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Kolmogorovian Censorship, Predictive Incompleteness,

and the locality loophole in Bell experiments.
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In the foundations of quantum mechanics, the Kolmogorovian Censorship (KC) stipulates that
quantum probabilities can be identified with classical, Kolmogorovian probabilities when consid-
ering a specified measurement context. Then in any given measurement context it is possible to
build a Kolmogorovian probability distribution, or equivalently a hidden variable theory; however
this distribution must be matched to the chosen context. In a loophole-free Bell test, the remote
random choices of measurements (polarizers orientations) have the purpose to prevent that this
matching can be obtained from any relativistically causal transmission between the source and the
detectors. Then the matching (required to violate Bell’s inequalities) may be obtained either by an
instantaneous influence at a distance between the source and the detectors (explicit nonlocality), or
by assuming that it is pre-established before the actual experiment takes place (super-determinism).
If both influence at a distance and super-determinism are not accepted on physical grounds, a third
way is still available, called ‘predictive incompleteness’: it tells that the usual quantum state ψ is
incomplete, as long as the measurement context has not been specified. In agreement with the gen-
eral quantum framework called CSM (Contexts, Systems and Modalities) we argue that predictive
incompleteness is the correct quantum way to understand the violation of Bell’s inequalities.

I. INTRODUCTION.

In the scientific literature there are still debates to decide whether quantum mechanics (QM) is contextual [1, 2] or
noncontextual [3], and whether quantum probabilities are Kolmogorovian [4, 5] or not [6–8]. To some extend, these
debates can be considered as matters of definitions, so it is useful to spell out the explicit or implicit assumptions
that are are the root of the disagreements. A useful milestone in this debate is the Kolmogorovian Censorship
(KC), stating that quantum probabilities can be identified with classical, Kolmogorovian probabilities when the
measurement context has been specified, or more generally when a classical probability distribution of measurement
contexts has been specified. The KC sounds rather obvious on a physical intuitive basis, and technically it has
been demonstrated for a countable number of measurement contexts [9, 10].

II. KOLMOGOROVIAN CENSORSHIP AND BELL EXPERIMENTS.

However there is some controversy on the physical meaning of the KC, as we will explain now. In particular,
Szabó et al [4, 5] claim that QM probabilities are Kolmogorovian, not only in a single context, but also in a
loophole-free Bell experiment, where a random choice among four different contexts is implemented [13]. Then
they conclude that Bell’s inequalities are either irrelevant (when considering the four contexts separately), or not
violated, when considering the four contexts together: since each one has a 1/4 probability to occur, Bell’s S

parameter (see Annex) is reduced from 2
√
2 down to

√
2/2, that is below 2 as it would be expected classically.

More precisely, it is uncontroversial that the probabilities predicted by QM in a given context are Kolmogorovian.
and the problem arises when trying to “put together” probabilities predicted by QM in different contexts. Said
otherwise, in any given context it is possible to build a Kolmogorovian probability distribution, or equivalently an
hidden variable theory; however this distribution must be adapted to the chosen context.
In a loophole-free Bell test [13], the remote random choices of measurements (polarizers orientations) are designed

to forbid that this matching may be done by a relativistically causal transmission between the source and the
detectors. Then it may be obtained either by an instantaneous influence between the source and the detectors
(explicit nonlocality), or by assuming that it is pre-established before the actual experiment takes place (super-
determinism). One has then the following possible options:

1. Szabó et al [4, 5] claim that the only relevant way to speak about QM probabilities in different contexts is to
consider a classical probability distribution over these different contexts. This corresponds by construction
to a feasible experiment, typically a loophole-free Bell experiment, including the random choice among four
different contexts [13]. Then the global probability distribution is Kolmogorovian, and Bell’s inequalities (BI)
are not violated, because as written above the probabilities in each context are divided by four, as well as
the resulting S value. However a drawback of this approach is that the pre-established matching between the
source and the measurements is still required, through some kind of “global determinism” [15]. Therefore,
though BI are not explicitly violated, the basic physical problem of the origin of the matching is still present.
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2. Since the averaging over the contexts does not really help, one may calculate the correlation function in each
context, which is the very idea of a loophole-free Bell test, and gather them in Bell’s S value. However, one
may argue that the four correlations functions correspond to four different incompatible experiments, and
thus bringing their results together is counterfactual, because they cannot be measured simultaneously; then
BI cannot be demonstrated. This is a standard answer to the problem, by simply telling that the question is
irrelevant; but without further explanation it sounds more dogmatic than scientific.

3. Still an alternative way is to admit that the results in the four contexts can be combined, as it would be the
case classically since they apply to the same system; then one gets Bell’s inequalities, which are experimentally
violated, so one should explain why. We consider that this is a meaningful question, and there are basically
three options, spelled out in detail in [14]:

3a - in the spirit of option 1 above, keep a Kolmogorovian global probability distribution. Then the way to
violate Bell’s inequalities is by admitting that the system’s parameters and the orientations of the polarizers
are not independent variables, despite the fact that these orientations are chosen randomly and independently
at a large distance. This can be obtained either by admitting superdeterminism (i.e. denying the possibility
of independent random choices [15]), or by admitting a non-local influence between the source and the
measurements [14]. These two options have recently been shown to be equivalent [16], and they are in our
opinion equally undesirable - though they are matter of ontological choice, and cannot be proven wrong.

3b - the third option, known as predictive incompleteness [14, 17], is to recognize that the quantum state by itself
is not enough to specify the measured probability distribution, as long as the context has not be specified.
Since predictive completeness (also called outcome independence) is a required hypothesis for Bell’s theorem,
this leads to the conclusion that BI cannot be demonstrated. This conclusion corresponds to the detailed
analysis presented in [14], and also the more general framework presented in [18] to “complete” the usual
quantum state by specifying the measurement context. These two papers, as well as the arguments above, are
consistent within the general quantum framework called CSM (Contexts, Systems and Modalities) [19, 20].

From the above it should be clear that the ontologies underlying either Szabó’s position or CSM are quite
different. Szabó et al claim that QM probabilities are Kolmogorovian and that QM can ultimately be seen as a
(super)deterministic theory. On the other hand, CSM stipulates that QM is fundamentally non-deterministic, due to
the conjunction of quantization and contextuality [11, 12], and that quantum probabilities are non-Kolmogorovian,
unless restricted to a single context according to the KC. It is true, as claimed by Szabó et al, that the results of
a full loophole-free Bell test with random choices of the measurements [13] can be embedded in a Kolmogorovian
framework, as far as actual frequencies of observed events are considered.

However, the conflict arises if one considers that this final distribution is obtained from the combination of
two Kolmogorovian distributions, one describing the emitted particles, and the other one describing the chosen
measurements. If this is done then obtaining the correct final distribution requires either nonlocality or superde-
terminism, as written above. This is why the (non-Kolmogorovian) predictive incompleteness of ψ is useful: it
leaves enough freedom so that the choice of the measurement can contribute to the determination of the final
distribution, avoiding both nonlocality and superdeterminism. It is worth emphasizing again, and spelled out in
[14], that predictive incompleteness makes no sense in classical physics, and appears as a specific quantum feature.

III. CONCLUSIONS.

Again, the KC in a single context is easily integrated in the CSM framework, but one should not conclude that
quantum probabilities are Kolmogorovian in a classical sense: this would be true in classical physics, because there
is only one universal context, but this fails in quantum physics, because there is a continuous infinity of different,
incompatible contexts. This point of view is implicit in textbook quantum mechanics, and it is made explicit in
the CSM framework, by using operator algebra and infinite tensor products. This framework allows a contextual
unification of classical and quantum physics, within a unique macroscopic physical world [22–24].
One may notice that Rédei [10] (see also [25]) considers that the KC is problematic, in particular because it

implies that “probabilities are thus not features of quantum systems in and of themselves, they are features that
only manifest themselves upon measurement. Philosophers (or physicists) with a robust realist conviction may
find unattractive this strongly instrumentalist flavor of interpretation of quantum probability forced upon us by
the KC.” In the CSM approach, quantum probabilities also get a meaning only upon measurement, due to the
predictive incompleteness of ψ, and they are also genuinely non-classical probabilities. Nevertheless, CSM is based
on physical realism, as the statement that the purpose of physics is to study entities of the natural world, existing
independently from any particular observer’s perception, and obeying universal and intelligible rules [18–20]. We
claim therefore that even with a “robust realist conviction” one can accept that ψ is predictively incomplete - as
the only way to make sense of this conundrum. So here is a message to our philosopher friends: please have a
closer look at CSM, and refrain telling too quickly that it is just one more anti-realist Bohrian mantra.
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As a final remark, a significant challenge in quantum foundations and reconstructions is to state clearly what
are the hypotheses or postulates, and what are their consequences. It should also been made clear whether one
looks for a fully deductive reasoning, or a partially inductive one, that is an “Inference to the Best Explanation”
[11, 12]. In the CSM point of view a fully deductive approach does not fit, since, quoting Landau [21], ‘quantum
mechanics (...) contains classical mechanics as a limiting case, yet at the same time it requires this limiting case
for its own formulation’. Then what is desired is not a deduction of the Laws of Nature from some postulates in
a mathematical sense, but rather a fully consistent construction, including both classical and quantum physics
from the beginning, and clearly separating experimentally based evidence from its mathematical description [22–24].

Acknowledgments. The author thanks Mathias Van Den Bossche and Olivier Ezratty for relevant comments
on this article, and for many interesting discussions.

Annex. Consider a Bell test with fast random switching of the polarizers orientations [13] between a and a′ on
one side, b and b′ on the other side, where the results A(a), A(a′), B(b), B(b′) are denoted ±1. The four correlation

coefficients like E(a, b) = A(a)B(b) are calculated from the number of counts N±(a, b), with similar expressions
for (a′, b), (a, b′), (a′, b′), which are all gathered together during the experiment. Then Bell’s inequalities tell that

|S| ≤ 2, where S = E(a, b) + E(a′, b) + E(a′, b′)− E(a, b′), in conflict with QM that predicts Smax = 2
√
2.
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