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ABSTRACT

In advancing parallel programming, particularly with OpenMP, the shift towards NLP-based methods
marks a significant innovation beyond traditional S2S tools like Autopar and Cetus. These NLP
approaches train on extensive datasets of examples to efficiently generate optimized parallel code,
streamlining the development process. This method’s strength lies in its ability to swiftly produce
parallelized code that runs efficiently. However, this reliance on NLP models, without direct code
analysis, can introduce inaccuracies, as these models might not fully grasp the nuanced semantics
of the code they parallelize. We build OMP-Engineer, which balances the efficiency and scalability
of NLP models with the accuracy and reliability of traditional methods, aiming to enhance the
performance of automating parallelization while navigating its inherent challenges.

Keywords OpenMP · Parallel Computing · Automation

1 Introduction

In the contemporary landscape of computing, parallel programming stands as a pivotal technology, crucial for enhancing
computational efficiency and capitalizing on the capabilities of modern multi-core systems. The ability to concurrently
execute multiple computations not only significantly reduces processing times but also optimizes the utilization of
computational resources Andrade et al. [2023], Zeng [2023]. Despite its advantages, the manual parallelization of
code presents a formidable challenge—marked by its time-consuming nature and a high propensity for errors. These
challenges stem from the intricate demands of identifying segments of code suitable for parallel execution, ensuring
data consistency, and managing thread synchronization, among others. The complexity and expertise required to
manually parallelize code have thus fostered the development of automated parallelization techniques, with two
primary methodologies emerging to the forefront: Source-to-Source (S2S) conversion and Natural Language Processing
(NLP)-based methods.

1.1 Source-to-Source Tools

At the heart of S2S approaches lies the principle of transforming sequential code into its parallel counterpart through
automated syntactic modifications. These tools, grounded in the analysis of code structure and syntax, aim to streamline
the parallelization process by identifying parallelizable code segments and applying standardized parallelization patterns.
The strengths of S2S methods are manifest in their precision and the reduced likelihood of introducing errors during the
parallelization process, attributed to their deterministic nature and reliance on established programming paradigms.
However, the resultant parallel code often suffers from drawbacks such as diminished readability and lower execution
efficiency. This is because S2S transformations tend to prioritize correctness over optimization, leading to parallelized
code that, while functional, may not be optimized for performance. Additionally, the evolution of parallel programming
standards, exemplified by the continuous updates to OpenMP, poses a significant challenge for S2S tools. Their inability
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to rapidly adapt to these evolving standards means that they can quickly become outdated, limiting their effectiveness
and applicability in modern parallel programming projects.

1.2 NLP-based Tools

In contrast, NLP-based parallelization techniques represent a more flexible approach, leveraging the advancements
in machine learning and artificial intelligence. By analyzing vast datasets of code, these methods train models
capable of understanding both the structure and intent behind code snippets, thus generating parallel code that is not
just syntactically correct but also optimized for performance. The primary advantage of NLP methods lies in their
adaptability and the high execution efficiency of the generated code. These approaches are inherently designed to
evolve alongside programming standards like OpenMP, ensuring their long-term relevance and utility. Furthermore,
the broad applicability of NLP techniques across various programming scenarios and their ability to produce code
that aligns with the latest parallelization paradigms underscore their potential as a transformative force in parallel
programming. However, the reliance on learned patterns without a deep, semantic understanding of the original
code introduces a notable drawback: the risk of errors. The generated parallel code, while generally efficient, may
occasionally misinterpret the original code’s intent or overlook complex dependencies, leading to inaccuracies or
suboptimal parallelization outcomes.

1.3 OMP-Engineer: A Hybrid Approach

Recognizing the limitations inherent in both S2S and NLP methods, we introduce OMP-Engineer, a novel tool designed
to bridge the gap between these approaches, harnessing their strengths while mitigating their weaknesses. OMP-
Engineer is developed with the aim of providing a robust, adaptable, and error-resilient solution for the parallelization
of code. By integrating the deterministic, syntax-based analyzation capabilities of S2S methods with the versatility of
NLP techniques, OMP-Engineer offers a comprehensive approach to automated parallelization.

Our method commences with the generation of the Abstract Syntax Tree (AST) for the input code, which facilitates a
deep syntactic analysis. This step ensures the parallelization process’s accuracy by accurately identifying code segments
that can be parallelized without error. Following the syntactic analysis, OMP-Engineer employs in-context learning to
instruct Large Language Models (LLMs) on utilizing OpenMP directives efficiently and correctly. This hybrid approach
enables the system to not only understand the structure of the code but also to grasp its semantic nuances, allowing for
the generation of parallel code that is both precise and optimized for performance.

2 Method

2.1 Syntax Analysis

The methodological foundation of OMP-Engineer begins with a detailed syntax analysis, a critical step in ensuring the
accuracy and integrity of the parallelization process. This analysis is initiated by leveraging ANTLR (Another Tool
for Language Recognition) to construct an Abstract Syntax Tree (AST) from the source code. The AST serves as a
comprehensive representation of the program’s structure.

Following the generation of the AST, our approach delves into a nuanced examination of the code’s syntax. The first
phase of this examination focuses on identifying statements that are inherently resistant to parallelization, such as I/O
operations like “printf()”. These operations, due to their sequential nature, are flagged as non-parallelizable to preserve
the semantic integrity of the program. The second phase of the analysis is dedicated to scrutinizing the access patterns
of variables within the code. By meticulously tracking how variables are read and written—identifying sequences
of access and potential data dependencies—we can detect the presence of dependencies that may impede parallel
execution.

2.2 Educating the LLM through In Context Learning

Upon successfully identifying code segments that are amenable to parallelization through our syntax analysis phase, we
proceed to the second core component of our methodology: educating the Large Language Model (LLM) for optimal
parallelization.

To achieve this, we introduce a set of In Context Learning (ICL) materials specifically designed to guide the LLM in
understanding and applying OpenMP directives effectively. These materials consist of a curated collection of code
examples that demonstrate various parallelization patterns, accompanied by detailed explanations of each pattern’s
rationale, applicability, and implementation nuances. By embedding these examples and explanations directly into
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the LLM’s context, we provide it with a rich, focused learning environment that significantly enhances its ability to
generate correct and efficient parallel code.

3 Results

Table 1: Execution time comparison

BT LU SP
Sequential 122.93 102.00 83.44

OMP-Engineer 52.47 56.81 44.18
Autopar 510.42 361.55 82.23
Par4all 71.01 380.06 52.19

In our comparative performance evaluation, OMP-Engineer was benchmarked against two established parallelization
tools, Autopar Liao et al. [2009] and Par4all Amini et al. [2012], using three widely recognized benchmarks: BT,
LU, and SP (all of which are from the NAS benchmark Bailey et al. [1991]). These benchmarks are instrumental in
evaluating the efficiency and effectiveness of parallel computing solutions. The performance metrics obtained from these
benchmarks are great for demonstrating the superior capability of OMP-Engineer in optimizing code parallelization.

Our results in Table 1 clearly showcase OMP-Engineer’s outstanding performance in reducing execution time across all
benchmarks when compared to the sequential (non-parallelized) baseline and the other tools.

The comparison with the sequential execution times illustrates the substantial performance gains achieved through
the application of OMP-Engineer’s parallelization methodologies. These gains underscore the tool’s effectiveness in
reducing program runtime, thereby enhancing computational efficiency.

It is important to note that despite considering including ChatGPT-generated parallel code in our evaluation, we
encountered excessive inaccuracies in the parallel code produced by ChatGPT. The high error rate in the parallel code
generated by ChatGPT rendered it infeasible for a fair and meaningful speed comparison in this context. This decision
underscores the challenges inherent in automated code parallelization and highlights the significance of our approach
with OMP-Engineer, which effectively addresses these challenges through a combination of syntax analysis and
in-context learning for educating the LLM. Consequently, OMP-Engineer not only ensures the accuracy of parallelized
code but also significantly enhances its execution efficiency, as evidenced by our benchmark results.

4 Conclution and Future Work

In conclusion, our study presents OMP-Engineer, a novel tool designed to optimize code parallelization through a
sophisticated integration of syntax analysis and in-context learning for Large Language Models. The benchmark results
unequivocally demonstrate OMP-Engineer’s superior performance in reducing execution times across various tests
when compared to existing tools such as Autopar and Par4all. The innovative approach of educating LLMs with specific
in-context learning materials has proven to be highly effective, enabling the generation of not only syntactically correct
but also performance-optimized parallel code.

Despite the promising results, there remains ample scope for future work to further refine and enhance the capabilities
of OMP-Engineer. Future directions could include:

• Expanding the range of parallelization patterns and directives covered by the in-context learning materials to
encompass a wider variety of programming scenarios and challenges.

• Enhancing the scalability of OMP-Engineer to support larger and more complex codebases, including those
used in high-performance computing (HPC) environments.

Our work lays a solid foundation for the future of automated code parallelization, offering promising avenues for
both research and practical applications. As computational demands continue to escalate, OMP-Engineer may play
an increasingly critical role in enabling developers to harness the full potential of parallel computing technologies
efficiently and effectively.
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