distance for the sequence of subproblems. Define ∆in := ‖x0 − x∗‖2 + ‖y0 − y∗‖2, which is

also the initial squared distance for the two subproblems in iteration 0. Then, We derive the upper

bound for subsequent subproblems given by the following lemma.

Lemma 6. Denote ∆i
in,x and ∆i

in,y the initial squared distances for the BoostMOGDA subproblems

of Φi
x and Φi

y, respectively. Then if all the events Ei
x :=

{
‖xc

i −x∗
i ‖2 + ‖yc

x,i − y∗
x,i‖2 ≤ 2δ

µx+λi−1
x

}
and

Ei
y :=

{
‖xc

y,i −x∗
y,i‖2 + ‖yc

i − y∗
i ‖2 ≤ 2δ

µy+λi−1
y

}
occur for i= 0, . . . , T , the initial squared distance can

be upper bounded by ∆i
in :=max

{
∆i

in,x,∆
i
in,y

}
≤O

(
κ4δ
µ

)
, for i=0,1, · · · , T.
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Proof We first investigate ∆i
in,x := ‖xc

i −x∗
i+1‖2+‖yc

x,i−y∗
x,i+1‖2. Applying the two-sided bound

(10) and Proposition 1, we deduce

‖xc
i −x∗

i+1‖2 ≤
2

µx +λi
x

(
f i(xc

i)− f i(x∗
i+1)

)

≤ 2

µx +λi
x

(f(xc
i)− f(x∗))

≤ 2

µx +λi
x

(
f i−1(xc

i)− f i−1(x∗
i )+

i−1∑

t=0

λt
x

2
‖xc

t −x∗
t‖2
)

≤ 2

µx +λi
x

(
Lf +λi−1

x

2
‖xc

i −x∗
i ‖2 +

i−1∑

t=0

λt
x

2
‖xc

t −x∗
t‖2
)

≤ 2δ

µx +λi
x

(
Lf +λi−1

x

µx +λi−1
x

+
i−1∑

t=0

λt
x

µx +λt−1
x

)

≤ 2δ

µ

(
κ2 +2i

)

≤O
(
κ2δ

µ

)
.

Similarly, we can derive the bound for the other half as

‖yc
x,i − y∗

x,i+1‖ ≤ ‖yc
x,i− y∗

x,i‖+ ‖y∗
x,i − y∗

x,i+1‖

≤
√

2δ

µx +λi−1
x

+
Lxy

µy

‖x∗
i −x∗

i+1‖

≤
√

2δ

µx +λi−1
x

+
Lxy

µy

(
‖xc

i −x∗
i ‖+ ‖xc

i −x∗
i+1‖

)

≤ (1+κ)

√
2δ

µx +λi−1
x

+κ‖xc
i −x∗

i+1‖.

Leveraging the above upper bound for ‖xc
i −x∗

i+1‖2, we conclude

∆i
in,x := ‖xc

i −x∗
i+1‖2 + ‖yc

x,i − y∗
x,i+1‖2 ≤O

(
κ4δ

µ

)
.

The way to bound ∆i
in,y is identical, and is hence omitted. �

Now we are ready to establish the sample complexity of BoostMOGDA. For iteration i= 0, · · · , T ,
one needs to call MOGDA

(
2δ

27(µx+λi−1
x )

,Φi−1
x , xi−1

0,x , y
i−1
0,x

)
and MOGDA

(
2δ

27(µy+λi−1
y )

,Φi−1
y , xi−1

0,y , y
i−1
0,y

)
for

⌈
18 ln

(
2T+4

p

)⌉
times, respectively. The corresponding sample complexities are then upper bounded

by O
((L+λi−1

x

µ

)
ln
( (µx+λi−1

x )∆i−1

in,x

δ

)
+ σ2(µx+λi−1

x )

µ2δ

)
and O

((L+λi−1
y

µ

)
ln
( (µy+λi−1

y )∆i−1

in,y

δ

)
+

σ2(µy+λi−1
y )

µ2δ

)
. In

iteration T + 1, we call MOGDA
(

2δ
27(Lf+λT

x )
,ΦT

x , x
T
0,x, y

T
0,x

)
and MOGDA

(
2δ

27(Lg+λT
y )
,ΦT

y , x
T
0,y, y

T
0,y

)

with O
((
κ+ λT

x

µ

)
ln
( (Lf+λT

x )∆T
in,x

δ

)
+

σ2(Lf+λT
x )

µ2δ

)
and O

((
κ+

λT
y

µ

)
ln
( (Lg+λT

y )∆T
in,y

δ

)
+

σ2(Lg+λT
y )

µ2δ

)
sam-

ples, respectively. According to Corollary 5, we deduce that the total sample complexity of Boost-

MOGDA is on the order of

O
(
ln(κ) ln

(
ln(κ)

p

)(
κ2 ln

(
κ∨ ∆in ln(κ)

ǫ

)
+

σ2κ2 ln(κ)

µǫ

))
,
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which is Õ
(

σ2κ2

µǫ

)
after suppressing logarithm factors. This result is comparable with Theorem 2.1.

of [13], which derives a sample complexity of Õ
(
max

{
κ, σ2

µ2ǫ

})
to guarantee an ǫ small squared

distance with high probability. By applying the upper bound of (10), they can provide a guarantee

for the duality gap, while the sample complexity becomes Õ
(

σ2κ2

µǫ

)
and is identical to our result.

5.2. Constrained SSP problems

Unlike the unconstrained case, the existence of constraints only allows the direct transformation

of an O(ǫ) expected squared distance bound to an O(
√
ǫ) expected duality gap. As the existing

literature for constrained SC-SC SSP problems typically provides an O(ǫ) expected squared dis-

tance bound with Õ(ǫ−1) complexity dependence on ǫ. Consequently, although one may still use

PB-SSP to boost the confidence of general stochastic first-order oracles, directly incorporating

the stochastic first-order methods in our framework may result in suboptimal sample complexities

unless one can improve the analysis of existing results and derive Õ(ǫ−1) sample complexity bounds

for obtaining an O(ǫ) expected duality gap. Therefore, to obtain a tighter complexity bound, we

propose to adopt the strategy of [20] and use a hybrid oracle that combines SAA and stochastic

first-order method for constrained SC-SC SSP. In detail, we propose to use SAA principle to con-

struct the empirical SSP that naturally possesses a finite-sum structure, and then use stochastic

variance reduced method to approximately solve this finite-sum SSP problem. In this section, we

will select the loopless stochastic variance reduced extragradient (LSVRE) method given by [22]

as an example.

Lemma 7. ([22, Theorem 2]) Suppose Assumption 1 and 2 hold. Denote (x∗
n, y

∗
n) the saddle point

of the following (deterministic) empirical SSP constructed with n samples:

min
x∈X

max
y∈Y

Φ̂n(x, y) :=
1

n

n∑

i=1

Φξi(x, y).

Then LSVRE can return a solution (x̂, ŷ) such that E[‖x̂ − x∗
n‖2 + ‖ŷ − y∗

n‖2] ≤ ǫ within

O
(
(n+

√
nκ) log

(
1
ǫ

))
stochastic gradient calls.

Remark 2. To accommodate the above LSVRE method, we actually need to slightly strengthen

the Assumption 2 such that the Lipschitz smoothness holds almost surely for ∇Φξ.

Recall Lemma 4 that E [∆w
Φ(x

∗
n, y

∗
n)] is on the order of O

(
ℓ2

nµ

)
. Then we can derive the following

result by aggregating the errors of SAA and LSVRE.

Theorem 5 (SAA-LSVRE Oracle). Suppose Assumption 1, 2 and 3 hold. Denote (x̂, ŷ) the

solution returned by applying LSVRE method to the empirical problem Φ̂n constructed by SAA.

If the sample size n of SAA is on the order of O
(

ℓ2

ǫµ

)
and the number of calls to the stochastic
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gradient for LSVRE is on the order of O
((

ℓ2

ǫµ
+ κℓ√

ǫµ

)
log
(
ℓ
ǫ

))
, we have E [∆w

Φ (x̂, ŷ)]≤ ǫ where the

expectation is taken with respect to both the randomness of Φ̂n and the LSVRE method.

Proof Denote (x∗
n, y

∗
n) be the saddle point of the empirical problem Φ̂n According to the defi-

nition of ∆w
Φ (x̂, ŷ), we have

E [∆w
Φ (x̂, ŷ)] =E [Φ(x̂, y∗)−Φ(x∗, ŷ)]

=E [Φ(x̂, y∗)−Φ(x∗
n, y

∗)+Φ(x∗
n, y

∗)−Φ(x∗, y∗
n)+Φ(x∗, y∗

n)−Φ(x∗, ŷ)]

≤ E [∆w
Φ (x∗

n, y
∗
n)+ |Φ(x̂, y∗)−Φ(x∗

n, y
∗)|+ |Φ(x∗, y∗

n)−Φ(x∗, ŷ)|]

≤ E [∆w
Φ (x∗

n, y
∗
n)+ ℓ (‖x̂−x∗

n‖+ ‖ŷ− y∗
n‖)]

≤ E

[
∆w

Φ (x∗
n, y

∗
n)+ ℓ

√
2 (‖x̂−x∗

n‖2 + ‖ŷ− y∗
n‖2)

]

≤ E [∆w
Φ (x∗

n, y
∗
n)] + ℓ

√
2E [‖x̂−x∗

n‖2 + ‖ŷ− y∗
n‖2].

Therefore, we can set n=O
(

ℓ2

ǫµ

)
such that E [∆w

Φ (x∗
n, y

∗
n)]≤ ǫ/2. Further applying Lemma 7 and

letting ℓ
√
2E [‖x̂−x∗

n‖2 + ‖ŷ− y∗
n‖2]≤ ǫ/2, we reach the desirable order for the number of stochastic

gradient calls of the LSVRE method. �

Following the same spirit of the discussion in Section 4, it is not hard to show that we can equip

the above SAA-LSVRE oracle with high-probability guarantees for constrained problems in the

sense of (2). The SAA sample size is identical to before, while the number of calls to the stochastic

gradient for LSVRE is on the order of Õ
(

ℓ2

ǫµ
+ κ2ℓ√

ǫµ

)
.

6. Experiments

In this section, to validate the ability of our PB-SSP framework to boost the confidence of general

SSP oracles, we present the application of our method through numerical experiments on the MDP

and the stochastic matrix game examples, respectively.

6.1. Application on MDP

First, we present the experiment for the Markov Decision Process (MDP) problem, which is a

widely discussed subject within the machine learning community. When there exists a simulator

that can mimic state transition and reward generation, the task of identifying the optimal policy

can be reformulated as solving a constrained C-C SSP problem.

6.1.1. SSP formulation of MDP An infinite-horizon average-reward MDP is specified by a

tupleM= (S,A,P, r), where S denotes a finite state space, andA denotes a finite action space. P =

{Pa}a∈A and r = {rsa}s∈S,a∈A are the state transition matrices and reward function. Specifically,

when action a is employed at state s, the system transitions to state s′ with a probability of

Pa(s, s
′), yielding a random reward r̂sa > 0 with an expected value of rsa. We call π : S → PA a
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stationary policy, which maps a state s to a probability distribution over A. The ultimate goal

for MDP is to find an optimal policy π∗ such that the long-term average reward is maximized,

irrespective of the initial states, i.e.,

v∗ :=max
π

lim
T→∞

E

[
1

T

T∑

t=0

r̂stat

∣∣∣at ∼ π(st), s0 = s

]
,

where the expectation is taken over the trajectories, which depends on both the policy and the MDP

transition dynamics. The optimal Bellman equation of the MDP can be recast into an equivalent

linear programming formulation (refer to [5]), given by:

min
v∈R,x∈R|S|

v

s.t. (Pa− I)x+ ra ≤ v ·1, a∈A.
(20)

The corresponding dual formulation is:

max
y∈R|S|×|A|

∑

a∈A
rTa ya

s.t.
∑

a∈A
(P T

a − I)ya =0,‖y‖1,1 =1, y ≥ 0.
(21)

Here, x is known as the difference-value-vector and has multiple solutions obtained by adding an

arbitrary constant shift. The solution (v∗, y∗) of (20) and (21) correspond to the optimal average

reward and stationary state-action distribution of the MDP. Furthermore, the optimal policy π∗

can be recovered from y∗, i.e.,

P[π∗(s) = a] =
y∗
sa∑

a′∈A y∗
sa′

, ∀s∈ S.

The above can also be equivalently expressed using a saddle point formulation:

min
x∈X

max
y∈Y

Φ(x, y) :=
∑

a∈A
yT
a (Pa− I)x+ 〈r, y〉, (22)

where X :=
{
x∈R

|S| : ‖x‖∞ ≤Ux

}
, Y :=

{
y ∈R

|S|×|A| : y ≥ 0,‖y‖1,1 = 1
}
, and Ux represents a

bound that can be estimated. This saddle point formulation has an advantage over the linear

programming formulation due to its much simpler constraints.

In practice, neither P nor r is known, but they can be estimated through sampling from the

MDP under the generator setting, see e.g. [38]. Specifically, we generate one sample by producing

a transition for every (s, a) pair, i.e., ξ := {(s, a, s′, r̂sa) : ∀s∈ S, a∈A, s′ ∼Pa(s, ·)} and defining Pξ

with Pξ,a(s, s
′) = 1 if (s, a)→ s′ is observed and Pξ,a(s, s

′) = 0 otherwise. This leads to

Φξ(x, y) :=
∑

a∈A
yT
a (Pξ,a − I)x+ 〈r̂, y〉,

by direct computation, we know Φ(x, y) = Eξ[Φξ(x, y)]. Under this setting, a standard SAA

approach can be adopted as the in-expectation oracle that returns a policy with ǫ-optimal average

reward in expectation, as discussed in [42].
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6.1.2. Numerical experiments As discussed in section 4.3, it is essential to incorporate

quadratic regularization terms into the constrained C-C SSP problem to make our PB-SSP appli-

cable. Consequently, we formulate the following regularized objective function:

Φα(x, y) :=Φ(x, y)+
ǫ

4D2
x

‖x‖2 − ǫ

4D2
y

‖y−1/(|S| · |A|)‖2 .

In our experiment, we set |S| = 100, |A| = 10, and randomly generate 0 < rsa < 1 and {Pa}a∈A.

To demonstrate the efficacy of our procedure, we suppose that r̂sa follows heavy-tailed gamma

distributions with a universal variance Var[r̂sa] := σ2
r =1. We estimate Ux to be 0.5 in our example,

which gives us D2
x = 25. We also have D2

y = 2 since Y is the unit simplex. We aim for a target

accuracy and a probability of failure of ǫ=0.01 and p= 1%, respectively.

For comparison purposes, we also evaluate SAA [42] and the RDE approach (as mentioned in

section 4.2). All the empirical proximal subproblems of IPPA are solved by the proximal extra gra-

dient method. The parameter settings, informed by the preceding corollaries and discussions, are

theoretically sound but tend to be excessive for practical applications. To facilitate the numerical

experiment, we follow the general framework of the procedures and select the parameters indepen-

dently. To ensure fairness, we first standardize the SAA with a sample size of 105, serving as the

basic oracle operation for all procedures, irrespective of the values of other parameters. The sample

size for the gradient oracles (when required) is consistently set at 104. For the RDE approach,

only the parameter m needs to be determined. In our PB-SSP procedure, we always set ν = 4 as

the base number as it is consistently the best performing parameter in the experiments, the users

have the flexibility to adjust T and m. Table 2 summarizes the performance results along with

different parameter settings. We document the effort expended in invoking the basic SAA oracle

and the resultant duality gap for the original SSP problem (22), with statistics estimated from

1,000 independent macro replications. The decimal points in the column labeled “# of calls” arise

from the samples used by the gradient oracle, where we approximate the effort for one call of the

gradient oracle as being 10% that of the basic SAA oracle.

In addition, since Y is the unit simplex in this example, it allows us to integrate an entropy regu-

larization term for y, which exhibits strong concavity in the ℓ1 norm. Both theoretical and empirical

studies have shown entropy regularization terms to deliver enhanced performance for optimization

problems in a simplex. As such, we devise the following alternative regularized objective function:

Φα(x, y) :=Φ(x, y)+
ǫ

4D2
x

‖x‖2 − ǫ

4 log(|S||A|)
∑

s,a

ysa log(ysa).

Likewise, the proximal point term in Φi
y is also substituted with the Kullback–Leibler divergence

DKL(y|yc
i ) accordingly. It is noteworthy that our analysis for PB-SSP could actually be extended to
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Table 2 Comparison of procedures on the SSP problem for MDP (quadratic regularization term).

ν T m # of calls E [∆Φ(x̄, ȳ)] P [∆Φ(x̄, ȳ)> 0.01]
SAA - - - 1 0.0093 26.5%

SAA+RDE

- - 3 3.6 0.0091 23.3%
- - 9 10.8 0.0086 13.5%
- - 99 118.8 0.0080 5.4%
- - 499 598.8 0.0078 2.6%

SAA+PB-SSP

4 7 3 54.6 0.0076 2.1%
4 7 5 91.0 0.0074 1.3%
4 8 3 60.6 0.0069 0.2%
4 8 5 101.0 0.0066 0%

Table 3 Comparison of procedures on the SSP problem for MDP (entropy regularization term).

ν T m # of calls E [∆Φ(x̄, ȳ)] P [∆Φ(x̄, ȳ)> 0.01]
SAA - - - 1 0.0092 25.0%

SAA+RDE

- - 3 3.6 0.0090 21.2%
- - 9 10.8 0.0086 13.1%
- - 99 118.8 0.0080 4.6%
- - 499 598.8 0.0077 3.1%

SAA+PB-SSP

4 7 3 54.6 0.0073 1.0%
4 7 5 91.0 0.0071 0.9%
4 8 3 60.6 0.0064 0.2%
4 8 5 101.0 0.0061 0%

SC-SC SSP problems in general norms. Table 3 presents the results obtained after the integration

of the entropy regularization term.

Upon examining the two tables, we observe that adding the entropy regularization term generally

yields relatively superior results compared to adding the quadratic one. An intuitive explanation

is that the entropy regularization term more accurately reflects the geometric properties of the

simplex domain. Furthermore, the three procedures exhibit similar performance in both scenarios.

The basic SAA oracle can produce solutions with small duality gaps in expectation but lacks high-

probability guarantees. The RDE approach can incrementally enhance confidence as m goes up, yet

its marginal benefits diminish rapidly. Even after 598.8 calls to the basic SAA oracle, it falls short

of achieving our target probability of failure. In contrast, the PB-SSP framework demonstrates a

significant advantage by additionally integrating the inexact proximal point method. In general,

for a fixed base number ν, larger values of T and m yield improved results, and a judicious selection

of these three parameters can achieve our target high-probability guarantees at a reasonable cost.

When the quadratic regularization term is added, PB-SSP requires 60.6 calls to the basic SAA

oracle, whereas only 54.6 calls are needed when the entropy regularization term is employed.
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6.2. Application on stochastic matrix game

In this subsection, we consider the two-player stochastic matrix game given by

min
x∈X

max
y∈Y

Φ(x, y) := xT
E [Aξ]y,

where X := {x ∈ R
Nx : x≥ 0,1Tx= 1} and Y := {y ∈R

Ny : y ≥ 0,1Ty = 1}. The decision variables

x and y are the mixed strategies of the two players, and Aξ ∈R
Nx×Ny is the stochastic payoff. To

apply the PB-SSP framework, we consider the following entropy-regularized problem:

min
x∈X

max
y∈Y

Φα(x, y) := xT
E [Aξ]y+

ǫ

4 log(Nx)

Nx∑

i=1

xi log(xi)−
ǫ

4 log(Ny)

Ny∑

i=1

yi log(yi),

since entropy regularization terms are reported to deliver better performance in the MDP example.

In our experimental setup, we specify the dimensions of the strategy spaces with Nx = 100 for the

first player and Ny =200 for the second player. The elements aij of the expected payoff matrix A :=

E[Aξ] are generated randomly within the range of 0 to 1. Likewise, we model the âij, representing

the stochastic components of the payoff, to follow Gamma distributions with a universal variance

of σ2
A = 1, making sub-Gaussian assumption not applicable. The target accuracy and probability

of failure are still ǫ= 0.01 and p= 1%. Next, we construct two basic SSP oracles for comparison.

The first one is by constructing empirical problems by SAA with a sample size of 5,000 and then

solving by the proximal extra gradient method. The second oracle is the stochastic proximal extra

gradient (SPEG) algorithm whose iterates are given by,

x̃t =argmin
x∈X

Φξ̄t
1
(x, yt−1)+ ηt

Nx∑

i=1

xi log

(
xi

xt−1
i

)
, ỹt = argmax

y∈Y
Φξ̄t

1
(xt−1, y)+ ηt

Ny∑

i=1

yi log

(
yi
yt−1
i

)
,

xt =argmin
x∈X

Φξ̄t
2
(x, yt−1)+ ηt

Nx∑

i=1

xi log

(
xi

x̃t
i

)
, yt = argmax

y∈Y
Φξ̄t

2
(xt−1, y)+ ηt

Ny∑

i=1

yi log

(
yi
ỹt
i

)
.

As the cross term of this problem is bilinear, we are able to maintain the linearization of the cross as

itself in the proximal gradient step, which makes the proximal gradient step identical to a proximal

point step. We fix the iteration count at 2,000, calibrate an appropriate constant stepsize ηt, and

adopt independent samples (ξ̄t1, ξ̄
t
2) with a batch size of 10. The average of all iterates is returned

as the solution. The numerical results are documented in Table 4 and 5.

Similar to the MDP example, the RDE approach alone is hard to boost SSP oracles into high

confidence, no matter for SAA or first-order procedures. By contrast, the PB-SSP framework can

obtain a high-confidence solution within tens of invocations of the given basic oracle.
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Table 4 Comparison of SAA procedures on the SSP problem for stochastic matrix game.

ν T m # of calls E [∆Φ(x̄, ȳ)] P [∆Φ(x̄, ȳ)> 0.01]
SAA - - - 1 0.0100 45.9%

SAA+RDE

- - 3 3.6 0.0099 43.7%
- - 9 10.8 0.0096 35.5%
- - 99 118.8 0.0093 27.3%
- - 499 598.8 0.0091 24.1%

SAA+PB-SSP

4 5 3 42.6 0.0076 2.8%
4 5 5 71.0 0.0074 2.3%
4 6 3 48.6 0.0068 2.0%
4 6 5 81.0 0.0064 0%

Table 5 Comparison of first-order procedures on the SSP problem for stochastic matrix game.

ν T m # of calls E [∆Φ(x̄, ȳ)] P [∆Φ(x̄, ȳ)> 0.01]
SPEG - - - 1 0.0095 27.8%

SPEG+RDE

- - 3 3.6 0.0095 26.3%
- - 9 10.8 0.0093 21.3%
- - 99 118.8 0.0090 12.5%
- - 499 598.8 0.0089 11.8%

SPEG+PB-SSP

4 1 3 18.6 0.0085 4.5%
4 1 5 31.0 0.0085 4.9%
4 2 3 24.6 0.0075 0.3%
4 2 5 41.0 0.0075 0.4%

References

[1] Ahmet Alacaoglu and Yura Malitsky. Stochastic variance reduction for variational inequality methods. In Con-
ference on Learning Theory, pages 778–816. PMLR, 2022.

[2] Francis Bach and Kfir Y Levy. A universal algorithm for variational inequalities adaptive to smoothness and
noise. In Conference on learning theory, pages 164–194. PMLR, 2019.

[3] Aleksandr Beznosikov, Abdurakhmon Sadiev, and Alexander Gasnikov. Gradient-free methods with inexact
oracle for convex-concave stochastic saddle-point problem. In International Conference on Mathematical Opti-
mization Theory and Operations Research, pages 105–119. Springer, 2020.

[4] Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing noise in gan training
with variance reduced extragradient. Advances in Neural Information Processing Systems, 32, 2019.

[5] Yichen Chen, Lihong Li, and Mengdi Wang. Scalable bilinear pi learning using state and action features. In
International Conference on Machine Learning, pages 834–843. PMLR, 2018.

[6] Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang. Optimal primal-dual methods for a class of saddle point
problems. SIAM Journal on Optimization, 24(4):1779–1814, 2014.

[7] Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang. Accelerated schemes for a class of variational inequalities.
Mathematical Programming, 165(1):113–149, 2017.

[8] Damek Davis, Dmitriy Drusvyatskiy, Lin Xiao, and Junyu Zhang. From low probability to high confidence in
stochastic convex optimization. Journal of Machine Learning Research, 22(49):1–38, 2021.

[9] Alireza Fallah, Asuman Ozdaglar, and Sarath Pattathil. An optimal multistage stochastic gradient method for
minimax problems. In 2020 59th IEEE Conference on Decision and Control (CDC), pages 3573–3579. IEEE,
2020.

[10] Farzan Farnia and Asuman Ozdaglar. Train simultaneously, generalize better: Stability of gradient-based mini-
max learners. In International Conference on Machine Learning, pages 3174–3185. PMLR, 2021.
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[28] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method efficiency in opti-
mization. John Wiley & Sons, Inc., New York, 1983.

[29] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103:127–152, 2005.

[30] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn. Solving a class of
non-convex min-max games using iterative first order methods. In H. Wallach, H. Larochelle, A. Beygelzimer,
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