
Collaborative Satellite Computing through Adaptive
DNN Task Splitting and Offloading

Shifeng Peng1, Xuefeng Hou1, Zhishu Shen1†, Qiushi Zheng2, Jiong Jin2, Atsushi Tagami3, and Jingling Yuan1
1

School of Computer Science and Artificial Intelligence, Wuhan University of Technology, China
2

School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Australia
3

KDDI Research, Inc., Japan
E-mail: {psf, martinhou, yjl}@whut.edu.cn, z shen@ieee.org, {qiushizheng, jiongjin}@swin.edu.au, at-tagami@kddi.com

Abstract—Satellite computing has emerged as a promising
technology for next-generation wireless networks. This innovative
technology provides data processing capabilities, which facilitates
the widespread implementation of artificial intelligence (AI)-based
applications, especially for image processing tasks involving deep
neural network (DNN). With the limited computing resources
of an individual satellite, independently handling DNN tasks
generated by diverse user equipments (UEs) becomes a significant
challenge. One viable solution is dividing a DNN task into multiple
subtasks and subsequently distributing them across multiple
satellites for collaborative computing. However, it is challenging
to partition DNN appropriately and allocate subtasks into suitable
satellites while ensuring load balancing. To this end, we propose
a collaborative satellite computing system designed to improve
task processing efficiency in satellite networks. Based on this
system, a workload-balanced adaptive task splitting scheme is
developed to equitably distribute the workload of DNN slices for
collaborative inference, consequently enhancing the utilization of
satellite computing resources. Additionally, a self-adaptive task
offloading scheme based on a genetic algorithm (GA) is introduced
to determine optimal offloading decisions within dynamic network
environments. The numerical results illustrate that our proposal
can outperform comparable methods in terms of task completion
rate, delay, and resource utilization.

Index Terms—Satellite computing, task splitting, DNN parti-
tioning, task offloading

I. INTRODUCTION

The beyond 5G or 6G (B5G/6G) networks are expected
to meet the ubiquitous demands of the future digital society.
However, the traditional base stations (BSs) are unrealistic to
be fully deployed in remote rural areas due to geographical and
economic restrictions. Furthermore, the proliferation of mobile
devices and the escalating demand for smart applications have
given rise to a surge in computationally intensive tasks. In the
absence of robust ground network infrastructure, processing
these tasks generated by users in remote rural areas becomes a
pivotal concern. Satellite computing possesses a unique strength
in providing global coverage, extending connectivity to areas
beyond the reach of conventional terrestrial networks. Further-
more, leveraging on-board computing capabilities in satellites
for task processing can notably reduce the service delay caused
by the network congestion [1], [2].

The first two authors contributed equally to this work.
† Corresponding author.

Task offloading within a centralized architecture results in
substantial communication and computational overhead, par-
ticularly within large-scale low Earth orbit (LEO) satellite
networks. To solve this issue, a distributed architecture that
relies on data sharing among various satellites is anticipated.
In this system, each terminal such as a satellite, independently
determines offloading decisions based on its local observa-
tions [3]. However, the distributed solutions encounter non-
convergence issues in the pursuit of global optimization.

Deep learning methods based on deep neural networks
(DNN) have been widely adopted for the efficient processing
of diverse tasks within satellite networks. However, the chal-
lenge arises from the limited computing and storage resources
available on satellites when executing computationally intensive
tasks using DNN [4]. To address this limitation, large DNN
tasks can be initially distributed into different blocks according
to the task processing units determined by the decision-making
satellite. These blocks are divided into multiple segments based
on network information including network scale and resource
usage status. In this paper, the above procedure is referred to
task splitting. Furthermore, to enhance feature representation,
DNN models frequently incorporate a substantial number of
layers, thereby intensifying the complexity of DNN partition-
ing. Specifically, DNN partitioning encounters the challenge of
balancing the partition granularity and workload (the calcula-
tion amount of each task segment) [5]. Finally, multiple satel-
lites collaborate to execute these tasks, ensuring the optimal
resource utilization.

Our primary focus is on situations in which data services
encompass multiple satellites and user equipments (UEs) dis-
tributed across varied geographical regions. Diverse UEs gener-
ate a range of tasks and offload split task segments to multiple
satellites for collaborative processing. In this paper, we propose
adaptive DNN task splitting and offloading schemes within
collaborative satellite computing systems, aiming to attain load
balancing across different satellites. To this end, a genetic
algorithm (GA) is used to explore optimal solutions in a large
decision space. The primary contributions of our work include:

1) A system model is developed to facilitate collaborative
computing among multiple satellites. This model encom-
passes DNN partitioning and task offloading, focusing on
optimizing task completion rate and minimizing process-

ar
X

iv
:2

40
5.

03
18

1v
2

 [
cs

.D
C

]
 2

0
M

ay
 2

02
4

ing delay.
2) A scheme leverages binary monotonicity is introduced

for achieving workload balance by task splitting. This
scheme employs dichotomy to balance the workload of
DNN slices and then distributes them to multiple LEO
satellites, enabling collaborative inference and enhancing
the utilization of satellite computing resources.

3) To facilitate collaborative satellite computing, a GA-
based self-adaptive task offloading scheme is introduced.
This scheme optimizes offloading decisions by analyzing
the task inference process, ensuring the efficient trans-
mission of intermediate results from DNN slices.

4) An experimental investigation is carried out on two repre-
sentative DNN types. The entire process can be executed
on Raspberry Pi, a single-board computer installed on
the recently launched satellite research platform, which
supports in-orbit computing [2]. This investigation high-
lights the superior performance of our proposed scheme
in comparison to other methods, specifically in terms of
task completion rate and task delay.

The remainder of this paper is organized as follows: Section
II summarizes the related work, and Section III describes
the problem statement. Section IV presents our proposed task
splitting and offloading schemes. Section V summarizes the
evaluation results that verify the performance of our proposal
against that of the comparable methods. Section VI gives the
conclusions for our future work.

II. RELATED WORK

A. DNN Partitioning and Task Splitting

The characteristics of DNN models enable them to be easily
partitioned and deployed to multiple satellites for collaborative
computing. In general, DNN model partitioning can be divided
into vertical partitioning [6], horizontal partitioning [7], and
combined vertical-horizontal [8] partitioning. In [7], the authors
integrated BranchyNet with DNN models and utilized an early
exit mechanism to divide the model in order to meet the
requirements of inference latency and accuracy. In [9], the
authors divided the convolutional layers based on the grid and
allocated them to multiple devices with different computing
capabilities for task execution. It is essential to consider the
equitable distribution of workload for each segment during the
DNN partitioning process to optimize resource utilization.

B. Task Offloading in Satellite Networks

The authors in [3] proposed a multi-agent double actors twin
delayed deterministic policy gradient (MA-DATD3) algorithm
that contains double actors and double critics. MA-DATD3
was designed to solve the computation offloading optimization
problem with a centralized training and decentralized execution
paradigm. In [10], the author conducted a joint optimization
of computation offloading and power control. They introduced
a Lyapunov optimization-based algorithm for minimizing the
overall delay of tasks while satisfying the energy constraints
of satellites. In [11], the authors transformed the offload-
ing decision optimization problem into a linear programming

Fig. 1: System model.

problem by using the binary variables relaxation method. A
distributed algorithm based on the alternating direction method
of multipliers (ADMMs) was proposed to approximate the opti-
mal solution with low computational complexity. The methods
introduced in previous research primarily catered to scenarios
with a limited number of satellites covering a single area,
rendering them unsuitable for offloading extensive DNN tasks
that demand substantial computing resources.

III. PROBLEM STATEMENT

A. System Model

As shown in Fig. 1, we assume an integrated satellite-
ground system consisting of LEO satellites and UEs located
in multiple remote rural areas. Multiple LEO satellites form a
constellation to achieve seamless global coverage. Each satellite
orbits the Earth periodically to enable the establishment of
satellite-ground connections. Due to the limited computational
capabilities of UEs, these UEs have a restricted capacity to
handle computationally intensive tasks. As a result, the com-
puting tasks need to be transmitted to satellites via a gateway
for processing. The gateway in each area is responsible for
collecting tasks generated by the UEs within that specific area
and transmitting these tasks to the satellite through wireless
links. Each satellite is equipped with pre-trained DNN models
to handle computing tasks collected from gateways at the
ground. Moreover, satellite-to-satellite communication is facil-
itated through inter-satellite link (ISL). For example, in Fig. 1,
satellite #1 receives tasks to be conducted by DNN model 1
from an area and executes task splitting. The segments of the
respective tasks are offloaded to satellite #4 and #5.

The key elements within the proposed system comprise
satellites, gateways, and UEs. Here, S represents a set of
satellites where i (i ∈ S) denotes an individual satellite.
Similarly, G stands for a set of gateways, with each gateway
denoted as g. E represents a set of UEs, Ei represents a
set of UEs within the coverage area of satellite i. Without
loss of generality, we designate the decision-making satellite

to provide access and computing services to the UEs and
gateway g within its covered area. The system operational time
is divided into Γ slots, denoted by τ . We assume that the
number of computing tasks received by each decision-making
satellite in slot τ obeys the Poisson distribution. Subsequently,
the decision-making satellite splits the received DNN tasks and
offloads the task segments to multiple satellites for collaborative
computing.

B. Communication Model

Before the satellite determines task splitting and offloading
decisions, the tasks must be transmitted to the satellite through
the satellite-ground wireless link. Assuming multiple gateways
share bandwidth without interfering with each other, according
to Shannon formula, the average transmission rate vg,i(t)
between gateway g and satellite i is:

vg,i(t) = B0 log2 (1 +
Pgξg,i(t)

MG
), (1)

where B0 is the channel bandwidth, Pg represents the transmit
power, ξg,i(t) denotes the channel gain consists of large-scale
fading and shadowed-Rician fading [11], and MG indicates the
additive white Gaussian noise.

The satellite network consists of No orbits, on which Ns

satellites are evenly distributed. Due to the constraints imposed
by communication distances, each satellite can only transmit
tasks to its adjacent satellites through ISL. Assuming Gaussian
channels, the maximum achievable data rate [12] for the
transmission between satellites i and j is:

r(i, j) = B log2 (1 +
PtGi(j)Gj(i)Li(j)Lj(i)

kTB
), (2)

where B is the bandwidth between satellites, Pt is the transmis-
sion power, Gi(j) and Gj(i) are the gain of the transmit and
received antennas, respectively. Li(j), Lj(i) represent the beam
pointing coefficient (Li(j), Lj(i) < 1), k is the wavenumber,
and T is the resultant noise temperature.

C. Computation Model

Each satellite is equipped with a predefined DNN model
that enables it to handle specific DNN task segments. Addi-
tionally, a satellite has the capability to transmit its output to
adjacent satellites for further processing, such as inference and
computations like pooling and convolution for the next slice.
Considering the constraints of a satellite’s resource capacity
and the size of the DNN task segments, it is imperative to
enhance the utilization of each satellite’s computing resources
by achieving a balanced workload distribution for each DNN
task segment. We aim to optimize the largest workload of all
DNN task segments in a min-max fashion. The utility function
is defined as:

U : min max
k∈{1,2,...,L}

mk, (3)

where mk represents the workload of each DNN task segment,
L denotes the expected sliced number.

In satellite network operations, a critical scenario may arise
in which the satellite’s remaining computing resources are

depleted. In this case, the DNN task segment assigned to the
respective satellite will not be executed, and thus the original
task will be discarded. It is essential to determine whether a
task can be processed or not on a satellite based on the current
resource usage. After a satellite loads new DNN task segments,
the total workload is:

W = q +mk, k ∈ {1, 2, ..., L}, (4)

where q represents the workload of DNN task segments a
satellite has already loaded. The maximum workload that a
satellite can accommodate is Mw. If W < Mw, load the task
segments to the satellite for processing, otherwise, discard the
respective task segment.

D. Task Delay and Drop Model
The task delay comprises computational delay and trans-

mission delay. For each pre-split DNN task block, let L be
the number of segments and {qi,j,1, qi,j,2, · · · , qi,j,L} be the
workload of segments of j-th block of satellite i. Suppose
the k-th segment of this block is input to satellite si,j,k, the
computation capability of satellite x is represented as Cx, then
the computation delay tcomp

x of satellite x can be deduced by:

tcomp
x =

1

Cx

∑
i∈S

N task
i∑

j=1

L∑
k=1

qi,j,k · [si,j,k = x], (5)

where [·] is a self-reference function defined as:

[si,j,k = x] =

{
1, si,j,k = x,

0, Otherwise.
(6)

For the transmission delay, let MH(i, j) be the Manhattan
distance between satellite i and satellite j. The transmission
delay ttran

x of satellite x is calculated by:

ttran
x =

∑
i∈S

N task
i∑

j=1

L−1∑
k=1

MH(si,j,k, si,j,k+1)·qi,j,k ·[si,j,k = x]. (7)

The total delay tsum
x of satellite x is defined as:

tsum
x = tcomp

x + ttran
x . (8)

In addition, the task drop could happen when the computing
resources of the current satellite are insufficient. Let Di,j be
the number of drop of the j-th task block of satellite i, the total
drop rate rD could be calculated as:

rD =

∑
i∈S

N task
i∑

j=1

Di,j∑
i∈S

N task
i

. (9)

E. Optimization Objective
Based on the aforementioned models, we aim to minimize

the task drop rate and delay during the whole process using
the non-negative weight parameters α and β. The optimization
problem is defined as below:

min
a∈A

(αrD + β
∑
i∈S

tsum
i), (10)

s.t.
rD ≤ rmax, (11a)∑

i∈S
tsum
i ≤ tmax, (11b)

MH(x, si) ≤ DM ,∀si ∈ Ax, (11c)

dpi,j ∈ {1, 2, · · · , L+ 1}, ∀i ∈ S, 1 ≤ ∀j ≤ N task
i , (11d)

N l
i,j ≥ L, ∀i ∈ S,∀j = 1, 2, · · · , N task

i . (11e)

Regarding the constraints, the first two constraints indicate
those associated with the minimum drop rate and task delay.
It is not preferable to transmit tasks to satellites that are
located far away. For an offloading scheme that aims to choose
candidate satellites si from the decision space Ax determined
by satellite x, the constraint is expressed in Equation 11c. DM

herein is the maximum permissible communication distance.
Besides, the arriving tasks that can be completed according

to beforehand scheme (s1, s2, · · · , sL) or be dropped during
the progress. The drop point dpi,j could be only selected
from {1, 2, · · · , L} (See Equation 11d). The whole offloading
process is completed if dpi,j = L+1. From the aspect of DNN
partitioning, the number of DNN layer N l

i,j should be strictly
larger than a preset partitioned number L (See Equation 11e).

IV. DNN TASK SPLITTING AND OFFLOADING SCHEMES

The offloading decisions are associated with the coupling re-
lationship among different variables. This results in the single-
objective optimization problem being a discrete and non-convex
optimization problem, which is regarded as a classical NP-
hard problem [11]. To address this computational challenge, we
introduce adaptive DNN task splitting and offloading schemes
for collaborative satellite computing. Specifically, the satellite
distributes tasks into different blocks and splits them into
L segments. The cooperative processing sequence between
satellites is determined by the task offloading scheme, enabling
each satellite to execute task processing based on the computed
decision.

A. Workload Balanced Task Splitting Scheme
Achieving workload balance among resource-constrained

satellites requires distributing the workload of each task block
evenly. This is crucial to avoid overwhelming specific satellites
with massive tasks, while others remain underutilized. For this
purpose, we propose a workload balanced task splitting scheme
as illustrated in Algorithm 1.

Initially, a lower bound (Lower) is set as the maximum
workload of each layer. This step is essential to ensure that each
segment can be accurately processed (Line 13 in Algorithm 1).
Assembly, an upper bound (Upper) is defined as the total
workload of all layers, which indicates that all layers can be
partitioned into a single block.

Then, our scheme confirms whether it is appropriate to
set the maximum workload of a block as mid or not (See
Split() in Algorithm 1). If the obtained resulting number of
slices is less than the partitioned number L, in accordance
with monotonicity, the maximum acceptable workload of block

Algorithm 1 Workload Balanced Task Splitting Scheme

Input: The workload of each layer {w1, · · · , wNl}, expected sliced
number L(L ≤ N l), and precision ϵ.

Output: The partitioning result with L slices.
1: procedure SPLIT(LimitSize)
2: Initialize Scheme← ∅, Blocktemp ← ∅
3: for i = 1, 2, 3, · · · , N l do
4: if

∑
w∈Blocktemp

w + wi ≤ LimitSize then

5: Blocktemp ← Blocktemp ∪ wi

6: else
7: Scheme← Blocktemp ∪ Scheme
8: Blocktemp ← ∅
9: end if

10: end for
11: return Scheme
12: end procedure

13: Initialize Lower ← max
k∈{1,2,··· ,Nl}

wk, Upper ←
Nl∑
k=1

wk

14: while Upper − Lower > ϵ do
15: Denote mid← ⌊Lower+Upper

2
⌋

16: Obtain Scheme← Split(mid)
17: if |Scheme| > L then
18: Lower ← mid
19: else
20: Upper ← mid
21: end if
22: end while
23: Let result← Split(Upper)
24: if |result| < L then append empty blocks of segments to result

till |result| = L
25: end if
26: return result

needs to be decreased, otherwise, the number of blocks should
be increased. After performing a Binary Search, it is possible
that the block number is less than L. In this case, empty blocks
that signify the absence of any workload are added to the final
result (Line 24 in Algorithm 1).

The time complexity of Binary Search is O(log2 V), where
V is the value field of searching interval. In our proposed
scheme, as the algorithm enumerates workloads for all layers
during the split procedure, the time complexity of Algorithm 1
is O(N l · log2 V). Meanwhile, in terms of space complexity,
additional memory is only needed when storing the results of
the split procedure. Therefore, the space complexity is O(L).

B. GA-based Self-adaptive Task Offloading Scheme

We introduce GA in our scheme due to its ability to
continuously explore and adapt task assignments. This capa-
bility is particularly valuable for effectively managing real-
time changes and uncertainties in dynamic networks. After
conducting Algorithm 1, the arriving tasks are split into L
segments and distributed into several blocks. Subsequently,
there arises a need to determine a satellite processing sequence,
i.e., (c1, c2, · · · , cL) denotes the i-th segment of tasks of this
block will be processed by satellite ci, which is defined as the
chromosome of individuals. Our scheme first initializes Nini

individuals, a process outlined in Line 1 of Algorithm 2. Then,
a series of iterative steps are employed, encompassing repro-

Algorithm 2 GA-based Self-adaptive Task Offloading Scheme
Input: The workload of sliced block Bi,j =
{qi,j,1, qi,j,2, · · · , qi,j,L} ∈ Bi, and the set of indices of
available satellites Savai.

Output: The task offloading result.
1: Initialize primitive group gp0 by randomly summoning Nini

chromosomes like C = (c1, c2, · · · , cL) of length L, ∀i =
1, 2, · · · , L, ci ∈ satellite indices.

2: for i = 1, 2, 3, · · · , Niter do
3: if (i ̸= 1) ∧ (| min

j∈gpi
defj − min

j∈gpi−1

defj | ≤ ϵ) then

4: break
5: end if
6: Reproduce any different chromosomes C and D pairwise by

heuristic algorithm
7: Eliminate those chromosomes (d1, d2, · · · , dL) with highest

deficit calculated by Equation 12 till the size of gpi ≤ NK

8: Randomly summon Nsumm new chromosomes
9: end for

10: return The chromosome with the lowest deficit

duction, elimination, and augmentation operations, to derive a
chromosome sequence that minimizes deficits.

For the reproduction operation (Line 6 in Algorithm 2),
we propose a heuristic algorithm to reproduce individuals.
Let (c1, c2, · · · , cL) and (d1, d2, · · · , dL) be the parents’ chro-
mosomes. For each pair of indices i, j (1 ≤ i ≤ j ≤ L,
ci = dj), summon two new individuals, the chromosomes of
which are (d1, d2, · · · , dj , ci+1, ci+2, · · · , ci+L−j−1, ci+L−j)
and (dj−(L−i), dj−(L−i)+1, · · · , dj−1, ci, ci+1, · · · , cL−1, cL).

For the elimination operation, a novel deficit measurement
is introduced to discriminate the quality of each chromosome,
the deficit of (d1, d2, · · · , dL) is calculated by:

θ1

L∑
k=1

qi,j,k
Cdk

+ θ2

L−1∑
k=1

qi,j,k · MH(dk, dk+1) + θ3Di,j , (12)

where θ1, θ2 and θ3 are non-negative weight parameters.
The augmentation operation is performed after the operations

of reproduction and elimination to maintain diversity among
the chromosomes. This operation introduces new individuals
to participate in the next iteration. Eventually, the chromosome
with the smallest deficit is selected as the processing sequence.

During each iteration, it is necessary to reproduce different
pairs of individuals, eliminate individuals to maintain the group
size, and then summon several new individuals. The group size
at the beginning of iteration is approximately Nsumm + NK

and the time complexity for conducting these 3 operations is
O((Nsumm + NK)2 · L). Therefore, the time complexity of
Algorithm 2 is approximate to O(Niter · (Nsumm+NK)2 ·L).
Meanwhile, the maximum size of the group during the iteration
is approximate to the quantity of (NK+Nsumm)2. Since every
individual has a chromosome of length L, the space complexity
of Algorithm 2 is O((NK +Nsumm)2 · L).

V. EXPERIMENTS

A. Experimental Setup

An experimental environment has been designed for LEO
satellite networks of varying sizes, denoted as N ×N , where

TABLE I: Main experimental parameters

Parameter Value
Network topology N (size = N ×N) 4 ∼ 32, default value = 10
Satellite bandwidth B 20 MHz [12]
Satellite computation capability Cx 3 GHz [4]
Satellite transmission power Pt 30 dBw [4]
Gateway bandwidth B0 10 MHz [4]
Generated task incidence λ 4 ∼ 70
Task splitting number L 3 (VGG19), 4 (ResNet101)
Maximum communication distance DM 2 (VGG19), 3 (ResNet101)
θ1, θ2, θ3, Nini, Niter , NK , Nsumm, ϵ 1, 20, 106, 20, 10, 20, 10, 1

each network consists of N orbits and each orbit contains N
satellites. The main parameters are summarized in Table I. Con-
sidering the regularity of the constellation topology, we define
the neighbors of each satellite as the adjacent four satellites
that can directly communicate with each other. The incidence
of each UE subjects to Poisson Distribution π(λ), where λ
indicates the number of tasks. We verify the effectiveness of
our proposed SCC against the following methods:

• Random is a method where the candidate satellite for
offloading is independently and randomly selected.

• Residual-Resource-Priority (RRP) is a method that selects
the available satellites with the most residual computing
resources to process the next segment of the tasks.

• DQN is a commonly used DRL algorithm. It endeavors
to minimize the task drop rate and delay based on current
observed network states.

B. Experimental Results
The performance validation of various methods is based on

two commonly used DNN models: ResNet101 and VGG19.
The performance is evaluated from three aspects: task com-
pletion rate, total average delay, and the variance in the total
workload assigned to each satellite.

As depicted in Figs. 2(a) and 3(a), SCC exhibits the capabil-
ity to maintain high performance, even when the task incidence
is relatively high. This is attributed to the dynamic and adaptive
insertion operation, along with a unique deficit calculation
method employed by SCC. These features enable SCC to
explore a vast solution space, resulting in an approximately
4% increase in task completion rate against the others.

From the aspect of total average delay, the performance
of each method increases proportionally with the growth in
task incidence. Among these methods, our proposed SCC
maintains a relatively low delay performance by optimizing
both transmission and computation delay. In contrast, both RRP
and DQN prefer to select the fittest satellites, leading to an
imbalanced distribution where a particular satellite is chosen
by multiple decision-making satellites. As shown in Figs 2(b)
and 3(b), on average, SCC reduces the delay by 620 ms and
140 ms against RRP and DQN respectively.

In terms of the variance in satellite usage, a smaller value sig-
nifies a more robust consideration of load balancing across dif-
ferent satellites. With the assistance of balanced task splitting,
our proposal effectively harnesses the available resources. SCC
can achieve a similar performance compared with Random,
which can theoretically achieve a perfectly even distribution.

(a) Task completion rate (b) Total average delay (c) Resource usage variance (d) Task completion rate (N)

Fig. 2: Performance achieved by different methods using ResNet101.

(a) Task completion rate (b) Total average delay (c) Resource usage variance (d) Task completion rate (N)

Fig. 3: Performance achieved by different methods using VGG19.

We verify the task completion rate with different network
scales. The generated task incidence is fixed as 25. The results
demonstrate that SCC can still outperform other methods even
if the network scale is more than 1000 (= 32×32). This
is because SCC tends to choose satellites with low deficits,
indicating that the selected satellites currently possess more
resources available for offloading decisions. This leads to a
more balanced task distribution of efficient offloading.

VI. CONCLUSION

In this paper, we delve into the challenge of DNN task split-
ting and offloading within a collaborative satellite computing
system with the objective of minimizing both task delay and
drop rate. To achieve this, we have developed an adaptive task
splitting scheme designed to balance the workload efficiently.
This scheme dynamically orchestrates collaborative inference
among satellites, significantly enhancing the utilization rate of
satellite computing resources. Furthermore, a GA-based self-
adaptive task offloading scheme is introduced to determine opti-
mal offloading decisions. The experimental results demonstrate
the superiority of our proposal over comparable methods in
terms of overall delay and task completion rate. Our primary
forthcoming focus revolves around the integration of an early
exit technique that balances the trade-off between processing
delay and accuracy during the DNN partitioning process.

REFERENCES

[1] Z. Shen et al., “A survey of next-generation computing technologies in
space-air-ground integrated networks,” ACM Computing Surveys, vol. 56,
no. 1, 2023.

[2] S. Wang and Q. Li, “Satellite computing: Vision and challenges,” IEEE
Internet of Things Journal, vol. 10, no. 24, pp. 22514–22529, 2023.

[3] Z. Ji, S. Wu, and C. Jiang, “Cooperative multi-agent deep reinforce-
ment learning for computation offloading in digital twin satellite edge
networks,” IEEE Journal on Selected Areas in Communications, vol. 41,
no. 11, pp. 3414–3429, 2023.

[4] H. Zhang, R. Liu, A. Kaushik, and X. Gao, “Satellite edge computing with
collaborative computation offloading: An intelligent deep deterministic
policy gradient approach,” IEEE Internet of Things Journal, vol. 10,
no. 10, pp. 9092–9107, 2023.

[5] W. Fan et al., “Joint DNN partition and resource allocation for task
offloading in edge–cloud-assisted IoT environments,” IEEE Internet of
Things Journal, vol. 10, no. 12, pp. 10146–10159, 2023.

[6] S. Q. Zhang, J. Lin, and Q. Zhang, “Adaptive distributed convolutional
neural network inference at the network edge with ADCNN,” in Pro-
ceedings of the International Conference on Parallel Processing (ICPP),
pp. 1–11, 2020.

[7] E. Li et al., “Edge AI: On-demand accelerating deep neural network
inference via edge computing,” IEEE Transactions on Wireless Commu-
nications, vol. 19, no. 1, pp. 447–457, 2020.

[8] S. Zhang et al., “DeepSlicing: Collaborative and adaptive CNN infer-
ence with low latency,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 9, pp. 2175–2187, 2021.

[9] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained IoT edge clus-
ters,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[10] L. Cheng et al., “Dynamic computation offloading in satellite edge
computing,” in Proceedings of the IEEE International Conference on
Communications (ICC), pp. 4721–4726, 2022.

[11] Q. Tang, Z. Fei, B. Li, and Z. Han, “Computation offloading in LEO
satellite networks with hybrid cloud and edge computing,” IEEE Internet
of Things Journal, vol. 8, no. 11, pp. 9164–9176, 2021.

[12] I. Leyva-Mayorga, B. Soret, and P. Popovski, “Inter-plane inter-satellite
connectivity in dense LEO constellations,” IEEE Transactions on Wireless
Communications, vol. 20, no. 6, pp. 3430–3443, 2021.

	Introduction
	Related Work
	DNN Partitioning and Task Splitting
	Task Offloading in Satellite Networks

	Problem Statement
	System Model
	Communication Model
	Computation Model
	Task Delay and Drop Model
	Optimization Objective

	DNN Task Splitting and Offloading Schemes
	Workload Balanced Task Splitting Scheme
	GA-based Self-adaptive Task Offloading Scheme

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	References

