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Abstract

In this paper, we extend the Chen and Moore determinants of quaternion Hermitian

matrices to dual quaternion Hermitian matrices. We show the Chen determinant of dual

quaternion Hermitian matrices is invariant under addition, switching, multiplication, and

unitary operations at the both hand sides. We then show the Chen and Moore determi-

nants of dual quaternion Hermitian matrices are equal to each other, and they are also

equal to the products of eigenvalues. The characteristic polynomial of a dual quaternion

Hermitian matrix is also studied.
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1 Introduction

Quaternions are extensions of complex numbers, introduced by the Irish math-

ematician Hamilton in 1843. A quaternion has three imaginary parts and the

quaternion multiplication is noncommutative. Consequently, the determinant
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of quaternion matrices is much more difficult than their real and complex coun-

terparts since the quaternion numbers. Over the years, many determinants of

quaternion matrices with different multiplication orders are proposed, such as

the Cayley determinant, the Study determinant, the Moore determinant [14],

the determinant and double determinant by Chen [3, 4], the column and row

determinants by Kyrchei [7, 8], etc. See [1, 6, 10, 13] for more details.

In 1922, Eliakim Hastings Moore defined the determinant of quaternion

Hermitian matrices [14], which is widely known as the Moore determinant.

The Moore determinant retains some basic properties of determinants such as

Mdet(A) = 0 if and only if A is singular. For more results on the Moore de-

terminant, please refer to [1, 8]. However, Moore determinant is not appliable

for arbitrary non-Hermitian quaternion matrices. In 1991, Chen proposed the

determinant and double determinant [3, 4]. In 2008 and 2012, Kyrchei proposed

the column and row determinants [7, 8].

It was the British mathematician Clifford who introduced dual numbers and

dual quaternions in 1873. A dual quaternion has two quaternions, which are

the standard and dual parts of this dual quaternion, respectively. Recently,

eigenvalues of dual quaternion Hermitian matrices were applied to dual unit

gain graphs [5] and multi-agent formation control [15]. The latter problem

is an important application area in robotics and control [17, 20]. To study

more about the eigenvalues of dual quaternion Hermitian matrices, we need to

determine the coefficients of the characteristic polynomial of a dual quaternion

Hermitian matrix. One possible way to achieve this is to apply the Moore

determinant to dual quaternion Hermitian matrices. In this paper, we study

the Moore determinant of dual quaternion Hermitian matrices.

In the next section, we review some preliminary knowledge on dual quater-

nion numbers, the Moore determinant and its extension, the Chen determinant.

In Section 3, we show that the Chen determinant of a dual quaternion Hermitian

matrix is invariant under the addition, switching, multiplication, and unitary

operations at the both hand sides, which is also equal to the product of eigenval-

ues of that matrix. Then in Section 4, we show that the Moore determinant and
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the Chen determinant are equal for a dual quaternion Hermitian matrix. Thus,

the Moore determinant of a dual quaternion Hermitian matrix is also equal to

the product of eigenvalues of that matrix. Finally, we study the characteristic

polynomial of a dual quaternion Hermitian matrix in Section 5.

2 Preliminary

2.1 Quaternions and dual quaternions

A quaternion number q ∈ H can be written as q = q0 + q1i+ q2j+ q3k. Here,

i, j,k are imaginary units that satisfy i2 = j2 = k2 = ijk = −1 and ij = −ji =

k. Thus, the multiplication of quaternion numbers is not commutative. The

conjugate of q is q∗ = q0 − q1i− q2j− q3k. We have |q| =
√

q20 + q21 + q22 + q23.

A dual quaternion number q ∈ Ĥ can be written as q = qs + qdǫ, where

qs, qd ∈ H, qs is the standard part of q, qd is the dual part of q, ǫ is the

infinitesimal unit, ǫ 6= 0, ǫ2 = 0, ǫ is commutative with quaternion numbers. If

qs 6= 0, then q is called appreciable. The conjugate of q is q∗ = q∗s + q∗dǫ. We

have

|p| :=











|ps|+
(p∗spd + p∗dps)

2|ps|
ǫ, if ps 6= 0,

|pd|ǫ, otherwise.

(1)

If both qs and qd are real numbers, then q = qs+qdǫ is called a dual number.

Proposition 2.1. Let q1 and q2 ∈ Ĥ be two dual quaternion numbers. Then

(i) Re(q1) ≤ |q1| and the equality holds if and only if q1 is a nonnegative dual

number.

(i) Re(q1) = Re(q∗1) and Re(q1q2) = Re(q2q1).

(ii) q1 + q∗1 ∈ R̂.

(iii) |q1q2| = |q1||q2|.

(iv) |q1 + q2| ≤ |q1|+ |q2|.
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A dual quaternion vector x ∈ Ĥ
n can be denoted as x = xs+xdǫ. If xs 6= 0,

we say x is appreciable. Otherwise, it is infinitesimal. If x is appreciable, then

the 2-norm of x is defined by
√
∑n

i=1 |xi|2. Otherwise, if x is infinitesimal, then

‖x‖ = ‖xd‖ǫ.

The collection ofm×n dual quaternion matrices is denoted by Ĥ
m×n. A dual

quaternion matrix A = (aij) ∈ Ĥ
m×n can be denoted as A = As + Adǫ, where

As, Ad ∈ H
m×n. The conjugate transpose of A is A∗ = (a∗ji). Let A ∈ Ĥ

m×n

and B ∈ Ĥ
n×r. Then we have (AB)∗ = B∗A∗.

Given a square dual quaternion matrix A ∈ Ĥ
n×n, it is called invertible

(nonsingular) if AB = BA = In for some B ∈ Ĥ
n×n, where In is the n × n

identity matrix. Such B is unique and denoted by A−1. Square dual quaternion

matrix A is called Hermitian if A∗ = A. Then A is Hermitian if and only if

both As and Ad are quaternion Hermitian matrices. Square dual quaternion

matrix A is called unitary if A∗A = In. Apparently, A ∈ Ĥ
n×n is unitary if and

only if its column vectors form an orthonormal basis of Ĥn.

An n× n dual quaternion Hermitian matrix has exactly n right eigenvalues,

which are all dual numbers and also left eigenvalues [16]. We simply call them

the eigenvalues of that matrix.

2.2 Quaternion determinants

A permutation σ = {i1, . . . , in} ∈ Sn denotes a function σ such that σ(j) = ij

for all j = 1, . . . , n. We could also rewrite it as a two-line formulation
(

1 2 · · · n− 1 n

i1 i2 · · · in−1 in

)

.

A permutation cycle σ = (i1, . . . , ik) is a subset of a permutation whose

elements trade places with one another. Namely, σ(ij) = ij+1 for j = 1, . . . , k−1

and σ(ik) = i1. A cycle of length k is called a k-cycle. We could also rewrite

the permutation cycle as a two-line formulation
(

i1 i2 · · · ik−1 ik

i2 i3 · · · ik i1

)

. (2)
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For instance, the permutation cycle σ = (312) represents a permutation σ(3) =

1, σ(1) = 2, and σ(2) = 3. The sign of any k-cycle is (−1)k−1. In fact,

by implementing k − 1 switches, i.e., i1 with ik, i1 with ik−1, . . . , i1 with i2,

sequentially, (2) reduces to
(

i1 i2 · · · ik−1 ik

i1 i2 · · · ik−1 ik

)

,

which is corresponding to {1, . . . , k}.

The cyclic decomposition of a permutation is to decompose the permuta-

tion as a product of disjoint cycles,

σ = (n11 · · ·n1l1)(n21 · · ·n2l2) · · · (nr1 · · ·nrlr). (3)

Every permutation can be written as a product of disjoint cycles. For instance,

{1, 2, 3} = (1)(2)(3) and {2, 1, 3} = (12)(3). The inverse permutation σ−1

is the inverse of σ such that σ(σ−1(i)) = i and σ−1(σ(i)) = i for i = 1, . . . , n.

In the cycle form, the inverse permutation just reverses the direction of each

cycle. Namely, σ−1 = (i1, in, in−1, . . . , i2). For more details on the permutation,

we refer to [2].

Let A = (aij) be a quaternion Hermitian matrix in H
n×n and σ be a permu-

tation of Sn = {1, . . . , n}. In 1922, Eliakim Hastings Moore defined the Moore

determinant for quaternion matrices [14] as follows,

Mdet(A) =
∑

σ∈SM
n

s(σ)aσ, (4)

where the permutation cycle σ is a product of disjoint cycles as in (3) and

satisfies

ni1 < nij for all j > 1, i = 1, . . . , r, and n11 > n21 > · · · > nr1, (5)

s(σ) denotes the sign of σ, and

aσ = (an11,n12
an12,n13

· · · an1l1
,n11

)(an21,n22
· · · an2l2

,n21
) · · · (· · · anrlr ,nr1

).

Denote SM
n as the set of permutations satisfying (5). When the matrix is a

complex or real matrix, the Moore determinant (4) reduces to the ordinary
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determinant. Following [3], we also denote σi = (ni1 · · ·nili),

〈σi〉 = 〈ni1 · · ·nilini1〉 = ani1,ni2
ani2,ni3

· · · anili
,ni1

.

Thus, σ = σ1 · · ·σr and 〈σ〉 = 〈σ1〉 · · · 〈σr〉.

Let a·j be the jth column and ai· be the ith row of a matrix A ∈ H
n×n or

A ∈ Ĥ
n×n. Let A·j(a) be a matrix obtained from replacing the jth column of

A by the column vector a, and Ai·(b) be a matrix result from replacing the ith

row of A by the row vector b. Denote by Aij a submatrix of A obtained by

deleting both the ith row and the jth column. Here, A·j(a) and Ai·(b) may

not be Hermitian matrices even if A is Hermitian. Such matrices are almost

Hermitian [6]. We say a matrix is k-almost Hermitian if it is self-adjoint

except for the k-th row or column.

In 1972, Dyson [6] presented an equivalent formulation of the Moore deter-

minant for k-almost Hermitian matrices as follows ,

Mdet(A) = akkMdet(Akk)−

n
∑

i=1,i 6=k

akiMdet(Akk
·i (a·k)). (6)

Here, k is the index in the k-almost Hermitian. If A is Hermitian, then the

above value remains the same for all k = 1, . . . , n. This formulation is quite

useful for the numerical computation.

However, the Moore determinant is only applicable to Hermitian or almost

Hermitian matrices. Several researchers have considered determinants of ar-

bitrary quaternion matrices. In 1922, Study [18] proposed determinants of

quaternion matrices through their injective algebra homomorphism with com-

plex matrices. Specifically, let A = A1 +A2j. Then

Sdet(A) = det

([

A1 −Ā2

A2 Ā1

])

.

In 1991, Chen [3, 4] proposed a novel definition of quaternion determinant as

follows

Cdet(A) =
∑

σ∈SC
n

(−1)n−raσ, (7)
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where the permutation cycle σ is a product of disjoint cycles as in (3) and

satisfies

ni1 > nij for all j > 1, i = 1, . . . , r, and n = n11 > n21 > · · · > nr1, (8)

and SC
n denotes the set of permutations satisfying (8). In the following, we call

it the Chen determinant and denote it by Cdet. In (7), n is fixed as the first

element in the cycle σ.

In 2008 and also in 2012, Kyrchei [7, 8] generalized the first element in the

Chen determinant to any index i ∈ {1, . . . , n} and proposed the column and

row determinants of arbitrary quaternion matrices as follows

Krdeti(A) =
∑

σ∈SK
n

(−1)n−raσ, (9)

where σ is the permutations of {1, . . . , n} satisfying

σ = (iik1ik1+1 · · · ik1+l1)(ik2ik2+1 · · · ik2+l2) · · · (ikrikr+1 · · · ikr+lr),

ik2 < ik3 < · · · < ikr and ikt < ikt+s for all t = 2, . . . , r, s = 1, . . . , lt,
(10)

and SK
n denotes the set of permutations satisfying (12). In the following, we

call it the Kyrchei row determinant.

Similarly, the Kyrchei column determinant is defined by

Kcdetj(A) =
∑

σ∈S̄K
n

(−1)n−raσ, (11)

where σ is the permutations of {1, . . . , n} satisfying

σ = (jkrjkr+lr · · · jkr+1jkr) · · · (jk2+l2 · · · jk2+1jk2)(jk1+l1 · · · jk1+1jk1j),

jk2 < jk3 < · · · < jkr and jkt < jkt+s for all t = 2, . . . , r, s = 1, . . . , lt.
(12)

When A is a quaternion Hermitian matrix, all Kyrchei row and column de-

terminants are real numbers and are the same, which also coincide with the

Moore determinant. Furthermore, the Kyrchei column and row determinants

may derive the formulation of the inverse matrix by the classical adjoint matrix

and could be connected to the solution of linear systems.
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We now review the elementary row and column operations for quaternion

matrices. Consider the three elementary row and column operations that can

be used to transform a matrix (square or not) into a simple form and can

facilitate determinant calculations. In the following definition, we focus on row

operations, which are implemented by left multiplying the matrices. Column

operations can be defined and used in a similar fashion, while the matrices that

implement them act on the right.

Definition 2.2 (Elementary row and column operations). Given a quaternion

matrix A ∈ H
n×n and i, j ∈ {1, . . . , n}. Consider the following three elementary

transformations.

(i) Switching of two rows. Let Pij = (akl) ∈ R
n×n satisfy

akl =























1, if k = l 6= i and k = l 6= j;

1, if k = i and l = j;

1, if k = j and l = i;

0, otherwise.

Then by multiplying Pij on the left, we switch the i-th and the j-th rows of A.

We refer Pij as a switching matrix.

(ii) Multiplication of a row by a scalar. Let c ∈ H be any quaternion number

and Pi;c = (akl) ∈ H
n×n satisfy

akl =











1, if k = l 6= i;

c, if k = l = i;

0, otherwise.

Then Pi;cA multiplies the i-th row of A by c on the left. We refer Pi;c as a

multiplication matrix.

(iii) Addition of a scalar multiple of one row to another row. Let c ∈ H be

any quaternion number and Pij;c = (akl) ∈ H
n×n satisfy

akl =











1, if k = l;

c, if k = j and l = i;

0, otherwise.
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Then Pij;cA adds the j-th row of A by the i-th row of A multiplied with c one

the left. We refer Pij;c as an addition matrix.

For more properties and applications of quaternion determinants, people may

check [9, 10, 12, 13].

We note that the Moore determinant, the Chen determinant, the Kyrchei

determinant, and Definition 2.2 can be extended to dual quaternions without

any difficulty. However, the study of properties of dual quaternion determinants

may be different. Very recently, Ling and Qi [11] studied the determinant

properties of dual complex matrices, and then introduced the concept of quasi-

determinant of dual quaternion matrices. Based upon these, they showed the

quasi-determinant of a dual quaternion Hermitian matrix is equivalent to the

product of the square of the magnitudes of all eigenvalues. In this paper, we

focus on the determinants of dual quaternion Hermitian matrix that are equal

to the product of eigenvalues, such as the Chen determinant and the Moore

determinant.

Next, we present several properties of the Chen determinant for quaternion

Hermitian matrices [3, 4].

Proposition 2.3. Let A = (aij) be a quaternion Hermitian matrix in H
n×n, Pij

be a switching matrix, Pi;α be a multiplication matrix, and Pij;α be an addition

matrix. Then the following results hold.

(i) Cdet(P ∗ijAPij) = Cdet(A);

(ii) Cdet(Pn;αA) = αCdet(A), Cdet(APn;α) = αCdet(A), and Cdet(P ∗i;αAPi;α) =

α∗αCdet(A);

(iii) Cdet(P ∗ij;αAPij;α) = Cdet(A);

(iv) For any unitary matrix U ∈ H
n×n, we have Cdet(U ∗AU) = Cdet(A);

Recall that an n×n quaternion Hermitian matrix has exactly n right eigen-

values, which are all real numbers and also left eigenvalues [21]. We simply call

them eigenvalues of that matrix. Recently, Qi and Luo [16] showed an n × n

9



dual quaternion Hermitian matrix has exactly n right eigenvalues, which are

all dual real numbers and also left eigenvalues. As mentioned early, they are

also simply called eigenvalues. In what follows, we show the Chen determi-

nant of dual quaternion Hermitian matrices is equal to the product of these n

eigenvalues.

3 Properties of the Dual Quaternion Chen Determinant

In this section, we show that the results in Proposition 2.3 can be generalized

to dual quaternion Hermitian matrices. We begin with the following lemma.

Lemma 3.1. Let A = (aij) be a dual quaternion Hermitian matrix in Ĥ
n×n.

Suppose σ0 = (p1p2 · · · pskq1 · · · qt) is a cycle factor of the permutation σ ∈ Sn.

Denote

σ̄0 = (p1qt · · · q1kps · · · p2),

σ+
0 = (kq1 · · · qtp1p2 · · · ps),

σ̄+
0 = (kps · · · p2p1qt · · · q1).

Then we have

〈σ0〉+ 〈σ̄0〉 = 〈σ
+
0 〉 + 〈σ̄

+
0 〉. (13)

Proof. By direct computation, we have 〈σ0〉 = ap1p2 · · · apskakq1 · · · aqtp1 and

〈σ̄0〉 = ap1qt · · · aq1kakps · · · ap2p1. Therefore, we have 〈σ0〉 = 〈σ̄0〉
∗. Similarly,

we have 〈σ+
0 〉 = 〈σ̄

+
0 〉
∗. Thus, both the right and left hand sides of (13) are dual

numbers.

Furthermore, let w1 = ap1p2 · · · apsk, w2 = akq1 · · · aqtp1. By Proposition 2.1,

we have Re(〈σ0〉) = Re(w1w2) = Re(w2w1) = Re(〈σ+
0 〉). Similarly, there is

Re(〈σ̄0〉) = Re(〈σ̄+
0 〉). Thus, the real part of the right hand side of (13) is equal

to that of the left hand side. Combining with the fact that both the right and

left hand sides of (13) are dual numbers, we derive (13).

This completes the proof.

Lemma 3.2. Let A = (aij) be a dual quaternion Hermitian matrix in Ĥ
n×n,

and Pij be a switching matrix. Then Cdet(P ∗ijAPij) = Cdet(A).
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Proof. If i, j, n are mutually distinct, then we have Pij = PjnPinPjn. Hence, it

suffices to show Cdet(P ∗jnAPjn) = Cdet(A) for j 6= n. For any σ = σ1 · · · σr ∈

SC
n , denote the apostrophe of σ

σ′ = σ|n←→j

as the permutation of Sn derived from interchanging n and j in σ. Since the

cycle structures of σ and σ′ are the same, they have the same parity. Thus, we

have

Cdet(P ∗jnAPjn) =
∑

σ∈SC
n

(−1)n−raσ′.

Consider the following two cases.

Case (a). Suppose that n and j are in the same cycle factor. Then there

exist nonnegative integers s, t such that σ1 = (np1 · · · psjq1 · · · qt). Let σ̄1 =

(nqt · · · q1jps · · · p1), δ1 = (nq1 · · · qtjp1 · · · ps), δ̄1 = (nps · · · p1jqt · · · q1) be the

first cycle factors of σ̄ = σ̄1σ2 · · · σr ∈ SC
n , δ = δ1σ2 · · · σr ∈ SC

n , δ̄ = δ̄1σ2 · · · σr ∈

SC
n , respectively. Then by Lemma 3.1, we have 〈σ1〉+〈σ̄1〉 = 〈δ

′
1〉+〈δ̄

′
1〉 and 〈δ1〉+

〈δ̄1〉 = 〈σ
′
1〉 + 〈σ̄

′
1〉. Here, the apostrophe of a cycle denotes the interchanging

of n and j. Thus, we have

〈σ〉+ 〈σ̄〉+ 〈δ〉+ 〈δ̄〉 = 〈σ′〉+ 〈σ̄′〉+ 〈δ′〉+ 〈δ̄′〉.

Namely, we have built the correspondence between the permutation terms in

SC
n with the permutation terms of Cdet(P ∗jnAPjn).

Case (b). Suppose that n and j are in two distinct cycle factors. Without

loss of generality, let

σ = (np1 · · · ps) · · · (jq1 · · · qt) · · · , s, t ≥ 0,

j > maxsi=1 pi, and j > maxti=1 qi. Otherwise, if j > maxsi=1 pi or j > maxti=1 qi

does not hold, we can use the similar technique in Lemma 3.1 to get the corre-

sponding permutations without changing the summation values.

Let

σ̄ = (nps · · · p1) · · · (jq1 · · · qt) · · · ,

δ = (np1 · · · ps) · · · (jqt · · · q1) · · · ,

11



δ̄ = (nps · · · p1) · · · (jqt · · · q1) · · · ,

and Σ, Σ̄, ∆, ∆̄ be the cycles that interchanging p1 · · · ps with q1 · · · qt in σ, σ̄,

δ, δ̄, respectively. Then we have

〈σ〉+ 〈σ̄〉+ 〈δ〉 + 〈δ̄〉

= [〈np1 · · · psn〉+ 〈nps · · · p1n〉] · · · [〈jq1 · · · qtj〉+ 〈jqt · · · q1i〉] · · ·

= [〈jq1 · · · qtj〉+ 〈jqt · · · q1j〉] · · · [〈np1 · · · psn〉+ 〈nps · · · p1n〉] · · ·

= 〈Σ′〉+ 〈Σ̄′〉+ 〈∆′〉+ 〈∆̄′〉.

Here, the second equality follows from the fact that the numbers in the square

brackets are dual numbers, which are communicative with dual quaternion num-

bers. Similarly, we have 〈Σ〉+ 〈Σ̄〉+ 〈∆〉+ 〈∆̄〉 = 〈σ′〉+ 〈σ̄′〉+ 〈δ′〉+ 〈δ̄′〉. Thus,

we have built the correspondence between the factors in Cdet(P ∗ijAPij) and

Cdet(A).

Following this scheme, we could show Cdet(P ∗ijAPij) = Cdet(A). This com-

pletes the proof.

Lemma 3.3. Let A = (aij) be a dual quaternion Hermitian matrix in Ĥ
n×n, and

Pn;α be a multiplication matrix. Then Cdet(Pn;αA) = αCdet(A), Cdet(APn;α) =

αCdet(A), and Cdet(P ∗i;αAPi;α) = α∗αCdet(A) for all i = 1, . . . , n.

Proof. Let σ = σ1 · · · σr ∈ SC
n be a permutation of Sn satisfying (8) and σ1 =

(np1 · · · ps). For the n-th row multiplication, we have

Cdet(Pn;αA) =
∑

σ∈SC
n

(−1)n−rαanp1ap1p2 · · · apsn〈σ2〉 · · · 〈σr〉

= α





∑

σ∈SC
n

(−1)n−r〈σ1〉 · · · 〈σr〉





= αCdet(A).

In addition, there exists σ̄1 = (nps · · · p1) such that σ̄ = σ̄1σ2 · · · σr ∈ SC
n and
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〈σ1〉+ 〈σ̄1〉 ∈ R̂. For the n-th column multiplication, we have

Cdet(APn;α) =
∑

σ∈SC
n

(−1)n−ranp1ap1p2 · · · apsnα〈σ2〉 · · · 〈σr〉

=
∑

σ∈SC
n

(−1)n−r〈σ1〉α〈σ2〉 · · · 〈σr〉

=
1

2

∑

σ∈SC
n

(−1)n−r [〈σ1〉+ 〈σ̄1〉]α〈σ2〉 · · · 〈σr〉

=
α

2

∑

σ∈SC
n

(−1)n−r [〈σ1〉 + 〈σ̄1〉] 〈σ2〉 · · · 〈σr〉

= αCdet(A).

Here, the third equality is true because we have repeated all permutations twice

and the fourth equality is true since the number in the square bracket is a dual

number.

For the i-th row and column multiplications, we have

Cdet(P ∗i;αAPi;α) = Cdet(P ∗inP
∗
i;αAPi;αPin)

= Cdet ((Pi;αPin)
∗A(Pi;αPin))

= Cdet(P ∗n;αAPn;α)

= α∗αCdet(A).

This completes the proof.

Lemma 3.4. Let A = (aij) be a dual quaternion Hermitian matrix in Ĥ
n×n.

Then

Cdet(An·(ak·)) = 0, ∀ k = 1, . . . , n− 1.

Furthermore, we have Cdet(An·(αak·)) = 0. In other words, if we replace the n-

th row of a dual quaternion Hermitian matrix by the k-th row (possibly multiplied

by a dual quaternion number α on the left), then the Chen determinant of the

result matrix is zero.

Proof. Let s, t be nonnegative integers. We first divide all permutations in SC
n

into three sets depending on the location of k as follows.
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(i) S1 = {σ1(k) : σ1(k) = (np1 · · · ps) · · · (kq1 · · · qt) · · · };

(ii) S2 = {σ2(k) : σ2(k) = (np1 · · · ps) · · · (u1 · · ·ulkq1 · · · qt) · · · };

(iii) S3 = {σ3(k) : σ3(k) = (np1 · · · pskq1 · · · qt) · · · }.

We show this lemma by proving that for any permutation σ in the first two

cases, there is a permutation σ̄ in the same case and permutations σ+ and σ̄+

in the third case such that

s(σ)〈σ〉+ s(σ̄)〈σ̄〉 = −s(σ+)〈σ+〉 − s(σ̄+)〈σ̄+〉. (14)

Case (i). Let σ ∈ S1 and

σ̄ = (np1 · · · ps) · · · (kqt · · · q1) · · · ,

σ+ = (nq1 · · · qtkp1 · · · ps) · · · , σ̄+ = (nqt · · · q1kp1 · · · ps) · · · .

Then we have

〈σ〉+ 〈σ̄〉 = 〈np1 · · · psn〉 · · · 〈kq1 · · · qtk〉 · · ·+ 〈np1 · · · psn〉 · · · 〈kqt · · · q1k〉 · · ·

= 〈kp1 · · · psn〉 · · · 〈kq1 · · · qtk〉 · · ·+ 〈kp1 · · · psn〉 · · · 〈kqt · · · q1k〉 · · ·

= 〈kq1 · · · qtkp1 · · · psn〉 · · ·+ 〈kqt · · · q1kp1 · · · psn〉 · · ·

= 〈nq1 · · · qtkp1 · · · psn〉 · · ·+ 〈nqt · · · q1kp1 · · · psn〉 · · ·

= 〈σ+〉+ 〈σ̄+〉,

where the second and the fourth equalities follow from the fact that the last row

of A is replaced by the k-th row, and the third equality follows from the fact

that 〈kq1 · · · qtk〉+ 〈kqt · · · q1k〉 is a dual number, which is communicative with

dual quaternion numbers and can be moved to the beginning of the products.

Furthermore, suppose σ has r distinct cycles. Then s(σ) = s(σ̄) = (−1)n−r and

s(σ+) = s(σ̄+) = (−1)n−r+1. Thus, (14) holds.

Case (ii). Let σ ∈ S2 and

σ̄ = (np1 · · · ps) · · · (u1qt · · · q1kul · · · u2) · · · ,

σ+ = (nq1 · · · qtu1u2 · · ·ulkp1 · · · ps) · · · ,

and

σ+ = (nul · · ·u1qt · · · q1kp1 · · · ps) · · · .

14



It follows from Lemma 3.1 that

〈u1 · · ·ulkq1 · · · qtu1〉+ 〈u1qt · · · q1kul · · ·u1〉

= 〈kq1 · · · qtu1u2 · · ·ulk〉+ 〈kul · · · u1qt · · · q1k〉. (15)

Combining this with the first case derives (14).

The union of all σ+ and σ̄+ defined above is equal to S3. In fact, for any

permutation σ ∈ S3, if k ≥ pi for i = 1, . . . , s, then it is corresponding to a

permutation in the first case. Otherwise, it is corresponding to a permutation

in the second case.

Together, we have

Cdet(An·(ak·)) =
∑

σ∈S1

s(σ)〈σ〉+
∑

σ∈S2

s(σ)〈σ〉+
∑

σ∈S3

s(σ)〈σ〉

= −
∑

σ∈S3

s(σ)〈σ〉+
∑

σ∈S3

s(σ)〈σ〉

= 0.

Furthermore, we can verify that Cdet(An·(αak·)) = αCdet(An·(ak·)) = 0.

This completes the proof.

Lemma 3.5. Let A = (aij) be a dual quaternion Hermitian matrix in Ĥ
n×n.

Then we have Cdet(A·n(a·kα)) = 0 for all k = 1, . . . , n and α ∈ Ĥ.

Proof. Consider the three cases S1, S2 and S3 in the proof of Lemma 3.4. We

now prove that for any permutation σ ∈ S1 ∪ S2, there is a permutation σ̄ in

the same case and permutations σ+, σ̄+ ∈ S3 such that (14) holds.

Case (i). Let σ ∈ S1 and

σ̄ = (np1 · · · ps) · · · (kqt · · · q1) · · · ,

σ+ = (np1 · · · pskq1 · · · qt) · · · , σ̄+ = (np1 · · · pskqt · · · q1) · · · .
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Then we have

〈σ〉+ 〈σ̄〉 = 〈np1 · · · psn〉 · · · 〈kq1 · · · qtk〉 · · · + 〈np1 · · · psn〉 · · · 〈kqt · · · q1k〉

= 〈np1 · · · psk〉α · · · 〈kq1 · · · qtk〉 · · ·+ 〈np1 · · · psk〉α · · · 〈kqt · · · q1k〉

= 〈np1 · · · pskq1 · · · qtk〉α · · ·+ 〈np1 · · · pskqt · · · q1k〉α · · ·

= 〈np1 · · · pskq1 · · · qtn〉 · · ·+ 〈np1 · · · pskqt · · · q1n〉 · · ·

= 〈σ+〉 + 〈σ̄+〉,

where the second and the fourth equalities follow from the fact that the last

column of A is replaced by the k-th row multiplied by α, and the third equality

follows from the fact that 〈kq1 · · · qtk〉 + 〈kqt · · · q1k〉 is a dual number and is

communicative with any dual quaternion numbers. Furthermore, suppose σ has

r distinct cycles. Then s(σ) = s(σ̄) = (−1)n−r and s(σ+) = s(σ̄+) = (−1)n−r+1.

Thus, (14) holds.

Case (ii). Let σ ∈ S2 and

σ̄ = (np1 · · · ps) · · · (u1qt · · · q1kul · · · u2) · · · ,

σ+ = (np1 · · · pskq1 · · · qtu1 · · · uln) · · · ,

and

σ+ = (np1 · · · pskul · · · u1qt · · · q1n) · · · .

Combining (15) with the first case derives (14).

The rest of the proof is similar to that of Lemma 3.4 and we omit the details

here.

This completes the proof.

Lemma 3.6. Let A = (aij) be a dual quaternion Hermitian matrix in Ĥ
n×n,

and Pij;α be an addition matrix. Then Cdet(P ∗ij;αAPij;α) = Cdet(A).

Proof. Without loss of generality, we suppose i < j. Since Pij;α = PjnPin;αPjn,

we only need to show Cdet(P ∗in;αAPin;α) = Cdet(A). By direct computation, we

have

Cdet
(

P ∗in;αAPin;α

)

= Cdet (A) + Cdet (An·(α
∗ai·)) + Cdet (A·n(a·iα)) + Cdet (B(α)) ,
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where B(α) = (bkl(α)) satisfies

bkl(α) =























α∗ail, if k = n and l 6= n;

akiα, if l = n and k 6= n;

α∗aiiα, if k = l = n

akl, otherwise.

In the other words, B(α) = P ∗n;αB(1)Pn;α. Thus, it follows from Lemmas

3.3 and 3.4 that Cdet (B(α)) = α∗αCdet(B(1)) = 0. By Lemmas 3.4 and

3.5, we have Cdet (An·(α
∗ai·)) = Cdet (A·n(a·iα)) = 0. Therefore, we have

Cdet
(

P ∗in;αAPin;α

)

= Cdet(A). This completes the proof.

Recently, Wang et al. [19] proposed the dual quaternion LU decomposition

and the partial pivoting dual quaternion LU decomposition. Specifically, given

a dual quaternion matrix A ∈ Ĥ
n×n, there is a permutation matrix P , a unit

lower triangular dual quaternion matrix L ∈ Ĥ
n×n, and an upper triangular

dual quaternion matrix U ∈ Ĥ
n×n such that

PA = LU.

Based on this formulation, we have the following lemma.

Lemma 3.7. Suppose A ∈ Ĥ
n×n is a dual quaternion unitary matrix. Then

there exists a series of switching matrices and addition matrices P1, . . . , Pt such

that Pt · · ·P1A = diag(d1, . . . , dn), where d1, . . . , dn ∈ Ĥ and |d1d2 · · · dn| = 1.

Proof. Let PA = LU be the partial pivoting dual quaternion LU decomposition

of A. Since P , A, and L are all invertiable, U is also invertiable. Let U = U0D,

where D = diag(d1, . . . , dn) and di = uii for i = 1, . . . , n. Then we have

U−10 L−1PA = D = diag(d1, . . . , dn).

Here, U−10 and L−1 are unit upper and lower triangular dual quaternion matri-

ces, respectively. Thus, they are products of addition matrices.

Furthermore, by the quasi-determinant defined in Ling and Qi [11], we have

detq(U
−1
0 ) = 1, detq(L

−1) = 1, detq(P ) = 1, detq(A
∗A) = detq(A

∗)detq(A) =

detq(A)
2 = 1, and

detq(U
−1
0 L−1PA) = detq(U

−1
0 )detq(L

−1)detq(P )detq(A) = 1.
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Therefore, detq(D) = |d1d2 · · · dn|
2 = 1. This completes the proof.

Based on the above lemmas, we are ready to show our main results.

Theorem 3.8. For any dual quaternion Hermitian matrix A ∈ Ĥ
n×n and any

dual quaternion unitary matrix U ∈ Ĥ
n×n, we have Cdet(U ∗AU) = Cdet(A).

Proof. By Lemma 3.7, there are switching matrices and additionmatrices P1, . . . ,

Pt such that U = P−11 · · ·P
−1
t D, D = diag(d1, . . . , dn), and |d1 · · · dn| = 1. Since

P−1ij = Pij, P
−1
ij;α = Pij;−α, P

−1
1 , . . . , P−1t are also switching or addition matrices.

Thus, we have

Cdet(U ∗AU) = Cdet(D∗(P−1t )∗ · · · (P−11 )∗AP−11 · · ·P
−1
t D) = Cdet(A).

Here, the last equality follows directly from Proposition 2.3. This completes

the proof.

Theorem 3.9. Given a dual quaternion Hermitian matrix A ∈ Ĥ
n×n and any

dual quaternion unitary matrix U ∈ Ĥ
n×n, we have

Cdet(A) =
n
∏

i=1

λi

and

Cdet(A∗A) = Cdet(A)2 =
n
∏

i=1

λ2
i ,

where λ1, . . . , λn are eigenvalues of A.

Proof. By [16], there exists a dual quaternion unitary matrix U such that

UAU ∗ = Λ = diag(λ1, . . . , λn) and all eigenvalues λi, i = 1, . . . , n are dual num-

bers. Combining this with Theorem 3.8, we have Cdet(A) = Cdet(U ∗AU) =

Cdet(Λ) = λn · · · λ1. Since dual numbers are communicative, the first conclu-

sion is derived.

The second conclusion follows from Λ∗ = Λ, A∗A = U ∗Λ2U and Theorem 3.8.

This completes the proof.
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4 The Moore Determinant and the Eigenvalues

Theorem 4.1. Let A = (aij) be a dual quaternion Hermitian matrix in Ĥ
n×n.

Then we have

Mdet(A) = Cdet(A). (16)

Furthermore, we have

Mdet(A) =
n
∏

i=1

λi,

where λ1, . . . , λn are the eigenvalues of A.

Proof. Let σ = σ1 · · ·σr ∈ SM
n be a permutation in the Moore determinant. For

each i = 1, . . . , r, denote

σi = (pi1 · · · pisikiqi1 · · · qiti),

where pi1 and ki are the minimal and maximal integers in σi, respectively.

Denote σ̄i = (pi1qiti · · · qi1kipisi · · · pi2), σ
+
i = (kiqi1 · · · qitipi1 · · · pisi), and σ̄+

i =

(kipisi · · · pi1qiti · · · qi1). By Lemma 3.1, we have

〈σi〉+ 〈σ̄i〉 = 〈σ
+
i 〉+ 〈σ̄

+
i 〉 ∈ R̂.

Thus, we have

(〈σ1〉+ 〈σ̄1〉) · · · (〈σr〉+ 〈σ̄r〉)

=
(

〈σ+
1 〉+ 〈σ̄

+
1 〉
)

· · ·
(

〈σ+
r 〉+ 〈σ̄

+
r 〉
)

=
(

〈σ+
i1
〉+ 〈σ̄+

i1
〉
)

· · ·
(

〈σ+
ir
〉+ 〈σ̄+

ir
〉
)

.

Here, i1, . . . , ir are obtained by sorting ki in the descending order and the second

equality holds since the dual numbers are communicative. Let sj ∈ {σj, σ̄j} for

j = 1, . . . , n. Then σ = s1 · · · sr ∈ SM
n is a permutation in the Moore determi-

nant. Similarly, let s+j ∈ {σ
+
ij
, σ̄+

ij
} for j = 1, . . . , n. Then σ+ = s+1 · · · s

+
r ∈ SC

n

is a permutation in the Chen determinant. Furthermore, those cycle factors

are obtained by reversing or switching the original cycle factor. Reversing a

cycle factor derives the inverse or conjugate of the corresponding permutation,

which does not change the sign. Switching the cycle factors does not change
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the corresponding permutation. Thus, the signs of all permutations above are

the same. By going through all permutations in the Moore determinant, we

have Mdet(A) = Cdet(A).

The second conclusion of this theorem holds directly from equation (16) and

Theorem 3.9. This completes the proof.

Kyrchei [7, 8] showed that the Kyrchei row and column determinants of a

quaternion Hermitian matrix are equal to the Moore determinant. We could

also extend this result to dual quaternion Hermitian matrices and show the

Kyrchei row and column determinants of a quaternion Hermitian matrix are

equal to the Moore determinants, which are also equal to the products of the

eigenvalues.

Theorem 4.2. Suppose A ∈ Ĥ
n×n is a dual quaternion Hermitian matrix and

λ1, . . . , λn ∈ R̂ are its eigenvalues. Then Mdet(A) = 0 if and only if As is

singular and A has at least one zero or two infinitesimal eigenvalues; namely,

there is i, j ∈ {1, . . . , n} such that λi = 0 or λi,s = λj,s = 0.

Proof. By Theorem 4.1, we have

Mdet(A) =
n
∏

i=1

λi =
n
∏

i=1

λis +
n
∑

j=1

n
∏

i=1,i 6=j

λisλjdǫ.

On one hand, if there is i, j ∈ {1, . . . , n} such that λi = 0 or λi,s = λj,s = 0,

we can check that Mdet(A) = 0 directly. On the other hand, if Mdet(A) = 0,

then there is j ∈ {1, . . . , n} such that λjs = 0 and
∏n

i=1,i 6=j λisλjd = 0. Thus,

either λjd = 0 or there is i 6= j such that λis = 0. This completes the proof.

5 The Characteristic Polynomial

Suppose A ∈ Ĥ
n×n is a dual quaternion Hermitian matrix and λ ∈ Ĥ is an

arbitrary dual number. Define

p(λ) = Mdet(λI − A). (17)
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Assume that λ1, . . . , λn are eigenvalues of A. Then (17) is equivalent to

p(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn). (18)

The later definition is also used in Qi and Cui [15]. It was shown in [15] that

all eigenvalues of A are also roots of the characteristic polynomial. The reverse

does not hold in general. In fact, a dual number λ is a root of p(λ) either if λ

is an eigenvalue of A or λs is a multiple eigenvalue of As. However, the reverse

holds true when all eigenvalues of As are single.

Corollary 5.1. Suppose all eigenvalues of As are single. Then a dual number

is the root of the characteristic polynomial (17) if and only if it is an eigenvalue

of A.

Very recently, Ling and Qi [11] proposed a characteristic polynomial by the

quasi-determinant of dual quaternion matrices. In their definition, there is

pq(λ) = detq(λI − A) = |λ− λ1|
2|λ− λ2|

2 · · · |λ− λn|
2. (19)

We may verify that pq(λ) = |p(λ)|
2. In other words, the sign of the determinant

is lost in the quasi-determinant. Furthermore, it was shown in [11] that all

eigenvalues of A are also roots of the characteristic polynomial (19). However,

the reverse does not hold, even if all eigenvalues of As are single.
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