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ON THE COINCIDENCE OF THE HAUSDORFF AND BOX
DIMENSIONS FOR SOME AFFINE-INVARIANT SETS

ZHOU FENG

Abstract. Let K be a compact subset of the d-torus invariant under an expanding

diagonal endomorphism with s distinct eigenvalues. Suppose the symbolic coding of K

satisfies weak specification. When s ≤ 2, we prove that the following three statements

are equivalent: (A) the Hausdorff and box dimensions of K coincide; (B) with respect to

some gauge function, the Hausdorff measure ofK is positive and finite; (C) the Hausdorff

dimension of the measure of maximal entropy on K attains the Hausdorff dimension of

K. When s ≥ 3, we find some examples in which (A) does not hold but (C) holds, which

is a new phenomenon not appearing in the planar cases. Through a different probabilistic

approach, we establish the equivalence of (A) and (B) for Bedford-McMullen sponges.

1. Introduction

The Hausdorff and box dimensions are the most common notions to quantify the size

of sets in fractal geometry; see [11, 27] for an introduction. It is natural to ask under

which condition these two dimensions coincide, especially for invariant sets in dynamical

systems. This is an important question and has a long history. Furstenberg [16] showed

that if K is a compact set invariant under an expanding conformal endomorphism on the

d-torus, then

(A) dimHK = dimBK,

where dimH and dimB stand for the Hausdorff and box dimensions respectively. Previ-

ously, (A) has been proved to hold in various conformal settings [3, 9, 18] and some typical

nonconformal settings [8, 20]. Notably, Falconer proved that (A) holds for all self-similar

sets [9] and some typical self-affine sets [8]. In contrast, the Hausdorff and box dimensions

are usually distinct in specific nonconformal settings. In this paper, we study when (A)

holds for the invariant sets in the following family of nonconformal dynamical systems.

Let T be an expanding linear endomorphism on the d-torus T
d = R

d/Zd represented by

a diagonal integer matrix

Λ = diag(m1, . . . , md),

where m1 ≥ · · · ≥ md ≥ 2, that is, T (x) = Λx mod 1 for x ∈ [0, 1)d. Write the number

of distinct expanding ratios as

(1.1) s = #{mi : 1 ≤ i ≤ d},
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where # stands for cardinality. Let A =
∏d

j=1{0, . . . , mj − 1}. There is a canonical

representation map R : AN → T
d given by

(1.2) R(x) =
∞∑

k=1

Λ−kxk for x = (xk)∞k=1 ∈ AN.

Let σ be the (left) shift on AN defined as σ ((xk)∞k=1) = (xk+1)
∞
k=1. Endow AN with the

product topology. A closed subset X of AN is called a subshift if σ(X) ⊂ X . Since R is

a continuous surjective map and R ◦ σ = T ◦ R, there is an one-to-one correspondence

between the subshifts of AN and the compact T -invariant subsets of T
d. When K =

R(DN) for some nonempty subset D of A, we call K a Bedford-McMullen carpet if d = 2

and a Bedford-McMullen sponge if d ≥ 3.

Given a continuous increasing function ϕ : [0,∞) → [0,∞) with ϕ(0) = 0, the Haus-

dorff measure Hϕ(E) for E ⊂ R
d with respect to the gauge function ϕ is

Hϕ(E) = lim
δ→0

inf

{
∞∑

i=1

ϕ(|Ei|) : {Ei}∞i=1 is a cover of E and |Ei| ≤ δ for all i

}
,

where |F | denotes the diameter of a set F ⊂ R
d in Euclidean metric. Write Hϕ as Hγ if

ϕ(t) = tγ , γ ≥ 0. We say that there exists a gauge function for K ⊂ R
d if

(B) 0 < Hϕ(K) <∞ for some gauge function ϕ.

In this paper, for a compact T -invariant set K, we aim to characterize the coincidence of

dimensions as in (A) by the existence of gauge functions as in (B).

Our research target is motivated as follows. In 1980s, Bedford [4] and McMullen [28]

independently computed the Hausdorff and box dimensions of Bedford-McMullen carpets.

Later their work was extended by Kenyon and Peres [21, 22] to Bedford-McMullen sponges

and certain sofic affine-invariant sets; see [1, 14, 15, 25] for some other generalizations.

For a Bedford-McMullen carpet K, McMullen [28] pointed out that 0 < HdimH K(K) <

∞ if dimHK = dimBK, and asked about the value of HdimH K(K) when dimHK <

dimBK. This question was answered by Peres [33] who proved that HdimH K(K) = ∞ if

dimHK < dimBK. Afterwards Peres [32] showed that if dimHK < dimBK, the packing

measure of K at its packing dimension is also infinite. Before the result of Peres [33],

an elegant argument found independently by Bedford and Mandelbrot (unpublished) and

by Gatzouras and Lalley [25] gives the equivalence of (A) and (B) for Bedford-McMullen

carpets (see e.g. [33, Proposition 2]). Actually, Gatzouras and Lalley [25] showed that

dimHK = dimBK is equivalent to 0 < HdimH K(K) < ∞ for a Gatzouras-Lalley carpet

K which is a generalization of Bedford-McMullen carpet by relaxing the grid structure

but keeping the dominated directions. These previous results motivate us to study the

equivalence of (A) and (B) for invariant subsets of Bedford-McMullen sponges (also called

sub-self-affine sets [10, 20]).

To state our results, we introduce another related condition that the Hausdorff dimen-

sion of the measure of maximal entropy attains the Hausdorff dimension of its support.
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For a subshift X of AN, write

Lk(X) = {i1 · · · ik ∈ Ak : i1 · · · ik = x1 · · ·xk for some (xj)
∞
j=1 ∈ X}, k ∈ N

and

L(X) =

∞⋃

k=1

Lk(X)
⋃

{∅},

where ∅ denotes the empty word. For I ∈ Ak, denote |I| = k. Set |∅| = 0. Let IJ

denote the juxtaposition of I, J ∈ L(X). We say a subshift X satisfies weak specification

if there exists an integer p such that for every I, J ∈ L(X), there is W ∈ L(X) with

|W | ≤ p such that IWJ ∈ L(X). Let X be a subshift satisfying weak specification and

K = R(X). There is a unique σ-invariant measure of maximal entropy µ on X (see

Proposition 2.2). Then we give another condition that

(C) dimHRµ = dimHK,

where Rµ = µ ◦ R−1 is the push-forward of µ under R, and dimHRµ is the Hausdorff

dimension of Rµ defined to be the infimum of the Hausdorff dimension of Borel sets with

positive Rµ-measure.

Now we are ready to state our first result.

Theorem 1.1. Let X be a subshift satisfying weak specification and K = R(X). Recall

the definition of s from (1.1). Then the following statements hold.

(i) (A) implies 0 < HdimH K(K) <∞, and so (B).

(ii) (B) implies (C).

(iii) If s ≤ 2, then (A), (B), (C) are equivalent.

(iv) If s ≥ 3, there are Bedford-McMullen sponges in which (A) does not hold but (C)

holds.

In [33, P. 526], Peres conjectured that when d = 2 and K = R(X) where X is a

primitive subshift of finite type, HdimH K(K) = ∞ if dimHK < dimBK. Since such X

satisfies weak specification, it follows from Theorem 1.1(iii) that HdimH K(K) is either 0

or ∞ if dimHK < dimBK.

Let us give some ideas about the proof of Theorem 1.1. Firstly, we characterize (A)

in terms of the size of the fibers of certain factor maps; see Theorem 3.1(c), which is by

adapting and extending some arguments of [21] to the setting of weak specification. Based

on this characterization and the Gibbs property of the measure of maximal entropy, we

obtain an upper bound on the density of Rµ, leading to the part of (i) that HdimH K > 0.

Unlike Bedford-McMullen carpets corresponding to the full shifts, in the case of subshifts

it is difficult to estimate the density of Rµ from below. Instead of following the approach

based on the density to prove the other part of (i) that HdimH K < ∞, we directly

consider the covers consisting of the approximate cubes whose number is estimated using

weak specification. The proof of (ii) is based on the translation-invariance of Hausdorff

measures and the Gibbs property of the measure of maximal entropy; see Proposition 5.2.

Next we move to the proof of (iii) which is more difficult and requires new ideas since

the Hausdorff dimension of T -invariant sets is expressed as a certain topological pressure
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instead of the simple formula for Bedford-McMullen carpets. By (i) and (ii), it suffices

to show that (C) implies (A) when s ≤ 2; see Proposition 5.3. To this end, we manage to

compute the Hausdorff dimension of the invariant set based on the key observation that

the projection of the measure of full dimension to the weakest unstable direction always

has the Gibbs property. As for (iv), we give some examples of Bedford-McMullen sponges

(Example 7.1 and Example 7.2) with the desired properties, which is a new phenomenon

not appearing in the planar cases.

To determine the Hausdorff measures of Example 7.1 and Example 7.2, we manage

to give a sufficient condition for Bedford-McMullen sponges to have infinite Hausdorff

measures (see Proposition 6.6), and conclude that Example 7.1 and Example 7.2 have

infinite Hausdorff measures at their respective Hausdorff dimensions. The proof of

Proposition 6.6 is based on the method of Peres [33] (see Proposition 6.5) and a new-

found relation satisfied by the measure of full dimension (see Lemma 6.8). It is worth

pointing out that in [33, Section 5] Peres mentioned the result ([33, Theorem 1]), that

HdimH K(K) = ∞ if dimHK < dimBK for a Bedford-McMullen carpet K, can extend to

Bedford-McMullen sponges. However, he did not give a detailed justification.

The equivalence of (A) and (B) may still hold when s ≥ 3. However, (iv) shows

that our current strategy for the proof of (iii) can not extend to s ≥ 3. Nevertheless,

through a different probabilistic approach we obtain the equivalence of (A) and (B) for

Bedford-McMullen sponges.

Theorem 1.2. (A) and (B) are equivalent for Bedford-McMullen sponges.

The proof of Theorem 1.2 is based on the independence of the coordinates of a random

sequence whose law is a Bernoulli measure on AN and the density theorem for the Haus-

dorff measures. To the best of our knowledge, the previous known proofs for the equiv-

alence of (A) and (B) for Bedford-McMullen carpets essentially rely on the equivalence

of (A) and (C) (see e.g. [33, Proposition 2]), which does not work for Bedford-McMullen

sponges as seen in Example 7.1. We remark that a similar proof of Theorem 1.2 based on

the density theorem for the packing measures shows that for a Bedford-McMullen sponge

K, dimHK = dimBK is equivalent to that, with respect to some (doubling) gauge func-

tion ϕ, the packing measure of K is positive and finite. One may expect that Theorem 1.2

can extend to some subshifts if the limit theorem used in the proof of Theorem 1.2 holds

under some weaker independence; see Remark 6.4 for an illustration.

The paper is organized as follows. In Section 2, we make some preparations for the

proofs of main theorems. In Section 3, we extend the results in [21] to the setting of

weak specification. Section 4 is for the proof of Theorem 1.1(i). The proofs of (ii)

and (iii) of Theorem 1.1 are given in Section 5. Section 6 is devoted to the results

about Bedford-McMullen sponges including the proof of Theorem 1.2. The examples

for Theorem 1.1(iv) are given in Section 7.
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2. Preliminaries

In Section 2.1, we introduce the subshifts and factor maps. Then we present some re-

sults about the measures of maximal entropy and full dimension respectively in Section 2.2

and Section 2.3. The last subsection is devoted to the approximate cubes and the related

results.

Throughout this paper we shall mean by a . b that a ≤ Cb for some positive constant

C, and write a ≈ b if a . b and b . a.

2.1. Subshift and factor map. Let B be a finite set. Let k ∈ N and 0 ≤ a < b ≤ k.

For I = i1 · · · ik ∈ Bk, define I|ba = ia+1 · · · ib, |I| = k, and [I] = {x ∈ BN : x|k = I}. For

I ∈ Ak1, J ∈ Ak2, let IJ denote the juxtaposition of I and J . For x = (xi)
∞
i=1 ∈ BN, write

x|ba = xa+1 . . . xb and x|k = x1 · · ·xk. By convention we set x|0 = ∅ and |∅| = 0, where

∅ denotes the empty word. Endow BN with the product topology. Let σ be the shift on

BN defined by σ((xk)∞k=1) = (xk+1)
∞
k=1. A closed subset X of BN is called a subshift of BN

if σ(X) ⊂ X . Let Mσ(X) denote the set of σ-invariant measures on X . Define

Lk(X) = {I ∈ Bk : [I]∩X 6= ∅}, k ∈ N and L(X) =
∞⋃

k=1

Lk(X)
⋃

{∅}.

Definition 2.1 (weak specification). A subshift X of BN is said to satisfy weak specifi-

cation if there exists an integer p such that for every I, J ∈ L(X), there is W ∈ L(X)

with |W | ≤ p such that IWJ ∈ L(X).

Throughout this paper, by a subshift we mean a subshift of AN by default. Recall

A =
∏d

j=1{0, . . . , mj − 1} and s = #{mi : 1 ≤ i ≤ d}. Since m1 ≥ · · · ≥ md ≥ 2, there

are integers n1 > · · · > ns and 0 = d0 < d1 < · · · < ds = d such that for 1 ≤ i ≤ s

(2.1) mj = ni, di−1 < j ≤ di.

By convention we set n0 = ∞ and A0 = A. For 1 ≤ i ≤ s, define

Ai =
∏

j>di−1

{0, . . . , mj − 1}.

Let π1 : A → A1 be the identity map. For 2 ≤ i ≤ s, let πi : Ai−1 → Ai be the projection

by removing first (di−1 − di−2) coordinates, that is,

πi((xdi−2+1, . . . , xdi−1
, xdi−1+1, . . . , xd)) = (xdi−1+1, . . . , xd).

Naturally extend πi from Ai−1 to AN

i−1 by

πi(x) = (πi(xk)) for x = (xk) ∈ AN

i−1.

For 1 ≤ i ≤ s, define τi : AN → AN

i by τi = πi ◦ · · · ◦ π1. By abuse of notation, for

1 ≤ i ≤ s we keep using σ to denote the shift on AN

i , which shall not cause confusion

since the domain of σ is always clear from the context. Then πi ◦ σ = σ ◦ πi and
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τi ◦ σ = σ ◦ τi, that is, πi and τi are factor maps. For a subshift X and 1 ≤ i ≤ s, define

a subshift of AN

i by Xi = τi(X). Hence the following diagram commutes.

X X1 · · ·Xi · · · Xs
π1

τ1

τi

τs

π2 πs

For 1 ≤ i ≤ s, by Definition 2.1 and the surjectivity of τi, if X satisfies weak specification,

then so does Xi.

2.2. Measure of maximal entropy. Let B be a finite set and X be a subshift of BN.

The topological entropy h(X) of X is

(2.2) h(X) = lim
k→∞

1

k
log #Lk(X),

where the limit exists by a subadditivity argument. For µ ∈ Mσ(X), the measure-theoretic

entropy h(µ) of µ is

(2.3) h(µ) = lim
k→∞

1

k

∑

I∈Lk(X)

−µ(I) log µ(I),

where the limit exists by the invariance of µ and a subadditivity argument. Note that

h(µ) ≤ h(X) since
∑

I∈Lk(X) −µ(I) logµ(I) ≤ log #Lk(X) by convexity. We call µ a

measure of maximal entropy if h(µ) = h(X).

Suppose X satisfies weak specification. Applying [12, Theorem 5.5] with φ ≡ 1 on X

shows that there is a unique measure of maximal entropy with the Gibbs property, an

extension of the classical result of Parry [31].

Proposition 2.2. Let X be a subshift satisfying weak specification. Then there is a

unique measure of maximal entropy µ on X. Moreover, µ is the unique ergodic measure

satisfying the following Gibbs property

µ(I) ≈ 1

#L|I|(X)
≈ exp (−|I| h(X)) for I ∈ L(X),

where h(X) is as in (2.2).

2.3. Measure of full dimension. Roughly speaking, a measure of full dimension is

an invariant measure having the same Hausdorff dimension as its support. It is an

important topic in dynamical systems to determine the existence and uniqueness of the

measure of full dimension on invariant sets [2, 12, 18, 22, 26, 29, 34]; see [17] for a survey.

In their celebrated work, Das and Simmons [6] contructed a self-affine sponge whose

Hausdorff dimension is strictly greater than the supremum of the Hausdorff dimensions of

its invariant measures, thus showing that the measure of full dimension may not exist in an

expanding nonconformal system. For other dimensional properties of invariant measures

in nonconformal settings, very recently Kolossváry [24] computed the Lq dimensions of

self-affine measures on self-affine sponges assuming a suitable separation condition, which

generalizes the results in [23, 30].
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For a subshift X and K = R(X), we call an invariant measure µ on X a measure of full

dimension if dimHRµ = dimHK. Kenyon and Peres [22] established a Ledrappier-Young

formula for the Hausdorff dimensions of ergodic measures and proved the existence of the

measure of full dimension. For µ ∈ Mσ(AN), following [22] we define

(2.4) dLY(µ) =

s∑

i=1

(
1

logni
− 1

log ni−1

)
h(τiµ).

Proposition 2.3 ([22, Theorem 1.1 & Lemma 4.3]). Let X be any subshift and K =

R(X). Then for each ergodic measure µ ∈ Mσ(X),

(2.5) dimHRµ = dLY(µ),

and

(2.6) dimHK = max
µ∈Mσ(X)

dLY(µ).

By studying the optimization problem in (2.6), a part of the so-called weighted theor-

modynamic formalism, Feng [12] proved that when X satisfies weak specification, there

is a unique measure of full dimension with some lower Gibbs property. Before stating

this result in Proposition 2.4, we need some notation. For 1 ≤ i ≤ s, write

(2.7) αi =
log ni

log ni−1
.

Let X be a subshift. Define φ(1) ≡ 1 on L(X). For 2 ≤ i ≤ s, recursively define

φ(i) : L(Xi) → (0,∞) by

(2.8) φ(i)(J) =
∑

I∈L(Xi−1) : πi(I)=J

φ(i−1)(I)αi−1 for J ∈ L(Xi).

Then define Z : N → (0,∞) as

Z(k) =
∑

I∈Lk(Xs)

φ(s)(I)αs ,

and

(2.9) P = lim
k→∞

logZ(k)

k
,

where the limit exists by a subadditivity argument.

Proposition 2.4 ([12, Theorems 5.5 & 7.3]). Let X be a subshift satisfying weak speci-

fication and K = R(X). Then there is a unique measure of full dimension η on X, that

is,

dimHRη = dLY(η) = max
µ∈Mσ(X)

dLY(µ) = dimHK.

Moreover, η is ergodic and has the following lower Gibbs property,

(2.10) η(I) & ψ(I) for I ∈ L(X),

where

ψ(I) =
1

Z(|I|)

s∏

i=1

φ(i)(τi(I))αi−1.

7



Additionally, τsη has the following Gibbs property,

(2.11) τsη(J) ≈ φ(s)(J)αs

exp(|J |P )
for J ∈ L(Xs),

where P is as in (2.9).

Combining Proposition 2.3 and [12, Proposition 3.7] (a relative variational principle

for subadditive potentials) gives a formula for the Hausdorff dimension of all compact

T -invariant sets, an analog of which for certain sofic affine-invariant sets was previously

established in [21, Theorem 1.1].

Lemma 2.5. Let X be a subshift and K = R(X). Then

(2.12) dimHK =
P

log ns

where P is as in (2.9).

2.4. Approximate cube. In this subsection, we introduce the approximate cubes with

side lengths ≈ n−k
s (k ∈ N) by ‘slowing down’ the iterations along the stronger unstable

directions. For 1 ≤ i ≤ s, write

(2.13) θi =
log ns

log ni

.

For k ∈ N, define Rk :
⋃

n≥k An → T
d by

(2.14) Rk(I) :=

k∑

ℓ=1

Λ−ℓiℓ for I = i1 · · · ik · · · in.

Combining (1.2) and (2.14) gives

(2.15) R(x) = Rk(x|k) + Λ−kR(σkx) for x ∈ AN.

Let ⌊x⌋ denote the integral part of x ∈ R. For I ∈ Ak, the k-level approximate cube is

(2.16) Qk(I) :=

s∏

i=1

di∏

j=di−1+1

[
R⌊θik⌋(I)j , R⌊θik⌋(I)j + n

−⌊θik⌋
i

)
,

where vj denotes the j-th coordinate of a vector v ∈ R
d. For x ∈ AN, we define Qk(x) =

Qk(x|k). Combining (2.1), (2.13) and (2.16) shows that |Qk(x)| ≈ n−k
s .

We begin with a lemma relating the measure of approximate cubes to that of a collection

of cylinders in the symbolic space. For x ∈ X and k ∈ N, define

(2.17) Γk(x) =

{
I ∈ Lk(X) : τi(I|⌊θik⌋) = τi(x|⌊θik⌋) for 1 ≤ i ≤ s

}
.

Lemma 2.6. Let X be a subshift and µ be a Borel measure on X. Then for x ∈ X,

(2.18) Rµ(Qk(x)) =
∑

I∈Γk(x)

µ(I).

8



Proof. Let K = R(X). It follows from (2.16) and (2.17) that

R−1(Qk(x)∩K) ⊂
⋃

I∈Γk(x)

[I]

and

R−1(Qk(x)∩K)
⋂

[I] 6= ∅ for I ∈ Γk(x).

Since Rµ supports on K,

Rµ(Qk(x)) = Rµ(Qk(x)∩K) =
∑

I∈Γk(x)

µ(I),

which finishes the proof. �

Next we give a lemma for counting the number of all k-level approximate cubes. Denote

Qk(X) = {Qk(x) : x ∈ X}.
Then Qk(X) covers K by the k-level approximate cubes. To estimate #Qk(X), following

[28] we introduce a collection of vectors

(2.19)

Dk(X) :=

{
(J1, . . . , Js) ∈

s∏

i=1

L⌊θik⌋−⌊θi−1k⌋(Xi) : there exists I ∈ Lk(X)

such that τi(I|⌊θik⌋⌊θi−1k⌋
) = Ji for 1 ≤ i ≤ s

}
.

Lemma 2.7. Let X be a subshift. Then #Qk(X) = #Dk(X) for k ∈ N.

Proof. It suffices to construct a bijective map f : Qk(X) → Dk(X). For Q ∈ Qk(X),

there exists x ∈ X such that Q = Qk(x). Define

f(Q) := (τ1(x|⌊θ1k⌋⌊θ
−1k⌋

), . . . , τs(x|⌊θsk⌋⌊θs−1k⌋
)).

Then f is injective since for x, y ∈ X , Qk(x) = Qk(y) if and only if τi(x|⌊θik⌋⌊θi−1k⌋
) =

τi(y|⌊θik⌋⌊θi−1k⌋
) for 1 ≤ i ≤ s. Next we show that f is surjective. For J = (J1, . . . , Js) ∈

Dk(X), by (2.19) there is I ∈ Lk(X) such that τi(I|⌊θik⌋⌊θi−1k⌋
) = Ji for 1 ≤ i ≤ s. Take some

x ∈ [I]∩X , then f(Q(x)) = J. �

An upper bound on the upper box dimension of R(X) follows immediately.

Lemma 2.8. Let X be a subshift and K = R(X). Then

dimBK ≤
s∑

i=1

(
1

log ni
− 1

logni−1

)
h(Xi).

Proof. By definition of Dk(X),

(2.20) log #Dk(X) ≤ log #

(
s∏

i=1

L⌊θik⌋−⌊θi−1k⌋(Xi)

)
≤

s∑

i=1

log #L⌊θik⌋−⌊θi−1k⌋(Xi).

9



For 1 ≤ i ≤ s, since h(Xi) = limk→∞(1/k) log #Lk(Xi) and θi − θi−1 > 0,

(2.21)
lim
k→∞

log #L⌊θik⌋−⌊θi−1k⌋(Xi)

k
= lim

k→∞

⌊θik⌋ − ⌊θi−1k⌋
k

· log #L⌊θik⌋−⌊θi−1k⌋(Xi)

⌊θik⌋ − ⌊θi−1k⌋
= (θi − θi−1)h(Xi).

Then

dimBK ≤ lim sup
k→∞

log #Qk(X)

log nk
s

= lim sup
k→∞

log #Dk(X)

log nk
s

by Lemma 2.7

≤ 1

log ns

s∑

i=1

lim sup
k→∞

log #L⌊θik⌋−⌊θi−1k⌋(Xi)

k
by (2.20)

=
1

log ns

(
s∑

i=1

(θi − θi−1)h(Xi)

)
by (2.21),

which finishes the proof. �

We end this section with following variant of the Rogers-Taylor theorem [35] which is

a useful tool to estimate the Hausdorff measure.

Lemma 2.9. Let E ⊂ T
d be a Borel set and ν be a Borel measure with 0 < ν(E) < ∞.

Then for a gauge function ϕ,

(i) if lim supk→∞ ν(Qk(x))/ϕ(n−k
s ) ≤ C for ν-a.e. x ∈ E, then Hϕ(E) & ν(E)/C.

(ii) if lim supk→∞ ν(Qk(x))/ϕ(n−k
s ) ≥ C for all x ∈ E, then Hϕ(E) . ν(E)/C.

3. Some characterizations for the coincidence of dimensions

In this section we prove the following theorem which provides some dynamical charac-

terizations of the coincidence of the Hausdorff and box dimensions for K = R(X) when

X is a subshift satisfying weak specification.

Theorem 3.1. Let X be a subshift satisfying weak specification and K = R(X). For

1 ≤ i ≤ s, let µi be the measure of maximal entropy on Xi (see Proposition 2.2). Then

the following statements are equivalent.

(a) dimHK = dimBK.

(b) τiµ1 = µi for 1 ≤ i ≤ s.

(c) For 1 ≤ i ≤ s and I ∈ L(Xi), #τ−1
i (I) ≈ exp (|I|(h(X1) − h(Xi))), where h(Xi)

is as in (2.2).

(d) There exist 0 ≤ λ1 ≤ · · · ≤ λs such that for 1 ≤ i ≤ s and I ∈ L(Xi), #τ−1
i (I) ≈

exp(λi|I|).

Theorem 3.1 is proved by adapting and extending some ideas in [21]. When X is

an irreducible subshift of finite type, Feng, Lo and Shen [13, Theorem 1.7] provided an

algorithm to decide whether (d) holds.
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3.1. The equivalence of (a) and (b). We first compute the box dimension, which

relies on the next lemma about the number of approximate cubes.

Lemma 3.2. Let X be a subshift satisfying weak specification. Then for k ∈ N,

#Qk(X) ≈ exp

(
k

s∑

i=1

(θi − θi−1)h(Xi)

)
.

Proof. For 1 ≤ i ≤ s, applying Proposition 2.2 to Xi gives

(3.1) #Lk(Xi) ≈ exp(kh(Xi)).

By Lemma 2.7 and (2.19),

#Qk(X) = #Dk(X) ≤
s∏

i=1

#L⌊θik⌋−⌊θi−1k⌋(Xi) ≈ exp

(
k

s∑

i=1

(θi − θi−1)h(Xi)

)
.

Next we control #Qk(X) from below. Let p be as in Definition 2.1. For k ∈ N large,

define

(3.2) Jk =

s∏

i=1

L⌊θik⌋−⌊θi−1k⌋−p(Xi),

and

W =

{
s∏

i=1

(W l
i ,W

r
i ) ∈

s∏

i=1

L(X) ×L(X) : |W l
i | + |W r

i | = p

}
.

We proceed to construct an map g from a subset of Jk × W to Dk(X). For J =

(J1, . . . , Js) ∈ Jk, by the surjectivity of τi there exists I = (I1, . . . , Is) ∈ L(X)s such

that τi(Ii) = Ji for 1 ≤ i ≤ s. Then we define W l
i and W r

i recursively for 1 ≤ i ≤ s. Take

W l
1 = ∅ and W r

1 ∈ Lp(X) such that I1W
r
1 ∈ L(X). Suppose for some 1 ≤ i ≤ s− 1 we

have found W l
1,W

r
1 , . . . ,W

l
i ,W

r
i such that

W l
1I1W

r
1 · · ·W l

i IiW
r
i ∈ L(X) and |W l

j | + |W r
j | = p for 1 ≤ j ≤ i.

By Definition 2.1, there exists W l
i+1 ∈ L(X) with |W l

i+1| ≤ p such that W r
i W

l
i+1Ii+1 ∈

L(X). Take W r
i+1 ∈ Lp−|W l

i+1|
(X) such that Ii+1W

r
i+1 ∈ L(X). Hence we find W =

(W l
1,W

r
1 , . . . ,W

l
s,W

r
s ) such that

(3.3) W l
1I1W

r
1 · · ·W l

sIsW
r
s ∈ L(X) and |W l

i | + |W r
i | = p for 1 ≤ i ≤ s.

Hence for J ∈ Jk, we find some W ∈ W as above and define

g(J,W) =
s∏

i=1

τi(W
l
i IiW

r
i ).

Denote the domain and range of g by Dom(g) and Ran(g) respectively. Since g is defined

for all J ∈ Jk, we have #Dom(g) ≥ #Jk. By (3.3) and (2.19), Dom(g) ⊂ Jk ×W and

Ran(g) ⊂ Dk(X). Note that #g−1(U) ≤ #W for U ∈ Ran(g) by the definition of g.

Hence

#Qk(X) = #Dk(X) by Lemma 2.7

≥ #Ran(g) by Ran(g) ⊂ Dk(X)

11



≥ #Dom(g)

#W by #g−1(U) ≤ #W, U ∈ Ran(g)

≥ #Jk

#W by #Dom(g) ≥ #Jk

&

s∏

i=1

#L⌊θik⌋−⌊θi−1k⌋−p(Xi) by (3.2) and #W ≤ (#A)2p

≈ exp

(
k

s∑

i=1

(θi − θi−1)h(Xi)

)
by (3.1),

for k large enough depending on p. �

Since Qk(X) covers K by approximate cubes with side length ≈ n−k
s , Lemma 3.2

implies the following formula for the box dimension of K.

Proposition 3.3. Let X be a subshift satisfying weak specification and K = R(X). Then

(3.4) dimBK =
s∑

i=1

(
1

log ni

− 1

logni−1

)
h(Xi)

where h(Xi) is as in (2.2).

It is worth pointing out that recently Jurga [19] showed that the box dimension of

K = R(X) may not exist if X does not satisfy weak specification.

The equivalence of (a) and (b) follows immediately.

Proof of (a) ⇐⇒ (b). By Proposition 2.3, let η be a ergodic measure on X such that

dLY(η) = dimHK. By (2.4) and Proposition 3.3, (a) is equivalent to

(3.5)

s∑

i=1

(
1

ni
− 1

ni−1

)
(h(Xi) − h(τiη)) = 0.

Since h(τiη) ≤ h(Xi) and ni < ni−1 for 1 ≤ i ≤ s, (3.5) holds if and only if

h(Xi) = h(τiη) for 1 ≤ i ≤ s.

The proof is finished by Proposition 2.2. �

3.2. The equivalence of (b), (c) and (d).

Proof of the equivalence of (b), (c) and (d). By Proposition 2.2, for 1 ≤ i ≤ s and I ∈
Lk(Xi),

(3.6) µi(I) ≈ 1

#Lk(Xi)
≈ exp(−kh(Xi)).

Fix any i ∈ {1, . . . , s} and k ∈ N.

If (b) holds, then for I ∈ Lk(Xi),

exp(−kh(Xi)) ≈ µi(I) = τiµ1(I) =
∑

J∈τ−1
i (I)

µ(J) ≈ #τ−1
i (I) · exp(−kh(X1)).

12



This implies (c).

It is immediate that (d) follows from (c) by taking λi = h(X1) − h(Xi).

Next we show that (d) implies (b). By (3.6) and (d), for I ∈ Lk(Xi),

(3.7) τiµ1(I) =
∑

J∈τ−1
i

(I)

µ1(I) ≈ #τ−1
i (I) · exp(−kh(X1)) ≈ exp(k(λi − h(X1))).

Then

#Lk(Xi) · exp(k(λi − h(X1))) ≈
∑

I∈Lk(Xi)

τiµ1(I) = 1.

Since #Lk(Xi) ≈ exp(kh(Xi)) by (3.6), we have λi = h(X1) − h(Xi). Combining (3.7)

and (3.6) gives

τiµ1(I) ≈ exp(−kh(Xi)) ≈ µi(I).

This shows (b) by Proposition 2.2. �

4. Proof of Theorem 1.1(i)

This section is devoted to the proof of Theorem 1.1(i). We begin with a lemma con-

trolling the number of cylinders in the approximate cube by the topological entropies.

Lemma 4.1. Let X be a subshift satisfying weak specification and K = R(X). If

dimHK = dimBK, then for x ∈ X and k ∈ N,

(4.1) #Γk(x) . exp

(
k

s∑

i=1

(θi − θi−1)(h(X) − h(Xi))

)
,

where Γk(·) is as in (2.17).

Proof. For 1 ≤ i ≤ j ≤ s and I, J ∈ L(X), τi(I) = τi(J) implies τj(I) = τj(J) since

τj = πj ◦ · · · ◦ ◦πi+1 ◦ τi. Then by (2.17),

#Γk(x) = #

{
I ∈ Lk(X) : τi(I|⌊θik⌋) = τi(x|⌊θik⌋) for 1 ≤ i ≤ s

}

= #

{
I ∈ Lk(X) : τi(I|⌊θik⌋⌊θi−1k⌋

) = τi(x|⌊θik⌋⌊θi−1k⌋
) for 1 ≤ i ≤ s

}

≤
s∏

i=1

#τ−1
i

(
τi(x|⌊θik⌋⌊θi−1k⌋

)
)

≈
s∏

i=1

exp

(
k(θi − θi−1)(h(X) − h(Xi))

)

where the last equality is by (c) of Theorem 3.1. �

Now we are ready to prove Theorem 1.1(i).
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Proof of Theorem 1.1(i). Suppose dimHK = dimBK = γ. Then Proposition 3.3 shows

(4.2) γ =
1

logns

s∑

i=1

(θi − θi−1)h(Xi).

We first show Hγ(K) > 0. By Proposition 2.2, let µ be the unique measure of maximal

entropy on X . Then

(4.3) µ(I) ≈ exp(−kh(X)) for I ∈ Lk(X).

For x ∈ X and k ∈ N,

Rµ(Qk(x)) =
∑

I∈Γk(x)

µ(I) by Lemma 2.6

≈ exp(−kh(X)) · #Γk(x) by (4.3)

. exp

(
−k
(
h(X) −

s∑

i=1

(θi − θi−1)(h(X) − h(Xi))

))
by Lemma 4.1

= exp

(
−k
(

s∑

i=1

(θi − θi−1)h(Xi)

))
by θs = 1, θ0 = 0

= n−kγ
s by (4.2).

This shows Hγ(K) & 1 by Lemma 2.9.

Next we prove Hs(K) < ∞. Since Qk(X) covers K by the k-level approximate cubes

with side lengths ≈ n−k
s , Lemma 3.2 implies that for some C > 0,

Hγ

Cn−k
s

(K) . n−kγ
s · #Qk(X) ≈ n−kγ

s exp

(
k

s∑

i=1

(θi − θi−1)h(Xi)

)
= 1,

where the last equality is by (4.2). Letting k → ∞ gives Hγ(K) . 1. �

5. Proof of (ii) and (iii) in Theorem 1.1

Theorem 1.1(ii) is contained in Proposition 5.2. Theorem 1.1(iii) follows from the com-

bination of Proposition 5.3 and (i) and (ii) of Theorem 1.1.

5.1. Proof of Theorem 1.1(ii). We first show that the Hausdorff measures of R-images

of cylinders with the same length are comparable to each other.

Lemma 5.1. Let X be a subshift satisfying weak specification and K = R(X). Let ϕ be

a gauge function. Then for k ∈ N and I ∈ Lk(X),

Hϕ(R([I])∩K) ≈ Hϕ(Λ−kK).

Proof. For J ∈ L(X), write DJ = {j ∈ A : Jj ∈ L(X)}. By the translation-invariance of

Hϕ and (2.15),

(5.1) Hϕ(R([J ]∩X)) =
∑

j∈DJ

Hϕ(R([Jj]∩X)) =
∑

j∈DJ

Hϕ(Λ−|J |R([j]∩X)).
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Then since DI ⊂ L1(X), X =
⋃

j∈L1(X)[j]∩X , and K = R(X),

(5.2) Hϕ(R([I]∩X)) ≤
∑

j∈L1(X)

Hϕ(Λ−kR([j]∩X)) = Hϕ(Λ−kR(X)) = Hϕ(Λ−kK).

Next we give a lower bound on Hϕ(R([I]∩X)). Let p be as in Definition 2.1. For

j ∈ L1(X), there exists W ∈ L(X) with |W | ≤ p such that IWj ∈ L(X). Then

(5.3)

Hϕ(R([I]∩X)) ≥ Hϕ(R([IWj]∩X))

≥ Hϕ(Λ−k−|W |R([j]∩X)) by (5.1)

≥ Hϕ(Λ−k−pR([j]∩X)),

where the last inequality is by |W | ≤ p and Λ−1 is contracting. Summing (5.3) over

j ∈ L1(X) gives

(5.4) Hϕ(R([I]∩X)) ≥ 1

#AHϕ(Λ−k−pR(X)).

Notice that Λ−kT−p(E) = Λ−k−pE + Λ−k
∑

J∈Ap Rp(J) for E ⊂ T
d. By the translation-

invariance of Hϕ,

Hϕ(Λ−k−pE) =
1

(#A)p
Hϕ(Λ−kT−p(E)).

Then by (5.4), taking E = R(X) in the above equation implies that

(5.5) Hϕ(R([I]∩X)) ≥ 1

(#A)p+1
Hϕ(Λ−kT−p(R(X))) ≥ 1

(#A)p+1
Hϕ(Λ−kK),

where the last inequality is by K = R(X) and K ⊂ T−p(K). Combining (5.2) and (5.5)

finishes the proof. �

Now we are ready to prove Theorem 1.1(ii) which is contained in the following propo-

sition.

Proposition 5.2. Let X be a subshift satisfying weak specification and K = R(X). Let

µ be the measure of maximal entropy on X. If 0 < Hϕ(K) <∞ for some gauge function

ϕ, then

Rµ ≈ Hϕ|K
where Hϕ|K denotes the restriction of Hϕ to K. In particular, dimHRµ = dimHK.

Proof. Let k ∈ N. By Lemma 5.1,

(5.6) Hϕ(R([I])∩K) ≈ Hϕ(R([J ])∩K) for I, J ∈ Lk(X).

Since 0 < Hϕ(K) <∞ and {R([I])}I∈Lk(X) covers K,

(5.7) 1 ≈ Hϕ|K(K) =
∑

I∈Lk(X)

Hϕ|K(R([I])).

Combining (5.6) and (5.7) gives

Hϕ|K(R([I])) ≈ 1

#Lk(X)
for I ∈ Lk(X).
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Then Proposition 2.2 implies that

Rµ(R([I])) = µ(I) ≈ 1

#Lk(X)
≈ Hϕ|K(R([I])) for I ∈ Lk(X).

Note that Rµ(R([I])) = 0 = Hϕ|K(R([I])) for I ∈ Ak \ Lk(X) since µ supports on X .

Hence

Rµ(R([I])) ≈ Hϕ|K(R([I])) for all I ∈ Ak.

This finishes the proof because the collection of sets
{
R([I]) : I ∈ ⋃∞

k=1Ak
}

generates the

Borel σ-algebra of Td. �

5.2. Proof of Theorem 1.1(iii). The proof of Theorem 1.1(iii) follows immediately by

combining the following proposition with (i) and (ii) of Theorem 1.1.

Proposition 5.3. Let X be a subshift satisfying weak specification and K = R(X). Let

µ be the measure of maximal entropy on X. Suppose s ≤ 2. If dimHRµ = dimHK, then

dimHK = dimBK.

Proof. By the definition of µ and the assumption on µ,

h(µ) = h(X) and dimHRµ = dimHK.

When s = 1. By Proposition 2.4 and Proposition 3.3,

dimHK = dimHRµ = dLY(µ) =
h(µ)

log n1
=
h(X)

logn1
= dimBK.

(This is also the result of Furstenberg [16] since T is conformal when s = 1.)

When s = 2. Recall θ1 = α2θ2 = α2 from (2.7) and (2.13). By Lemma 2.5,

(5.8) dimHK =
P

log n2

where

(5.9) P = lim
k→∞

1

k
log

∑

J∈Lk(X2)

(#π−1
2 (J))θ1 .

Let k ∈ N and J ∈ Lk(X2). Since τ2 = π2, Proposition 2.4 implies that

(5.10) π2µ(J) ≈ (#π−1
2 (J))θ1

exp(kP )
.

Since µ(I) ≈ exp(−kh(X1)) for I ∈ Lk(X1) by Proposition 2.2,

(5.11) π2µ(J) =
∑

I∈π−1
2 (J)

µ(I) ≈ #π−1
2 (J)

exp(kh(X1))
.

Combining (5.10) and (5.11) gives

(5.12) (#π−1
2 (J))θ1 ≈ exp

(
k

θ1
1 − θ1

(h(X1) − P )

)
.

By Proposition 2.2,

(5.13) #Lk(X2) ≈ exp(kh(X2)).
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Applying (5.12) and (5.13) to (5.9), we solve that

P = θ1h(X1) + (1 − θ1)h(X2).

This shows dimHK = dimBK by Proposition 3.3 and (5.8). �

In the above proof, the assumption of s ≤ 2 allows the potential φ(2) as in (2.8) to be

estimated by combining the Gibbs property of µ and τ2µ. However, this argument does

not extend to s ≥ 3 since for 2 ≤ i ≤ s− 1 there is a lack of the information about the

regularity of τiµ. In fact, the examples in Section 7 show that Proposition 5.3 does not

hold when s ≥ 3.

6. Bedford-McMullen sponges

This section is devoted to the results about Bedford-McMullen sponges. The proof of

Theorem 1.2 is given in Section 6.2.

6.1. Dimensional results. In this subsection, we include some results of Kenyon and

Peres about the dimensions of Bedford-McMullen sponges. Let D be a nonempty subset

of A. Define Di = τi(D) for 1 ≤ i ≤ s. Define Z(1) ≡ 1 on D1. For 2 ≤ i ≤ s, recursively

define

(6.1) Z(i)(x) =
∑

y∈Di−1 : πi(y)=x

Z(i−1)(y)αi−1 for x ∈ Di.

Define

(6.2) Z =
∑

x∈Ds

Z(s)(x)αs .

Proposition 6.1 ([22, Theorem 1.2]). Let K = R(DN) for some ∅ 6= D ⊂ A. Then

dimHK =
logZ

log ns

where Z is as in (6.2). There is a unique measure of full dimension ηp which is the

Bernoulli measure with marginal p = p(x)x∈D, where

(6.3) p(x) =
1

Z

s∏

i=1

Z(i)(τi(x))αi−1 for x ∈ D.

There is a simple criterion for Bedford-McMullen sponges to have equal Hausdorff and

box dimensions. For 1 ≤ i ≤ s, define

(6.4) fi(x) = #π−1
i (τi(x)) for x ∈ D.

Proposition 6.2 ([22, Proposition 1.3]). Let K = R(DN) for some ∅ 6= D ⊂ A. Then

dimHK = dimBK if and only if

(6.5) fi(x) = fi(y) for all 1 ≤ i ≤ s and x, y ∈ D.

As a direct corollary of Proposition 6.1, we have the following condition on when the

measures of maximal entropy and full dimension coincide.
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Corollary 6.3. Let K = R(DN) for some ∅ 6= D ⊂ A. Then the measures of maximal

entropy and full dimension coincide if and only if

(6.6)
s∏

i=1

Z(i)(τi(x))αi−1 =
s∏

i=1

Z(i)(τi(y))αi−1 for x, y ∈ D.

When s ≤ 3, (6.6) is equivalent to

(6.7)

s∏

i=1

fi(x)θi−1−1 =

s∏

i=1

fi(y)θi−1−1 for x, y ∈ D.

Proof. Since the measure of maximal entropy on DN is the Bernoulli measure with mar-

ginal (1/#D, . . . , 1/#D), the first equivalence follows directly from Proposition 6.1. Next

we show the second equivalence. Since f1(x) = Z(1)(x) = 1 and f2(x) = Z(2)(τ2(x))

for x ∈ D, (6.7) and (6.6) are equivalent when s ≤ 2. Next we suppose s = 3.

Let x ∈ D. For z ∈ π−1
3 (τ3(x)), there exists y ∈ D such that τ2(y) = z, and so

τ3(y) = π3(τ2(y)) = π3(z) = τ3(x). Then either (6.7) or (6.6) implies f2(x) = f2(y),

thus Z(2)(z) = Z(2)(τ2(y)) = f2(y) = f2(x). Hence by (6.1),

Z(3)(τ3(x)) =
∑

z∈π−1
3 (τ3(x))

Z(2)(z)α2 = f3(x)f2(x)α2 .

Then

3∏

i=1

Z(i)(τi(x))αi−1 = f2(x)α2−1 (f3(x)f2(x)α2)α3−1 = f2(x)θ1−1f3(x)θ2−1,

which finishes the proof. �

It is easy to see that (6.5) is equivalent to (6.7) if s ≤ 2, but stronger than (6.7) if

s = 3. This motivates us to give the examples in Section 7.

6.2. Proof of Theorem 1.2. Let X be a subshift and µ be a measure on X . For a

gauge function ϕ, define

Θϕ
k (µ, x) =

Rµ(Qk(x))

ϕ(n−k
s )

for x ∈ X and k ∈ N.

Write Θϕ
k as Θγ

k when ϕ(r) = rγ, γ ≥ 0. Let E[X ] and Var(X) respectively denote the

expectation and variance of a random variable X .

Proof of Theorem 1.2. By Theorem 1.1(i), it remains to show that if 0 < Hϕ(K) < ∞
for some gauge function ϕ, then dimHK = dimBK.

Suppose 0 < Hϕ(K) < ∞. Write K = R(DN) for some D ⊂ A. Let µ be the

measure of maximal entropy on DN, that is, µ is the Bernoulli measure with marginal

(1/#D, . . . , 1/#D). Let x = (xj)
∞
j=1 ∈ DN be a random sequence with law µ. For k ∈ N

and 1 ≤ j ≤ k, define the random variables

(6.8) X
(k)
j = log #τ−1

i (τi(xj)) for 1 ≤ i ≤ s and ⌊θi−1k⌋ + 1 ≤ j ≤ ⌊θik⌋.
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Note that x1, . . . , xk are i.i.d. random variables with common law
∑

y∈D 1/(#D)δy. Then

X
(k)
1 , . . . , X

(k)
k are independent and uniformly bounded. Write Ek =

∑k
j=1E[X

(k)
j ] and

V 2
k =

∑k
j=1 Var(X

(k)
j ). For k ∈ N, define

(6.9) L(k) = log
(
(#D)kϕ(n−k

s )
)
.

For x = (xj)
∞
j=1 ∈ DN and k ∈ N, (2.17) implies

(6.10)

#Γk(x) = #

{
I ∈ Lk(DN) : τi(I|⌊θik⌋⌊θi−1k⌋

) = τi(x|⌊θik⌋⌊θi−1k⌋
) for 1 ≤ i ≤ s

}

=
s∏

i=1

⌊θik⌋∏

j=⌊θi−1k⌋+1

#τ−1
i (τi(xj)).

Since µ(I) = 1/(#D)k for I ∈ Dk, Lemma 2.6 shows

(6.11) Rµ(Qk(x)) =
∑

I∈Γk(x)

µ(I) =
#Γk(x)

(#D)k
.

Combining (6.8), (6.9), (6.10) and (6.11) gives

(6.12) Θϕ
k (µ, x) = exp

(
k∑

j=1

X
(k)
j − L(k)

)
for x ∈ DN.

By Proposition 5.2 and the density theorem for the Hausdorff measures (see e.g. [27,

Theorem 6.2]),

(6.13) µ

{
x : lim sup

k→∞
Θϕ

k (µ, x) ≈ 1

}
= 1

Then by (6.12), there exists M > 0 such that

(6.14) P

{
lim sup
k→∞

∣∣∣∣∣

k∑

j=1

X
(k)
j − L(k)

∣∣∣∣∣ < M

}
= 1

where P denotes the underlying probability (that is, a probabilistic notation for µ).

Suppose on the contrary that dimHK < dimBK. It follows from Proposition 6.2 that

#τ−1
i0

(τi0(x)) 6= #τ−1
i0

(τi0(y)) for some 1 ≤ i0 ≤ s and x, y ∈ D. Let Y be the random

variable with law
∑

x∈D
1

#D
δ#τ−1

i0
(τi0 (x))

, then Var(Y ) > 0. By (6.8), Y has the same law

as X
(k)
j for ⌊θi−1k⌋ + 1 ≤ j ≤ ⌊θik⌋. Then by the independence of X

(k)
j ,

V 2
k ≥

⌊θik⌋∑

j=⌊θi−1k⌋+1

Var(X
(k)
j ) & Var(Y )(θi − θi−1)k → ∞,

as k → ∞. By Lyapunov’s Central Limit Theorem (see e.g. [5, Theorem 7.1.2]), the

normalized random sum Yk = (
∑k

j=1X
(k)
j − Ek)/Vk converges to the standard normal

19



random variable N(0, 1) in distribution. Since the probability density function of N(0, 1)

is uniformly continuous and limk→∞M/Vk = 0,

(6.15) P

{∣∣∣∣∣

k∑

j=1

X
(k)
j − L(k)

∣∣∣∣∣ < M

}
= P

{∣∣∣∣Yk −
L(k) −Ek

Vk

∣∣∣∣ <
M

Vk

}
→ 0

as k → ∞. This implies

P

{
lim sup
k→∞

∣∣∣∣∣

k∑

j=1

X
(k)
j − L(k)

∣∣∣∣∣ < M

}
≤ lim sup

k→∞
P

{∣∣∣∣∣

k∑

j=1

X
(k)
j − L(k)

∣∣∣∣∣ < M

}
= 0,

which contradicts (6.14). �

Remark 6.4. The proof of Theorem 1.2 works for some other subshift X satisfying weak

specification if we can write logRµ(Qk(x)) as a sequence of random variables such that

some limit theorem can be applied to conclude an analog of (6.15). Next we give an exam-

ple to illustrate it. Let m1, m2, m3 be integers such that m1 > m2 > m3 ≥ 2, m1, m2 ≥ 3.

Let A, θi, πi, τi, 1 ≤ i ≤ s = 3 be defined as in Section 2.1. Let

D =








0

0

0



 ,




0

1

0



 ,




1

1

0



 ,




0

2

1



 ,




1

2

1



 ,




2

2

1







 .

Enumerate D as {z1, . . . , z6} according to the above order. Let A = (Ai,j) be a 6 × 6

matrix such that Ai,i = 0 and Ai,j = 1 if i 6= j for 1 ≤ i, j ≤ 6. Consider the following

subshift of finite type

ΣA =
{

(xk)∞k=1 ∈ DN : ∀ k ∈ N, ∃ 1 ≤ i, j ≤ 6, xk = zi, xk+1 = zj , Ai,j = 1
}
.

Let K = R(ΣA). By [31] (see also [36]), the unique measure of maximal entropy µ

on ΣA is the Markov measure generated by the probability vector (1/6, . . . , 1/6) and the

random matrix A/5. By computation, τ2µ is the Markov measure on τ2(ΣA) generated by

(1/6, 1/3, 1/2) and




0 2/5 3/5

1/5 1/5 3/5

1/5 2/5 2/5


. Since the computation shows that τ2µ is not the

measure of maximal entropy on τ2(ΣA), it follows from Theorem 3.1(b) that dimHK <

dimBK. By the definition of D, a similar estimate as in the proof of Theorem 1.2 gives

Rµ(Qk(x)) ≈ θ1k + 3(1 − θ2)k +

⌊θ2k⌋∑

j=⌊θ1k⌋+1

Y ((τ2x)j)

where Y : τ2D → {1, 2, 3} is a function defined as Y ((0, 0)t) = 1, Y ((1, 0)t) = 2 and

Y ((2, 1)t) = 3. Since the law of τ2x is the Markov measure τ2µ if x is a random sequence

with law µ, we can apply the central limit theorem for Markov chains (see e.g. [7, Example

8.3.4]) and adapt the proof of Theorem 1.2 to conclude that Hϕ(K) = 0 or ∞ for every

gauge function ϕ.
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6.3. Infinite Hausdorff measure. In this subsection, we provide a sufficient condition

(see Proposition 6.6) for Bedford-McMullen sponges to have infinite Hausdorff measures

at their respective Hausdorff dimensions. This is based on the method of Peres [33] and

a relation (see Lemma 6.8) satisfied by the measure of full dimension. In [33, Section 5],

Peres mentioned that [33, Theorem 1 and Proposition 2] extend to Bedford-McMullen

sponges. However, he did not give a detailed justification. In fact, the proof of [33,

Proposition 2] does not work for Bedford-McMullen sponges according to the examples

in Section 7. For the extension of [33, Theorem 1], it is not clear how to construct a

measure with zero density like that in the proof of [33, Theorem 1] since the measure of

full dimension becomes more complicated when s ≥ 3 (see Proposition 6.1).

Throughout this subsection we fix ∅ 6= D ⊂ A and let K = R(DN). Let p = (p(x))x∈D
be the probability vector given in (6.3). Write γ = dimHK. For a finite set B and

probability vectors q = (q(x))x∈B and q′ = (q′(x))x∈B, following [33] we define

(6.16) ∆(q‖q′) =
∑

x∈B

(q(x) − q′(x)) log q(x),

where we require q′(x) = 0 if q(x) = 0.

The following proposition is essentially contained in [33]. For completeness, we include

a proof of Proposition 6.5 in Appendix A.

Proposition 6.5 (Peres [33]). If there exist a probability vector q on D and c > 0 such

that

(6.17)

s∑

i=1

∆(τip‖τiq)
∫ θik

θi−1k

1

log t
dt ≥ c

k

(log k)2
for large k ∈ N,

then Hϕ(K) = ∞, where

(6.18) ϕ(r) = rγ exp

(
c̃

|log r|
(log|log r|)2

)
, r > 0,

for some c̃ > 0 depending on c explicitly. In particular, Hγ(K) = ∞.

In the remaining part of this subsection, we prove the following proposition which is a

sufficient condition such that the Hausdorff measures of Bedford-McMullen sponges are

infinite at their Hausdorff dimensions. For a probability vector q = (q(x))x∈B on a finite

set B, we say q is uniform if q = (1/#B, . . . , 1/#B).

Proposition 6.6. If

(6.19) 1 ≤ #{1 ≤ i ≤ s : τip is not uniform} ≤ 2,

then HdimH K(K) = ∞.

Proposition 6.6 extends some results in [33] since for Bedford-McMullen carpets, the

upper bound in (6.19) trivially hold when d = 2 and the lower bound in (6.19) follows

from dimHK < dimBK and Theorem 3.1(b). Next we give two lemmas for the proof of

Proposition 6.6.
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Lemma 6.7. If q is uniform, then ∆(q‖q′) = 0; if q′ is uniform but q is not uniform,

then ∆(q‖q′) > 0.

Proof. The first statement is by a direct computation. The second statement follows from

∆(q‖q′) =
1

2#B
∑

x∈B

∑

y∈B

(q(x) − q′(y))(log q(x) − log q′(y)) > 0

when q′ is uniform. �

The following lemma is the key ingredient for the verification of (6.17) when s ≥ 3.

Lemma 6.8. For every probability vector q on D,

(6.20)
s∑

i=1

(θi − θi−1)∆(τip‖τiq) = 0.

Proof. For 1 ≤ i ≤ s, write pi = τip, qi = τiq, and ∆i = ∆(pi‖qi). By (6.16),

∆i =
∑

x∈Di

(pi(x) − qi(x)) log pi(x)

=
∑

x∈Di

log pi(x)
∑

y∈τ−1
i (x)

(p1(y) − q1(y)) by pi = τip1, qi = τiq1

=
∑

x∈Di

∑

y∈τ−1
i

(x)

(p1(y) − q1(y)) log pi(τi(y)) by τi(y) = x for y ∈ τ−1
i (x)

=
∑

y∈D1

(p1(y) − q1(y)) log pi(τi(y)).

Then

s∑

i=1

(θi − θi−1)∆i =
∑

x∈D1

(p1(x) − q1(x))

s∑

i=1

(θi − θi−1) log pi(τi(x)).

Since
∑

x∈D1
p1(x) =

∑
x∈D1

q1(x) = 1, it suffices to show

(6.21)

s∑

i=1

(θi − θi−1) log pi(τi(x)) = − logZ for x ∈ D1.

By (6.3), for x ∈ D1 and 2 ≤ i ≤ s,

p1(x) = pi(τi(x))
1

Z(i)(τi(x))

i−1∏

j=1

Z(i)(τj(x))αj−1.
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Thus
s∑

i=1

(θi − θi−1) log pi(τi(x))

= log p1(x) −
s∑

i=2

(θi−1 − θi)Z
(i)(τi(x)) −

s∑

i=2

i−1∑

j=1

(θi − θi−1)(αj − 1) logZ(j)(τj(x))

= log p1(x) −
s∑

i=2

(θi−1 − θi)Z
(i)(τi(x)) −

s−1∑

j=1

s∑

i=j+1

(θi − θi−1)(αj − 1) logZ(j)(τj(x))

= log p1(x) −
s∑

i=2

(θi−1 − θi)Z
(i)(τi(x)) −

s−1∑

j=1

(1 − θj)(αj − 1) logZ(j)(τj(x))

= log p1(x) −
s∑

i=1

(αi − 1)Z(i)(τi(x))

= − logZ,

where the second equality is by changing the index of i, j; the second last equality is by

Z(1) ≡ 1 and θiαi = θi−1 for 1 ≤ i ≤ s; the last equality is by (6.3). �

Now we are ready to prove Proposition 6.6.

Proof of Proposition 6.6. For a probability vector q on D and 1 ≤ i ≤ s, write pi = τip,

qi = τiq, and ∆i = ∆(pi‖qi). Define I = {1 ≤ i ≤ s : pi is not uniform}. It follows from

Lemma 6.7 that ∆i = 0 for i /∈ I. By Lemma 6.8,

(6.22)
∑

i∈I

(θi − θi−1)∆i =

s∑

i=1

(θi − θi−1)∆i = 0.

We first show #I 6= 1. Suppose otherwise that I = {i1}. Take a probability vector q

on D such that τi1q is uniform. Then ∆i1 > 0 by Lemma 6.7, which contradicts (6.22).

Then #I = 2 by (6.19).

Write I = {i1, i2} for some 1 ≤ i1 < i2 ≤ s. Take a probability vector q on D such that

τi1q is uniform. Then ∆i1 > 0 by Lemma 6.7. By (6.22)

∆i2 = −θi1 − θi1−1

θi2 − θi2−1
∆i1 < 0.

Since ∆i = 0 for i 6= I,

(6.23)

s∑

i=1

∆i

∫ θik

θi−1k

1

log t
dt

= ∆i1(θi1 − θi1−1)

(
1

θi1 − θi1−1

∫ θi1k

θi1−1k

1

log t
dt− 1

θi2 − θi2−1

∫ θi2k

θi2−1k

1

log t
dt

)
.

By a change of variable, for 0 < a < b ≤ c < d there exists δ > 0 such that

(6.24)
1

b− a

∫ bk

ak

1

log t
dt− 1

d− c

∫ dk

ck

1

log t
dt ≥ δ

k

(log k)2
for k ∈ N∩[2/a,∞).

23



Combining (6.23) and (6.24) verifies (6.17). Finally, the proof is completed by Proposition 6.5.

�

Remark 6.9. From the proof of Proposition 6.6 we see that

(6.25) #{1 ≤ i ≤ s : τip is not uniform} 6= 1.

Based on (6.25) there is an alternative way to prove that for a Bedford-McMullen carpet

K, 0 < Hϕ(K) < ∞ implies dimHK = dimBK. Suppose otherwise dimHK < dimBK.

Combining Proposition 5.2 and Theorem 3.1(b) gives #{1 ≤ i ≤ s : τip is not uniform} =

1 which contradicts (6.25).

7. Examples

In this section, we present several Bedford-McMullen sponges K = R(DN), ∅ 6= D ⊂ A
such that dimHRµ = dimHK < dimBK, where µ is the measure of maximal entropy on

DN. For a finite set B and a probability vector p = (p(x))x∈B, let ηp denote the Bernoulli

measure on BN with marginal p.

Example 7.1. Let

Λ = diag(64, 16, 8)

and

D =








0

0

0



 ,




0

1

0



 ,




0

2

0



 ,




0

3

0



 ,




0

0

1



 ,




1

0

1







 .

Define K = R(DN). By Proposition 3.3 and Proposition 6.1,

dimBK =
log 360

12 log 2
and dimHK =

log 18

6 log 2
.

The measure of maximal entropy is ηp with p = p1 = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6). Note

that τ2ηp1 = ηp2 and τ3ηp1 = ηp3, where p2 = (1/6, 1/6, 1/6, 1/6, 1/3) and p3 = (2/3, 1/3).

By Proposition 2.3,

dimHRηp = dLY(ηp) =
log 18

6 log 2
.

Hence

dimHRηp = dimHK < dimBK.

Since #{1 ≤ i ≤ 3: pi is not uniform} = 2, it follows from Proposition 6.6 that

HdimH K(K) = ∞.

Next we give similar examples when d ≥ 4.

Example 7.2. For d ≥ 4, let

Λ = diag(22d−1

, 22d−2

, . . . , 4, 2)

24



and

D =









{0, 1, 2, 3}
{0}
{0, 1}
{0}
{0, 1}

...

{0, 1}




,




{0}
{0, 1, 2, 3, 4, 5, 6, 7}

{0}
{1}
{0, 1}

...

{0, 1}









.

Write the left and right collections of digits above respectively as D1 and D2. Then

D = D1 ⊔ D2. Since for x ∈ D1 and y ∈ D2,

#π−1
2 (τ2(x)) = 4 6= 1 = #π−1

2 (τ2(y)),

Proposition 6.2 implies dimHK < dimBK. Note that αi = 1/2 for 2 ≤ i ≤ d. Then for

x ∈ D1 and y ∈ D2, by (6.1),

(7.1)

Z(2)(τ2(x)) = 4 and Z(2)(τ2(y)) = 1

Z(3)(τ3(x)) = 2 and Z(3)(τ3(y)) = 8

Z(4)(τ4(x)) = 2
√

2 and Z(4)(τ4(y)) = 2
√

2.

If i > 4 and x, y ∈ D, since #π−1
i (τi(x)) = #π−1

i (τi(y)),

(7.2) Z(i)(τi(x)) = Z(i)(τi(y)).

By computation,
3∏

i=1

Z(i)(τi(x))αi−1 = 2−3/2 for x ∈ D.

Then Corollary 6.3 shows that dimHRηp = dimHK, where p = (1/#D, . . . , 1/#D).

Hence dimHRηp = dimHK < dimBK. Since (6.3) implies that p1 and τip, i ≥ 4

are uniform while τ2p and τ3p are not uniform, it follows from Proposition 6.6 that

HdimH K(K) = ∞.

Appendix A. Proof of Proposition 6.5

Proof of Proposition 6.5. The proof is essentially contained in [33]. For completeness we

give a sketch of the proof. The strategy is to construct a measure ν on DN such that

lim supk→∞Rν(Qk(x))/ϕ(n−k
s ) = 0 for ν-a.e. x.

For 1 ≤ i ≤ s, write pi = τip, qi = τiq, and ∆i = ∆(pi‖qi). For δ > 0 and j ≥ 2,

following [33] we define

ξ(j) =

(
1 − δ

log j

)
p+

δ

log j
q.

and ξ(1) = p. Define the product measure on DN by

ν =

∞∏

j=1

ξ(j).
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For 1 ≤ i ≤ s and 1 ≤ j ≤ k, k ∈ N, let X
(k)
i,j be the random variable on Dj with law

∑
y∈Di

τiξ
(j)(y) δlog τiξ(j)(y). Then X

(k)
i,j is well defined since for y ∈ Di there is x ∈ D with

τi(x) = y such that τiξ
(j)(y) ≥ (1− δ

log j
)p(x) > 0 by (6.3). By (2.17) and Lemma 2.6, for

k ∈ N and x = (xj) ∈ DN,

(A.1) logRν(Qk(x)) =

s∑

i=1

⌊θik⌋∑

j=⌊θi−1k⌋+1

log τiξ
(j)(τi(xj)) =

s∑

i=1

⌊θik⌋∑

j=⌊θi−1k⌋+1

X
(k)
i,j .

Then log ν(Qk(x)) is a sum of independent variables. By (6.17) and Lemma 6.7, there is

1 ≤ i0 ≤ s such that τi0p = pi0 is not uniform. Let Yi0 be the random variable on Di0

with the law
∑

y∈Di0
pi0(y) δlog pi0(y). Then Var(X

(k)
i0,j

) ≥ Var(Yi0)/2 > 0 for j large enough

since τi0ξ
(j) =

(
1 − δ

log j

)
pi0 + δ

log j
qi0 . Then for k large,

Var(logRν(Qk(x))) ≥
⌊θi0k⌋∑

j=(⌊θi0k⌋+⌊θi0−1k⌋)/2

Var(Xk
i0,j) ≥

Var(Yi0)(θi0 − θi0−1)

4
k & k.

Thus the law of iterated logarithm (see, e.g. [5, Theorem 7.5.1]) implies that

(A.2) logRν(Qk(x)) ≤ Ek(ν) +O
(√

k log log k
)

for ν-a.e. x.

where Ek(ν) :=
∫

logRν(Qk(x)) dν(x). By Taylor’s theorem, for probability vectors q, q′

and ε > 0,

(A.3) H((1 − ε)q + εq′) = H(q) + ε∆(q‖q′) +O(ε2),

where H(·) is the Shannon entropy, that is, for a probability vector q = (q(x))x∈B,

H(q) =
∑

x∈B

−q(x) log q(x).

Then

Ek(ν) =

s∑

i=1

⌊θik⌋∑

j=⌊θi−1k⌋+1

∑

x∈Di

τiξ
(j)(x) log τiξ

(j)(x)

=

s∑

i=1

⌊θik⌋∑

j=⌊θi−1k⌋+1

−H(τiξ
(j))

=
s∑

i=1

⌊θik⌋∑

j=⌊θi−1k⌋+1

−H
((

1 − δ

log j

)
pi +

δ

log j
qi

)

=

s∑

i=1

⌊θik⌋∑

j=⌊θi−1k⌋+1

−H (pi) − δ∆i
1

log j
+O

(
δ2

(log j)2

)

= −k logZ − δ
s∑

i=1

∆i

⌊θik⌋∑

j=⌊θik⌋+1

1

log j
+O(1) + δ2O(1),
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where the last equality is by Proposition 6.1 and
∑

j≥2 1/(log j)2 <∞. Since

b∑

j=a

1

log j
=

∫ b

a

1

log t
dt+O(1) for 2 ≤ a < b,

we have

(A.4) Ek(ν) = −k logZ − δ

s∑

i=1

∆i

∫ θik

θi−1k

1

log t
dt+O(1).

Let c̃ > 0 be small such that c̃M < cδ/2, where M > 0 is large such that for k ∈
N∩[2,∞), |log n−k

s |/(log|logn−k
s |)2 ≤ Mk/(log k)2. Take ϕ as in (6.18). Combining

(A.4), (6.17), (6.18) and (A.2) gives

lim sup
k→∞

logRν(Qk(x)) − logϕ(n−k
s ) = −∞ for ν-a.e.,x.

By Lemma 2.9, this shows Hϕ(K) = ∞. �

References
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