
ar
X

iv
:2

40
5.

03
07

2v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  5

 M
ay

 2
02

4

Sokoban percolation on the Bethe lattice

Ofek Lauber Bonomo, Itamar Shitrit and Shlomi Reuveni

School of Chemistry, Center for the Physics & Chemistry of Living Systems, Ratner Institute

for Single Molecule Chemistry, and the Sackler Center for Computational Molecular &

Materials Science, Tel Aviv University, 6997801, Tel Aviv, Israel

E-mail: ofekzvil@mail.tau.ac.il, itamarshtrit@mail.tau.ac.il and

shlomire@tauex.tau.ac.il

Abstract. ‘With persistence, a drop of water hollows out the stone’ goes the ancient Greek

proverb. Yet, canonical percolation models do not account for interactions between a moving

tracer and its environment. Recently, we have introduced the Sokoban model, which differs

from this convention by allowing a tracer to push single obstacles that block its path. To

test how this newfound ability affects percolation, we hereby consider a Bethe lattice on

which obstacles are scattered randomly and ask for the probability that the Sokoban percolates

through this lattice, i.e., escapes to infinity. We present an exact solution to this problem

and determine the escape probability as a function of obstacle density. Similar to regular

percolation, we show that the escape probability undergoes a second-order phase transition.

We exactly determine the critical obstacle density at which this transition occurs and show

that it is higher than that of a tracer without obstacle-pushing abilities. Our findings assert

that pushing facilitates percolation on the Bethe lattice, as intuitively expected. This result,

however, sharply contrasts with our previous findings on the 2D square lattice. There,

the Sokoban cannot escape — not even at densities well below the percolation threshold.

We discuss the reasons behind this striking difference, which calls for a deeper and better

understanding of percolation in the presence of tracer-media interactions.

http://arxiv.org/abs/2405.03072v1
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1. Introduction

Alfréd Rényi humorously remarked that a mathematician functions as a contraption designed

to convert coffee into theorems [1]. Though the precise ritual of brewing one’s morning cup

may vary, the essence lies in the process of extraction. This requires water to find its way

through the ground coffee beans and into the cup. But can they do so effectively? Percolation

theory emerged as an attempt to tackle this and similar questions mathematically. It can thus

be ironically described as a concerted effort to convert coffee into theorems about coffee. The

existing body of literature on percolation is vast [2, 3, 4, 5, 6, 7, 8, 9] and it includes some

notable recent developments [10, 11, 12, 13, 14, 15, 16].

Broadbent & Hammersley initiated modern percolation theory by introducing the bond

percolation problem [17]. They envisioned a three-dimensional cubic lattice within sites

are interconnected by bonds. These bonds can be open to fluid flow with some probability.

Alternatively, they can be closed, thus blocking the flow, with the complementary probability.

Water will percolate through the lattice provided a spanning cluster of open bonds exists. Such

a cluster is then referred to as the percolation cluster.

The concept of percolation is not limited to bonds and it is also customary to think of

sites as the percolating elements. To illustrate this, consider a lattice where ρ represents the

probability of a site being blocked or obstructed. High values of ρ are characterized by small

islands of vacant sites, sparsely scattered on the lattice. Conversely, as ρ diminishes, these

islands expand until — at sufficiently low ρ — a percolating cluster of contiguous vacant sites

is formed. The transition between these two cases occurs at a critical density, known as the

percolation threshold. For most lattices, however, exact determination of this critical density

is not possible, and one often resorts to numerical methods instead [7, 9].

The Bethe lattice is a notable exception where the percolation problem is exactly solvable.

It consequently serves as a convenient analytical testbed to study percolation and related

problems. Here, we take advantage of this proven workhorse to study a model of percolation

with tracer media interactions. The motivation for our model comes from a simple observation:

when pressurized water is pushed through the coffee basket of an espresso machine, it does not

leave the original arrangements of coffee grains intact. Rather, water paves its way through the

grains, often displacing them from their original positions. While the ability of water to push

obstacles that obstruct its flow may be limited, it must have some effect on percolation. This

idea is illustrated in Fig. 1 which compares percolation with and without obstacle pushing.

The importance of such interactions can also be understood by taking a random walks

perspective on percolation. This was introduced by Pierre-Gilles de Gennes who coined the

term “ant in a labyrinth” (AIL) to describe the motion of a random walker in disordered media

[18] (similar ideas were explored by Brandt [19], Kopelman [20], and Mitescu & Roussenq

[21]). How the ant’s motion is affected by the density of surrounding obstacles is then of

particular interest. Considering site percolation on a lattice, it is clear that when the obstacle

density ρ is small, most sites are unoccupied and the ant’s motion is almost unobstructed.

However, when ρ is large, most sites are occupied by obstacles, rendering the ant’s motion

extremely restricted.
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Empty Obstacle Fluid(a) Regular percolation

(b) Percolation with obstacle pushing

Figure 1. Percolation with and without obstacle pushing. Clear differences are seen between

the two cases. Panel (a) Regular percolation on the Bethe lattice. Obstacles are pinned and

cannot move. Panel (b) Percolation where obstacles can be pushed by the force of the fluid.

Illustrated here is a scenario where the flow is only strong enough to push single obstacles.

Assuming the ant cannot affect surrounding obstacles, e.g., push, pull, or otherwise

change their position, the transition between restricted motion and free diffusion identifies

with the critical obstacle density of site percolation [7, 9]. Interestingly, very close to

the critical density, the ant exhibits anomalous, sub-diffusive behavior while roaming the

percolating cluster which is a fractal [5, 7, 22, 23].

The assumption that the motion of a tracer does not affect the distribution of obstacles

around it is prevalent, but not always valid. Active tracers, e.g., animals, microorganisms,

and biological ‘machines,’ can plow their way through crowded environments by pushing

obstacles that stand in their path. For example, light-activated Janus particles can imprint

trails on their surroundings, thus forming a memory of past events [24]. Motorized robots,

and self-propelled camphor boats, moving in an arena of inert—yet pushable—obstacles have

been shown to affect their environment in a similar way [25, 26]. It has also been shown

that the formation of trails, and hence of environmental memory, can facilitate diffusion and

shorten the first-passage time of a tracer to a target [26].

The experimental works described above reveal a series of non-trivial effects arising from

tracer-media interactions. These hint that the percolating abilities of a “pushy” tracer could

significantly deviate from those of the non-pushy ant. To find out, we have recently introduced

a minimalist model aimed to capture the effect of obstacle pushing [27]. In this model, a

random walker is given the ability to push single obstacles that block its path. Namely, the

walker can move forward by pushing a single obstacle in its direction of motion, provided that

the next site is unoccupied. Thus, in contrast to the ant, our walker modifies its surroundings

as it moves through it. Consequently, the initial obstacle configuration is generally different
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(b)

(c)

(a)
Empty Obstacle Sokoban walker

Figure 2. The Sokoban random walk on the Bethe lattice. Panel (a) Laws of motion. White

circles indicate unoccupied nodes and green circles indicate nodes occupied by obstacles. The

walker, marked by an orange cross, has two feasible moves: it can step into an unoccupied

node, or step into an occupied node by pushing the obstacle that occupies it into an unoccupied

node in the direction of motion. If there is more than one unoccupied node into which an

obstacle can be pushed, the obstacle is pushed into one of the unoccupied nodes at random.

The Sokoban cannot push more than one obstacle at a time. Thus, an occupied node whose

children nodes are all occupied forms an impassable roadblock. Panel (b) An example of an

initial configuration of a Bethe lattice partially covered with obstacles. The Sokoban is placed

at the central node and obstacles are scattered, with probability ρ , at all other nodes. Obstacles

that are pushed as the walker takes the trajectory illustrated in panel (c) are distinguished by

different textures. Panel (c) A possible trajectory of the Sokoban random walk. At each time

step, the walker chooses between all feasible moves with equal probability, obeying the laws

of motion in panel (a).

than the one that emerges at later times.

We named our model for the pushy ant: the Sokoban random walk. This was done

in homage to the video game Sokoban (Japanese for warehouse keeper), which was created

in 1981 by Hiroyuki Imabayashi [28]. The premise of the game is simple. Playing as the

warehouse keeper, one pushes boxes around in a warehouse, with the goal of transporting

them to marked storage locations. The rules of the game are similar to the laws of motion of

the Sokoban random walk. These are illustrated, on the Bethe lattice, with the aid of Fig. 2a.

An illustration of the Sokoban random walk is given in panels (b) and (c) of Fig. 2, where

we present some initial obstacle configuration and give a sample trajectory, respectively. Note

that in our example the Sokoban is not bound to the origin, even though all nodes around it

are occupied by obstacles. The difference between the pushy Sokoban and the non-pushy ant

is further illustrated in Supplementary Video #1.

The equivalence between regular percolation and the ant in a labyrinth model is well

established; and similar equivalence exists between the pushy percolation illustrated in Fig. 1
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and the Sokoban random walk in Fig. 2. Thus, moving forward, we will adopt the random

walks perspective to study the effect of pushing on percolation in the Bethe lattice. The

remainder of this paper is structured as follows. In Sec. 2, we review known results for

the escape probability and critical density of an ant in a Bethe lattice labyrinth. In Sec.

3, we proceed to study Sokoban percolation on the Bethe lattice. First, we estimate the

critical density using a mean-field argument. Next, we compute the escape probability and

critical density of the Sokoban exactly, and compare them to those of the non-pushy ant. We

corroborate the results with the aid of an independent algorithm that can estimate the escape

probability to arbitrary precision. This algorithm is developed in Appendix A. We end in Sec.

4 with conclusions and outlook.

2. Preliminaries: Ant in a Bethe lattice labyrinth

Before starting our analysis of the Sokoban random walk, we recall essential facts about the

Bethe lattice and known results for percolation on it.

The Bethe lattice is an infinite tree where all nodes have the same number of neighbors z.

This number is known as the coordination number or the degree of the lattice [29]. While all

nodes in the Bethe lattice are identical by construction, it is convenient to define a central node

(root). Other nodes on the lattice can then be grouped by their generation number, namely,

their distance from the central node. The number of nodes at generation g = 1 is given by z,

i.e., the number of children nodes that are directly connected to the root, which is at g = 0.

Note that each node in generation g ≥ 1 has a single ‘parent’ node (a directly connected node

at generation g−1). It also has z−1 ‘children’ nodes (directly connected nodes at generation

g+1). Therefore, the number of nodes in generation g+1 is related to the number of nodes in

generation g ≥ 1 by Ng+1 = (z−1)Ng. Iterating, we obtain Ng = z(z−1)g−1 for the number of

nodes in generation g ≥ 1. Due to its distinctive topological features, and loop-less structure,

models on the Bethe lattice are often easier to solve than on other lattices [9, 30]. A prime

example of this, percolation, is now reviewed.

Consider a Bethe lattice with coordination number z, where each node (except for the

central node) has a probability ρ to be occupied by an obstacle. In what follows we will also

refer to ρ as the obstacle density. A random walker is placed on the central node, which is

unoccupied by convention. At each time step, the random walker takes a step to one of its

unoccupied neighboring nodes, if such exist, with equal probability. The walker cannot move

into nodes already occupied by obstacles. Following Pierre-Gilles de Gennes [18], we refer

to this random walk as an “ant in a Bethe lattice labyrinth”.

We are interested in the probability that the ant escapes from the central node to infinity.

Namely, that it will eventually reach at least one node in any generation g = 1,2,3, ... of the

Bethe lattice. Note that this probability, which we denote as PAIL
∞ , is identical to the probability

that the random walker starts on an infinite cluster of unoccupied nodes. Next, we show that

there is a critical obstacle density, ρAIL
c , below which PAIL

∞ > 0. Also, above this critical

density PAIL
∞ = 0. We do so by following the footsteps of [9], generalizing the calculation

given there from the particular case of z = 3 to a general coordination number z.
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We start by considering the central node of the Bethe lattice. For each one of its z children

at generation g = 1, we define the corresponding branch as the sub-graph consisting of: the

central node, the specific child node chosen, all this child node’s children, grandchildren, and

so on to infinity. Consider a random walker that starts on the root of such a branch, isolated

from the rest of the lattice. We define the probability EAIL as the probability that the walker

escapes to infinity through this branch. The probability of escaping to infinity on the original

Bethe lattice follows immediately

PAIL
∞ = 1−

(

QAIL
)z

, (1)

where QAIL = 1−EAIL.

To find QAIL, we observe the corresponding branch as defined above and consider the

two relevant scenarios: (i) the specific child node chosen is occupied; and (ii) the specific

child node chosen is unoccupied, but the walker cannot escape to infinity through any of its

children nodes. The probability QAIL is then given by

QAIL = ρ +(1−ρ)
(

QAIL
)z−1

. (2)

For a general z and a given ρ , Eq. (2) can be solved numerically to get the probability QAIL.

Substituting back into (1) gives the escape probability.

Although (2) cannot be solved analytically for a general value of z, the critical density

ρAIL
c can be computed exactly. To do this, observe that near criticality QAIL → 1. Thus,

near the critical density, one can expand
(
QAIL

)z−1
on the right-hand side of (2) in the small

parameter 1−QAIL. Doing so, we obtain

(

QAIL
)z−1

= [1− (1−QAIL)]z−1

≃ 1− (1−QAIL)(z−1)+
1

2
(1−QAIL)2(z−2)(z−1), (3)

which is exact to second order. We then substitute the above approximation into (2) and solve

for QAIL to get the following non-trivial solution

QAIL
≃ 1−

2[(1−ρ)(z−1)−1]

(1−ρ)(z−2)(z−1)
. (4)

The critical density can now be derived by substituting (4) into (1) and setting PAIL
∞ = 0.

Solving for ρ , yields

ρAIL
c = 1−

1

z−1
, (5)

which is exact.

Noteably, the critical density in (5) can also be obtained using a mean-field argument

[9]. To do this, consider a random walker that has already made it to a node that resides at

generation g> 0. Having at least one of the z−1 children of this node unoccupied, guarantees

that the random walker will be able to move one step further away from the central node, and

this argument can be iterated. Mean field analysis replaces this exact condition with the

requirement that there is at least one unoccupied child node on average. Since the mean
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number of unoccupied children nodes is given by (1−ρ)(z−1), we have (1−ρc)(z−1) = 1

and solving for ρc yields the critical density in (5).

Before concluding this section, we note that the behavior of the escape probability near

criticality can also be determined. To do so, we first note that near the critical density, we can

approximate (1) as PAIL
∞ = 1−

(
QAIL

)z
≃ (1−QAIL)z. Substituting (4) into this relation and

expanding to first order in the small parameter ρAIL
c −ρ , yields

PAIL
∞ ≃

2z(z−1)

z−2
(ρAIL

c −ρ). (6)

In Sec. 3.2, we will compare the results in (5) and (6) with analogous results obtained for the

Sokoban random walk on the Bethe lattice.

3. Sokoban random walk on the Bethe lattice

We now proceed to explore how the ability to push obstacles affects percolation on the Bethe

lattice. We consider a Bethe lattice with an arbitrary coordination number z and obstacle

density ρ . We place a Sokoban random walker at the central node of this lattice and allow it

to take steps according to the laws of motion that were illustrated in Fig. 2a. Similar to Sec.

2, we are interested in calculating PSokoban
∞ . Namely, the probability that the Sokoban random

walk escapes from the central node to infinity. We are also interested in finding the critical

obstacle density ρSokoban
c above which PSokoban

∞ vanishes. Before providing an exact solution

to this problem, which we will obtain by adapting the approach in Sec. 2 to the Sokoban

random walk, we will present a mean-field argument for the calculation of the critical density.

3.1. Mean field analysis

Consider a Sokoban random walker that has already made it to a node that resides at generation

g> 0. According to the laws of motion given in Fig. 2a, the walker can only push one obstacle

at a time. Thus, having at least one unoccupied grandchild node, out of the (z− 1)2, will

guarantee that the Sokoban can move to generation g+1, i.e, one step further away from the

central node. Mean field analysis replaces this exact condition with the requirement that there

is at least one unoccupied grandchild node on average. Since the mean number of unoccupied

grandchildren nodes is given by (1− ρ)(z− 1)2, we have (1− ρc)(z− 1)2 = 1 and solving

yields

ρSokoban
c = 1−

1

(z−1)2
, (7)

which despite the approximation turns out to be exact as we show below. Note that the critical

density for the Sokoban is higher than the critical density in (5). This is in agreement with

the intuition that the ability to push obstacles enables the Sokoban to venture further than the

AIL.
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3.2. The escape probability and critical density

In this section, we calculate the probability that the Sokoban random walk escapes from the

central node to infinity. To do so, we generalize the calculation in Sec. 2 such that it would

take into account the Sokoban’s ability to push obstacles.

Consider a Sokoban random walker that starts its motion from the central node of a Bethe

lattice with obstacle density ρ . Similarly to the calculation done for the ant in a labyrinth, we

would like to start by writing an equation for the escape probability PSokoban
∞ . For the ant,

this probability was expressed in terms of the probability QAIL = 1−EAIL defined in Sec. 2.

Recall, that EAIL is the probability that the ant escapes to infinity through a given branch. The

fact that the ant cannot push obstacles, simplifies the calculation of this probability as it is

impossible to escape through a branch that originates from an occupied node. In contrast, the

Sokoban plows its way through obstacles and may escape even from a branch that originates in

an occupied node. Thus, to calculate ESokoban, one needs to consider two different possibilities:

(i) escape to infinity through a branch originating from an unoccupied node; and (ii) escape

to infinity through a branch originating from an occupied node.

To take both scenarios into account, we define two auxiliary probabilities (also see Fig.

3): (i) PEmpty, the probability that the Sokoban random walker escapes to infinity through a

branch originating from an unoccupied node; and (ii) PFull , the probability that the Sokoban

random walker escapes to infinity through a branch originating from an occupied node. The

probability QSokoban can then be written in terms of these auxiliary probabilities. This relation

reads

QSokoban = 1− ((1−ρ)PEmpty+ρPFull). (8)

The escape probability of the Sokoban from the Bethe lattice can then be written as

PSokoban
∞ = 1−

(

QSokoban
)z

= 1− (1− ((1−ρ)PEmpty+ρPFull))
z , (9)

which is the Sokoban analog of Eq. (1).

We now turn to find PEmpty and PFull which are still unknown. These probabilities obey







PEmpty = 1− (1− ((1−ρ)PEmpty+ρPFull))
z−1 ,

PFull = 1−ρz−1

−

z−2

∑
n=0

(
z−1

n

)

ρn(1−ρ)z−n−1(1−PEmpty)
z−n−2(1−PFull)

n+1.

(10)

The first equation in the system above can be understood similarly to (9) albeit a small

difference. Here the second term is raised to the power of z−1, instead of z, since we consider

branches that originate from nodes other than the central node. These have only z−1 children.

The second equation is derived by considering all the scenarios where the Sokoban random

walker does not escape to infinity through a branch originating from an occupied node. The

first scenario, is captured by the ρz−1 term that accounts for the case where all the children

of the considered node are also occupied. In this case, the Sokoban cannot take a step into
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Empty Obstacle Sokoban walker

Figure 3. Illustration of the auxiliary probabilities PEmpty and PFull . Panel (a): The probability

PEmpty is the probability that the Sokoban (marked by an orange cross) escapes to infinity

through a branch originating from an unoccupied node (marked by a white circle). Panel (b):

The probability PFull is the probability that the walker escapes to infinity through a branch

originating from an occupied node (marked by a green circle).

the considered node in question since the obstacle occupying it cannot be pushed forward.

All other scenarios are given by the third term on the right-hand side of the equation. The

sum accounts for the probability of escaping to infinity through any possible configuration

that is not fully occupied. Each term in the sum is a product of two probabilities: (i) the

probability of initially having n < z− 1 occupied nodes out of the z− 1 children nodes, and

(ii) the probability of escaping through such a configuration after pushing the obstacle at the

considered node one generation up.

Calculating the sum on the right-hand side of the second equation in (10) using the

binomial theorem yields







PEmpty = 1− (1− ((1−ρ)PEmpty+ρPFull))
z−1 ,

PFull = 1−ρz−1

+
ρz−1(1−PFull)

z − (1−PFull)(1− (1−ρ)PEmpty−ρPFull)
z−1

1−PEmpty

.

(11)

Using the first equation in (11), we substitute 1−PEmpty for (1− ((1−ρ)PEmpty+ρPFull))
z−1

in the numerator of the second equation. Solving for PEmpty yields

PEmpty = 1− (1−PFull)
z. (12)

Replacing PEmpty in both sides of the first equation in (11) with the expression in (12) and
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Figure 4. Escape probabilities of the Sokoban random walk on the Bethe lattice. Panels (a)

and (b): PFull and PEmpty respectively. These escape probabilities are plotted in solid lines vs.

the obstacle density ρ , for lattices with coordination numbers z = 3,4,5. Plots are made by

numerically solving Eqs. (12) and (13). Corroborating the theoretical results are circles that

come from an independent algorithmic estimation of the escape probabilities (see Appendix A

for details). Note that both escape probabilities vanish for obstacle densities that are above the

critical density in (7). Panel (c): Comparison between the escape probability of the Sokoban

(solid lines) and the ant in a Bethe lattice labyrinth (dashed lines). Plots are made, using

Eqs. (9) and (1) respectively, as a function of the obstacle density ρ and for lattices with

coordination numbers z = 3,4,5. Observe that PSokoban
∞ > PAIL

∞ and that the critical density of

the Sokoban random walk is higher than that of the AIL.

solving for ρ yields

1−ρ =
1− (1−PFull)

1
z−1

1− (1−PFull)z−1
. (13)

Note that one can use the above equation to calculate PFull as a function of the obstacle density

ρ in a numerically exact manner. In addition, observe that the critical density of the Sokoban

random walk follows directly by taking the limit PFull → 0 on the right-hand side of (13).

Doing so, e.g. via the L’Hôpital’s rule or by expanding the numerator and denominator to

first order, yields the critical density that was found in (7) using a mean-field argument. This

shows that (7) is in fact exact.

In Fig. 4a, we consider lattices of coordination numbers z= 3,4,5 and plot the theoretical

prediction of (13) for PFull vs. the obstacle density ρ (solid lines). We further corroborate this

result using values obtained from an independent algorithmic estimation of PFull (circles, see

Appendix A for details). We observe a perfect match. Once at hand, PFull can be substituted

into (12) to find PEmpty. In Fig. 4b, we plot the theoretical prediction of (12) for PEmpty (solid

lines) vs. ρ . Once again, these results are corroborated successfully using values obtained

from an independent algorithmic estimation of PEmpty (circles, see Appendix A for details).

Finally, substituting PFull and PEmpty into (9) yields the escape probability. In Fig. 4c,

we plot PSokoban
∞ vs. ρ (solid lines), and compare to the escape probability PAIL

∞ of an ant in a

labyrinth (dotted lines). The latter is obtained from numerical solution of Eqs. (1) and (2). It

can be seen that PSokoban
∞ > PAIL

∞ in all cases. Namely, on the Bethe lattice, the pushing ability

of the Sokoban increases its probability to escape. Moreover, since the critical density of the
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Sokoban is higher than that of the ant, there exists a range of densities for which the Sokoban

can escape the lattice with some probability while the ant cannot. For example, for z = 3, this

range is given by 1/2 < ρ < 3/4. Note, throughout most of this range, the Sokoban has a very

high probability to escape, highlighting the significant impact of obstacle pushing.

3.3. Behaviour near criticality

We now study the behavior of the escape probabilities near the critical obstacle density. To

do so, we go back to (13) and expand its right-hand side to first order in PFull , which is small

near the critical density. This gives

1− (1−PFull)
1

z−1

1− (1−PFull)z−1
≃

1

(z−1)2
+

z(z−2)

2(z−1)3
PFull

= 1−ρSokoban
c +

z(z−2)

2(z−1)3
PFull. (14)

Substituting the above expansion in (13) and solving for PFull yields

PFull ≃
2(z−1)3

z(z−2)
(ρSokoban

c −ρ), (15)

near the critical density. Expanding PEmpty in (12) to first order in PFull, and substituting the

above relation we get

PEmpty ≃
2(z−1)3

z−2
(ρSokoban

c −ρ). (16)

From here we see that near the critical density PEmpty changes with a slope that is z times

steeper than that of PFull (see panels (a) and (b) of Fig. 4).

We continue by substituting Eqs. (15) and (16) into (9). Expanding to first order in

ρSokoban
c −ρ gives the following linear relation for the escape probability of the Sokoban near

the critical density

PSokoban
∞ ≃

2z(z−1)2

z−2
(ρSokoban

c −ρ). (17)

It is interesting to compare the above relation to (6), which gives the corresponding relation

for the escape probability of an ant in a Bethe lattice labyrinth. This comparison reveals that

pushing does not change the critical exponent P∞ ∼ (ρc−ρ)β , which is given by β = 1 in both

cases [9]. However, near the critical density, the escape probability of the Sokoban changes

with a slope that is z− 1 times steeper than that of the ant. This result is in agreement with

Fig. 4c that shows extremely sharp transitions for the Sokoban near the critical density. In Fig.

5, we further corroborate this asymptotics by plotting (17) (dotted lines) alongside the exact

escape probability from (9) (solid lines). It can be seen that the predicted asymptotics capture

the behavior near the critical density.

4. Summary and Outlook

In this paper, we utilized the Sokoban model to study the effect of interactions on percolation

in disordered media. We considered a randomly moving tracer — the Sokoban — which can
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Figure 5. The escape probability of the Sokoban random walk near the critical density. Plots

are made as a function of the deviation from the critical density, for lattices with coordination

numbers z = 3,4,5. Solid lines present exact results coming from (9) and dashed lines present

the asymptotics of (17). The circles, which come from an independent algorithmic estimation

of the escape probability (see Appendix A for details), further corroborate these results.

push single obstacles obstructing its path. We studied the motion of the Sokoban on the Bethe

lattice and determined exactly how its escape probability depends on obstacle density.

Our analysis shows that the ability to push obstacles significantly aids escape.

Specifically, the Sokoban consistently achieves a higher escape probability compared to the

proverbial ant, which navigates the Bethe lattice without altering its environment. Both

the Sokoban and the ant exhibit a second-order phase transition of their escape probability.

However, the Sokoban’s transition occurs at a higher obstacle density than the ant’s. As

a result, for obstacle densities above the percolation threshold: the ant is trapped but the

Sokoban may still plow its way out to freedom.

Our findings support the intuition that pushing allows the Sokoban to access places

inaccessible to the non-pushy ant. However, this advantage disappears when the Bethe lattice

is replaced with a 2D square lattice [27]. There, the Sokoban cannot escape even when

obstacle densities are well below the percolation threshold of the ant. This surprising behavior

highlights the non-trivial effect that obstacle-pushing has on percolation and transport. It also

warrants some further discussion.

We have recently conjectured that the Sokoban random walk gets caged on the 2D square

lattice even at arbitrarily low obstacle densities [27]. As it moves, the Sokoban shovels

obstacles from the area it visits to the periphery. With time, both the visited area and its

periphery expand, but the periphery grows much more slowly. Consequently, all open spaces

along the periphery are eventually filled with obstacles. In fact, we have shown that a double

layer of peripheral obstacles is formed. This acts as a cage for the Sokoban which cannot push
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more than one obstacle at a time.

The above argument was used to successfully explain quantitative relations that govern

the caging of the Sokoban random walk on the 2D square lattice [27]. On the Bethe lattice,

the Sokoban also displaces obstacles from visited sites to the periphery. Yet, on this lattice the

number of periphery sites grows proportionally to the number of visited sites: for every newly

visited site, there are z− 2 sites added to the periphery. Consequently, one can no longer

guarantee that caging always occurs and the exact escape probability is given by Eq. (9).

Summarizing, we see that the ability to push obstacles affects percolation in a topology-

dependent manner. On the loop-less Bethe lattice, it facilitates escape while on the 2D square

lattice it leads to caging. How pushing affects percolation on other topologies, e.g., regular

lattices in higher dimensions, fractal and random networks [5, 7, 23, 31, 32], is still unknown.

Addressing this knowledge gap should elucidate the relation between graph properties and the

percolation of pushy tracers.
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Appendix A. Numerics

It is virtually impossible to estimate the escape probabilities of the Sokoban using brute-

force Monte Carlo simulations on the Bethe lattice. In this appendix, we develop instead

an algorithm that exploits the self-similar structure of the lattice to provide numerical

estimation of the escape probabilities PEmpty and PFull . Results coming from this algorithm

are independent of the theory developed in the main text. They were hence used to corroborate

the analytical predictions of Eqs. (12) and (13).

Appendix A.1. Estimating PEmpty

Consider a branch of a Bethe lattice with coordination number z. Nodes on the lattice are

occupied with probability ρ , except for the two nodes in generations g = 0 and g = 1 which

are left empty. We place the Sokoban walker in generation g = 0, as illustrated in panel (a) of

Fig. A1.

To numerically estimate PEmpty, we define the following sequence of auxiliary

probabilities for the system in panel (a) of Fig. A1: E
Empty
1 ,E

Empty
2 ,E

Empty
3 , .... Here, E

Empty
n

is the probability for a walker that reached a specific node in the n-th generation to escape

through it to infinity, given it never returns to generation n−1. For convenience, we denote

the complimentary probabilities Q
Empty
n = 1−E

Empty
n . Note that Q

Empty
1 = 1−PEmpty, follows

immediately. Thus, by estimating Q
Empty
1 , one also gets PEmpty.
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Figure A1. Illustration of the systems used to calculate the auxiliary probabilities Q
Empty
1 and

QFull
1 . Generation numbers are indicated by overhead digits. Panel (a): A four generations

Cayley tree branch (a finite-generation Bethe lattice) used for the calculation of the probability

Q
Empty
1 . By construction, the nodes in generations 0 and 1 are unoccupied, nodes in other

generations are occupied with probability ρ . Panel (b): A four-generation Cayley tree branch

used for the calculation of the probability QFull
1 . By construction, the node in generation 0

is unoccupied, the node in generation 1 is occupied (marked by a green circle), and nodes in

other generations are occupied with probability ρ .

We start by calculating Q
Empty
1 . This probability can be decomposed into two

contributions: i) None of the children nodes of the node in the first generation are accessible

to the walker. Namely, all of its children and grandchildren nodes are occupied; ii) The node

in the first generation has 1 ≤ m ≤ z−1 accessible children nodes, through none of which the

walker escapes to infinity. Thus, the probability Q
Empty
1 is given by the following formula

Q
Empty
1 = R

Empty
1 (0)
︸ ︷︷ ︸

a1

(

R
Empty
1 (·)

)

+
z−1

∑
m1=1

R
Empty
1 (m1)

(

Q
Empty
2

)m1

︸ ︷︷ ︸

ε2

(

R
Empty
1 (·),QEmpty

2

)

, (A.1)

where R
Empty
1 (m), 0≤m≤ z−1, is the probability that exactly m children nodes are accessible

to the walker after it arrives at the node in the first generation. Exploiting the recursive

structure of the Bethe lattice, a similar formula relating the probabilities Q
Empty
n and Q

Empty
n+1 ,

for n ≥ 1, can be derived

QEmpty
n = REmpty

n (0)+
z−1

∑
mn=1

REmpty
n (mn)

(

Q
Empty
n+1

)mn

=
z−1

∑
mn=0

REmpty
n (mn)

(

Q
Empty
n+1

)mn

, (A.2)

where R
Empty
n (m), 0≤m≤ z−1, is the probability that exactly m children nodes are accessible
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to the walker, after it arrives at a specific node in the n-th generation.

Setting n = 2 in (A.2) and substituting Q
Empty
2 into (A.1), the term ε2 can be rewritten as

follows

ε2 =
z−1

∑
m1=1

R
Empty
1 (m1)

(

R
Empty
2 (0)+

z−1

∑
m2=1

R
Empty
2 (m2)

(

Q
Empty
3

)m2

)m1

=
z−1

∑
m1=1

R
Empty
1 (m1)

(

R
Empty
2 (0)

)m1

︸ ︷︷ ︸

a2

(

R
Empty
1 (·),R

Empty
2 (·)

)

+
z−1

∑
m1=1

R
Empty
1 (m1)

m1

∑
k=1

(
m1

k

)(

R
Empty
2 (0)

)m1−k

[
z−1

∑
m2=1

R
Empty
2 (m2)

(

Q
Empty
3

)m2

]k

︸ ︷︷ ︸

ε3

(

R
Empty
1 (·),R

Empty
2 (·),Q

Empty
3

)

.

(A.3)

Substituting (A.3) into (A.1) yields

Q
Empty
1 = a1

(

R
Empty
1 (·)

)

+a2

(

R
Empty
1 (·),R

Empty
2 (·)

)

+ ε3

(

R
Empty
1 (·),REmpty

2 (·),QEmpty
3

)

. (A.4)

Repeating this procedure g−2 times yields the following formula for Q
Empty
1

Q
Empty
1 =

g−1

∑
n=1

an

(

R
Empty
1 (·), ...,REmpty

n (·)
)

+ εg

(

R
Empty
1 (·), ...,R

Empty
g−1 (·),QEmpty

g

)

. (A.5)

Taking g → ∞ in the above formula, we have

Q
Empty
1 =

∞

∑
n=1

an

(

R
Empty
1 (·), ...,REmpty

n (·)
)

. (A.6)

Note that this formula is independent of the auxiliary probabilities Q
Empty
1 ,Q

Empty
2 , .... In

practice, the infinite sum in (A.6) can be approximate by Q
Empty
1 ≈ ∑

g−1
n=1 an, with g taken to

be sufficiently large.

To calculate the aforementioned sum, we write (A.5) explicitly. Substituting (A.2)

repeatedly into (A.1), for increasing values of n, yields

Q
Empty
1 =

z−1

∑
m1=0

R
Empty
1 (m1)

(

· · ·

(
z−1

∑
mg−1=0

R
Empty
g−1 (mg−1)

(
QEmpty

g

)mg−1

)mg−2

· · ·

)m1

.

(A.7)

Equation (A.5) asserts that the above formula for Q
Empty
1 can be decomposed into two

contributions, ∑
g−1
n=1 an and εg, where the former provides an approximation for Q

Empty
1 in
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which Q
Empty
g does not appear. The following formula follows immediately

Q
Empty
1 ≈

g−1

∑
n=1

an =

z−1

∑
m1=0

R
Empty
1 (m1)

(

· · ·

(
z−1

∑
mg−2=0

R
Empty
g−2 (mg−2)

(

R
Empty
g−1 (0)

)mg−2

)mg−3

· · ·

)m1

.

(A.8)

To proceed, one should evaluate R
Empty
1 (·),REmpty

2 (·), ..., as outlined in Appendix A.2 below.

Appendix A.2. Evaluation of R
Empty
n (·)

Consider once more the system illustrated in panel (a) of Fig. A1. The probabilities

R
Empty
1 (·),R

Empty
2 (·), ... are computed iteratively by simulating the dynamics of the walker

in this system.

We begin by computing R
Empty
1 (m) for 0 ≤ m ≤ z−1. We recall that R

Empty
1 (m) denotes

the probability that exactly m children nodes are accessible to the walker after it arrives at the

node in the first generation. For a child node in the second generation to be inaccessible, the

node, as well as its children nodes, must all be occupied. Since this happens with probability

ρz, the probability for a specific child node to be accessible is given by 1−ρz. Note that the

occupancies of the z−1 children nodes are independent due to the node in the first generation

being empty by construction. Hence, the events of them being accessible to the walker are

independent as well. The probability R
Empty
1 (m) is thus taken from the binomial distribution

R
Empty
1 (m) =

(
z−1

m

)

(1−ρz)m (ρz)z−1−m , (A.9)

for m = 0, ...,z−1.

We now turn to the computation of R
Empty
2 (m), namely, the probability that exactly m

children nodes, of a specific node in the second generation, are accessible to the walker after

it has reached that specific node. Unlike the node in the first generation, which in our system

was set to be unoccupied by construction, the z−1 nodes in the second generation are initially

occupied with an obstacle density of ρ . Thus, when reaching a node in the second generation,

the walker may push an obstacle to an unoccupied node in the third generation, increasing

the obstacle density in the third generation and correlating between the occupancies of nodes

there. A similar problem arises when computing R
Empty
n (m) for higher generations. Thus, the

binomial distribution in (A.9) no longer holds.

To address this issue, we simulate the walker’s dynamics for a large number of randomly

generated systems, all from the type illustrated in panel (a) of Fig. A1. For each system

generated, we allow the walker to take a legal step, if possible, into each of the z− 1 nodes

in the second generation. Subsequently, for each node the walker reaches, we sample the

obstacle occupancy of its children nodes in the third generation. This sample is represented

by a binary vector of size z−1 entries, where 1 indicates an occupied node and 0 indicates an

unoccupied node. Utilizing these samples, one can calculate the joint occupancy distribution

of nodes in the third generation.
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Having the above joint occupancy distribution in hand, we can compute R
Empty
2 (m). We

do so by generating a new set of systems where the joint occupancy of nodes in the second

generation is drawn from the distribution measured for third generation nodes in the previous

iteration. The nodes in the third generation of the new systems are occupied with an obstacle

density ρ . Once again, we allow the walker to take a legal step, if possible, into each of the

z−1 nodes in the second generation. We then count the number of legal steps taken for each

realization of the system. Using these statistics, we estimate the probability that a reached

node in the second generation has m accessible children nodes, namely, R
Empty
2 (m).

Repeating this process iterativley, one can estimate R
Empty
n (·) for n= 3,4, ...,g−1. These

probabilities can be substituted into (A.8) to estimate Q
Empty
1 , from which PEmpty follows

immediately. In this work, estimates were made with g = 400, and 104 system realizations for

each iteration. As can be seen in Fig. 4 and 5, estimates are in excellent agreement with the

analytical results.

Appendix A.3. Estimating PFull

To estimate PFull we follow the footsteps of the calculation of PEmpty, as outlined in

Appendix A.1, with minor differences described below.

Consider a branch of a Bethe lattice with coordination number z. Nodes on the lattice are

occupied with probability ρ , except for the node in generation g = 0, which we leave empty,

and the node in generation g = 1, which is always occupied by an obstacle. We place the

walker in generation g = 0, as illustrated in panel (b) of Fig. A1. Note that the only difference

between this system and the system considered in Appendix A.1 is the occupancy of the node

in generation g = 1.

Similarly to the calculation of PEmpty, we calculate PFull using a sequence of auxiliary

probabilities for the system in panel (b) of Fig. A1: EFull
1 ,EFull

2 ,EFull
3 , .... Here, EFull

n , is

the probability that a walker which reached a specific node in the n-th generation escapes

to infinity through it, given it never returns to generation n − 1. Note, that since the

node in the first generation is now occupied, E
Empty
n and EFull

n are generally different.

For convenience, we denote the complimentary probabilities QFull
n = 1− EFull

n . Note that

1−PFull = ρz−1 +
(
1−ρz−1

)
QFull

1 , as we need to account for two scenarios: i) the node in

the first generation is inaccessible; ii) the node in the first generation is accessible, but the

walker does not escape to infinity through it. Thus, by estimating QFull
1 , one also gets PFull.

Following similar lines to those outlined in subsection Appendix A.1, one can derive an

analogous estimate for QFull
1 . This can be done starting with (A.1), replacing Empty with

Full in the superscripts. Following this calculation, one ends up with an estimate for QFull
1

which is analogous to (A.8). This estimate is independent of QFull
g and is given solely in

terms of RFull
1 (·), ...,RFull

g−1(·), which can be computed using the same algorithm described in

Appendix A.2. Specifically, to compute the probability RFull
1 (m), we start the Sokoban walk

at the origin and only consider instances in which it was able to get to the first generation.

Using this sample, we estimate the probability that exactly 0 ≤ m ≤ z−1 children nodes are

accessible to the walker after it arrives at the node in the first generation.
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York: Simon & Schuster)

[2] Shante V K and Kirkpatrick S 1971 Advances in Physics 20 325–357

[3] Redner S 1982 Physical Review B 25 3242

[4] Sokolov I M 1986 Soviet Physics Uspekhi 29 924

[5] Havlin S and Ben-Avraham D 1987 Advances in physics 36 695–798

[6] Sahimi M 1994 Applications of percolation theory (CRC Press)

[7] Ben-Avraham D and Havlin S 2000 Diffusion and reactions in fractals and disordered

systems (Cambridge university press)

[8] Schwartz N, Cohen R, Ben-Avraham D, Barabási A L and Havlin S 2002 Physical

Review E 66 015104

[9] Stauffer D and Aharony A 2018 Introduction to percolation theory (CRC press)
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