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Abstract We provide an overview of experiments exploring resonances in the collision of ultracold
clouds of atoms. Using a laser-based accelerator that capitalizes on the energy resolution provided by
the ultracold atomic setting, we unveil resonance phenomena such as Feshbach and shape resonances
in their quintessential form by literally photographing the halo of outgoing scattered atoms. We exploit
the tunability of magnetic Feshbach resonances to instigate an interplay between scattering resonances.
By experimentally recording the scattering in a parameter space spanned by collision energy and
magnetic field, we capture the imprint of the S-matrix pole flow in the complex energy plane. After
revisiting experiments that place a Feshbach resonance in the proximity of a shape resonance and an
anti-bound state, respectively, we discuss the possibility of using S-matrix pole interplay between two
Feshbach resonances to create a bound-state-in-the-continuum.

1 Introduction

Resonance phenomena are ubiquitous in physics, appearing in all manner of mechanical, electrical,
acoustic, optical and quantum mechanical systems. In theories of quantum scattering, one way to
parameterise resonant scattering between particles is by means of poles of the system’s analytically-
continued S matrix [1]. While these poles reside at physically unreachable complex energies and
have at times been considered “mathematical oddities” [2], their effect can nevertheless be seen on
the real, positive energy axis where experiments are conducted [1–4]. Since the seminal work by
Nussenzveig [5] that studied the flow of S-matrix poles while modifying the depth of a square well
potential, multiple authors have greatly expanded the theoretical understanding of S-matrix poles and
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their trajectories [6–12]. Observations of S-matrix pole flow in scattering experiments have, however,
been somewhat wanting as the interaction potentials describing collisions between material particles
are typically not tunable.

This contribution is based on an invited plenary talk presented at the 25th European Confer-
ence on Few-Body Problems in Physics. Here one us (N.K.) gave an overview of experiments with
a minature laser-based collider, which has been in operation in New Zealand since 2012 [13]. In this
vein, we shall in the below consider scattering experiments using 87Rb and 40K, which are bosonic
and fermionic workhorses, respectively, of ultracold atomic physics as these alkali species are readily
laser cooled [14]. When augmented with evaporative cooling [15] atomic samples with temperatures
less than a microkelvin may be obtained, and these can serve as targets and projectiles in a colli-
sion experiment. Moreover, 87Rb and 40K possess magnetically-tunable Feshbach resonances in their
inter- and intra-atomic interactions. Utilising the magnetic tuning, the S-matrix resonance pole asso-
ciated with a Feshbach resonance can be brought in proximity to other poles of the S matrix. These
other poles may arise in the entrance channel due to bound or anti-bound states, shape resonances
or additional Feshbach resonances. Numerical calculations of S-matrix elements are feasible thanks to
accurate models of the interaction potentials for Rb-Rb [16] and Rb-K [17] and to the reduced number
of quantum states involved in the collision at ultra-low energies. We interpret our experimental obser-
vations in terms of pole flow of the analytically-continued S matrix. In particular, we demonstrate that
the numerically-ascertained pole positions and their trajectories have a conspicuous impact on our
atomic scattering experiments. As an outlook towards future experiments, we consider the case of two
coupled Feshbach resonances which during their pole-flow establish a bound-state-in-the-continuum.

2 Experimental setup

Figure 1a summarises the sequential operation of our miniature atomic collider. Briefly, two ultracold
clouds of atoms (shown as red spheres) are held in the crossings of two vertical laser beams with a
horizontal laser beam. The atoms are confined at points of high laser intensity—the beam crossings—
by the optical dipole force [19]. They are loaded into these optical tweezers from a magnetic trap
where evaporative cooling down to a temperature of ∼200 nK can be performed. The optical tweezer
system manipulates the two clouds of atoms into colliding by steering the vertical beams as shown in
the acceleration phase of Fig. 1a. The two potential wells confining the atoms are the result of rapidly
toggling the position of a single beam through the frequency drive of an acousto-optic deflector [20].
Once the clouds are accelerated into their collision course, the confining laser beams are turned off so
the atoms can collide in free space without external influence other than a chosen uniform magnetic
field. This miniature collider setup accelerates each cloud over a maximum distance of 3mm, to explore
a domain of collision energies around hundreds of nano-eV. These energies are in the “cold” domain
with E/kB reaching up to about a millikelvin while the clouds of atoms themselves are “ultra-cold”
with temperatures of ≲1 µK [21].

After the collision, the clouds and the scattering halo are allowed to expand for a few milliseconds,
and the uniform magnetic field is turned off. A laser pulse then projects a shadow image of the atoms
onto a CCD camera (see ‘imaging’ in Fig. 1a). Figure 1b shows examples of such laser absorption
images of scattering halos, acquired at a fixed energy E/kB = 327 µK for range of externally applied
B-fields. From the analysis of such images [22], the partial-wave components of the scattering and the
scattered fraction can be extracted. The latter is plotted Fig. 1c and displays a dramatic extinction at
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Fig. 1 Cold collisions of ultracold atoms. a) The collider sequence: acceleration in optical tweezers, collision in the
absence of trapping, ballistic expansion of the scattering halo, and, finally, imaging of said halo and unscattered atoms.
b) A series of images of 87Rb atoms collected for a range of magnetic fields at a fixed energy, demonstrating the variation
of scattering strength imparted by a Feshbach resonance. c) The fraction of incoming atoms scattered, for the fixed
energy of 327 µK over a range of fields, as extracted from images including those shown in b). The data presented in c)
were previously published in Ref. [18].

B ∼ 930 G as a result of the destructive interference between a d-wave shape resonance and a d-wave
Feshbach resonance [23].

3 S-matrix poles and their interplay

To set the scene, we first consider the elastic collisions between two particles. Standard textbook
treatments of time-independent quantum scattering transform this into the equivalent problem of a
single incoming particle of reduced mass µ and energy E = ℏ2k2/2µ scattering off a potential localised
at the origin [24, 25]. The incoming particle is represented by a plane wave, eikz of momentum ℏk
along the z axis. At long-range far away from the origin, the scatted wavefunction takes the form of a
spherical wave ψscatt propagating radially outward. The outgoing wave is angularly modulated by the
scattering amplitude f(θ, ϕ). It is the scattering potential that determines the scattering amplitude
in a given direction and if the potential is radially symmetric, f will be independent of the azimuthal
angle ϕ. The total stationary wavefunction then has the asymptotic form,

ψ
r→∞∼ eikz + f(k, θ)

eikr

r︸ ︷︷ ︸
ψscatt

, (1)
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Fig. 2 a) Graphical representation of Eq. (1) describing scattering as a sum of a plane wave traveling in the z-direction
and spherical wave propagating outwards from the origin. b) Partial sums of the Rayleigh expansion, illustrating how
a plane wave is formed as a superposition of spherical waves in the limit N → ∞. c) (Quasi-)bound states in scattering
potentials. The well of the interaction potential in the open entrance channel (blue) may host an (anti-)bound state below
threshold, producing a sub-threshold resonance. The addition of angular momentum to the open channel introduces
a centrifugal barrier (orange) which can host the quasi-bound state of a shape resonance. A closed channel (red) can
support a bound-state, coupling to which produces a Feshbach resonance.

which is depicted in Fig. 2a. Inspired by the spherical nature of the scattered wavefunction, the plane
wave is expressed as linear combination of spherical waves via the Rayleigh expansion

eikz =

∞∑
ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ), (2)

where jℓ are spherical Bessel functions of the first kind and Pℓ are Legendre polynomials. The con-
struction of the plane wave from this series is shown in Fig. 2b.

Without a scattering interaction, the total wavefunction of Eq. (1) is simply a plane wave, with
each ℓth component of the expansion Eq. (2) giving the long-range behaviour

ψunscatt
ℓ

r→∞∼ sin (kr − ℓπ/2)

r
Pℓ(cos θ). (3)

Sharing the azimuthal symmetry of the plane wave and the potential, the total wavefunction including
a scattering interaction can be expanded over the same basis of partial waves,

ψ =

∞∑
ℓ=0

uℓ(r)

r
Pℓ(cos θ). (4)

Therefore if the two particles do not interact, the radial partial wavefunction uℓ(r) of two non-
interacting particles takes the form

uunscattℓ
r→∞∼ sin (kr − ℓπ/2) =

i

2

[
e−i(kr−ℓπ/2) − ei(kr−ℓπ/2)

]
, (5)
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which is a sum of a radial wave propagating towards the origin, ∝ e−ikr, and one propagating outwards,
∝ e+ikr. Physically, the incoming wave is fixed, and thus we would expect the scattering to affect only
the outgoing wave

uℓ
r→∞∼ i

2

[
e−i(kr−ℓπ/2) − Sℓe

+i(kr−ℓπ/2)
]
. (6)

This defines the ℓth component of the S matrix. Because of conservation of particle current, the only
possible change with respect to the long-range unscattered wave component is a phase-shift δℓ, the
so-called scattering phase:

uℓ
r→∞∼ sin(kr − ℓπ/2 + δℓ), (7)

which in turn provides an expression for the S matrix

Sℓ = e2iδℓ . (8)

Note that the conservation of particle current implies that Sℓ has unit modulus.
In addition to the long-range behaviour of Eq. (6), a physical wavefunction must be regular at the

origin. By inspection of Eq. (4) this requires uℓ → 0 as r → 0. Between these two boundary conditions,
the radial wavefunction is a solution to the radial Schrödinger equation,(

ℏ2

2µ

d2

dr2
− ℓ(ℓ+ 1)

r2
+ k2 − V (r)

)
uℓ = 0. (9)

The “centrifugal term” ℓ(ℓ+1)/r2 arises from the angular momentum of the ℓth partial wave and can
be considered an addition to the potential. The discussion so far has considered a single channel, i.e.,
a single internal state of the atom pair. More generally the wavefunction becomes a vector u⃗ℓ with
components of each channel, and V (r) is a matrix allowing coupling between the different channels to
account for all the possible state pairs of the atoms.

In general, inter-channel coupling allows inelastic collisions where S-matrix elements may no-longer
have unity modulus. There may also be coupling between different ℓ. Since we consider elastic collisions
with the atomic quantisation axis along the collision axis, we do not have inter-ℓ coupling1, and we
may treat each component separately. Furthermore, threshold laws allow us to ignore large ℓ for low
energy collisions [26]. For the cold collision experiments considered in this contribution, the scattering
is accurately described by ℓ ≤ 4 and the scattering resonances considered are in channels with ℓ = 0
or 2.

3.1 Jost functions and poles

As we have seen, the long-range boundary condition of a physical wavefunction is a superposition of
incoming and outgoing spherical waves. More rigorously, one can define entire (non-physical) solutions
to the radial Schrödinger equation with the spherical-wave boundary conditions [25,27,28]

ϕ±ℓ (k, r)
r→∞∼ exp[±i(kr − ℓπ/2)], (10)

known as the Jost solutions. A physical scattering wavefunction can then be constructed from these

uℓ(E, r) =
i

2

[
F in
ℓ (E)ϕ−ℓ (k, r)−Fout

ℓ (E)ϕ+ℓ (k, r)
]
, (11)

1 Perturbative dipole-dipole interactions, which weakly couple ℓ± 2 can be ignored in the context of this work.
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introducing the Jost functions F in/out
ℓ (E). The S matrix is then defined by the ratio

Sℓ(E) =
Fout
ℓ (E)

F in
ℓ (E)

. (12)

From Eq. (12), it is apparent that Sℓ(E) will have a pole wherever the Jost function F in
ℓ (E) is zero.

Furthermore, from Eq. (11) and Eq. (10) one can see that this corresponds to a wavefunction with
an exclusively ‘outgoing’ boundary condition, corresponding to the presence of a so-called Gamow or
Siegert state [29,30] above threshold.

Bound solutions to the Schrödinger equation below threshold also coincide with Jost-function zeros.
Since E < 0, k is purely imaginary, and a Jost-function zero with Im k > 0 in Eq. (11) ensures that
the wavefunction is purely exponentially decreasing as r → ∞. In addition to physically meaningful
bound-states with a wavefunction that decays exponentially away in the classically forbidden region,
a Jost-function zero may also occur with Im k < 0, corresponding to a non-physical anti-bound state
below threshold which is purely exponentially increasing as r → ∞. Despite the non-physical nature of
the latter, both bound and anti-bound states can have profound effects on scattering near threshold.

In general, Jost-function zeros and S-matrix poles are not found at positive real energies. However,
the Jost functions and therefore the S matrix are analytic for well-behaved potentials (except at its
poles) [25] and therefore the S matrix on the positive real energy line has an analytic continuation
into the complex plane. Poles residing in the complex plane may therefore leave a distinct imprint
in the form of resonances for scatting experiments conducted on the experimentally-accessible real
energy axis.

3.2 Resonances and poles

In this work, we consider three different classes of resonances, shown pictorially in Fig. 2c. Firstly,
a bound state (dashed blue line) just below the threshold of the entrance channel strongly affects
the near-threshold scattering behaviour. Near threshold, atomic interactions are uniquely determined
by the scattering length, which is affected by both the long-range potential and the last bound or
anti-bound state below threshold. As discussed above, both bound and anti-bound states give rise to
Jost-function zeros, and therefore they correspond to S-matrix poles below threshold. If the last bound
state is close to threshold, the scattering length will be anomalously large. On the other hand, a large
negative scattering length instead signals the presence of an anti-bound state, also called a virtual
state. The pole associated with either of these is physically inaccessible to scattering experiments,
but its presence is visible in the observed scattering just above threshold, resulting in a so-called
sub-threshold resonance [28].

A second class to be found in the entrance channel is the shape resonance. For partial waves with
non-zero angular momentum (ℓ > 0), the centrifugal term of the radial Schrödinger equation gives
rise to an effective barrier in the potential (solid orange curve in Fig. 2c). This barrier can introduce
a quasi-bound state above threshold (dashed orange line). An incoming particle matching the energy
of the quasi-bound state can resonantly tunnel through the barrier, increasing the duration of the
interaction.

The final resonance type considered is the Feshbach resonance, where coupling to a bound state
of a closed channel (dashed red line) enhances the interaction. Effectively, the scattering atoms are
temporarily bound as a molecule in the closed channel at short range. If the closed channel has
a different magnetic moment to the entrance channel, a magnetic field can be used to adjust the
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position of the resonance relative to the entrance channel. The ability to control atomic interactions
with a magnetic field via a Feshbach resonance is a vital tool in ultracold atomic physics [31].

The relationship between S-matrix poles and above-threshold resonance phenomena, can be rec-
ognized by considering a pole located at a complex energy off the real line, Ē = Er − iEi, where
Er, Ei > 0. Since F in

ℓ (E) = [Fout
ℓ (E∗)]

∗
[28], then back on the physically meaningful real E axis the

scattering phase is given by [cf. Eq. (8) and Eq. (12)]

δℓ(E) = − argF in
ℓ (E). (13)

Expanding F in
ℓ about Ē to first order, the phase in this region is

δℓ(E) ≈ − arg
[
F in
ℓ

′
(Ē)(E − Ē)

]
= − argF in

ℓ

′
(Ē)− arg(E − Ē),

= δbg − arctan

( − Im Ē

E − Re Ē

)
. (14)

The second term, the phase winding associated with being in the vicinity of a pole, is the source of
resonant behaviour while the background phase shift δ(bg) encapsulates the remaining non-resonant
scattering behaviour. In particular, Eq. (14) replicates the general form for the scattering phase near
a Feshbach resonance along the real energy line [31]:

δℓ(E) = δbg − arctan

(
Γ/2

E − EC − δE

)
, (15)

where δbg, the width Γ and shift δE all generally change with energy, associated with a bound-state
in a closed channel at energy EC . The coupling between open and closed channels causes a resonance
at Eres = EC − δE. By inspection of equations Eq. (14) and Eq. (15), we see that the resonance is
equivalent to a pole at Ē = Eres − iΓ/2.

In the present study, we consider magnetically-tunable resonances from two different perspectives:
‘viewing’ them in either energy or magnetic field. Above, we considered how a resonance is visible as
a function of collision energy, in the phase winding while moving past a static resonance pole (i.e. at
a constant magnetic field). Alternatively, one may fix the collision energy and observe a resonance
profile in magnetic field, tuning the resonance pole across the chosen energy. In the latter case, the
resonance profile observed in magnetic field B is described by the Breit-Wigner profile [23],

δℓ(B) = δbg + arctan

(
ΓB/2

B −Bres

)
, (16)

where the width ΓB and position Bres of the resonance will depend upon energy.
Our discussion of the S matrix and the scattering phase is connected to experimental observations

by noting that the scattering phase determines the partial scattering cross-section [24],

σℓ =
4π(2ℓ+ 1)g

k2
sin2 δℓ, (17)

where the factor g is included to account for collisions of indistinguishable particles. For distinguishable
particles (e.g., between 40K and 87Rb, or 87Rb prepared in different internal quantum states [32]),
g = 1. For situations instead considering indistinguishable bosons (fermions), g = 2 when ℓ is even
(odd) and g = 0 otherwise. The total scattering cross-section is given by the sum of the partial cross-
section, though as previously mentioned, the experiments considered here are accurately described by
the terms with ℓ ≤ 4.
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Table 1 Classifications of the coupled two-channel model [18].

Case I II III

(ϵ1 − ϵ2)2 + 4ω2 Positive Zero Negative

Coupling Strength 4|ω| < |γ1 − γ2| 4|ω| = |γ1 − γ2| 4|ω| > |γ1 − γ2|

Crossing
Real Energy Poles Coincide Imaginary Energy

Re E1(B0) = Re E2(B0) E1(B0) = E2(B0) Im E1(B0) = Im E2(B0)

Example pole trajecto-
ries.

Re E

Im
E

3.3 A simple conceptual model for pole interactions

To form a simplified model for the interplay of two S-matrix poles, we treat the resonance poles above
threshold as complex eigenvalues of a non-Hermitian Hamiltonian, where the imaginary components
represent the decay from the quasi-bound states into the scattering continuum. In the case of Feshbach
resonances, one may obtain equivalent models by projecting the system Hamiltonian onto the closed-
channel subspace [33,34]. Alternatively, one could employ quantum defect theory to separate out the
long-range behaviour of the open channel from the short-range inter-channel coupling [23, 35–37] of
the closed channel resonances. For our purpose, however, we also need to explicitly include resonances
of the open channel.

Consider two non-interacting S-matrix poles located at complex energies εn(B) = En(B) − i
2γn.

The interaction between these with (real) strength ω can be described by the effective Hamiltonian
over the non-interacting poles [38,39]

H =

[
ε1(B) ω
ω ε2(B)

]
. (18)

With the coupling added, the positions of the poles are given by the eigenvalues of Eq. (18),

E± =
ε1 + ε2

2
± 1

2

√
(ε1 − ε2)2 + 4ω2. (19)

For simplicity, we consider one pole to have a fixed uncoupled position while the real energy
component of the other pole increases linearly with B, and that at B = B0 the real parts of the
energies ε1 and ε2 coincide. When the coupling is introduced, the poles cross in different ways, as
summarised in table 1. The crossing behaviour can be classified into three characteristic cases [39]
delineated by the argument of the square-root in Eq. (19) at B = B0. Specifically, if it evaluates as zero
(|γ1−γ2| = 4|ω|), positive (|γ1−γ2| > 4|ω|), or negative (|γ1−γ2| < 4|ω|). When |ω| = |γ1−γ2|/4 (case
II), the two states and the corresponding poles will coalesce exactly (E1 = E2) at B = B0, producing
a so-called exceptional point [40,41]. In the other two cases, only the real (case I) or imaginary (case
III) components of the poles coincide at B0. As elucidated graphically in table 1, the pole trajectory
for case I shows the two poles to be pulled together as they cross in real energy. In case III, one pole
is pushed away by the approach of the other and they do not cross.
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4 Scattering calculations and pole positions

We ascertain the position of the poles by analytically continuing a calculated S matrix into the complex
energy plane as in Ref. [18]. This process starts with S-matrix elements, calculated at positive real
energies using coupled-channels calculations. To these physically-meaningful solutions, we fit a Padé
approximant (using a linear least-squares approach) whose domain extends into the complex energy
plane. In general, the Padé approximant f [N,M ](z) of the function f over the complex variable z, is
defined by

f [N,M ](z) =
P (z)

Q(z)
, (20)

where P (z) and Q(z) are polynomials of degree N , and M respectively, with M = N = 4 in the
computations of this work. The poles of the approximant are trivially extracted as the roots of the
polynomial Q. S-matrix poles are calculated for a range of magnetic fields, and the trajectories stitched
together by increasing the field and taking the closest calculated pole as the next position. The
extracted poles can be sensitive to numerical noise in the S matrix, so non-physical pole jumps are
filtered out and the trajectory is smoothed. Padé approximants are particularly useful for the analytic
continuation of calculations which are limited to a certain domain [42]. However, there are alternative
approaches to this problem which are less susceptible to error/noise [43], but these do not allow such
a simple extraction of the pole positions.

5 Interactions between single-channel and Feshbach resonances

Section 3.2 introduced three classes of resonances which all can be associated with S-matrix poles. Two
of these, shape resonances and sub-threshold resonances, are both features of a single open channel—
the entrance channel. In the following, we consider the interaction of such single-channel resonances
with a Feshbach resonance hosted in a closed channel with coupling to the entrance channel.

5.1 Feshbach and shape resonance interactions.

The d-wave (ℓ = 2) potential of 87Rb hosts a prominent shape resonance situated near 300 µK. This
resonance is visible as the dominant cross-section peak in Figs. 3a,f (black curve). With atoms in the
|F = 1,mF = 1⟩ state, we study this resonance’s interactions with two particular d-wave Feshbach
resonances at 632 G and 930 G, respectively—here, the magnetic field values refer to where the
Feshbach resonances cross threshold. These resonances were selected to elucidate and exemplify cases
I and III of table 1.

The left column of Fig. 3 describes the 930G resonance, for which we have considered the pole
trajectories previously [18] and review here. Figures 3a-d present the predicted (line) and measured
(red dots) d-wave scattering cross-section as measured for select fields around 930G, In particular, it
is apparent how the ∼300 µK shape resonance moves up in energy and that this movement begins even
before the Feshbach resonance reaches threshold. After the Feshbach resonance pole crosses threshold,
it replaces the shape resonance near 300 µK. This behaviour is highlighted in Figs. 3a-d by the colour-
coded triangles highlighting the real component of the resonance poles. The complete trajectory of the
poles, Fig. 3e, shows the poles in the complex energy plane with the arrows showing the direction of
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Fig. 3 The shape resonance pole of 87Rb performing two distinct dances with different Feshbach resonances: one near
930 G in the left column, and 632 G on the right. The upper panels (a,b,c,d and f,g,h,i) show the calculated d-wave
cross-section for several magnetic fields, with increasing field moving up the page. The red dots show measured values
for the 930 G resonance. At the bottom of pane, colour-coded triangles specify the real-energy position of the poles at
that field. The complex energy position of the poles themselves are shown in the lower panes (e,j), with the trajectories
evolving in the direction of the arrow with increasing magnetic field. The magnetic field tunes the position of the
Feshbach resonance, where the 930 G resonance avoids crossing in real energy, and the 632 G resonance avoids crossing
in imaginary energy.

pole motion with increasing field. This exposes the effectively repulsive interaction of the poles, akin
to an avoided crossing of class III described above (cf. table 1).

Figure 4 shows properties of the experimentally measured Fano profiles ‘viewed in magnetic field’.
By this, we mean an observation of the resonant feature, where the magnetic field is scanned while the
collision energy is fixed. This highlights some interesting differences between viewing the resonance
phenomenon in energy or magnetic field. Consider Fig. 4a, which shows the real-energy trajectories
of the two poles (orange, blue) as well as the observed (red dots) and predicted (red line) position of
the resonance feature (modelled by a Fano profile) when viewed in magnetic field. The poles undergo
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Fig. 4 Scattering near two resonances. a) The observed (red dots) and predicted (red line) position of the Feshbach
resonance vieved in magnetic field. The orange and blue curves are the real energy component of the corresponding poles
in Fig. 3e. These are overlaid on calculations of the scattering cross-section. b,c,d) Observations of atomic scattering
strength at fixed energies. e) The width and backgound phase of the resonance observations in magnetic field.

an avoided crossing while the magnetic position swaps between the two: in the low and high collision
energy limits, the magnetic observation and the energy observation places the resonance at the same
location in E − B space. In the crossing region, the magnetic position swaps between the two poles,
and both poles are involved in producing the magnetic resonance profile. Figure 4e shows that as
the magnetic position swaps, the background phase and therefore shape of the magnetic resonance
changes, indicated by the experimental observations and fitted Fano profiles in Figs. 4b-d. Additionally,
the width of the magnetic resonance feature takes its maximum value at the position of the avoided
crossing.

In stark contrast to the strong interactions of the 930G resonance, the right column of Fig. 3
shows that the 632G resonance barely perturbs the shape resonance and simply passes over it. This
is especially evident from the lack of movement of the shape resonance pole in Fig. 3j. The cross-
sections, Figs. 3f-i, show that as the Feshbach resonance passes the shape resonance, it changes from
a scattering enhancement to a suppression and appears to split the shape resonance in two as it
does so. The pole trajectory corresponds to the case I interaction of table 1. The interaction of this
Feshbach-shape-resonance pair is the subject of Ref [44], where the authors discuss the role of the
shape resonance in the dissociation of Feshbach molecules quasi-bound by this resonance, from the
experiments of Ref. [45].

Above, we have contrasted two interactions of Feshbach and shape resonances with markedly
different behaviour observable in collisions at physical energies. In both cases, the resonance interplay
is manifest in the crossing trajectories of their S-matrix poles, which are of different classes captured
by the simple non-Hermitian model of section 3.3.
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Fig. 5 a) The measured scattered fraction of 40K-87Rb collisions displaying a Beutler-Fano profile as a function of
B-field with the collision energy fixed at E = 294 µK. The red vertical line is the inferred Fano profile position [46] Bres

while its width ΓB is represented by the shaded region. b) The evolution of the position and width of the Beutler-Fano
profile with collision energy. Measurements of Bres are shown as dots, with error-bars smaller than the markers. The
linear tuning of the closed channel is shown as a dashed line. Near threshold the actual position curves away from this
due to interaction with the virtual state below threshold of the open channel. The experimental data are from Ref. [46].

5.2 Feshbach and sub-threshold resonances

The 40K-87Rb pair in the |F,mF ⟩ hyperfine states |9/2,−9/2⟩ and |1, 1⟩, respectively, has a negative
scattering length of approximately −185a0 [47]. This results from the presence of an anti-bound
(virtual) state just below threshold. Figure 5a shows the result of colliding atoms at an energy of
∼293 µK, revealing a Beutler-Fano profile when scanning the magnetic field from 530G to 565G. The
Fano profile results from a magnetic Feshbach resonance, and its position will shift as the collision
energy is lowered (Fig. 5b). Far above threshold the behaviour is captured by a single isolated resonance
pole moving on a straight line in E-B parameter space. However, as the Feshbach resonance pole is
tuned towards threshold from above, the interaction with the sub-threshold resonance—the anti-bound
state—will make an imprint on the position of the recorded Fano profile as the S-matrix poles flow.
Intriguingly, the trajectory of the Fano profile position will depend crucially on the anti-bound nature
of the sub-threshold pole [48]. As such the pole flow and its scattering imprint reveals the sign of the
scattering length – something a simple low-energy cross section measurement cannot do. In Ref. [46] we
reported on the experimental observation of the non-monotone trajectory of the Fano profile position
as a Feshbach resonance was tuned towards threshold from above, and we revisit this data here.

Figure 6a shows schematic interatomic potentials which, for collision energies of E1 < E < E2,
correspond to an open (entrance) channel hosting a anti-bound state (green line) and a closed channel
that, depending on the B-field, will host a bound (purple line) or quasi-bound state (orange line)—a
Feshbach resonance. In general, we measure energy with respect to the entrance channel threshold—
that is, we have defined E = 0 at E1 and the low energy collisions we consider have E ≪ E2. At low
magnetic fields, the closed channel bound state is below the open channel threshold, and it therefore
gives rise to an S-matrix pole in the entrance channel on the negative real energy axis of the (++)
Riemann sheet. Meanwhile, a pole corresponding to the anti-bound state is located on the negative
real energy axis of the (−+) Riemann sheet. The locations of the two poles on separate Riemann sheets
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Fig. 6 Scattering of 40K with 87Rb in the vicinity of a Feshbach and virtual-state induced resonance. a) At low B-
fields and collision energies of E1 < E < E2, the interaction potentials shown are open (E1) and closed (E2), hosting
virtual states (green) and bound states (purple) respectively. At higher magnetic fields, the closed channel is tuned with
respect to the entrance channel, such that the previously-bound state becomes quasi-bound—a Feshbach resonance
accessible to scattering in the open channel (orange). b) The Riemann sheets on which the poles lie, at fields much
higher and lower than Bres(E = 0). The sheets are labelled with the signs of Im k in the two channels. The bound and
resonant poles correspond to the states in the closed channel potentials above, and the arrows indicate their motion with
increasing magnetic field. c) The measured (red dots) and calculated (red line) position Bres of the resonance observed
in magnetic field, overlaid the calculated scattering cross section. The real part of the energy for the S-matrix resonance
pole extracted using a Padé approximant is shown in orange. The position of the Feshbach bound-state below threshold
is shown in purple, and the position of the virtual state in green.

are illustrated in Fig. 6b. At high magnetic fields, the bound state of the closed channel is brought
above the open channel threshold, where it becomes quasi-bound and forms a resonant state. During
the course of this, the associated S-matrix pole moves onto the (−+) Riemann sheet, off (and below)
the real positive energy axis. Since E ∝ k2, S(E) needs to be specified on a domain of Riemann
sheets. These can be designated according to the sign of Im k, and in a system with more than one
channel, there is hence a sheet for all possible combinations of the signs for Im ki in each channel. At
threshold of the entrance channel, E1, the two sheets have a branch point, and they have a branch
cut along the real energy line for E > E1. For the two channel scattering problem, the sheets are
labelled by a pair of signs [28], introducing a total of four sheets. Figure 6b shows the two relevant
sheets that come into play and presents the pole locations at the two magnetic field extremes—low
and high—corresponding to those in Fig. 6a.

The region between the two magnetic field extremes of Fig. 6b is explored in Fig. 6c, which shows
the magnetic position of the Fano profile, as it curves near threshold (red line and points). Meeting
threshold at Bres(E = 0) = 546.606(22)G [49], the magnetic position connects with the bound-
state position produced by coupled-channels calculations (purple line). The position of the virtual
state is highlighted (green dashed line) extracted from the near-threshold scattering phase far from
the presence of the bound-state as δ(k) = −kabg − arctan(k/κvs) where the virtual-state energy is
Evs = −ℏ2κ2vs/(2µ) [48]. The real-energy position of the resonance pole above threshold, extracted by
the Padé approximant method is shown in orange. At higher energies the magnetic resonance position
and the resonance pole coincide, while approaching threshold the two diverge: the bound-state and
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Fig. 7 A schematic view of two Feshbach resonances interacting with the open channel. The bound states (dashed lines)
in the closed channels (orange, red) are located at energies Ei, and possess interchannel couplings Wi,j . In the system
presented, the two closed channels tune in magnetic field at different rates so that E1 and E2 cross near E/kB = 1770 µK.

the resonance pole do not coincide, indicating that the bound-state pole does not smoothly transition
to become the resonance pole.

As demonstrated for the shape-Feshbach-resonance interaction in section 5.1, the divergence of the
magnetic resonance position is an indication of multiple poles at play. At fields just above 547G, where
the bound-state pole below threshold has disappeared, the cross-section near threshold is anomalously
large, yet the resonance pole is far away, suggesting a below-threshold pole higher than the nominal
position of the anti-bound state. Bortolotti et al. [50] predicts the emergence of a non-physical pole
for B > Bres, which might serve to explain the strong physical effect we witness here. Our Padé
approximant technique is not adequate for locating poles below threshold and critically does not
ascribe physical meaning to such poles. Hence further studies based on alternative approaches would
be warranted to elucidate the detailed pole dynamics at threshold.

6 Interaction between two Feshbach resonances

When considering two interacting Feshbach resonances, a particularly interesting possibility arises:
the coupling between two Feshbach resonances and the open channel can cause the coupling between
the open channel and one resonance state to disappear. The decoupling means that the resonance
state can no longer decay and the result is a bound state suspended above threshold. This flavour of
a “bound state in the continuum” (BIC) was predicted by Friedrich and Wintgen [51], after the effect
was almost observed [52]; the experiment was restricted to a discrete parameter space so that the BIC
conditions could not be truly satisfied.

While originally transpiring from quantum mechanics [53], BICs are a general wave phenomenon
observed in a variety of settings [54] from acoustic resonators [55] to plasmon systems [56]. They are
of particular interest in photonic resonators [57–60] where the massive Q factor they effect is expected
to have applications in lasing, non-linear optics and sensing [61]. In atomic scattering, a BIC has been
proposed to provide an efficient pathway for the production of Feshbach molecules at energies above
threshold [62]. Specifically, Ref. [62] considers a BIC in the scattering continuum induced by laser-
coupling via photoassociation resonances. The possibility of coupling states through added external
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Fig. 8 a) The scattering behaviour during the avoided crossing of two Feshbach resonances, noting that the width of
the lower resonance vanishes. b) The two poles associated with the Feshbach resonances, noting that the pole associated
with the narrowing resonance approaches the real energy line, representing a bound state in the continuum (BIC). In
both plots, the colour-coded arrows demonstrate the direction of the resonance with increasing magnetic field. c) The
magnetic width ΓB of the two Feshbach resonances, one of which also vanishes at the BIC.

electromagnetic fields offers a flexible way to engineer BICs between two atoms. BICs, however, may
also emerge through the inherent hyperfine coupling between atomic states if their relative locations
can be tuned. As an outlook towards future experiments with our laser-based atom-collider, we consider
the interaction of two magnetically tunable Feshbach resonances with different tuning rates. As shown
below, a BIC may form around the (avoided) crossing of the two coupled resonances at a particular
collision energy and magnetic field.

Figure 7 shows the bound-state energies Ei and couplings Wi,j for a pair of Feshbach resonances
in two closed channels (i = 1, 2) interacting with the open entrance channel (i = o). A simplified
model [24,51] establishes that a BIC will be formed in this scenario if

E1 − E2 =W2,1
W1,o

W2,o
−W1,2

W2,o

W1,o
. (21)

In a continuous tuning space, this criterion can be met for any pair of closed channel resonances at
some collision energy E where

E = E1 −W2,1
W1,o

W2,o
= E2 −W1,2

W2,o

W1,o
. (22)

In Fig. 8 we consider s-wave scattering of 87Rb atoms in the |F = 1,mF = 0⟩ state. At collision
energies of around 1770 µK and fields of around 680G, two Feshbach resonances cross. The Fesh-
bach resonances labelled blue and orange cross threshold at 414G and 662G, respectively. In their
interaction, a BIC emerges, visible as a narrowing and disappearance of the scattering peak of the
blue-labelled resonance during their avoided crossing. In the pole flow of Fig. 8b, we observe that the
pole associated with this resonance approaches the real energy line. At the real energy line, the energy
width vanishes—the hallmark of BIC formation. This is also captured in Fig. 8c where the magnetic
width likewise disappears at the BIC.

Our analysis of Eq. (18) assumed that one resonance remained stationary. We now have both
resonances tuning with magnetic field at different rates. Accounting for the simultaneous tuning, the
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interaction between these two poles can be classed as a case III interaction from table 1, similar to
the 930G resonance of section 5.1. In particular, the poles change which Feshbach resonance they
represent, consistent with the visible avoided crossing in the scattering cross-section, c.f. Fig. 4.

Extending Eq. (18) to describe a BIC, we introduce the role of interference via the open channel
with a complex coupling [54,63], replacing the real inter-channel coupling ω with ω̄ = ω − i

√
γ1γ2/2:

HBIC =

[
E1(B) ω
ω E2(B)

]
− i

2

[
γ1

√
γ1γ2√

γ1γ2 γ2

]
. (23)

The updated Hamiltonian now has one real eigenvalue (a BIC) when ϵ1 − ϵ2 = ω(γ1 − γ2)/
√
γ1γ2,

corresponding precisely to Eq. (21).
Which pole reaches the real line and turns into a BIC is decided by the relative coupling strengths

and the sign of the coupling product W2,1W1,oW2,o [51]. For our updated conceptual model we have
implicitly chosen γi > 0 but we can allow the real component ω of the coupling strength to be negative
to account for the two possible overall signs of the coupling product. Assuming that γ1 ̸= γ2, the model
indicates that the initially narrower resonance (smallest γi) will become the BIC, except in the case of
strong coupling (4|ω| > |γ1−γ2|) with ω < 0, where the poles cross sufficiently for the wider resonance
to form a BIC. For critical coupling (4|ω| = |γ1−γ2|), there is an exceptional point above (below) the
BIC for positive (negative) ω. In the case that γ1 = γ2, the pole with lower (higher) real energy will
form a BIC for positive (negative) ω.

The BIC model of Ref. [51] states that the sum of the (energy) widths of the resonances remains
approximately constant during the interaction, with the narrowing of a forming BIC necessitating
that the other resonance broadens. Similarly, the sum of the imaginary components of the eigenvalues
of Eq. (23) is constant: Im(E+ + E−) = −(γ1 + γ2)/2. Figure 8b shows that this is not true for
the calculated poles of the physical system we study. Rather Fig. 8c indicates that the sum of the
two magnetic widths is instead approximately constant. The ratio between the energy and magnetic
widths for each resonance is given by the rate at which the resonance tunes (dεi/dB). From Fig. 8a
it is apparent that this ratio is not constant.

The question remains if the BIC in Fig. 8 is observable in our collider, e.g., as a vanishing resonant
scattering feature in the lower branch of Fig. 8a. Unfortunately, as described in Ref. [64] the use
of sub-microkelvin cold clouds does not necessarily provide sub-microkelvin energy resolution in the
laser-based scheme. Rather, the energy spread in an experiment colliding clouds at an energy Enom is
var(E) ≈

√
2EnomkBT , where T is the cloud temperature. This is so, because the laser-based scheme

adds the same velocity to each particle in an accelerating projectile ensemble rather than the same
energy as a conventional particle accelerator would do [65]. As a result, even 200 nK cold clouds would
lead to a ∼27 µK energy spread in an Enom/kB =1770 µK collision experiment. Observations of this
BIC would then rely on energy-broadened observations of narrow scattering features.

7 Summary and discussion

The experiments and computations presented above expound the S-matrix pole behaviours in reso-
nance interactions of atomic collisions. In particular, the physical manifestations of the pole interplay
can be seen in the parameter spaces of energy and magnetic field, accessible to an optical collider
manipulating samples of ultracold atoms.

We have identified realisations of different classes of interactions between resonances. For Feshbach
and shape resonances, the physically observable fingerprints of a pole flow discriminate these classes by
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whether the shape resonance remains mostly stationary. We have also studied the interaction between
a Feshbach resonance and an antibound state. Here we found the magnetic position of the resonant
feature and the bound-state pole to converge at threshold, replicating qualitatively the prediction of
Ref. [48]. The bound state does not connect with the above-threshold resonance pole that we infer from
a Padé approximant, unlike the single-channel case for a weakened ℓ > 0 potential, where a bound
state transitions continuously into a (shape) resonance [25]. This is in accordance with Ref. [50] which
for our particular system notes the resonance to appear “well before the disappearance of the bound
state”.

Resonance-pole interactions and BICs have been studied and engineered extensively in classical
coupled-resonators and their utilisation is for example at the cutting edge in field of photonics [66,67].
In contrast, observations of BICs in the quantum scattering domain where it was first formulated [68]
have remained partially elusive. Here, we have predicted the emergence of a BIC in physically-realisable
collisions of 87Rb—one of the species we have routinely studied with our laser-based collider. The
identified BIC, however, appears at a comparatively high energy, where broadening that is integral to
our acceleration scheme may preclude a straight-forward experimental observation and initial attempts
at locating the lower branch of Fig. 8 have been unsuccessful. The detection scheme brought forward
in Ref. [64] might provide a route forward, but locating an alternative BIC candidate at lower energy
would clearly be desirable.
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45. T. Volz, S. Dürr, N. Syassen, G. Rempe, E. van Kempen, S. Kokkelmans, Phys. Rev. A 72, 010704 (2005)
46. R. Thomas, M. Chilcott, E. Tiesinga, A.B. Deb, N. Kjærgaard, Nat. Commun. 9, 4895 (2018)
47. C. Klempt, T. Henninger, O. Topic, M. Scherer, L. Kattner, E. Tiemann, W. Ertmer, J.J. Arlt, Phys. Rev. A 78,

061602 (2008)
48. B. Marcelis, E. van Kempen, B. Verhaar, S. Kokkelmans, Phys. Rev. A 70, 012701 (2004)
49. R.J. Thomas, Cold collisions of ultracold atoms. Ph.D. thesis, University of Otago (2017). URL http://hdl.

handle.net/10523/7776

50. D.C.E. Bortolotti, A.V. Avdeenkov, J.L. Bohn, Phys. Rev. A 78, 063612 (2008)
51. H. Friedrich, D. Wintgen, Phys. Rev. A 32, 3231 (1985)
52. J. Neukammer, H. Rinneberg, G. Jönsson, W.E. Cooke, H. Hieronymus, A. König, K. Vietzke, H. Spinger-Bolk,

Phys. Rev. Lett. 55, 1979 (1985)
53. J. von Neuman, E.P. Wigner, Phys. Z. 30, 465 (1929)
54. C.W. Hsu, B. Zhen, A.D. Stone, J.D. Joannopoulos, M. Soljačić, Nat. Rev. Mater. 1, 16048 (2016)
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