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Abstract— This paper explores distributed aggregative games
in multi-agent systems. Current methods for finding distributed
Nash equilibrium require players to send original messages to
their neighbors, leading to communication burden and privacy
issues. To jointly address these issues, we propose an algorithm
that uses stochastic compression to save communication resources
and conceal information through random errors induced by
compression. Our theoretical analysis shows that the algorithm
guarantees convergence accuracy, even with aggressive compres-
sion errors used to protect privacy. We prove that the algorithm
achieves differential privacy through a stochastic quantization
scheme. Simulation results for energy consumption games sup-
port the effectiveness of our approach.

Index Terms— Distributed network; Information compression;
Nash equilibrium; Differential privacy

I. INTRODUCTION

Aggregative games, which model competitive interactions
among players, have seen a surge in interest for applications
like network resource allocation [1] and energy manage-
ment [2]. In these games, each player’s objective function is
influenced by all players’ strategies, with a Nash equilibrium
(NE) characterizing a stable solution where no player intends
to unilaterally change its decision. In decentralized networks
lacking a central coordinator, despite players’ competitive
interests in games, they require specific communication proto-
cols to share information with neighbors to address the absence
of global information.

Despite progress in distributed NE seeking (DNES) [1], [3]–
[5], privacy concerns and communication burden arise from
traditional message broadcasting approaches. Directly trans-
mitting sensitive data, such as power consumption patterns in
energy management games, can compromise user privacy and
security. Furthermore, communication bandwidth and power
are always limited in practical distributed networks. Thus,
it is vital to develop privacy-preserving and communication-
efficient algorithms that ensure convergence to NE.

Ensuring privacy in decentralized networks is a complex
task. Encryption is commonly used but incurs significant
computational overhead [6]. The other approach is adding
perturbation to achieve differential privacy (DP). Ye et al. [7]
and Lin et al. [8] utilized noise to obscures local aggregate
estimates to preserve DP. Chen and Shi [9] ensured DP by
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perturbing players’ payoff functions using stochastic linear-
quadratic functional perturbation. However, these methods
introduce a trade-off between privacy and convergence ac-
curacy in DNES. Recently, Wang et al. [10] perturbed the
gradient instead of transmitting data to guarantee almost sure
convergence to NE and achieve DP per iteration.

Although the above works have explored privacy-preserving
DNES algorithms, they require substantial data transmission
during iterative communication with neighbors. While some
works have employed event-triggered mechanisms to reduce
communication rounds [11], players still transmit original
messages if a certain event is triggered. Other studies have
used compression techniques to reduce transmitted data size
in games, including deterministic quantizations [12], adaptive
quantizations [13], and general compressors [14]. However,
these approaches did not explicitly consider privacy preser-
vation, and quantifying the privacy level arising from com-
pression remains challenging. Recently, Wang and Başar [15]
demonstrated that the quantization can be leveraged to guar-
antee DP for distributed optimization, inspiring for utilizing
the inherent randomness of stochastic compression to achieve
DP and reduce communication costs simultaneously. Specifi-
cally, [15] combined the consensus and gradient descent to
reach an agreement on the optimal solution in distributed
optimization. Nonetheless, the coupling among players’ ob-
jective functions in aggregative games makes the convergence
analysis more difficult.

Motivated by the above observations, this paper jointly
considers privacy issues and communication efficiency in
DNES. Unlike previous works that handle these aspects in
a cascade fashion [16], we propose a novel DNES algorithm
that directly utilizes the intrinsic randomness from stochastic
compression to protect privacy. To ensure a strong privacy
guarantee, the bound of the compression error variance does
not vanish in our algorithm, which brings challenges for
algorithm design and analysis. Without appropriate treatment
for the compression errors, the algorithm will diverge due
to the error accumulation. Some works employ the dynamic
scaling compression technique to tackle this challenge [17],
[18]. Directly using this technique will cause exponential
growth of the privacy loss per iteration and thus lose privacy.
Thus, instead of dynamically scaling the compressed value,
we dedicatedly design the step sizes to reduce the effect of
the non-vanishing compression errors and ensure convergence
accuracy. Due to the space limitation, the detailed proof of this
paper is provided in [19]. In Table I, we compare our work
with some related works.

Our main contributions are as follows:
1) We propose a novel Compression-based Privacy-
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TABLE I: Comparison with some related works

Work♯
Communication

Reduction
Privacy

Preservation
Convergence

Accuracy⋆

[7], [8],
[12] × (ε, 0)-DP ω-NE

[14], [17],
[18] ✓ × Exact NE

[16] ✓ (ε, 0)-DP ω-NE
Our work ✓ (0, δ)-DP Exact NE

♯ [16]–[18] study algorithms in distributed optimization instead of
DNES.
⋆ The convergence accuracy is stated in a mean square sense. The ω-
NE represents the asymptotically converged point with a mean square
distance of ω to the NE, where ω > 0. The exact NE corresponds to
the 0-NE.

preserving DNES (CP-DNES) algorithm (Algorithm 1).
CP-DNES encodes the messages with fewer bits and
masks information by intrinsic random compression er-
rors.

2) By developing precise step size conditions, we demon-
strate that CP-DNES converges to the accurate NE in
the mean square sense, even in the presence of the non-
vanishing compression errors (Theorem 1).

3) CP-DNES, when equipped with a specific stochastic
compressor, achieves (0, δ)-DP (Theorem 2), surpassing
the commonly used (ϵ, δ)-DP. This result sheds light
on simultaneously attaining (0, δ)-DP and convergence
accuracy in distributed aggregative games.

Notations: Let Rp and Rp×q denote the set of p-dimensional
vectors and p× q-dimensional matrices, respectively, and N+

represents the set of positive integers. For N ≜ {1, 2, . . . , N},
col(xi)i∈N refers to the stacked vector [x⊤

1 , . . . , x
⊤
N ]⊤. The

notations 1p ∈ Rp denotes a vector with all elements equal to
one, and Ip ∈ Rp×p represents a p × p-dimensional identity
matrix. Denote by

∏N
i=1 Xi the Cartesian product of the set

{Xi}i=1,...,N . For a closed and convex set X ⊆ Rn, the
projection operator PX (·) : Rn → X is defined as PX (v) =
argminz∈X ∥v− z∥. The operator ∥ · ∥ is the induced-2 norm
for matrices and the Euclidean norm for vectors. We use ∥ ·∥1
to denote the ℓ1-norm of a vector x = col(xi)

p
i=1 ∈ Rp, and

∥x∥1 =
∑p

i=1 |xi|. We use P(A) to represent the probability
of an event A, and E[x] to be the expected value of a random
variable x. For any two matrices, A ∈ Rn×m, B ∈ Rp×q ,
A⊗B ∈ Rnp×mq is the Kronecker product of A and B.

Let an undirected graph G = (N , E) describe the in-
formation exchange among a set of N players, denoted by
N = {1, 2, . . . , N}. The edge set E ⊂ N × N denotes the
communication links. The weight matrix W = [wij ] represents
the structure of interactions in G. If player i can receive
messages from player j, then wij > 0. Otherwise, wij = 0.
We define the neighbor set of player i as Ni = {j|wij > 0},
and the degree matrix D is a diagonal matrix with the i-th
element dii =

∑
j∈Ni

wij . Therefore, the Laplacian matrix is
L = D −W .

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Attacker and DP

We consider a prevalent eavesdropping attack model in
privacy [7], [10], where attackers monitor all communication

channels to intercept transmitted messages and learn sensitive
information from the sending players.

DP quantifies the privacy level of involved individuals in a
statistical database. We provide the following definitions for
DP in distributed aggregative games.

Definition 1. (Adjacency [7]) Two objective function sets F =
{fi}i∈N and F ′ = {f ′

i}i∈N are adjacent if there exists some
i0 ∈ N such that fi = f ′

i ,∀i ̸= i0 and fi0 ̸= f ′
i0

.

Definition 2. (Differential Privacy [20]) For a randomized
mechanism M, it preserves (ϵ, δ)-DP of objective functions
if, for any pair of adjacent function sets F and F ′ and all
subsets O of the image set of the mechanism M, the following
condition holds:

P[M(F) ∈ O] ≤ eϵP[M(F ′) ∈ O] + δ, (1)

where ϵ ≥ 0 and δ ≥ 0.

Definition 2 states that changing the cost function of a single
player leads to a small change in the distribution of outputs.
The factor ϵ in (1) denotes the privacy upper bound to measure
an algorithm M, and δ denotes the probability of breaking this
bound. Therefore, a smaller ϵ and δ indicate a higher level of
privacy.

B. Problem Formulation

Consider a network of N players solving a distributed
aggregative game. Let xi ∈ Xi denote the decision of player i
and Xi ⊂ Rn is a bounded closed convex set. The player
i’s cost function fi(xi, h(x)) : X → R depends on its
decision xi and an aggregate function of all players’ decisions
h(x) = 1

N

∑N
i=1 xi, where X =

∏
i∈N Xi. The following

optimization problem represents the objective of each player
in the game:

min
xi∈Xi

fi(xi, h(x)) = fi

(
xi,

1

N
xi + h(x−i)

)
, ∀i ∈ N ,

(2)
where h(x−i) =

1
N

∑
j∈N ,j ̸=i xj is the aggregative value of

player i’s opponents. The optimal solution to (2) is the NE.

Definition 3. A Nash equilibrium (NE) is a decision profile
x∗ = col(x∗

i )i∈N ∈ X satisfying the following condition for
each player i ∈ N : fi(x

∗
i ,

1
N x∗

i + h(x∗
−i)) ≤ fi(xi,

1
N xi +

h(x∗
−i)).

To ensure that players can find the NE through interactions,
we adopt the following assumption:

Assumption 1. The communication network is an undirected
and connected graph.

The following assumptions are posed on each objective
function fi,∀i ∈ N .

Assumption 2. The function fi(xi, h(x)) is convex in xi for
every fixed x−i ∈

∏
j∈N ,j ̸=i Xj and fi(xi, v) is continuously

differentiable in (xi, v) ∈ Xi × Rn.

Under Assumption 2, we define the following for player i:

gi(xi, zi) ≜

(
∇xi

f(xi, v) +
1

N
∇v∂f(xi, v)

) ∣∣∣∣
v=zi

, (3a)



ϕi(x) ≜∇xifi(xi, h(x)). (3b)

Denote z = col(zi)i∈N , G(x, z) = col(gi(xi, zi))i∈N and
Φ(x) = col(ϕi(x))i∈N . It can be easily inferred that ϕi(x) =
gi(xi, h(x)) and Φ(x) = G(x,1N ⊗ Inh(x)).

Assumption 3. The gradient ϕi(x) is Lϕ-Lipschitz contin-
uous, i.e., ∥ϕi(x) − ϕi(y)∥ ≤ Lϕ ∥x− y∥ for x,y ∈ Rn.
Moreover, there exists m > 0 such that for x ∈ RNn,
(x− x∗)⊤(Φ(x)− Φ(x∗)) ≥ m ∥x− x∗∥2 holds.

Assumptions 2 and 3 are standard for guaranteeing the
existence and uniqueness of the NE in problem (2) [4], [5],
[21], which is crucial for designing DNES. If either of these
assumptions is not satisfied, the existence and uniqueness of
the NE need to be rigorously analyzed [22]. However, this is
outside the scope of this paper since we mainly focus on the
algorithm design here.

Assumption 4. For any xi ∈ Xi, gi(xi, z) is Lg-Lipschitz in
z, i.e., ∥gi(xi, z1)−gi(xi, z2)∥ ≤ Lg∥z1−z2∥, ∀z1, z2 ∈ Rn.

Assumption 4 is commonly used in literature on aggrega-
tive games [4], [5], [21], crucial for convergence analysis
and encompassing numerous prevalent game models, such as
auction-based games [1] and Cournot oligopoly games [2].
Moreover, it should be noted that Lϕ, m, and Lg in Assump-
tions 2–4 are solely employed for theoretical analysis. In the
algorithm implementation, players do not need precise value
of these parameters.

Assumption 5. There exists a positive constant C such that
there is ∥gi∥ ≤ C and ∥ϕi∥ ≤ C, ∀i ∈ N .

Assumption 5 holds for various game models [1], [2] since
we consider a bounded constraint set X . In practice, gradient
clipping is commonly used to ensure a bounded gradient.

We aim to design a DNES algorithm that preserves the
(ϵ, δ)-DP of objective functions and converges to the exact
NE of (2) in a mean square sense as shown in Definition 4.

Definition 4. With a DNES algorithm, denote the players’
action profile at iteration k as xk. The DNES algorithm
converges to the exact NE, x∗, in a mean square if

lim
k→∞

E
[
∥xk − x∗∥2

]
= 0. (4)

III. ALGORITHM DEVELOPMENT

Conventional DNES for aggregative games typically have
the following form [3]:

xi,k+1 = PXi
[xi,k − ηgi(xi,k, yi,k)], (5a)

yi,k+1 = yi,k +
∑

j∈Ni

wi,j(yj,k − yi,k) + xi,k+1 − xi,k, (5b)

where yi,k is the estimate of the current aggregative variable
h(xk) =

1
N

∑N
i=1 xi,k by player i, and η > 0 is the step size

to optimize the strategy. To accurately estimate the unknown
h(xk), player i should broadcast its estimate yi,k to its neigh-
bors and employ dynamic average consensus as shown in (5b)
to track the aggregative term. With the public knowledge of W
and the step size η, an attacker can calculate xi,k+1−xi,k and
consequently obtain gi(xi,k, yi,k) if xi,k−ηgi(xi,k, yi,k) ∈ Xi.

Algorithm 1 CP-DNES

Input: Public information W , αk, βk, the total number of
iterations T

Initialize: xi,0 ∈ Rn, yi,0 = xi,0.
1: for k = 0, 1, 2, . . . do
2: for each i ∈ N ,
3: Compute local gradient gi(xi,k, yi,k) using (3a).
4: Determine compressed estimate C(yi,k) and send it

to its neighbors.
5: Receive C(yj,k) from j ∈ N and update its decision

and local estimate on aggregative value using (6a)
and (6b), respectively.

6: end for

Based on this observation, we leverage stochastic compres-
sion to preserve privacy:

xi,k+1 =PXi
[xi,k − αkβkgi(xi,k, yi,k)], (6a)

yi,k+1 =yi,k + βk

∑

j∈Ni

wi,j(C(yj,k)− C(yi,k))

+ xi,k+1 − xi,k, (6b)

where yi,0 = xi,0, C(·) is the compression operator, αk, βk >
0 are designed step sizes. We consider stochastic compression
schemes that satisfy the following assumption. An example of
the compression scheme will be introduced in Section V.

Assumption 6. For some constant σ and any x ∈ Rn,
E[C(x)|x] = x and E[∥C(x) − x∥2] ≤ σ2. The randomized
mechanism in each player’s compression is statistically inde-
pendent.

In Algorithm 1, each player shares their compressed es-
timate C(yi,k) to its neighbors. Owing to the independent
random compression error, an attacker cannot deduce the
exact gradient of player i, even with the knowledge of the
compression scheme. Thus privacy is preserved.

Let xk = col(xi,k)i∈N , yk = col(yi,k)i∈N . Then, we can
express (6) in a compact form:

xk+1 =PX [xk − αkβkG(xk,yk)], (7a)
yk+1 =(Ak ⊗ In)yk + xk+1 − xk − βk(L⊗ In)ek, (7b)

where Ak = I−βkL, ek = col(ei,k)i∈N , and ei,k = C(yi,k)−
yi,k is the compression error. It can be inferred that Ak is
doubly stochastic.

The dynamics of yk in (7b) imply that the average estimate
by players, ȳk = 1

N (1⊤
N ⊗ In)yk, evolves according to the

dynamics ȳk+1 = ȳk + x̄k+1 − x̄k, where x̄k = 1
N (1⊤

N ⊗
In)xk = h(xk). Therefore, we have 1ȳk+1−1x̄k+1 = 1ȳk−
1x̄k = · · · = 1ȳ0 − 1x̄0 = 0, i.e.,

ȳk = x̄k = h(xk). (8)

This shows that the evolution of ȳk is immune to the quantiza-
tion error ek, and thus yk tracks the aggregative value h(xk),
which helps to ensure convergence accuracy.



Remark 1. To preserve privacy in conventional DNES (5),
we introduce random perturbation via stochastic compression
schemes. However, quantifying the privacy level arising from
compression and ensuring convergence without sacrificing
accuracy pose new challenges unaddressed by existing DNES
algorithms [7]–[9], [12]–[14].

Remark 2. Under Assumption 6, the compression error of
each player is independently and identically distributed (i.i.d),
which avoids leakage of the exact original value, like the
i.i.d noise perturbation approach, thereby preserving message
privacy. Some works adopt Laplacian or Gaussian noise
with decreasing variance to protect the privacy [7], [8].
However, this approach poses a high risk of privacy leakage
when approaching convergence. In contrast, the variance of
compression error in Algorithm 1 does not decrease over
time. However, the non-decreasing compression error intro-
duces convergence challenges. To tackle these, we meticulously
design the step sizes to guarantee convergence.

IV. CONVERGENCE ANALYSIS

In this section, we demonstrate that CP-DNES ensures
convergence of all players’ decisions to x∗ under certain
conditions. For simplicity, we assume n = 1 to simplify the
convergence analysis, and it can be easily extended to the case
when n > 1.

Lemma 1. Suppose Assumptions 1–6 hold, then∑∞
k=0 βkE[∥yk − 1x̄k∥2] < ∞ if

∑∞
k=0 α

2
kβk < ∞,

and
∑∞

k=0 β
2
k < ∞.

Proof. The proof is provided in Appendix B.

Lemma 1 indicates that if the step sizes satisfy certain
conditions, the cumulative disagreement of the estimates on
the actual estimate, x̄k, will not diverge over time. Based on
this preliminary result, we can prove the convergence of CP-
DNES.

Theorem 1. Under Assumptions 1–6, if the step size sequence
satisfies

∞∑

k=0

αkβk = ∞,

∞∑

k=0

α2
kβk < ∞,

∞∑

k=0

β2
k < ∞, (9)

then CP-DNES guarantees that the sequence {xk} will con-
verge to x∗ in a mean square sense, i.e.,

lim
k→∞

E
[
∥xk − x∗∥2

]
= 0. (10)

Proof. We have
∑T

k=0 mαkβkE[∥xk − x∗∥2] ≤
∥x0 − x∗∥2 − E[∥xT+1 − x∗∥2] + 4C2N

∑T
k=0 α

2
kβ

2
k +

L2
g

m

∑T
k=0 αkβkE[∥yk − 1x̄k∥2]. Since the right-hand side of

this relationship is always bounded when T → ∞, we can
conclude that E[∥xk − x∗∥2] converges to zero. The detailed
proof is provided in Appendix C.

Corollary 1. If αk = c1
(c2k+1)ω1

and βk = c3
(c2k+1)ω2

, where
c1, c2, c3, ω1, ω2 > 0, and ω1 and ω2 satisfy ω1 + ω2 ≤ 1,

ω2 > 0.5 and 2ω1 + ω2 > 1, then the convergence rate of
E[∥xk − x∗∥2] is given by

∑T
k=0 mαkβkE

[
∥xk − x∗∥2

]
∑T

k=0 αkβk

= O

(
1

(1 + T )ω

)
, (11)

where ω = min{2ω1, ω2}.

Proof. See Appendix D.

Remark 3. The conventional DNES algorithm (5) achieves
linear convergence to x∗ with a constant step size. How-
ever, in CP-DNES, we leverage random compression errors
in Assumption 6 for privacy, potentially causing significant
error accumulation with constant step sizes. To ensure both
privacy and accurate convergence concurrently, we introduce
diminishing step sizes αk and βk. Specifically, the diminishing
βk in (6a) and (6b) mitigates the accumulation of compression
errors affecting both consensus and gradient descent during
convergence.

Remark 4. Assumption 6 focuses on the unbiased
compressor with bounded absolute compression error (UC-
BA). Some studies explore unbiased compressors with bounded
relative compression error (UC-BR) [14], characterized by
E[C(x)|x] = x and E[∥C(x) − x∥2] ≤ φ∥x∥2, with φ > 0.
It is noteworthy that UC-BA and UC-RB differ, and neither
is more general than the other one [17]. Despite this, only
Lemma 1 employs Assumption 6 in the convergence analysis,
and we can easily prove the same results for UC-BR. Hence,
Algorithm 1 maintains convergence to the exact NE in a mean
square sense even under UC-BR.

Remark 5. In addition to UC-BA and UC-BR, there exists
another type of compressor, namely biased compressors (BC).
However, BC introduces convergence errors, hindering accu-
rate convergence. Moreover, quantifying the DP level necessi-
tates a specific error distribution. The error distribution of UC-
BR depends on the input distribution, and the error feedback
commonly used for BC further complicates this distribution.
Thus, investigating privacy-preserving DNES algorithms with
UC-BR and BC remains a challenge. A rough idea to solve this
issue is to adapt the compression scheme or design consensus
approaches to control the compression error distribution [23].
We leave the details as future work.

V. DIFFERENTIAL PRIVACY ANALYSIS

In this section, we will prove that CP-DNES ensures rigor-
ous DP under a specific stochastic compression scheme [24].

Definition 5. The element-wise stochastic compressor quan-
tizes a vector x = [x(1), x(2), . . . , x(n)]

⊤ ∈ Rn to
the range representable by a scale factor θ ∈ N+

and b bits, {−2b−1θ, . . . ,−θ, 0, θ, . . . , (2b − 1)θ}, where
2bθ > |x(i)|, ∀i = 1, . . . , n. In other words, C(x) =
[C(x(1)), C(x2), . . . , C(x(d))]

⊤. For any lθ ≤ x(i) < (l + 1)θ,
the compressor outputs

C(x(i)) =

{
lθ, with probability 1 + l − x(i)/θ,

(l + 1)θ, with probability x(i)/θ − l.

Definition 5 is equivalent to dithered quantization in signal
processing and it is illustrated in Fig. 1. If the observed value
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Fig. 1: Illustration of the stochastic compressor in Definition 5.

by an attacker is θ, the original data could take any value
within the range [0, 2θ). When increasing the scale factor θ,
we need fewer bits to ensure 2bθ > |x(i)|.

Theorem 2. Under Assumptions 1–6, if αk and βk satisfy
αkβk = c4

c5k+1 , where c4, c5 > 0, and the conditions in (9),
the stochastic compressor defined in Definition 5 ensures the
preservation of (0, δk)-DP for the objective function of each
player at the k-th iteration while guaranteeing convergence,
where

δk = min

{
1,

2Cc4
√
n

c5θ
ln(c5k + 1)

}
. (12)

Proof. For any pair of adjacent function sets {F} and {F ′},
the eavesdropper has identical observations. Thus, we obtain
that δk = P[C(yi(j)) = lθ|yi]−P[C(y′i(j)) = lθ|y′i] ≤

∥∆yi0,k∥1

θ

and ∥∆yi0,k∥1 ≤ √
n∥∆yi0,k∥ ≤ 2Cc4

√
n

c5
ln(c5k + 1). Addi-

tionally, it is important to note that in DP, δk should be a small
parameter within the range of (0, 1). Hence, we derive the
expression of δk shown in (12). The detailed proof is provided
in Appendix E.

Remark 6. The ternary quantization scheme in [15] is a
special case of Definition 5, which compresses each elements
to {−θ, 0, θ} with 1 bit, i.e., b = 1, and θ should be larger
than any possible values of yi(j). In this case, the privacy
budget δk = 2Cc4

√
n

c5θ
ln(c5k+1), which is a very small value.

Remark 7. For the compressors in Assumption 6, Yi et
al. [17] and Liao et al. [18] transmit rkC(yi,k/rk), where
rk exponentially decays to decrease the compression error
variance over time and achieve convergence. However, this
scaling method leads to an exponential growth of the privacy
budget, which is ∥∆yi0,k∥1

rkθ
per iteration. Consequently, it fails

to provide adequate privacy protection. Instead of using the
scaling method to enable convergence, our algorithm adopts
a carefully designed step size to ensure both convergence and
DP simultaneously, considering the compressors specified in
Definition 5.

Remark 8. We utilize Assumption 5 in convergence analysis
and rely on the value of the gradient bound, C, to quantify
the privacy level. Many studies employ bounded gradient for
both convergence analysis and privacy quantification [7], [8],
[15]. In future, it would be intriguing to employ induction
techniques and consider specific adjacent objective function
sets to eliminate the requirement of bounded gradients [25].

TABLE II: Different compression parameters with their compression
errors and privacy levels

θ b σ δk
C1 10 4 5 δk = min{1, 0.48 ln(k + 1)}
C2 40 2 20 δk = min{1, 0.12 ln(k + 1)}
C3 60 1 30 δk = min{1, 0.08 ln(k + 1)}

VI. NUMERICAL SIMULATIONS

We consider energy consumption games in a network of
heating, ventilation, and air conditioning systems [3], where
five end-users communicate using a ring topology. The objec-
tive function of user i is fi(x) = (xi − si)

2 + (p0
∑N

j=1 xj +
h)xi, Xi ∈ [30, 50], ∀i ∈ N , where si denotes the energy
required to regulate indoor temperature, and p0

∑N
i=j xj + h

represents the price. We set s1 = 56, s2 = 40, s3 = 43, s4 =
60, s5 = 50, p0 = 0.05 and h = 8. Through centralized cal-
culation, we determine that the aggregative game has a unique
NE x∗ = [45.8749, 30.2651, 33.1919, 49.7773, 40.0212]⊤.

To evaluate the performance of CP-DNES, we set αk =
0.4

(k+1)0.3 and βk = 0.4
(k+1)0.6 . The estimate satisfies |yi,k| <

90, ∀k ≥ 0, and C = 15. We employ the compressor given
in Definition 5, with σ = θ

2 in Assumption 6. Therefore, the
number of bits per agent per iteration is b = ⌈log2(90/θ)⌉ and
CP-DNES preserves (0, δk)-DP with δk = min{1, 4.8

θ ln(k +
1)}. Due to the randomness of the compressor, we conducted
the simulation 100 times to obtain the empirical mean.

A. Convergence-Communication-Privacy Trade-off

We simulate CP-DNES using various compression parame-
ters, C1, C2, and C3, as detailed in Table II, and compare
it with conventional DNES [3] under the same step sizes.
The comparison results are depicted in Fig. 2. Fig. 2(a) shows
that players’ decisions converge to the NE asymptomatically
under CP-DNES and CP-DNES converges slower than the
conventional DNES, with fewer transmitted bits. However,
conventional DNES lacks any privacy protection, and Fig. 2(b)
illustrates the total transmitted bits required to achieve a
certain quality of NE. Comparatively, conventional DNES
transmitting floats using 32 bits per player per iteration con-
sumes significantly more communication resources than CP-
DNES. Therefore, despite slower convergence, our algorithm
significantly saves communication resources in obtaining the
same NE quality.

A trade-off exists between the value of b and the conver-
gence rate, both of which impact the communication costs for
attaining a certain quality of NE. The compression parameter
C2 uses fewer bits than C1 but converge to the NE with
E[∥xk−x∗∥] ≤ 0.08 more quickly than C3. Thus, as illustrated
in Fig. 2(b), C2 consumes the least communication resources.

B. Comparison with State-of-the-Art

We compare our proposed algorithm with some existing
DNES algorithms, including NP-DNES (DNES with noise per-
turbation) [7] and DSC-DNES (DNES with dynamic scaling
compression used in [17], [18]) in Fig. 3. The variance of the
noise at iteration k in NP-DNES is 0.91k. We set the dynamic
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Fig. 2: Comparison between conventional DNES without
compression-based privacy preservation [3] and CP-DNES with
different compression parameters shown in Table II.
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Fig. 3: Comparison between NP-DNES [7], DSC-DNES [17], [18],
and CP-DNES: C3.

factor in DSC-DNES as rk = 0.87k, with each player using 8
bits to transmit the message per iteration. Fig. 3 demonstrates
that CP-DNES with C3 has superior convergence performance
even if each player transmits only 1 bit per iteration, and
requires the fewest bits to achieve a specific quality of NE.
In NP-DNES, noise perturbation affects accuracy. In DSC-
DNES, dynamic scaling amplifies compression error under the
specific communication constraint.

VII. CONCLUSION AND FUTURE WORK

This paper investigates privacy preservation in decentralized
aggregative games and proposes a distributed NE seeking
algorithm robust to aggregative compression effects. By incor-
porating decaying step sizes, we ensure convergence accuracy
while leveraging random compression errors to protect shared
data and sensitive information.

Potential future research directions include the design of
stochastic adaptive compressors to enhance the convergence
rate. Additionally, exploiting stochastic event-triggered mech-
anisms can further reduce communication costs and introduce
randomness to bolster privacy protection.

APPENDIX

A. Useful Lemmas

The following results are used in the proofs.

Lemma 2. [26] Let {uk}, {vk}, {wk} and {zk} be the
nonnegative sequences of random variables. If they satisfy

E[uk+1] ≤ (1 + zk)uk − vk + wk,
∞∑

k=0

zk < ∞ a.s., and
∞∑

k=0

wk < ∞ a.s.,

then uk converges almost surely (a.s.), and
∑∞

k=0 vk < ∞
a.s..

Lemma 3. [26] Let {uk} be a non-negative sequence
satisfying the following relationship for all k ≥ 0:

uk+1 ≤ (1 + γk)uk + vk, (13)

where sequence γk ≥ 0 and vk ≥ 0 satisfy
∑∞

k=0 γk < ∞
and

∑∞
k=0 vk < ∞, respectively. Then the sequence {uk} will

converge to a finite value u > 0.

Lemma 4. [27] Let {uk} be a non-negative sequence
satisfying the following relationship for all k ≥ 0:

uk+1 ≤ (1− γ1,k)uk + γ2,k (14)

where γ1,k ≥ 0 and γ2,k ≥ 0 satisfying
a1

(a2k + 1)b1
≤ γ1,k ≤ 1,

a3
(a2k + 1)b2

≤ γ2,k ≤ 1,

for some c1, c2, c3 > 0, 0 ≤ b1 < 1, and b1 < b2. Then for all
0 ≤ b0 < b2 − b1, we have limk→∞(k + 1)b0uk = 0.

B. Proof of Lemma 1

Denote ȳ = 1
N 1⊤y and Θ = I − 1

N 11⊤, then we have
∥Θ∥ ≤ 1 and

∥yk+1 − 1x̄k+1∥2 = ∥Θyk+1 + 1ȳk+1 − 1x̄k+1∥2

≤∥yk+1∥2 , (15)

where the inequality follows from (8) in the main arti-
cle. Therefore, we can complete the proof by showing∑∞

k=0 βkE
[
∥yk∥2

]
< ∞. Since

∑∞
k=1 β

2
k < ∞, there

obviously exists k1 such that βk < 1/λ2, ∀k > k1. We know
that

∑k1

k=0 βkE
[
∥yk∥2

]
is always bounded. Therefore, we

only need to focus on proving
∑∞

k=k1+1 βkE
[
∥yk∥2

]
< ∞

Based on (7b) in the main article, we obtain

E
[
∥yk+1∥2

]

=E
[
∥Akyk + xk+1 − xk∥2

]
+ β2

kE
[
∥Lek∥2

]

− E
[
βk(Akyk + xk+1 − xk)

⊤Lek
]

≤E
[
(∥Akyk∥+ ∥xk+1 − xk∥)2

]
+ β2

kλ
2
MNσ2

≤(1 + ν1)(1− βkλ2)
2E

[
∥yk∥2

]
+ (1 +

1

ν1
)C2Nα2

kβ
2
k

+ λ2
MNσ2β2

k, (16)

where the first inequality holds from E[ek] = 0 and
E
[
∥ek∥2

]
≤ Nσ2 in Assumption 6, the last inequality uses

(a+b)2 ≤ (1+ν1)a
2+(1+ 1

ν1
)b2 for any a, b ∈ R and ν1 > 0,

and λ2 and λM are the second smallest eigenvalue and the
eigenvalue with the largest magnitude of L [28], respectively.
By setting ν1 = βkλ2, we further get

E
[
∥yk+1∥2

]

≤(1− β2
kλ

2
2)(1− βkλ2)E

[
∥yk∥2

]
+ (α2

kβ
2
k +

α2
kβk

λ2
)C2N

+ λ2
MNσ2β2

k

≤(1− βkλ2)E
[
∥yk∥2

]
+ (α2

kβ
2
k +

α2
kβk

λ2
)C2N + λ2

MNσ2β2
k.

(17)



Since βkλ2 > 0, we can have the following relationship:

E
[
∥yk+1∥2

]
≤(1 + β2

k)E
[
∥yk∥2

]
− λ2βkE

[
∥yk∥2

]

+ (α2
kβ

2
k +

α2
kβk

λ2
)C2N + λ2

MNσ2β2
k. (18)

Since
∑∞

k=k1+1 α
2
kβk < ∞ and

∑∞
k=k1+1 β

2
k < ∞, it is guar-

anteed that
∑∞

k=k1+1[(α
2
kβ

2
k+

α2
kβk

λ2
)C2N+λ2

MNσ2β2
k] < ∞.

Thus, we can conclude that
∑∞

k=k1+1 βkE
[
∥yk∥2

]
< ∞ from

Lemma 2.

C. Proof of Theorem 1

Obviously, there exists k0 such that βk < 1,∀k > k0, to
satisfy

∑∞
k=0 β

2
k < ∞. According to the dynamics in (7a), it

can be verified that the following relationship holds:

E
[
∥xk+1 − x∗∥2

]

=E [∥PX [xk − αkβkG(xk,yk)]

− PX [x∗ − αkβkG(x∗,1x̄∗)]∥2
]

≤E
[
∥xk − x∗ − αkβk(G(xk,yk)−G(x∗,1x̄∗))∥2

]

=E
[
∥xk − x∗∥2

]
+ α2

kβ
2
kE

[
∥G(xk,yk)−G(x∗,1x̄∗)∥2

]

− 2αkβkE
[
(xk − x∗)⊤(G(xk,yk)−G(x∗,1x̄∗))

]

≤E
[
∥xk − x∗∥2

]
+ 4C2Nα2

kβ
2
k

− 2αkβkE[(xk − x∗)⊤(G(xk,yk)−G(x∗,1x̄∗))], (19)

where the first inequality holds from the non-expansive prop-
erty of the projection operation and the last inequality is
followed by Assumption 5. For the last term of (19), we have

− 2αkβk(xk − x∗)⊤(G(xk,yk)−G(x∗,1x̄∗))

=− 2αkβk(xk − x∗)⊤(G(xk,yk)−G(xk,1x̄)

+G(xk,1x̄)−G(x∗,1x̄∗))

=− 2αkβk(xk − x∗)⊤(G(xk,yk)−G(xk,1x̄))

− 2αkβk(xk − x∗)⊤(Φ(xk)− Φ(x∗))

≤2Lgαkβk ∥xk − x∗∥ ∥yk − 1x̄k∥ − 2mαkβk ∥xk − x∗∥2
(20)

≤ 1

ν2
L2
gα

2
kβk ∥xk − x∗∥2 + ν2βk ∥yk − 1x̄k∥2 ,

From the first two conditions in (9), we can derive that
limk→∞ αk = 0. Thus, there exists k′ > 0 such that αk′ < 1
and we can only focus on the the sequence {xk}k≥k′ . By
combining (19) and (20) , we obtain the following expression:

∥xk+1 − x∗∥2
≤∥xk − x∗∥2 + 4C2Nα2

kβ
2
k − 2mαkβk∥xk − x∗∥2

+ 2L̄αkβk∥xk − x∗∥∥yk − 1x̄k∥
≤∥xk − x∗∥2 + 4C2Nα2

kβ
2
k − 2mαkβk∥xk − x∗∥2

+
1

ν
L̄2α2

kβ
2
k ∥xk − x∗∥2 + ν ∥yk − 1x̄k∥2 ,

where the last inequality holds from Young’s inequality. By
letting ν =

L2
gαkβk

m , we further get

∥xk+1 − x∗∥2

≤∥xk − x∗∥2 + 4C2Nα2
kβ

2
k −mαkβk ∥xk − x∗∥2

+
L̄2αkβk

m
∥yk − 1x̄k∥2 . (21)

Taking expectation and summing both side of (21) from k = k′

to T , we have the following relationship:
T∑

k=k′

mαkβkE
[
∥xk − x∗∥2

]

≤∥x0 − x∗∥2 − E
[
∥xT+1 − x∗∥2

]
+ 4C2N

T∑

k=k′

α2
kβ

2
k

+
L̄2

m

T∑

k=k′

αkβkE
[
∥yk − 1x̄k∥2

]
. (22)

When T → ∞, 4C2N
∑T

k=k′ α2
kβ

2
k is bounded

and ∥xT+1 − x∗∥2 is bounded due to the bounded
constraint. Moreover,

∑∞
k=k′ αkβkE

[
∥yk − 1x̄k∥2

]
≤∑∞

k=k′ βkE
[
∥yk − 1x̄k∥2

]
< ∞ by Lemma 1. Therefore,

the right-hand side of (22) is always bounded when
T → ∞. With

∑∞
k=k′ αkβk = ∞, we can conclude that

E
[
∥xk − x∗∥2

]
converges to zero.

D. Proof of Corollary 1

If ω1 and ω2 satisfy the conditions in Corollary 1, then αk

and βk will satisfy the conditions in Theorem 1 to ensure that
E
[
∥xk − x∗∥2

]
converges to zero. According to (17), we have

the following relationship when k is large enough:

E
[
∥yk+1∥2

]
≤ (1− βkλ2)E

[
∥yk∥2

]
+ ηk,

where ηk = c4
(c2k+1)ω3

for some c4 > 0 and ω3 = min{2ω1 +

ω2, 2ω2}. Therefore, we have

lim
k→∞

(k + 1)ω4E
[
∥yk∥2

]
= 0 (23)

based on Lemma 4, where 0 ≤ ω4 < ω3 − ω2.
Based on (22) and (15), we have
∑T

k=0 mαkβkE
[
∥xk − x∗∥2

]
∑T

k=0 αkβk

(24)

≤∥x0 − x∗∥2 − E
[
∥xT+1 − x∗∥2

]
∑T

k=0 αkβk

+
4C2N

∑T
k=0 α

2
kβ

2
k∑T

k=0 αkβk

+
L̄2

m

∑T
k=0 αkβkE

[
∥yk∥2

]
∑T

k=0 αkβk

. (25)

Equation (23) indicates that E
[
∥yk∥2

]
is in the same order

of α2
k or βk, and thus, the third term of (25) converges to

zero with a rate O
(

1
(T+1)ω

)
, where ω = min{2ω1, ω2}.

Moreover, the second term of (25) converges to zero with
a rate O

(
1

(T+1)ω1+ω2

)
. Since ω1 + ω2 > ω, (24) will decay

with a rate ω.

E. Proof of Theorem 2

It can be easily inferred that E[C(x)] = x and
E
[
∥C(x)− x∥2

]
≤ θ2

4 , fulfilling the requirements of As-
sumption 6. Furthermore,

∑∞
k=0

c4
c5k+1 = ∞ satisfies the first

condition in (9). Thus, this stochastic compressor enables con-
vergence accuracy when the step sizes satisfy other conditions
in (9).



From Algorithm 1, it can be seen that given initial state
{x0,y0}, the network topology W and the function set F ,
the observation sequence {Ok}k≥0 is uniquely determined by
the compression scheme. For any pair of adjacent objective
function sets {F} and {F ′}, the eavesdropper is assumed to
know the initial states of the algorithm. Thus, x0 = x′

0 and
y0 = y′

0 based on the same observation. Furthermore, the
two function sets generate the same outputs, i.e., C(yi,k) and
C(y′i,k) for all i ∈ N . The compression errors are indepen-
dently and identically distributed. Similarly to the nosie-based
privacy analysis [7], we can conclude that xi,k = x′

i,k and
yi,k = y′i,k for i ̸= i0 and for all non-negative k. According
to (6), we have the following relation for i0:

yi0,k+1 =yi0,k + βk

∑

j∈Ni

wi,j(C(yj,k)− C(yi0,k))− αkβkgi0,k,

y′i0,k+1 =y′i0,k + βk

∑

j∈Ni

wi,j(C(y′j,k)− C(y′i0,k))− αkβkg
′
i0,k.

Therefore, we have

∆yi0,k+1 = yi0,k+1 − y′i0,k+1 = ∆yi0,k − αkβk∆gi0,k,

where ∆gi0,k = gi0,k − g′i0,k. Since ∆yi0,0 = 0, there is

∥∆yi0,k∥ ≤
k−1∑

s=0

αsβs∥∆gi0,s∥

≤2C

k−1∑

s=0

αsβs

≤2Cc4
c5

ln(c5k + 1). (26)

Without generality, suppose the attacker’s observation at k
for yi(j), y′i(j) is lθ. Similar to the proof of Theorem 3 in Wang
and Başar [15], we can obtain that δk = P[C(yi(j)) = lθ|yi]−
P[C(y′i(j)) = lθ|y′i] ≤

∥∆yi0,k∥1

θ depends on ∥∆yi0,k∥1. Due
to the same observation, there is |∆yi0(j),k| ≤ 2θ from Fig.
1 and ∥∆yi0,k∥1 =

∑n
j=1 |∆yi0(j),k| ≤ 2nθ. Additionally,

according to (26), we have ∥∆yi0,k∥1 ≤ √
n∥∆yi0,k∥ ≤

2Cc4
√
n

c5
ln(c5k+ 1). Moreover, it should be noted that in DP,

δk should be a small parameter in (0, 1). Hence, we derive the
expression of δk shown in (12).

δk ≤ ∥∆yi0,k∥1
θ

≤ min

{
1,

2Cc4
√
n

c5θ
ln(c5k + 1)

}
.
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[15] Yongqiang Wang and Tamer Başar. Quantization enabled privacy
protection in decentralized stochastic optimization. IEEE Transactions
on Automatic Control, 2022.

[16] Antai Xie, Xinlei Yi, Xiaofan Wang, Ming Cao, and Xiaoqiang Ren.
Compressed differentially private distributed optimization with linear
convergence. arXiv preprint arXiv:2304.01779, 2023.

[17] Xinlei Yi, Shengjun Zhang, Tao Yang, Tianyou Chai, and Karl H
Johansson. Communication compression for distributed nonconvex
optimization. IEEE Transactions on Automatic Control, 2022.

[18] Yiwei Liao, Zhuorui Li, and Shi Pu. A linearly convergent robust
compressed push-pull method for decentralized optimization. arXiv
preprint arXiv:2303.07091, 2023.

[19] Wei Huo, Xiaomeng Chen, Ding Kemi, Subhrakanti Dey, and
Ling Shi. Appendix of compression-based privacy preservation
for distributed Nash equilibrium seeking in aggregative
games, https://github.com/vivianwhuo/Appendix-of-Compression-
based-Privacy-Preservation-for-Distributed-Nash-Equilibrium-
Seeking/blob/main/github-appendix.pdf, 2024.

[20] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In Theory of
Cryptography: Third Theory of Cryptography Conference, pages 265–
284. Springer, 2006.
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