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Abstract

It is undecidable whether the language recognized by a probabilistic finite au-
tomaton is empty. Several other undecidability results, in particular regarding prob-
lems about matrix products, are based on this important theorem. We present two
proofs of this theorem from the literature in a self-contained way, and we derive
some strengthenings. For example, we show that the problem remains undecidable
for a fixed probabilistic finite automaton with 11 states, where only the starting
distribution is given as input.
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1 Probabilistic finite automata (PFA)

A probabilistic finite automaton (PFA) combines characteristics of a finite automaton
and a Markov chain. We give a formal definition below. Informally, we can think of a
PFA in terms of an algorithm that reads a sequence of input symbols from left to right,
having only finite memory. That is, it can manipulate a finite number of variables with
bounded range, just like an ordinary finite automaton. In addition, a PFA can make coin
flips. As a consequence, the question whether the PFA arrives in an accepting state and
thus accepts a given input word is not a yes/no decision, but it happens with a certain
probability. The language recognized (or represented) by a PFA is defined by specifying
a probability threshold or cut-point λ. By convention, the language consists of all words
for which the probability of acceptance strictly exceeds λ.
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The PFA Emptiness Problem is the problem of deciding whether this language is
empty.

This problem is undecidable. There are two independent proofs of this theorem in the
literature, by Masakazu Nasu and Namio Honda [13] from 1969, and by Anne Condon
and Richard J. Lipton [5] from 1989, based on ideas of Rūsin, š Freivalds [8] from 1981.
The somewhat intricate history is described in Section 3.

We will present these two proofs, which use very different approaches, in Sections 5
and 4, respectively. The chains of reductions are shown in Figure 10 in Section 9.2. A self-
contained proof of the basic undecidability result (Proposition 2) takes about 3 pages, see
Section 5. The rest of the paper is devoted to different sharpenings of the undecidability
statement, where certain parameters of the PFA are restricted (Theorems 1–4).

1.1 Formal problem definition

Formally, a PFA is given by a sequence of stochastic transition matrices Mσ, one for
each letter σ from the input alphabet Σ. The matrices are d × d matrices if the PFA
has d states. The starting state is chosen according to a given probability distribution
π ∈ Rd. The set of accepting states is characterized by a 0-1-vector f ∈ {0, 1}d.

In terms of these data, the PFA Emptiness Problem with cut-point λ, whose unde-
cidability we will show, can be formally described as follows.

PFA Emptiness. Given a finite set of stochastic matrices M ⊂ Qd×d, a
probability distribution π ∈ Qd, and a 0-1-vector f ∈ {0, 1}d, is there a
sequence M1,M2, . . . ,Mm with Mj ∈ M such that

πTM1M2 . . .Mmf > λ ? (1)

The most natural choice is λ = 1
2 , but the problem is undecidable for any fixed (rational

or irrational) cut-point λ with 0 < λ < 1. We can also ask ≥ λ instead of > λ.
Our results, which we discuss in the next section, show that the PFA Emptiness

Problem remains undecidable under additional restrictions. Table 1 gives an overview of
the various assumptions and constraints on the data.

Theorem π |M| M ∈ M f acceptance criterion
Thm. 1 π = e2 2 input f = e1 any (Thm. 5)
Thm. 2a input 52 18× 18, positive f ∈ {0, 1}18 ≥ 1/2
Thm. 2b input 53 11× 11 f = e1 > 1/4

Thm. 3 input 2 572× 572 f = e1 > 1/4

Thm. 4a 0 < πq < 1 52 9× 9, positive input ≥ 1/2
Thm. 4b 0 ≤ πq ≤ 1 52 11× 11 input > 1/4

Table 1: The main characteristics of the data π, M, and f for different undecidable
versions of PFA Emptiness. The data that are not marked as input are fixed. The
vectors e1 and e2 are two standard unit vectors of appropriate dimension.

2 Statement of results

The PFA Emptiness Problem is undecidable even if the starting state is a fixed (deter-
ministic) state, and there is a single accepting state (different from the starting state).
In this case, π is a standard unit vector, consisting of a single 1 and otherwise zeros, and
likewise, f is a standard unit vector. The acceptance probability is found in a specific
entry (say, the upper right corner) of the product M1M2 . . .Mm.
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Theorem 1. For any fixed λ with 0 < λ < 1, the PFA Emptiness Problem (1) with
cut-point λ is undecidable, even when restricted to instances where M consists of only
two transition matrices, all of whose entries are from the set {0, 12 , 1}, and π and f are
standard unit vectors.

The proof is given in Section 4.
We mention that we don’t have to rely on a sharp distinction between ≤ λ and > λ,

because the PFA that is constructed in the proof exhibits is a strong separation property
(see Theorem 5 in Section 4.3.1, and Section 4.3.3): Either there is a sequence of matrices
for which the product πTM1M2 . . .Mmf exceeds 1− ε, or, for every sequence, the value
is below ε, where ε be chosen arbitrarily close to 0.

The remaining results deal with the case where all matrices in M are fixed.

Definition 1. By a binary fraction, we mean a rational number whose denominator is
a power of 2.

Theorem 2.

(a) There is a fixed set M′ of 52 stochastic matrices of size 18× 18 with positive entries
that are multiples of 1/247, and a fixed vector f ∈ {0, 1}18, for which the following
question is undecidable:

Given a probability distribution π ∈ Q18 whose entries are positive binary fractions,
is there a product M1M2 . . .Mm, with Mj ∈ M′ for all j = 1, . . . ,m, with

πTM1M2 . . .Mmf ≥ 1
2 ?

(b) There is a fixed set M of 53 stochastic matrices of size 11× 11, all of whose entries
are multiples of 1/248, for which the following question is undecidable:

Given a probability distribution π ∈ Q11 whose entries are binary fractions, is there
a product M1M2 . . .Mm, with Mj ∈ M for all j = 1, . . . ,m, such that

πTM1M2 . . .Mme1 >
1
4 ?

In other words, is the language recognized by the PFA with starting distribution π
and cut-point λ = 1

4 nonempty?

In part (b), e1 denotes the first unit vector in R11, meaning that there is a single
accepting state. The proof is given in section 7.5.

Part (b) of the theorem has the acceptance criterion > 1
4 , in line with the conventions

for a PFA. Part (a) deviates from this convention by using a weak inequality ≥ 1
2 , but this

is rewarded by allowing a stronger assumption: All matrices in M are strictly positive.
The distinction between the cut-point values 1

2 and 1
4 in parts (a) and (b) is inessential.

In fact, for all of the Theorems 2–4, the cut-point can be set to any fixed rational value
within some range, but then the assumption that all entries are binary fractions must be
given up, and the size of the matrices must sometimes be increased.

An easier version of Theorem 2b, but with matrices of size 12 × 12, is proved in
Section 6.3 (Proposition 5).

The input alphabet can be reduced to two symbols at the expense of the number of
states. The proof will be given in section 7.6.

Theorem 3. There is a PFA with 572 states, two input symbols with fixed transition
matrices, all of whose entries are multiples of 1/248, and with a single accepting state,
for which the following question is undecidable:

Given a probability distribution π ∈ Q572 whose entries are binary fractions, is the lan-
guage recognized by the PFA with starting distribution π and cut-point λ = 1

4 nonempty?
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More general acceptance. If each state q is allowed to have an arbitrary probability
fq as an “acceptance degree” instead of just 0 or 1, we can also turn things around and
fix the starting distribution π, but let the values fq be part of the input. The following
theorem will be proved in Section 7.3.

Theorem 4.

(a) There is a fixed set M′′′ of 52 positive stochastic matrices of size 9 × 9 and a fixed
starting distribution π, all with positive entries that are multiples of 1/244, for which
the following question is undecidable:

Given a vector f ∈ Q9 whose entries are binary fractions from the interval [14 ,
5
8 ], is

there a product M1M2 . . .Mm, with Mj ∈ M′′′ for all j = 1, . . . ,m, with

πTM1M2 . . .Mmf ≥ 1
2 ?

(b) There is a fixed set M′′ of 52 stochastic matrices of size 11× 11 and a fixed starting
distribution π, all of whose entries are multiples of 1/245, for which the following
question is undecidable:

Given a vector f ∈ Q11 whose entries are binary fractions from the interval [0, 1], is
there a product M1M2 . . .Mm, with Mj ∈ M′′ for all j = 1, . . . ,m, such that

πTM1M2 . . .Mmf >
1
4 ?

The distinction between parts (a) and (b) is analogous to Theorem 2. This time,
part (a) has an additional advantage: In addition to the positivity of all data in M, π,
and f , the dimension is reduced from 11 to 9.

Uniqueness of solutions. We mention that Theorems 2–4, can be modified such that
the solution of the constructed matrix product problem instances is unique if it exists,
see Section 7.4. In other words, we are guaranteed that the language recognized by the
PFA contains at most one word. This requires a slightly larger number of matrices with
larger denominators in its entries.

3 Preface: history and matrix products

Two proofs. The study of probabilistic finite automata was initiated by Michael Rabin
in 1963 [19]. While this was an active research area in the 1960’s, PFAs are less known
today. The first proof that PFA Emptiness is undecidable is due to Masakazu Nasu
and Namio Honda from 1969 [13, Theorem 21, p. 270]. It proceeds through a series
of lemmas that involve tricky constructions, showing that more and more classes of
languages, including certain types of context-free languages, can be recognized by a
PFA. Eventually, the undecidability of the PFA Emptiness Problem is derived from
Post’s Correspondence Problem (PCP, see Section 5.2). The proof is reproduced in the
final part of a monograph by Azaria Paz from 1971 [18, Theorem 6.17 in Section IIIB,
p. 190]. The presentation is quite close to the original, but very much condensed (and
it never mentions the PCP by name!). I suppose, as the result was still recent when the
book was written, it was the culmination point of the treatment. It appears as part of the
last theorem of the book, before a brief final chapter on applications and generalizations.
The result has often been erroneously attributed to Paz, although Paz gave credit to
Nasu and Honda (not very specifically, however) in the closing remarks of the chapter
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[18, Section IIIB.7, Bibliographical notes, p. 193]. A simpler version of this proof appears
in the textbook of Volker Claus from 1971 [4, Satz 28, p. 157] in German.

An independent proof was sketched by Anne Condon and Richard Lipton in 1989 [5].
It arose as an auxiliary result for their investigation of space-bounded interactive proofs.
Condon and Lipton based their reduction on the undecidability of the Halting Problem
for 2-Counter Machines (2CM), see Section 4 below.

Interlude: Other problems on matrix products. As the formulation (1) shows,
the PFA Emptiness Problem is about products of matrices that can be taken from a
given set M. There are other problems of this type, whose undecidability comes down
to PFA Emptiness: For example, the joint spectral radius of a set M of d× d matrices is

lim sup
m→∞

max
A1,A2,...,Am∈M

m
√
∥A1A2 . . . Am∥,

where ∥ · ∥ denotes an arbitrary norm. In 2000, Blondel and Tsitsiklis [1] proved, based
on the PFA Emptiness Problem, that it is undecidable whether the joint spectral radius
of a finite set of rational matrices exceeds 1.

This has recently been generalized in the analysis of the growth rate of bilinear sys-
tems, see Matthieu Rosenfeld [20] and Vuong Bui [2, 3]. The study of bilinear systems was
initiated for a special case of such a system in Rote [22] in the context of a combinatorial
counting problem. Corresponding decidability questions are discussed in Rosenfeld [21]
and Bui [3, Chapter 6]. These connections were my motivation for starting the investi-
gations about the PFA Emptiness Problem.

In fact, Theorem 4a, which strengthens the undecidability result of PFA Emptiness
to positive transition matrices, can be used to resolve a conjecture of Bui [3, Conjecture
6.7], by adapting the reduction of Blondel and Tsitsiklis [1]: Already for two positive
matrices, it is undecidable to check if their joint spectral radius is larger than 1.

. . . back to the proofs of PFA Emptiness: In 2000, Blondel and Tsitsiklis [1] could
arguably complain that a complete proof that PFA Emptiness is undecidable cannot be
found in its entirety in the published literature. Since then, Condon and Lipton’s proof
has been published in sufficient detail in other papers, for example by Madani, Hanks,
and Condon [10, Sec. 3.1 and Appendix A] in 2003. Moreover, in the publication list
on Anne Condon’s homepage, the entry for the Condon–Lipton conference paper [5]
from 1989 links to a 22-page manuscript, dated November 29, 20051. According to the
metadata, the file was generated on that date by the dvips program from a file called
“journalsub.dvi”. This manuscript also gives the proof in detail. Condon and Lipton’s
proof, which is based on ideas of Freivalds, is conceptually simple and illuminating. The
current article originated from lecture notes about this proof.

Meanwhile, I struggled with Nasu and Honda’s article and tried to penetrate through
its rendition in Paz [18], which proceeds through a cascade of definitions and lemmas that
stretch over the whole book. When I had already acquired a rough understanding of some
crucial ideas, I was lucky to find the undecidability proof in the textbook of Claus [4,
Satz 28, p. 157], which is considerably simplified. The result in [4] is weaker, because the
number of input symbols is the number k of string pairs of the PCP, whereas Nasu and
Honda establish undecidability already for an input alphabet of size 2. It is, however, easy
to reduce the input alphabet, see Lemma 3. (Nasu and Honda’s technique for achieving
this reduction is considerably more involved, see Section 10.3 and Appendix A.)

1https://www.cs.ubc.ca/~condon/papers/condon-lipton89.pdf, accessed 2024-05-01.

https://www.cs.ubc.ca/~condon/papers/condon-lipton89.pdf
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Overview. In this note, I try to present the best parts of both proofs in a self-contained
way. I use slightly different terminology, and some details vary from constructions found
elsewhere. I have preferred concrete formulations with particular values of the parame-
ters, illustrating them with examples. Generalizations to arbitrary parameters are treated
as an afterthought. I have made an effort to streamline the proofs. In particular, the com-
plete Nasu–Honda–Claus proof leading to the main undecidability result of Proposition 2
takes only 3 pages (Section 5, pp. 13–16), and I encourage the reader to jump directly
to this section. In later parts, I will incrementally introduce new ideas that decrease the
number of states or deal with variants of the problem, and the treatment becomes more
technical. For reference, I review the original Nasu–Honda proof in Appendix A.

Comparison of the proofs. The two proofs use different ideas, and they have different
merits: Condon and Lipton’s proof leads to an arbitrarily large gap between accepting
and rejecting probabilities (Theorem 5 and Section 4.3.3) and it is easy to restrict the
input alphabet to 2 symbols (Theorem 1). While the constructions in Condon and
Lipton’s proof use a high-level description of a PFA as a randomized algorithm, the
proof of Nasu and Honda encourages to work with the transition matrices directly, and
consequently, allows a finer control over the number of states. Moreover, by looking at
the reductions in detail, one can even show undecidability of the Emptiness Problem for
a fixed PFA with 11 states and an input alphabet of size 53, where the only variable
input is the starting distribution (Theorem 2b). This and similar sharpenings of the
undecidability statement are the contributions of this paper in terms of new results, and
we hope they might find other applications. A variation of the problem allows as few as
9 states (Theorem 4a).

The distinction between the two proof approaches is highlighted for a particular
example, the language { aibi# | i ≥ 0 }, in Section 9.1.

4 The Condon–Lipton proof via 2-counter machines

This section presents the proof of Condon and Lipton [5] from 1989, leading to Theorem 1.
A counter machine has a finite control, represented by a state q from a finite set Q,

and a number of nonnegative counters. There is a designated start state and a designated
halting state. Such a machine operates as follows. At each step, it checks which counters
are zero. Depending on the outcome of these tests and the current state q, it may
increment or decrement each counter by 1, and it enters a new state.

A counter machine with as few as two counters (a 2CM) is as powerful as a Turing
machine. This was first proved by Marvin Minsky [11] in 1961 and is by now textbook
knowledge [9, Theorem 7.9].2 The question whether such a 2-counter machine halts if it
is started with both counter values at 0 is undecidable.

Denoting by qi, li, ri the state and the values of the two counters after i steps, an
accepting computation with m steps can be written as follows:

l0, r0, q0, l1, r1, q2, l2, r2, q3, . . . , lm−1, rm−1, qm

2The usual way to simulate a Turing machine by a 2CM proceeds in three easy steps: (i) A two-sided
infinite tape can be simulated by two push-down stacks. (ii) A push-down stack can be simulated by
two counters, interpreting the stack contents as digits in an appropriate radix that is large enough to
accommodate the stack alphabet; two counters are necessary to perform multiplication and division
by the radix. (iii) Any number of counters can be simulated by two counters, representing the values
a, b, c, d, . . . of the counters as a product 2a3b5c7d . . . of prime powers. See https://en.wikipedia.org
/wiki/Counter_machine#Two-counter_machines_are_Turing_equivalent_(with_a_caveat), accessed
2024-04-13.

https://en.wikipedia.org/wiki/Counter_machine#Two-counter_machines_are_Turing_equivalent_(with_a_caveat)
https://en.wikipedia.org/wiki/Counter_machine#Two-counter_machines_are_Turing_equivalent_(with_a_caveat)
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To turn it into an input for a finite automaton, we encode it as a word A over the alphabet
Q ∪ {0, 1, #} with an end marker #:

A = 0l01r0q00l11r1q10l21r2q2 . . . 0lm1rmqm# (2)

There are some conditions for an accepting computation that a deterministic finite au-
tomaton can easily check: Does the word conform to this format? Do the state transitions
follow the rules? Is l0 = r0 = 0? Is the initial and the final (halting) state correct? We
refer to these checks as the formal checks.

The only thing that a finite automaton cannot check is the consistency of the counters,
for example, whether li+1 is equal to li, or li + 1, or li − 1, as appropriate.

For this task, we use the probabilistic capacities of the PFA. If there is an accepting
computation A of the form (2) for the counter machine, we feed this computation as
input to the PFA again and again. In other words, we input the word At for a large
enough t. We will set up the PFA in such a way that there is a strong separation of
probabilities: It will accept this input with probability at least 0.99. On the other hand,
if there is no accepting computation, then every input will be rejected with probability
at least 0.99.

4.1 The Equality Checker

As an auxiliary procedure, we study a PFA that reads words of the form aibj#. The goal
is to “decide” whether i = j. We call this procedure the Equality Checker. There are
three possible outcomes, “Different”, “Same”, or “Undecided”.

The PFA simulates a competition between two players D and S (“Different” and
“Same”, or “Double” and “Sum”), as shown in Figure 1. There are four unbiased coins of
different colors.

• Player D flips the red coin twice for each a and the orange coin twice for each b.

• Player S flips the blue coin and the green coin for each input symbol (a or b).

12

D

S

a a a a a a a a a a b bb b b b b bb b b b b bb b b b b bb b #

Figure 1: The coin flips for the input a10b22#

In addition, the PFA keeps track of the difference i−j modulo 12. If i ̸≡ j (mod 12),
the PFA declares the outcome to be “Different”.

If i ≡ j (mod 12), the outcome of the game is defined as follows. We call a coin lucky
if it always came up heads.

• If D has a lucky coin and S has no lucky coin, declare “Different”.

• If S has a lucky coin and D has no lucky coin, declare “Same”.

• Otherwise, declare “Undecided”.

Since i and j are usually large, lucky actually means extremely lucky. Thus, the first two
events are very rare, and the outcome will almost always be “Undecided”. The outcome
of the Equality Checker is illustrated in Figure 2 and described in the following lemma.



G. Rote — Probabilistic Finite Automaton Emptiness is undecidable 9

“Undecided”

“Same”

“Different”
decide

i = j :

very tiny

almost always

1
2

1
2

“Undecided”

“Same”

“Different”
decide

i ̸= j :

not so tiny

almost always

≤ 1
211

≥ 1− 1
211

Figure 2: The behavior of the Equality Checker, assuming i ≡ j (mod 12)

Lemma 1.

• If i = j, Pr[“Different”] = Pr[“Same”].

• If i ̸= j, Pr[“Different”] ≥ 211 · Pr[“Same”].

Proof. The first statement is clear, since each coin is flipped 2i times, and the situation
between D and S is symmetric.

Assume that i ̸= j. If i ̸≡ j (mod 12), then Pr[“Different”] = 1, and we are done.
Otherwise, |i− j| ≥ 12, and the smaller of i and j, say i, is at most i ≤ i+j

2 −6. Then
the red coin is flipped at most 2i ≤ i+ j − 12 times. Thus,

Pr[D has a lucky coin] ≥ Pr[the red coin was lucky] ≥ 1/2i+j−12 (3)

The blue and the green coin was each flipped i+ j times, and hence

Pr[S has a lucky coin] ≤
Pr[the blue coin was lucky] + Pr[the green coin was lucky] ≤ 2/2i+j (4)

The ratio Pr[D lucky]/Pr[S lucky] between (3) and (4) is at least 211. From each of
these probabilities, we have to subtract the (small) probability that both S and D have
a lucky coin, but this tilts the ratio between “Different” and “Same” even more in D’s
favor. Formally:

Pr[“Different”]
Pr[“Same”]

=
Pr[D lucky]− Pr[D lucky and S lucky]
Pr[S lucky]− Pr[D lucky and S lucky]

>
Pr[D lucky]
Pr[S lucky]

≥ 211

Since the algorithm only needs to count up to 11 and to maintain a few flags, it is
clear that it can be carried out by a PFA.3

3As an exercise, the reader may try to work out the required number of states. The outcomes should
be represented by a partition of the states into four classes, including a category “Rejected” for inputs
that don’t adhere to the format aibj#. A literal and naive implementation that simply keeps track of
every lucky and unlucky coin and sets a flag when a b is seen (this is the only thing that needs to
be remembered in order to check the syntax, except for a final state change on reading #) would need
25 × 12 + 4 = 388 states. By excluding impossible combinations of flags and with some other tricks like
merging states whose distinction is irrelevant (see Section 5.6), I managed to do it with 173 states. If
the PFA can trust that the input has the correct format, 108 states suffice.



G. Rote — Probabilistic Finite Automaton Emptiness is undecidable 10

4.2 Correctness Test: checking a 2CM computation

Recall that we wish to check a description of a computation of the form

A = 0l01r0q00l11r1q10l21r2q2 . . . 0ln1rnqn# .

The Equality Checker can be adapted to look at, say, two consecutive zero blocks 0li

and 0li+1 of a computation that represent the values of the counter l and check whether
li+1 = li. It can also be adapted to check li+1 = li + 1, or li+1 = li − 1, as appropriate
for the state qi and the results of the zero test of li and ri. The guarantees of Lemma 1
about the outcome remain valid.

We run independent Equality Checkers for each relation between two consecutive
values li and li+1, as well as ri and ri+1, of a computation A. In total, these are 2n
Equality Checkers. In the schematic drawing of Figure 3, the outcomes of the Equality
Checkers are shown as a row of boxes. Typically, most of them will be “Undecided”,
with a few interspersed “Same” and “Different” results (proportionally much fewer than
shown in the first example row). We are interested in the rare cases when all outcomes
are “Same”, or all “Different”.

U UU U UU U U UU U U U U UU U U NULL

INCORRECTD

SS S S SS S S SS S S SS S S SS S S S CORRECT

D DD D D DD D D DD D D DD D D DD D D D

SS

U UD SS

ri+1 6= ri

Figure 3: The Correctness Test for a computation A, and a hypothetical position where
equality does not hold.

The output of these Equality Checkers is aggregated into a Correctness Test as fol-
lows: We report the output “CORRECT” if all Equality Checkers report “Same”, and we
report the output “INCORRECT” if all Equality Checkers report “Different”. Otherwise,
we report “NULL”.

To compute this result, only four independent Equality Checkers have to run simulta-
neously: While reading the input, the current block lengths li and ri have to be compared
with the preceding and the next values. Thus, the computation can be implemented by
a PFA, with finitely many states. (Looking more carefully, one sees that actually, only
three Equality Checkers are active at the same time: For example, when reading 1ri , the
Equality Check between 0li−1 and 0li has already been completed.)

Lemma 2. Suppose that a computation A of the form (2) passes all formal checks.
If A represents an accepting computation,

Pr[“INCORRECT”] = Pr[“CORRECT”].

If A does not represent an accepting computation,

Pr[“INCORRECT”] ≥ 211 · Pr[“CORRECT”].

Proof. The probability for “CORRECT” is the product of the probabilities that each
Equality Checker results in “Same”, and analogously, for “INCORRECT” and “Different”.

If A represents an accepting computation, then all Equality Checkers are balanced
between “Same” and “Different”, and the result is clear. Otherwise, there is at least one
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position (marked by an arrow in Figure 3) where an error occurs, and the probability
for “Different” is at least 211 times larger than for “Same”, according to Lemma 1. In all
other Equality Checkers, the probability is either balanced or it gives a further advantage
for “Different”. Thus, the product of the probabilities is at least 211 times larger for “all
Different” than for “all Same”.

4.3 Third-level aggregation: processing the whole input

An Equality Checker aggregates the results of many coin flips into an output “Same”,
“Different”, or “Undecided”. We have further aggregated the result of many Equality
Checkers into a Correctness Test for the word A (with output “CORRECT”, “INCOR-
RECT”, or “NULL”). We add yet another level of aggregation in order to decide whether
the PFA should accept the input word. As mentioned, we feed the PFA with a huge
number of copies of an accepting computation A. Each copy of A is subjected to the
Correctness Test.

If we take the first definite result (“CORRECT” or “INCORRECT”) as an indication
whether to accept or reject the input, we get an acceptance probability close to 1/2 on a
valid input. (It is a little less than 1/2 because of the chance that the input runs out before
a definite answer is obtained.) On the other hand, if there is no accepting computation,
any input must consist of “fake” computations. The algorithm will recognize this and
reject with probability at least 1− 1/211.

4.3.1 Increasing the acceptance probability

We modify the rules to make the acceptance probability larger, at the expense of the
rejection probability for fake inputs. We determine the overall result as follows. As
soon as a Correctness Test yields “CORRECT”, we accept the input. However, in order
to reject the input, we wait until we have received 10 answers “INCORRECT” before
receiving an answer “CORRECT”. If the end of the input is reached before any of these
events happens, this also leads to rejection. Of course, we also reject the input right
away if any of the formal checks fails.

Theorem 5. If there is an accepting computation A for the 2-CM, then the PFA accepts
the input At, for sufficiently large t, with probability more than 0.99.

If there is no accepting computation, then the PFA rejects every input with probability
at least 0.99.

Proof. If A is an accepting computation, the distribution between “CORRECT” and “IN-
CORRECT” is fair. Thus, the probability of receiving 10 outputs “INCORRECT” before
receiving an output “CORRECT” is 1/210 < 0.001. To this we must add the probability
of rejection because the input runs out before receiving an output “CORRECT”, but this
can be made arbitrarily small by increasing t.

If there is no accepting computation, then “INCORRECT” has an advantage over
“CORRECT” by a factor at least 211. If the input runs out before a decision is reached,
this is in the favor of rejection. Otherwise, the probability of receiving 10 outputs “IN-
CORRECT” before receiving an output “CORRECT” is at least(

211

211 + 1

)10

=

(
1− 1

211 + 1

)10

≥ (1− 1
2000)

10 ≈ 1− 1
200 = 0.995.

If the 2CM halts, there is an accepting computation A. (A is unique since the 2CM
is deterministic.) In this situation, the language recognized by the PFA with cut-point
λ = 1

2 contains the set {At | t ≥ t0 } for some large t0. Otherwise, the language is empty.
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As a consequence, checking whether the language accepted by a PFA is empty is
undecidable.

4.3.2 Who is afraid of small probabilities?

As an exercise, we estimate the necessary number t of repetitions of A. Suppose that
the accepting computation A has m transitions. Then the counter values li and ri are
also bounded by m. The probability of the outcome “Same” in the Equality Checker is
roughly 2−m, and the probability that all 2m Equality Checkers for the computation A
yield “Same”, leading to the answer “CORRECT”, is roughly (2−m)2m = 4−m2 .

We want the probability that none of t experiments gets the answer “CORRECT” to
be ≤ 0.009 (the difference between the bound 0.001 > 1/210 established in the proof of
Theorem 5 and the target tolerance 0.01):

(1− 4−m2
)t ≤ 0.009

Since 1− 4−m2 ≈ exp(−4−m2
), we need t to be roughly 5 · 4m2 .

This dependence on the runtime m of the 2-counter machine does not appear so
terrible; however, when considering the overhead of simulating a Turing machine (see
footnote 2), the dependence blows up to a triply-exponential growth in terms of the
runtime of a Turing machine.

4.3.3 Boosting the decision probabilities

We can boost the decision probabilities beyond 0.99 to become arbitrarily close to 1. We
simply run an odd number of copies of the PFA simultaneously and take a majority vote.

Alternatively, we can adjust the parameters. The number K of times that we wait
for “INCORRECT” before rejecting the input can be increased above K = 10. As a
compensation, we have to increase the modulus G (we have chosen G = 12) by which
i and j are compared in the Equality Checker. The acceptance probability in case of a
valid input increases to become arbitrarily close to 1−1/2K , and the rejection probability
for an invalid input is at least (1− 1/2G−1)K .

In summary, for any ε > 0 we can construct the PFA in such a way that it either
accepts some word with probability at least 1 − ε, or there is no word that it accepts
with probability larger than ε. This does not mean that there cannot be words whose
acceptance probability is between those ranges, for example close to 1/2. Candidates for
such words are the words At where t is slightly too small.4

4.4 Summing up the proof of Theorem 1

We have described the algorithm for the PFA verbally as a probabilistic algorithm, keep-
ing in mind the finiteness constraints of a finite automaton. Eventually, this algorithm
must be translated into a set of states and transition matrices. Theorem 1 puts some
extra constraints on the PFAs whose emptiness is undecidable.

Theorem 1. For any fixed λ with 0 < λ < 1, the PFA Emptiness Problem (1) with
cut-point λ is undecidable, even when restricted to instances where M consists of only
two transition matrices, all of whose entries are from the set {0, 12 , 1}, and π and f are
standard unit vectors.

4In fact, it is impossible to avoid the neighborhood of 1/2 except for very simple languages: Rabin [19,
Theorem 3] showed in 1963 that a gap interval (p1, p2) of positive length, such that the acceptance
probability never falls in this gap, can only exist if, for a cut-point λ in this interval, the recognized
language is regular, see also [18, Theorem 2.3 in Section IIIB, p. 160] or [4, §3.2.2, pp. 112–115].
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Proof. The extra constraints can be easily fulfilled:
(a) We encode the input A with a fixed-length binary code for the original input

alphabet Q∪{0, 1, #}. This means that the set M can be restricted to only two matrices.
(Lemma 3 in Section 7.6 below treats this transformation more formally.)

(b) By padding the input, we can ensure that the PFA algorithm needs to toss at most
one coin per input symbol, and thus the entries of the matrices can be restricted to 0, 12 , 1.
In the algorithm as described, only 16 coin tosses are necessary per input character (four
coins per Equality Checker running at any point in time). Thus we simply pad each
codeword in the binary code with 15 zeros.

(c) Our algorithm does not need to make any coin flips before reading the first symbol.
Thus, we can fix the starting state to be a deterministic state.

(d) Finally, a single accepting state is enough: As soon as the algorithm has decided
to accept the input, it will stay committed to this decision. The accepting state is an
absorbing state, and there is another absorbing state for rejection. In terms of vectors,
both the starting distribution π and the characteristic vector f of accepting states are
standard unit vectors. (Since the empty input is not accepted, the accepting state is
distinct from the starting state, and we can arrange the states so that the acceptance
probability is found in the upper right corner of the product M1M2 . . .Mm.)

4.5 History of ideas

Condon and Lipton credit the main ideas of their proof to Rūsin, š Freivalds [8], who
studied the emptiness problem for probabilistic 2-way finite automata in 1981 (unaware
of Nasu and Honda’s earlier work). In particular, Freivalds developed the idea of a
competition between two players to recognize the language { aibi | i ≥ 0 } (Section 4.1),
and aggregating the results of these competitions into “macrocompetitions” (Section 4.2).
A 2-way automaton can move the input head back and forth over the input, and thus
process the input as often as it wants. Freivalds claimed that the emptiness problem for
such automata is undecidable [8, Theorem 4]; he gives only a hint that the reduction
should be from the PCP (Post’s Correspondence Problem, see Section 5.2), without any
details how to connect “macrocompetitions” with the PCP. I have not been able to come
up with an idea how the proof would proceed.

For our present case of a (1-way) finite automaton, the repeated scan of the input is
not possible; it is replaced by providing an input which consists of many repetitions of
the same word.

5 The Nasu–Honda–Claus proof via Post’s Correspondence
Problem

This section presents the proof of Nasu and Honda [13] from 1969 in the version of Claus
[4] from 1971, leading to the undecidability results in Propositions 1–4, which are then
strengthened to Theorems 2–4 in the rest of the paper.

5.1 The binary PFA

For a string u ∈ {0, 1}∗, we denote by (u)2 the numeric value of u when it is interpreted
as a binary number, and we write |u| for the length of u. We define the stochastic matrix

B(u) :=

 1− (u)2
2|u|

(u)2
2|u|

1− (u)2+1

2|u|
(u)2+1

2|u|

 , for example B(00110) =

(
26
32

6
32

25
32

7
32

)
.
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Note that the top right entry (u)2
2|u|

of this matrix is the value 0.u when interpreted as a
binary fraction; for example, 6

32 = (0.00110)2. We will continue to use the convenient
notation 0.u for this. These matrices fulfill the remarkable multiplication law

B(u)B(u′) = B(u′u), (5)

which can be confirmed by a straightforward calculation. Note the reversed order of the
factors.

5.2 Post’s Correspondence Problem (PCP)

In the Post Correspondence Problem (PCP), we are given a list of pairs of strings
(v1, w1), (v2, w2), . . . , (vk, wk). The problem is to decide if there is a nonempty sequence
a1a2 . . . am of indices ai ∈ {1, 2, . . . , k} such that

va1va2 . . . vam = wa1wa2 . . . wam

This is one of the well-known undecidable problems.5 It is no restriction to fix the
alphabet to {0, 1}, since every alphabet can be encoded in binary.

Φ0 Φ1

Figure 4: The binary automaton with acceptance probability ϕ

Let us look at the first sequence of strings v1, . . . , vk. We construct a PFA with input
alphabet {1, 2, . . . , k} and two states Φ0 and Φ1, see Figure 4. The transition matrices
are Mi = B(vi). We take Φ0 as the starting state and Φ1 as the accepting state. Then
the acceptance probability of the word a = a1a2 . . . am is found in the upper right corner
of the product Ma1Ma2 . . .Mam−1Mam of the corresponding transition matrices, and it
follows from (5) that this is

ϕ(a) = 0.vamvam−1 . . . va2va1 . (6)

We can build an analogous PFA for the other sequence of strings w1, . . . , wk, and
then the acceptance probability of a will be

ψ(a) = 0.wamwam−1 . . . wa2wa1 . (7)

Due to the swapping of the factors in the multiplication law (5), the strings are con-
catenated in (6) and (7) in reverse order, but this cosmetic change does not affect the
undecidability of the PCP. Thus the PCP comes down to the question whether there is
a nonempty word a with equal acceptance probabilities ϕ(a) = ψ(a) in the two PFAs.

We have to be careful because of the trailing zeros issue: Trailing zeros don’t change
the probabilities (6) and (7). An easy way to circumvent this problem is to add a 1 after
every symbol of every string, thus doubling the length of the strings. This ensures that
there are no trailing zeros that could go unnoticed.

5A reduction from the Halting Problem for Turing Machines to a closely related problem, the Modified
Post Correspondence Problem (see Section 5.7) is described in detail in Sections 6.1–6.2.
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5.3 Testing equality of probabilities

For recognizing the words a with ϕ(a) = ψ(a), there is a construction of a PFA that does
this job. It is based on the identity

1
2ϕψ + 1

4(1− ϕ2) + 1
4(1− ψ2) = 1

2 − 1
4(ϕ− ψ)2. (8)

We will build a PFA for each term ϕψ, 1−ϕ2, 1−ψ2 on the left, and we will mix them in
the right proportion. As the right-hand side shows, we have then (almost) achieved our
goal: The acceptance probability achieves its maximum value 1

2 only for ϕ(a) = ψ(a).

(Φ0,Ψ0) (Φ0,Ψ1)

(Φ1,Ψ0) (Φ1,Ψ1)

Figure 5: Acceptance probability ϕψ

It is straightforward to build a PFA whose acceptance probability is the product
ϕ(a)ψ(a), see Figure 5: This PFA simulates the two PFAs for v1, . . . , vk and for w1, . . . , wk

simultaneously and accepts if both PFAs accept. The resulting product PFA has four
states {Φ0,Φ1} × {Ψ0,Ψ1}. Similarly, we can build a PFA with acceptance probability
ϕ(a)2: We simulate two independent copies of the PFA for v1, . . . , vk. This leads again to
four states. To get acceptance probability 1−ϕ(a)2, we complement the set of accepting
states. The PFA for 1−ψ(a)2 follows the same principle. Finally, we mix the three PFAs
in the ratio 1

2 : 1
4 : 1

4 , as shown in Figure 6a.
The dash-dotted arrows from the start state to three “local start states” inside the

square boxes denote random transitions that should be thought of as happening before
the algorithm reads its first input symbol. In the PFA, such a transition is actually
carried out in combination with the subsequent transition for the input symbol inside
one of the square boxes, as part of the transition out of the start state when reading the
first input symbol.

The introduction of the new start state has the beneficial side effect of eliminating
the empty word ϵ from the recognized language. The empty word would otherwise satisfy
the equation ϕ(a) = ψ(a), because ϕ(ϵ) = ψ(ϵ) = 0.

In total, we have now 13 states, 7 of which are accepting. As an intermediate unde-
cidability result, we can thus state:

Proposition 1. The following problem is undecidable:
Given a finite set M of stochastic matrices of size 13 × 13 with binary fractions as

entries, is there a product M1M2 . . .Mm, with Mi ∈ M for all i = 1, . . . ,m, such that
the sum of the 7 rightmost entries in the top row is ≥ 1

2?
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1− ϕ2

1− ψ2

ϕψ

start

(a)

1
2

1
4

1
4

1− ϕ2

1− ψ2

ϕψ

qA

qR

start

(b)

1
4

1
8

1
8

1
16

7
16

γ

1− γ

1

Figure 6: (a) Acceptance probability 1
2 − 1

4(ϕ− ψ)2. (b) 1
4 − 1

8(ϕ− ψ)2 + ε

5.4 Achieving strict inequality

Proposition 1 almost describes a PFA, except that the convention for a PFA to recognize
a word is strict inequality (> λ). We thus have to raise the probability just a tiny bit,
without raising any of the values < λ to become bigger than λ.

Since all probabilities are rational, this can be done as follows, see Figure 6b. In our
case, all transition probabilities within the square boxes are multiples of some small unit

γ := 4−max{|vi|,|wi|:1≤i≤k}.

The original PFA is entered with probability 1/2. The transition probabilities from
the start state into the original PFA are now multiples of γ/8. (Remember that such a
transition consists of a transition from the start state along a dash-dotted arrow combined
with a transition inside a square box.) We create a new accepting state qA that is
chosen initially with probability 1/16. Whenever a symbol is read, the PFA stays in that
state with probability γ, and otherwise it moves to some absorbing state qR. With the
remaining probability 7/16, we go to qR directly.

The new part contributes ε := 1
16γ

|a| to the acceptance probability of every nonempty
word a. From the old part we have 1

4 − 1
8(ϕ − ψ)2, and we know that this probability

is a multiple of 1
8γ

|a| = 2ε. Thus, if this probability is less than 1/4, it cannot become
greater than 1/4 by adding ε. If it was equal to 1/4 (i.e., if a is a solution to the PCP),
it becomes greater than 1/4.

Proposition 2. It is undecidable whether the language recognized by a PFA with 15
states with cut-point λ = 1/4 is empty.

This PFA has a fixed starting state.
The cut-point can be changed to any positive rational value less than 1/2 by adjusting

the initial split probability between the original PFA of Figure 6a and the states qA and
qR. Cut-points between 1/2 and 1 can be achieved at the expense of adding another
accepting state.
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According to Neary [14], the PCP is already undecidable with as few as five string
pairs. Therefore, the size of the input alphabet in Proposition 2, or the number of
matrices M in Proposition 1 can be restricted to 5.

5.5 History of ideas

The binary automaton (Section 5.1) and its generalization to other radices than 2 appears
already in Rabin’s 1963 paper [19], and it is credited to E. F. Moore. The basic m-ary
automaton processes single digits from {0, . . . ,m − 1}. The binary automaton matrix
in Section 5.1 for variable-length input words u is the product of several such single-
digit matrices. Instead of binary automata, Nasu and Honda [13] use ternary (triadic)
automata with digits {0, 1, 2}, of which only {1, 2} are used in order to avoid the trailing
zeros issue.

The equality test for probabilities (constructing a PFA to accept words a with ϕ(a) =
ψ(a) from two PFAs with acceptance probabilities ϕ(a) and ψ(a), Section 5.3), including
the method of adding a small probability to change ≥ λ into > λ (Section 5.4) is given
in Nasu and Honda [13, Lemma 11, pp. 259–260]. The authors credit H. Matuura, Y.
Inagaki, and T. Hukumura for the key ideas (a technical report and a conference record,
both from 1968 and in Japanese) [13, p. 261].

Claus already observed [4, p. 158, remark after the proof of Satz 28] that the con-
struction leads to a bounded number of states. The details have been worked out above.

As I haven’t been able to survey the rich literature on probabilistic automata, I may
very well have overlooked some earlier roots of these ideas.

Nasu and Honda [13], in a footnote to Theorem 21, their main result about the
undecidability of PFA Emptiness, write that “it reduces to a statement in p. 150” of
a paper of Marcel Schützenberger [23] from 19636 [13, footnote 6 on p. 270, referring
to the remark before Lemma 12, p. 261]. In that paper, Schützenberger derives some
undecidability results, using, among others, the PCP, but I am not able to see the
connection.

Nasu and Honda prove the undecidability of two more questions in connection with
the language recognized by a PFA: whether the language is regular, or whether the
language is context-free [13, Theorem 22, p. 270], see Appendix A.1.

5.6 Saving two states by merging indistinguishable states

In the PFA with acceptance probability ϕ(a)2, where we simulate two independent copies
of the same PFA, we can see that the states (Φ0,Ψ1) and (Φ1,Ψ0) of Figure 5 become
indistinguishable when ϕ = ψ. Thus, they can be merged into one state, denoted by
{Φ0,Φ1}, and we reduce the number of states by one, see Figure 7a–b.

More precisely, if we denote the transition probabilities of the original binary automa-
ton by

B(u) =

Φ0 Φ1

Φ0
(
p00 p01

)
,

Φ1 p10 p11

the 3-state PFA has the following transition matrix:

(Φ0,Φ0) {Φ0,Φ1} (Φ1,Φ1)

(Φ0,Φ0) p200 2p00p01 p201
{Φ0,Φ1}

p00p10 p01p10 + p00p11 p01p11


(Φ1,Φ1) p210 2p10p11 p211

(9)

6https://monge.univ-mlv.fr/~berstel/Mps/Travaux/A/A/1963-4ElementaryFamAutomataSympT
hAut.pdf

https://monge.univ-mlv.fr/~berstel/Mps/Travaux/A/A/1963-4ElementaryFamAutomataSympThAut.pdf
https://monge.univ-mlv.fr/~berstel/Mps/Travaux/A/A/1963-4ElementaryFamAutomataSympThAut.pdf
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(Φ0,Φ0) (Φ0,Φ1)

(Φ1,Φ0) (Φ1,Φ1)

(Φ0,Φ0) {Φ0,Φ1}

{Φ1,Φ0} (Φ1,Φ1)

(a)

(b)

1− ϕ2

1− ψ2

ϕψ

qA

qR

start

(c)

1
4

1
8

1
8

1
16

7
16

γ

1− γ

1

Figure 7: (a) Acceptance probability 1−ϕ2 with 4 states (b) with 3 states. (c) Acceptance
probability 1

4 − 1
8(ϕ− ψ)2 + ε with 13 states

When the reduced automaton is in the state {Φ0,Φ1}, we can think of the original 4-state
automaton being in one of the states (Φ0,Φ1) or (Φ1,Φ0), each with probability 1/2.

For the PFAs in Propositions 1 and 2, the number of states can thus be reduced
by 2, as stated in the following proposition. Figure 7c illustrates the automaton for
Proposition 3b. We will show some explicit examples of transition matrices for this
automaton below, in Section 6.5.

Proposition 3.

(a) The following problem is undecidable:

Given a finite set M of stochastic matrices of size 11 × 11 with binary fractions as
entries, is there a product M1M2 . . .Mm, with Mi ∈ M for all i = 1, . . . ,m, such
that the sum of the 5 rightmost entries in the top row is ≥ 1

2?

(b) It is undecidable whether the language recognized by a PFA with 13 states with cut-
point λ = 1/4 is empty.

5.7 Saving the starting state by using the Modified Post Correspon-
dence Problem

We can eliminate the starting state by using the Modified Post Correspondence Problem
(MPCP). It differs from the PCP in one detail: The pair (v1, w1) must be used as the
starting pair, and it cannot be used in any other place. In other words, the solution must
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satisfy the constraints a1 = 1, and ai > 1 for i = 2, . . . ,m. The MPCP is often used
as an intermediate problem when reducing the Halting Problem for Turing machines to
the PCP, and then it takes some extra effort to reduce the MPCP to the PCP, see for
example [9, Lemma 8.5] or [24, p. 189]. In our situation, the MPCP is actually the more
convenient version of the problem.

The idea is to apply the transition for the first letter a1 right away, and use the
resulting distribution on the states as the starting distribution π.

There is still a small technical discrepancy: In the formulas (6) and (7) for the
acceptance probability, the first letter of the sequence a determines the last pair of
strings to be concatenated. Thus we must reverse all strings vi and wi and turn the
MPCP into a reversed MPCP, where the last pair in the concatenation is prescribed to
be the pair (v1, w1):

The Reversed Modified Post Correspondence Problem (RMPCP).

We are given a list of pairs of strings (v1, w1), (v2, w2), . . . (vk, wk) over the
alphabet {0, 1} such that v1 and w1 end with 1. The problem is to decide if
there is a sequence a2, . . . , am of indices ai ∈ {2, . . . , k} such that

vamvam−1 . . . va2v1 = wamwam−1 . . . wa2w1 .

This is of course just a trivial variation of the MPCP. The translation of (6) and (7) can
now be applied directly. Moreover, the trailing zeros issue disappears, since v1 and w1

end with 1. This extra condition can be easily fulfilled by appending a 1 to v1 and w1 if
necessary.

Proposition 4. It is undecidable whether the language recognized by a PFA with 12
states with cut-point λ = 1/4 is empty.

Proof. The above construction that has led to Proposition 3b gives a set of 13 × 13
matrices such that the index sequence a1a2 . . . am is a solution of the PCP if and only if

eT1Ma1Ma2 . . .Mam−1Mamf >
1
4 ,

where e1 is the first unit vector (1, 0, . . . , 0) and f is a vector with 6 zeros and 7 ones.
For every other index sequence, the value of the expression is < 1

4 .
For the reversed MPCP the first matrix Ma1 = M1 is specified. Thus the product

eT1M1 has a fixed value πT , and we can replace it by this vector:

πTMa2 . . .Mam−1Mamf

This is the expression for the acceptance probability starting from an initial probability
distribution π. The remaining matrix product is not allowed to use M1, and this is easily
ensured by removing M1 from M.

The original PFA goes from the start state to the 12 other states and never returns to
the start state; thus we can eliminate the start state and only use the 12×12 submatrices
for the remaining states.

We mention that with cut-point 1
2 and the weak inequality ≥ 1

2 as acceptance criterion
instead of > 1

4 , we don’t need the extra states qA and qR, and the number of states is
reduced to 10.
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6 Fixing the set of matrices by using a universal Turing
machine

We can achieve stronger and more specific results by tracing back the undecidability
of the PCP to the Halting Problem. In particular, we will look at a universal Turing
machine and derive from it a “universal” PCP. A universal Turing machine is a fixed
Turing Machine that can simulate any other Turing machine. In particular, the Halting
Problem for such a machine is undecidable: Given some initial contents of the tape,
does the machine halt? Sticking to one fixed machine allows us to choose a fixed set of
matrices that represents the PFA. The only variation is the starting distribution π, or,
in another variation, the vector f of output values.

6.1 Constructing an MPCP for a Turing machine

In order to adhere to the usual practice, we describe the translation to the MPCP and
not to the reversed MPCP. (For applying the RMPCP, the strings simply have to be
reversed.) Also, we temporarily use a general alphabet for the string pairs of the MPCP.
In the end, this alphabet will be encoded into the binary alphabet {0, 1} in order to be
translated into a PFA.

The word va1va2 . . . vam = wa1wa2 . . . wam is built as a concatenation of successive
configurations of the Turing machine, separated by the marker #. The words are built
incrementally in such a way that the partial word v1va2 . . . van lags one step (of the Turing
machine) behind the partial word w1wa2 . . . wan . Figure 8 shows an example. Following

. . . # ␣ b e q2 c ␣ # ␣ b q5 e e ␣ # ␣ b b q5 e ␣ # ␣ b b b q5 ␣ # ␣ b b b a q3 ␣ #

. . . # ␣ b e q2 c ␣ # ␣ b q5 e e ␣ # ␣ b b q5 e ␣ # ␣ b b b q5 ␣ # ␣ b b b a q3 ␣ # ␣ ␣ b b b q1 a d #

. . . # ␣ ␣ e bH a # ␣ ␣ e bH # ␣ ␣ eH # ␣ ␣H # ␣H #H # #

. . . # ␣ ␣ e bH a # ␣ ␣ e bH # ␣ ␣ eH # ␣ ␣H # ␣H #H # #

Figure 8: Top: Building two partial words v1va2 . . . van (upper row in each box) and
w1wa2 . . . wan (lower row) for a Turing machine with transition rules (q2, c, e, L, q5),
(q5, e, b, R, q5), (q5, ␣, a, R, q3), (q3, ␣, d, L, q1), among others. For better visibility, the
correspondences involving the separator # are highlighted. Near the right end, the
padding pair (#, ␣#␣) is used once in order to produce extra blanks at the ends of the
tape, preventing the state symbol q3 from becoming adjacent to the marker #. Bottom:
After the Turing machine has halted, the tape is cleared and the common word is com-
pleted.

the common convention, a string such as #␣beq2c␣# denotes the configuration where the
Turing machine is in state q2, the tape contains the symbols bec padded by infinitely
many blank symbols on both sides (of which two are present in the string), and the
Turing machine is positioned over the third occupied cell, the one with the symbol c.
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The transition rules of the Turing machine are translated into pairs (vi, wi), as will
be described below. The important feature of this translation is shown in Figure 9: The
input for the Turing machine is translated into the starting pair (v1, w1). In the above
translation to a PFA, leading to Proposition 4, the starting pair (v1, w1) affects only the
starting distribution π, whereas the transition matrices Mi depend only on the rules of
the Turing machine, which, for a universal Turing machine, are fixed!

TM input tape u

starting pair (v1, w1)

starting distribution π

TM rules

other string pairs (vi, wi)

matrices M ∈ M

Turing machine (TM):

MPCP:

PFA:

Figure 9: How the PFA is constructed from a Turing machine via an MPCP

6.2 List of string pairs of the MPCP

Since we want a MPCP with as few pairs as possible, we review the construction of the
MPCP from the Turing machine in detail. We follow the construction from Sipser [24,
Section 5.2, Part 5, p. 187] to ensure that the configurations are padded with sufficiently
many blank symbols. This eliminates the need to deal with special cases when the Turing
machine reaches the “boundary” of the tape in the representation as a finite string.

Let Γ denote the tape alphabet including the blank symbol ␣, and let Q denote the
set of states of the Turing machine. The strings vi and wi of the MPCP use the alphabet
Γ ∪Q ∪ {#, H} with two extra symbols: a separation symbol # and a halting symbol H.

• If the input word for the Turing machine is u ∈ {0, 1}∗, we define the starting pair
(v1, w1) = (#, #␣q0u␣#), where q0 is the start state of the Turing machine.

The other pairs (vi, wi) are as follows:

• For copying from the shorter word to the more advanced word, we have the pairs
(s, s) for all s ∈ Γ.

• We have another copying pair (#, #), and the padding pair (#, ␣#␣). We are allowed
to (nondeterministically) emit an additional blank symbol at both ends of the
configuration.

• For each right-moving rule (q, s, s′, R, q′), the pair (qs, s′q′). (Such a rule means that
when the Turing machine is in state q and reads the tape symbol s, it overwrites
the symbol s with s′, moves one step to the right on the tape, and changes to
state q′.)

• For each left-moving rule (q, s, s′, L, q′) and for each t ∈ Γ, the pair (tqs, q′ts′).

• For each halting rule (q, s,−), the pair (qs,H). The character H represents the
fact that the machine has halted.

• For each s ∈ Γ, the erasing pairs (Hs,H) and (sH,H). The halting symbol absorbs
all symbols on the tape one by one.
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• Finally, the finishing pair (H##, #). This is the only way how the two words can
come to a common end.

In total, these are 3|Γ| + 3 pairs, plus |Γ| pairs for each left-moving rule, plus one pair
for each right-moving or halting rule, plus the starting pair.

6.3 Using a universal Turing machine

We have looked at the parameters of various universal Turing machines in the literature
in order to see which ones give the smallest number of pairs (vi, wi) for our PCP. The
best result is obtained from the machine U15,2 of Neary and Woods [15, Section 3.5].7

Its tape alphabet, including the blank symbol, has size |Γ| = 2. It has 15 states, not
counting the halting state. It has 15 left-moving rules, 14 right-moving rules, and 1
halting rule. In terms of PCP pairs, left-moving rules are more costly than right-moving
rules, but we have the freedom to swap left-moving with right-moving rules by flipping
the Turing machine’s tape. We have to switch to the nonstandard convention of starting
the Turing machine over the rightmost input character, but this is easily accomplished
in the construction of the starting pair (v1, w1). Thus, with 14 left-moving rules and 16
right-moving and halting rules, we get 3×2+3+14×2+16 = 53 pairs, plus the starting
pair (v1, w1) that encodes the input.

In some sense, this can be regarded as a universal MPCP: all pairs except the starting
pair are fixed.

We can now establish a weaker version of Theorem 2b, with matrices of dimension
12× 12 instead of 11× 11.

Proposition 5. There is a fixed set of 53 stochastic matrices M′′′′ of dimension 12×12,
whose entries are multiples of 2−22, and a fixed 0-1-vector f ∈ {0, 1}12, for which the
following question is undecidable:

Given a probability distribution π ∈ Q12 whose entries are binary fractions, is there
a product M1M2 . . .Mm, with Mi ∈ M′′′′ for all i = 1, . . . ,m, such that

πTM1M2 . . .Mmf >
1
4 ?

In other words, is the language recognized by the PFA with starting distribution π and
cut-point λ = 1

4 nonempty?

Proof. We specialize the proof of Proposition 4 to the current setting. The important
point, as discussed above and shown in Figure 9, is that the matrices in M depend only
on the string pairs that reflect the rules of the universal Turing machine U15,2, which are
fixed, and we have already calculated that there are 53 of these matrices.

We must not forget that the symbols of the alphabet Γ ∪ Q ∪ {#, H}, in which the
string pairs (vi, wi) of the MPCP are written, have to be encoded somehow into the
binary alphabet {0, 1} in order to define the matrices of the PFA, and we have to ensure
that the codes of v1 and w1 end with 1, for example by letting the code for # end with 1.

There is one technicality that needs to be resolved. The quantity γ was required to
be a common divisor of the matrix entries, and it depends on the maximum lengths |vi|
and |wi| of the input strings. However, the strings v1 and w1 depend on the input tape,
and thus, their lengths |v1| and |w1| cannot be bounded in advance. (The remaining
strings depend only on the Turing machine.) The solution is to carry out the imagined
first transition (which is not encoded into a transition matrix in M, but determines the
starting distribution π) with a sufficiently small value of γ, namely γ1 = 4−max{|v1|,|w1|},
where the lengths |v1| and |w1| are measured in the binary encoding. The other transitions

7see also http://mural.maynoothuniversity.ie/12416/, with incorrect page numbers, however

http://mural.maynoothuniversity.ie/12416/
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from the state qA can be carried out with the fixed value γ that is sufficient for those
entries. Table 2 shows the starting distribution π resulting from this construction. Since
π is allowed to depend on the input, we have solved the problem.

state q πq state q πq state q πq

(Φ0,Ψ0)
1
4(1− 0.v1)(1− 0.w1) (Φ0,Φ0)

1
8(1− 0.v1)

2 {Ψ0,Ψ1} 1
4(1− 0.w1)0.w1

(Φ0,Ψ1)
1
4(1− 0.v1)0.w1 {Φ0,Φ1} 1

4(1− 0.v1)0.v1 (Ψ1,Ψ1)
1
8(0.w1)

2

(Φ1,Ψ0)
1
4 · 0.v1(1− 0.w1) (Φ1,Φ1)

1
8(0.v1)

2 qA
1
16γ1

(Φ1,Ψ1)
1
4 · 0.v1 · 0.w1 (Ψ0,Ψ0)

1
8(1− 0.w1)

2 qR
1
2 − 1

16γ1

Table 2: Starting probabilities π for Proposition 5

We have now established the existence of 53 fixed matrices M′′′′ and a finishing
0-1-vector f for which the decision problem of Proposition 5 is undecidable.

6.4 An efficient code

In order to say something about the entries of these matrices, we have to be more specific
about the way how the alphabet Γ ∪Q ∪ {#, H} is encoded. The strings vi and wi that
come from the Turing machine rules are actually quite short: they have at most 3 letters.
More precisely, they consist of at most one “state” symbol from Q ∪ {H}, plus at most
two letters from the tape alphabet Γ∪{#}. The Turing machine U15,2 has |Q| = 15 states
and a tape alphabet of size |Γ| = 2.

In this situation, a variable-length code is more efficient than a fixed-length code. We
can use 5-letter codes of the form 0**** for the 15 states plus the halting state H. This
leaves the 3-letter codes 1** for the 3 symbols Γ∪{#}, leading to string lengths bounded
by 5 + 3 + 3 = 11. In the binary automaton, the transition probabilities are therefore
multiples of 2−11. Since each box carries out two binary automata simultaneously, the
transition probabilities are multiples of 4−11.

With a weak inequality like ≥ 1
2 instead of > 1

4 as acceptance criterion, we don’t need
the extra states qA and qR, and the size of the matrices for which Proposition 5 holds
can be reduced to 10× 10.

As mentioned after Proposition 2, the cut-point can be changed to a different value;
in that case, the constraint that the input distribution π consists of binary fractions must
be abandoned. Since the change only affects the very first transition, the fixed matrix
set M remains unchanged.

The above variable-length code seems to be pretty efficient, but it wastes one of the
four codewords 1**. By looking at the actual rules of the machine U15,2 and fiddling
with the code, it might be possible to improve the power 22 in the denominator of the
binary fractions.

6.5 Example matrices

For illustration, we compute some matrices of the set M′′′′ explicitly. We use the binary
code # .

= 101, ␣ .
= 100. The copying pair (␣, ␣) .

= (100, 100) is then translated into the
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block diagonal matrix

M (␣,␣) =



1

64

 16 16 16 16
12 20 12 20
12 12 20 20
9 15 15 25

 0 0 0 0

0
1

64

(
16 32 16
12 32 20
9 30 25

)
0 0 0

0 0
1

64

(
16 32 16
12 32 20
9 30 25

)
0 0

0 0 0 1
222

1− 1
222

0 0 0 0 1


,

where the rows and columns correspond to the states as they are ordered in Table 2.8

We use a bar in the notation M (␣,␣) to remind us of the fact that we are dealing with
the reversed MPCP, and therefore the strings should be reverse (which, in this case, has
no effect because we have only one-letter strings).

Let us look at the erasing pair (#␣, #). Here the reversal does have an effect, and the
strings are actually (␣#, #) .= (100 101, 101). (The codewords don’t have to be reversed.)
With these data, the matrix M (#␣,#) looks as follows:



1

512

 81 135 111 185
54 162 74 222
78 130 114 190
52 156 76 228

 0 0 0 0

0
1

4096

(
729 1998 1369
702 1988 1406
676 1976 1444

)
0 0 0

0 0
1

64

(
9 30 25
6 28 30
4 24 36

)
0 0

0 0 0 1
222

1− 1
222

0 0 0 0 1



Finally, as our most elaborate example, we consider a left-moving rule of the Turing
machine U15,2 from [15]: (q9, ␣, ␣, L, q1). This was originally a right-moving rule, but
has been converted into a left-moving rule by flipping the tape. It produces two string
pairs, since |Γ| = 2. One of these pairs is (bq9␣, q1b␣), where b is the other letter of
the tape alphabet besides ␣. Coding this letter as b .

= 110 and the states in the most
straightforward way as q1

.
= 00001 and q9

.
= 01001, we get, after reversal, the binary

string pair (␣q9b, ␣bq1)
.
= (100 01001 110, 100 110 00001) and the following transition

8Since vi = wi = ␣ in this case, we have a chance to compare the straightforward 4× 4 construction
of the probability ϕ2 (the upper left block) with the condensed representation with 3 states, in the two
middle blocks.
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matrix:

1

222

786126 1151282 915762 1341134
785180 1152228 914660 1342236
785295 1150065 916593 1342351
784350 1151010 915490 1343454

 0 0 0 0

0
1

222

(
894916 2084984 1214404
893970 2084828 1215506
893025 2084670 1216609

)
0 0 0

0 0
1

222

(
690561 2022654 1481089
689730 2022268 1482306
688900 2021880 1483524

)
0 0

0 0 0 1
222

1− 1
222

0 0 0 0 1


7 Output values instead of a set of accepting states

In the expression for the acceptance probability in (1), π and f appear in symmetric
roles. We will now fix the starting distribution π, and in exchange, we allow more
general values fq.

In the classic model of a PFA, f is a 0-1-vector: Once the input has been read and
all probabilistic transitions have been made, acceptance is a yes/no decision. The state
that has been reached is either accepting or not.

We can think of a general value fq as a probability in a final acceptance decision,
after the input has been read. Another possibility is that fq represents a prize or value
that that is gained when the process stops in state q, as in game theory. Then fq does
not need to be restricted to the interval [0, 1]. In this view, instead of the acceptance
probability, we compute the expected gain (or loss) of the automaton. Following Carl
Page [17], who was the first to consider this generalization, we call f the output vector
and fq the output values. Mathematically, it make sense to take the outputs even from
some (complex) vector space (quantum automata?).

In our results, the values fq are restricted to [0, 1], and in fact, they have an inter-
pretation as probabilities.

Turakainen [26] considered the most general setting, allowing arbitrary positive or
negative entries also for the matrices M ∈ M and the vectors π and f . He showed that
the condition (1) with these more general data does not define a more general class of
languages than a classic PFA, see also [4, §3.3.2, pp. 120–126] or [18, Proposition 1.1 in
Section IIIB, p. 153].

7.1 Saving one more state by maintaining four binary variables

The PFA of Figure 7c mixes the PFAs for the three terms ϕψ, 1 − ϕ2, and 1 − ψ2 by
deciding in advance which sub-automaton they should enter. As an alternative approach
when arbitrary output values fq are allowed, we can delay this decision to the end, when
we decide whether to (probabilistically) accept the input, and this will allow us to further
reduce the number of states by one.

The idea is to maintain four independent binary state variables Φ′,Φ′′,Ψ′,Ψ′′ through-
out the process. Such a pool of variables is sufficient for any of the terms ϕψ, 1 − ϕ2,
and 1 − ψ2. This would normally require 24 = 16 states. As discussed above, the com-
binations (Φ′

0,Φ
′′
1) and (Φ′

1,Φ
′′
0) need not be distinguished and can be merged into one

state, denoted by {Φ0,Φ1}, and similarly for the Ψ variables. Thus, the overall number
of states is reduced from 16 to 3 × 3 = 9 combinations q, one less than the 10 states in
the three square boxes of Figure 7c.
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As we will see, we have to set the nine entries f̂q of the output vector to the following
values.

(Ψ′
0,Ψ

′′
0) {Ψ0,Ψ1} (Ψ′

1,Ψ
′′
1)

(Φ′
0,Φ

′′
0) 1/2 1/2 1/4

{Φ0,Φ1} 1/2 5/8 1/2
(Φ′

1,Φ
′′
1) 1/4 1/2 1/2

(10)

Beware that this is an output vector f̂q ∈ Q9, which has been arranged in 3× 3 tabular
form only for convenience. These output values result from the contributions to the three
terms 1

2ϕψ, 1
4(1 − ϕ2), 1

4(1 − ψ2) of the overall acceptance probability as shown below,
where the states are arranged in the same matrix form as in (10):

1

2

0 0 0
0 1/4 1/2
0 1/2 1

+
1

4

1 1 1
1 1 1
0 0 0

+
1

4

1 1 0
1 1 0
1 1 0

 =

1/2 1/2 1/4
1/2 5/8 1/2
1/4 1/2 1/2


The fractional values in the first matrix appear for the following reason. We have reduced
the states for generating the acceptance probability ϕ2 from 4 to 3 by merging two states
into one. Thus, when the PFA is, for example, in the state ({Φ0,Φ1}, (Ψ′

1,Ψ
′′
1)), it is

“really” in one of the two states (Φ′
0,Φ

′′
1,Ψ

′
1,Ψ

′′
1) or (Φ′

1,Φ
′′
0,Ψ

′
1,Ψ

′′
1), each with a share of

50%. If we consider the product ϕψ as built, say, from the conjunction (Φ′
1,Ψ

′
1), ignoring

the variables Φ′′ and Ψ′′, only the second of these two states should lead to acceptance,
and therefore we get the fractional output value 1/2.

We can change the cut-point (for the original automaton, without the extra states
qA and qR) from λ = 1/2 to any rational value λ strictly between 0 and 1 by modifying
the output values f̂q in (10): By scaling both f̂ and λ down by the same factor, λ can
be brought arbitrarily close to 0. On the other hand, by applying the transformation
x 7→ 1−α(1− x) for some constant 0 < α ≤ 1 to f̂ and λ, the cut-point λ can be moved
arbitrarily close to 1 [18, Proposition 1.4 of Section IIIB, p. 153].

7.2 Making all transition probabilities positive

By using an appropriate binary code, we can ensure that all transition matrices are
strictly positive. Rabin calls such PFAs actual automata and studies their properties [19,
Sections IX–XII, p. 242–245], see also [4, §3.2.3, pp. 115–118].

One can easily check that the transition matrix B(u) for the binary automaton is
positive except when the string u consists only of zeros or only of ones. With only 3
symbols Γ ∪ {#} using the 4 codewords 1**, we can avoid the all-ones codeword 111 (as
in the code used for the examples in Section 6.5).

A state symbol other than H never appears alone in a string vi or wi. Thus, we
can use the codeword 00000 for one of the original states, and thereby ensure that the
transition matrices B(vi) and B(wi) are always positive. As discussed earlier, the encodes
strings ui and vi have at most 11 bits, and hence the matrix entries are multiples of 2−11.
The entries of the 3×3 transition matrix (9) are sums and products of entries of the 2×2
matrices B(vi) or B(wi), respectively, and are therefore positive multiples of 2−22. Each
entry of the 9× 9 transition matrix is obtained by multiplying appropriate entries of the
two 3 × 3 matrices, and is hence a positive multiple of 2−44. (To say it more concisely,
the matrix is the Kronecker product, or tensor product, of the two 3× 3 matrices.)

More generally, the entries are multiples of γ2 = 16−max{|vi|,|wi|:1≤i≤k}.
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7.3 Fixing everything except the output vector, proof of Theorem 4

We will from now on use superscripts like M i or M (vi,wi) or M (vi,wi) for the matrices that
are associated to the string pairs (vi, wi), in order to distinguish them from the notation
Mj in the theorem below, where they are numbered in the order in which they are used
in the matrix product of the solution.

For the version with fixed starting distribution, we use the original (unreversed)
MPCP, where the first string pair in the solution, and hence the last matrix in the
matrix product, is fixed.

We can save a matrix by observing that the last string pair in the PCP is also known:
It is the finishing pair (H##, #), and like the starting pair, this pair is used nowhere else.
(This is the only pair, besides the starting pair, that has a different number of #’s in the
two components, and it is the only possibility how the string v1va2 . . . van can catch up
with the string w1wa2 . . . wan .)

For clarity, we formulate the (unreversed) Doubly-Modified Post Correspondence
Problem (2MPCP), with two special pairs: a starting pair (v1, w1) and a finishing pair
(v2, w2):

We are given a list of pairs of strings (v1, w1), (v2, w2), . . . (vk, wk) over the
alphabet {0, 1} such that v2 and w2 end with a 1. The problem is to decide
if there is a sequence a2, . . . , am−1 of indices ai ∈ {3, . . . , k} such that

v1va2va3 . . . vam−1v2 = w1wa2wa3 . . . wam−1w2 .

The PFA starts deterministically in the state (Φ′
0,Φ

′′
0,Ψ

′
0,Ψ

′′
0). Thus, the 2MPCP has a

solution if and only if the following inequality can be solved:

eT1M
2Mam−1 . . .Ma2M1f̂ ≥ 1

2 , (11)

where f̂ is the output vector defined in (10). The matrix M2 =M (H##,#) comes from the
finishing pair (H##, #) and is fixed, and M1 depends on the input tape u of the Turing
machine. With the substitutions

πT := eT1M
2,

f :=M1f̂ ,

we can remove M2 from the set of matrices M, and this directly leads to part (a) of the
following theorem:

Theorem 4.

(a) There is a fixed set M′′′ of 52 positive stochastic matrices of size 9 × 9 and a fixed
starting distribution π, all with positive entries that are multiples of 1/244, for which
the following question is undecidable:

Given a vector f ∈ Q9 whose entries are binary fractions from the interval [14 ,
5
8 ], is

there a product M1M2 . . .Mm, with Mj ∈ M′′′ for all j = 1, . . . ,m, with

πTM1M2 . . .Mmf ≥ 1
2 ?

(b) There is a fixed set M′′ of 52 stochastic matrices of size 11× 11 and a fixed starting
distribution π, all of whose entries are multiples of 1/245, for which the following
question is undecidable:

Given a vector f ∈ Q11 whose entries are binary fractions from the interval [0, 1], is
there a product M1M2 . . .Mm, with Mj ∈ M′′ for all j = 1, . . . ,m, such that

πTM1M2 . . .Mmf >
1
4 ?



G. Rote — Probabilistic Finite Automaton Emptiness is undecidable 28

Proof. For part (a), everything has already been said except for observing that the entries
of f = M1f̂ are in the interval [14 ,

5
8 ] because M1 is a stochastic matrix and the entries

of f̂ are in that interval.
For part (b), we add the same two states qA and qR as in Figure 6b (p. 16) and

Figure 7c, with γ = 2−44. Initially, we select the original starting state (Φ′
0,Φ

′′
0,Ψ

′
0,Ψ

′′
0)

and the state qA each with probability 1
2 . Denoting by π0 the corresponding vector with

two 1
2 entries, the initial distribution π is then defined as

πT0M
2 =: πT , (12)

and its entries are multiples of 1
245

.
The matrix M1 is constructed from the starting pair (v1, w1), and it uses the value

γ1 = 1/16max{|v1|,|w1|}, (13)

where |v1| and |w1| are the lengths after the binary encoding.
The output values of the extra states are defined as f̂qA = 1/16 and f̂qR = 0. Since

the remaining output values in f̂ are multiples of 1/8, the value f̂qA = 1/16 is small
enough to ensure that it does not turn an acceptance probability < 1

4 into a probability
> 1

4 .

To give a concrete example, here is the transition matrix M (#␣,#) ∈ M′′ for the erasing
pair (#␣, #) .= (101 100, 101):9

1

218



3600 12000 10000 15840 52800 44000 17424 58080 48400 0 0
2400 11200 12000 10560 49280 52800 11616 54208 58080 0 0
1600 9600 14400 7040 42240 63360 7744 46464 69696 0 0
3420 11400 9500 15624 52080 43400 17820 59400 49500 0 0
2280 10640 11400 10416 48608 52080 11880 55440 59400 0 0
1520 9120 13680 6944 41664 62496 7920 47520 71280 0 0
3249 10830 9025 15390 51300 42750 18225 60750 50625 0 0
2166 10108 10830 10260 47880 51300 12150 56700 60750 0 0
1444 8664 12996 6840 41040 61560 8100 48600 72900 0 0

0 0 0 0 0 0 0 0 0 1
226 218− 1

226

0 0 0 0 0 0 0 0 0 0 218


7.4 Uniqueness of the solution

In both parts of Theorem 4, we can achieve that every problem instance that we construct
has a unique solution if it has a solution at all. This comes at the cost of increasing the
number of matrices and relaxing the bound on the denominators. The Turing machine
itself is deterministic. The MPCP looses the determinism through the padding pair
(#, ␣#␣). We omit this pair and replace it by other word pairs. In particular, if a state
symbol q is adjacent to the separation symbol # and is in danger of “falling off” the tape,
this must be treated as if a ␣ were present. This leads to one extra string pair for each
state plus one extra string pair for each left-moving rule.10

Since, in addition to the starting pair, also the finishing pair (v2, w2) is fixed in the
2MPCP, the solution to the 2MPCP, and hence the matrix product M1 . . .Mm, becomes

9If the strings vi and wi weren’t reversed between the MPCP and the RMPCP, the upper left 9× 9
block would be the Kronecker product of the two middle 3×3 blocks in the corresponding 12×12 matrix
M (#␣,#) ∈ M′′′′ of Proposition 5 for this pair, which was shown on p. 24 in Section 6.5. If we substitute
this Kronecker product as it stands, we get the matrix M (␣#,#) ∈ M′′ of the opposite erasing pair.

10In contrast to the construction found in most textbooks, we cannot assume that the Turing machine
never moves to the left of its initial position, since we want to keep our Turing machine small.
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unique. (In the normal PCP or MPCP, a solution could be extended by appending
arbitrary copying pairs.)

We emphasize that this uniqueness property holds only for output vectors f that are
constructed according to the proof of Theorem 4. It is obviously impossible to achieve
uniqueness for every vector f ∈ [0, 1]d.

One can check that uniqueness carries over, with the same provisos, to the other
theorems of this section.

7.5 Eliminating the output vector, proof of Theorem 2

We will transfer these results to the classic setting with a set of accepting states instead of
an output vector f . The set of accepting states will be fixed, and the input should come
through the starting distribution π. Consequently, the Turing machine input should be
coded, via the first matrix in the matrix product, into the starting distribution π. Hence
we reverse the PCP again, as in Sections 5.7 and 6. We construct a set M of 53 positive
9 × 9 matrices, including a matrix for the finishing pair (H##, #), in the same way as
in the proof of Theorem 4a, but with reversed strings. We refrain from formulating the
Doubly-Modified Reversed Post Correspondence Problem (2MRPCP). We just observe
that, in the expression for the acceptance probability

eT1M
2Mam−1 . . .Ma2M1f̂ (14)

from (11), the matrix that depends on the input tape u of the Turing machine now
appears as the matrix M2 at the beginning of the product, and the matrix that comes
from the finishing pair (H##, #) is the last matrix M1. Then, πT := eT1M

2 is the variable
input to the problem, and f := M1f̂ is some fixed vector of output values fq ∈ [14 ,

5
8 ].

The acceptance probability becomes

πTMam−1 . . .Ma2f.

What remains to be done is to get rid of the fractional values in the output vector f . We
will use two methods to convert a PFA with an output vector f with entries from [0, 1] to
into one with a 0-1 vector f . The first method is a general method that does not change
the recognized language. It doubles the number of states, and it maintains positivity.11

This is formulated as part (a) in the following theorem. As an alternative, we will start
with the construction of Theorem 4b and we will take the liberty to change the recognized
language by adding a symbol to the end of every word. This works without adding extra
states beyond the states qA and qR that are already there, and it will lead to part (b) of
the following theorem.

Theorem 2.

(a) There is a fixed set M′ of 52 stochastic matrices of size 18× 18 with positive entries
that are multiples of 1/247, and a fixed vector f ∈ {0, 1}18, for which the following
question is undecidable:

Given a probability distribution π ∈ Q18 whose entries are positive binary fractions,
is there a product M1M2 . . .Mm, with Mj ∈ M′ for all j = 1, . . . ,m, with

πTM1M2 . . .Mmf ≥ 1
2 ?

11There is a method in the literature with the same effect, but it squares the number of states, see [26,
proof of Theorem 1, p. 308], [4, Step V, pp. 123–124], or Section 10.2.
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(b) There is a fixed set M of 53 stochastic matrices of size 11× 11, all of whose entries
are multiples of 1/248, for which the following question is undecidable:

Given a probability distribution π ∈ Q11 whose entries are binary fractions, is there
a product M1M2 . . .Mm, with Mj ∈ M for all j = 1, . . . ,m, such that

πTM1M2 . . .Mme1 >
1
4 ?

In other words, is the language recognized by the PFA with starting distribution π
and cut-point λ = 1

4 nonempty?

Proof. (a) We interpret the output values fq as probabilities. If we arrive in state q after
reading the input, we still have to make a random decision whether to accept the input.
The idea is to generate the randomness for making this acceptance decision already when
each symbol is read, and not afterwards, in the end. Every state q of the original PFA
comes now in two versions, q+ and q−. The transition probabilities to q+ are multiplied
by fq, and the transition probabilities to q− are multiplied by 1 − fq. The accepting
states are the states q+.

In terms of matrices, this can be expressed as follows. Let M be written in column
form as

M =
(
m1 m2 · · · m9

)
.

This is converted to the following 18× 18 matrix for the set M′, arranging the states in
the order q+1 , . . . , q

+
9 , q

−
1 , . . . , q

−
9 :(

f1m1 f2m2 · · · f9m9 (1− f1)m1 (1− f2)m2 · · · (1− f9)m9

f1m1 f2m2 · · · f9m9 (1− f1)m1 (1− f2)m2 · · · (1− f9)m9

)
Similarly, the starting distribution πT = (π1, π2, . . . , π9) is replaced by (f1π1, f2π2, . . . ,
f9π9, (1−f1)π1, (1−f2)π2, . . . , (1−f9)π9). The matrix consists of two equal 9×18 blocks,
in accordance with the fact that the distinction between q+ and q− has no influence on
the next transition.

As the output values fq ∈
{
1
4 ,

1
2 ,

5
8

}
are multiples of 1

8 , all resulting probabilities are
multiples of 1

247
.

(b) The idea is to add to the set of matrices a matrix M∞ that is necessarily the last
matrix in any solution, without imposing this as a constraint.

We start by constructing a set M′′′ of 53 matrices of size 11× 11, including a matrix
for the finishing pair (H##, #), in the same way as in the proof of Theorem 4b, but with
reversed strings. The states qA and qR are now already present.

We want to emulate the acceptance criterion of Theorem 4b:

πTM1M2 . . .Mmf̂ >
1
4 (15)

Here, the variable vector πT as given by (12) has already swallowed the matrix M2

representing the input tape of the Turing machine; However, f̂ is the fixed output vector
constructed in the proof of Theorem 4b with the values (10) extended by the values
f̂qA = 1/16 and f̂qR = 0 for the two additional states. We do not yet merge the last
matrix Mm with f̂ .

To the 53 matrices M′′′, we add an extra “final” transition matrix M∞. We declare
qA to be the unique accepting state. In the transition M∞, each state q goes to qA with
probability f̂q, and to qR with the complementary probability 1 − f̂q. This rule applies
equally to the state qA, which goes to itself with probability f̂qA = 1/16, and otherwise
goes to qR. The state qR remains an absorbing state.
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It is clear that adding M∞ at the end of the product (15) and accepting in state qA
has the same effect as accepting with the output vector f̂ . However, a priori we are not
sure that M∞ really comes at the end of the product.

The acceptance probability of our PFA is given as

πTM1M2 . . .Mm−1MmeqA , (16)

where the vector of output values is the unit vector eqA corresponding to the accepting
state qA.

We will now argue that in any product of this form with matrices Mj from M′′′ ∪
{M∞} that is larger than 1

4 , the matrix M∞ must appear in the last position Mm, and
it cannot appear anywhere else.

If we never use the matrix M∞ in the matrix product, the only chance of reaching qA
comes from starting in qA at the beginning and staying there, and the probability for this
is negligibly small. (Even the empty matrix product is not a solution: Remember that
πT is defined in (12) as πT = πT0M

2, where M2 comes from the string pair representing
the input of the Turing machine. Already in M2, the probability γ1 of remaining in qA,
as given by (13), very small.)

On the other hand, when we use the matrix M∞, the PFA will arrive in state qA
or qR. Any further matrices after M∞ reduce the probability of staying in qA by a factor
1/16 or smaller, hence they will not lead to solutions.

Thus we can assume without loss of generality that M∞ is the last matrix Mm in
the product, and that it is used only in that position. The acceptance probability is
then the same as if the output vector f̂ had been used instead of M∞. (Algebraically,
M∞eqA = f̂ .)

Thus, the expression (16) has the same value as (15), and it is already of the correct
form for our claim. The vector eqA decribes a unique accepting state. As mentioned, we
have changed the language recognized by the PFA by adding the symbol corresponding
to M∞ to the end of each word, but this does not affect the emptiness question.

We can save one matrix by remembering that the last string pair in the PCP solution is
always the finishing pair (v2, w2) = (H##, #), and this is used nowhere else. We therefore
impose without loss of generality that the corresponding matrix M2 = M

(H##,#) is the
last matrix Mm−1 in the product before M∞, and this matrix is used nowhere else.
Accordingly, we replace M2 and M∞ by one matrix Mnew = M2M∞, reducing the
number of matrices back to 53. Since the entries of M∞ are multiples of 1

16 = 1
24

, the
entries of the new matrix are multiples of 1

248
.

This modification also ensures that the solution is unique: Since we now have enforced
that the matrix product (15) ends with M2M∞, in term of the original set of matrices,
we are only considering solutions of the MPCP that end with (H##, #), and these are
unique.

7.6 Reduction to 2 input symbols, proof of Theorem 3

We have already used the reduction to a binary alphabet in the proof of Theorem 1
(Section 4.4), but now we will look at an explicit construction.

Lemma 3. Consider a PFA A with input alphabet Σ of size k = |Σ| > 2, and let
τ : Σ∗ → {a, b}∗ be a coding function using the codewords b, ab, aab, . . . , ak−2b, ak−1.

Then there is a PFA A′ with input alphabet {a, b} that accepts each word τ(u) with the
same probability as A accepts u ∈ Σ∗. Words that are not of the form τ(u) are accepted
with probability 0.

The number of states is multiplied by k − 1 in this construction.
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Proof. Suppose A has transition matrices M1, . . . ,Mk corresponding to the k input sym-
bols. We construct a PFA A′ that does the decoding in a straightforward way. It
maintains the number of a’s that have been seen in a counter variable i in the range
0 ≤ i ≤ k−2. In addition, it maintains the state q ∈ Q of the original PFA A. Thus, the
state set of A′ is Q′ = {0, . . . , k − 2} ×Q. Initially, q is chosen according to the starting
distribution of A, and i = 0.

• If A′ reads the letter b, it changes the state q to a random new state according to
the transition matrix Mi+1, and resets i := 0.

• If A′ reads an a and i < k − 2, it increments the counter: i := i+ 1.

• If A′ reads an a and i = k − 2, it changes the state q to a random new state
according to Mk, and resets i := 0.

An input is accepted if i = 0 and q is an accepting state of A.
The transition matrices for the symbols a and b can be written in block form as

M ′
a =



0 I
0 I

0
. . .

0 I
Mk 0

 and M ′
b =



M1 0 · · · 0

M2 0 · · · 0

M3 0 · · · 0
...

...
...

Mk−1 0 · · · 0

 .

The construction works more generally for any prefix-free code. The set of states Q′

will have the form K ×Q, where the states in K do the decoding.
Applying this to Theorem 2b, we get:

Theorem 3. There is a PFA with 572 states, two input symbols with fixed transition
matrices, all of whose entries are multiples of 1/248, and with a single accepting state,
for which the following question is undecidable:

Given a probability distribution π ∈ Q572 whose entries are binary fractions, is the lan-
guage recognized by the PFA with starting distribution π and cut-point λ = 1

4 nonempty?

The number 572 = 52 × 11 of states is an overcount. For example, the absorbing
state qR can be left as is and need not be multiplied with 52.

If we are more ambitious, we can achieve that all matrix entries are from the set
{0, 12 , 1}, as in Theorem 1, instead of multiples of 2−48. We apply the technique from
item (b) in the proof of that theorem (Section 4.4): We simply add a block of 47 padding
a’s after every codeword.12

12We can roughly estimate the required number of states as follows. Let |Q| = 11 be the number of
states of the original automaton, and k = |Σ| = 53 its number of symbols. For each combination in Q×Σ,
whenever the algorithm in Lemma 3 asks to “change the state q to a random new state according to Mi”,
we have to set up a binary decision tree of height 48 to determine the next state. We can think of this
tree as determining which of |Q| intervals [0, c1], (c1, c2], (c2, c3], . . . , (c|Q|−1, 1] contains a random number
0.x1x2 . . . x48, by looking at the successive bits xj of that number. This tree has at most (|Q| − 1)× 47
nodes where the outcome has not been decided: each such node lies on a root-to-leaf path to some interval
endpoint ci. In addition we need up to 47 × |Q| states for the situation when the next state has been
decided and the algorithm only needs to count to the end of the padding block. In total, this gives an
upper bound of (k−1)|Q|+ |Q|k(|Q|−1)47+47|Q| states, which is 572+47×11×(53×10+1) = 275 099.
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8 Alternative universal Turing machines

Our proofs rely on particular small universal Turing machines. In the literature, some
“universal” Turing machines with smaller numbers of states and symbols are proposed.
We review these machines and discuss whether they could possibly be used to decrease
the number of matrices in Theorems 2–4.

8.1 Watanabe, weak and semi-weak universality

A universal Turing machine UW with 3 symbols and 7 states was published by Shigeru
Watanabe [28] in 1972, but I haven’t been able to get hold of this paper. According to
the survey [30, Fig. 1], this is a semi-weakly universal Turing machine. In semi-weakly
and weakly universal machines, the empty parts of the tape on one or both sides of the
input are initially filled with some repeating pattern instead of uniformly blank symbols.
Such a repeating pattern can be easily accommodated in the translation to the MPCP
by modifying the padding pair of strings (#, ␣#␣).

In the worst case, the 21 rules contain only one halting rule and the remaining 20 rules
are balanced between left- and right-moving rules. Then, with 10 left-moving rules, 1
halting rule, 10 right-moving rules, and |Γ| = 3, we get 3×3+3+10×3+11 = 53 matrices,
the same number as from the machine U15,2 of Neary and Woods. Any imbalance in the
distribution of left-moving and right-moving rules would allow to reduce the number of
matrices in Theorem 2b from 53 to 51 or less.

This speculative improvement depends on an assumption, which would need to be
verified. According to [30, Section 3.1], Watanabe’s weak machine UW simulates other
Turing machines T directly. What would be most useful for us is that the periodic
pattern that initially fills the tape of UW is a fixed pattern that is specified as part of
the definition of UW and does not depend on T or its input.

If this is the case, we can use them for our construction, where only the first (or last)
pair of the PCP should depend on the input.

We could even accommodate some weaker requirement, namely that the periodic
pattern depends on the Turing machine T that is being simulated, as long as it is inde-
pendent of the input u to that Turing machine. In that case we could let UW simulate
a fixed universal Turing machine T = U0 (in the usual, standard, sense), and then the
periodic pattern would also be fixed.

8.2 Wolfram–Cook, rule 110

Some small machines are based on simulating a particular cellular automaton, the so-
called rule-110 automaton of Stephen Wolfram. These machines are given in [6, Fig. 1,
p. 3] and [16], see also the survey [30]. The machines of [16] have as few as 6 states and 2
symbols, or 3 states and 3 symbols, or 2 states and 4 symbols. The rule-110 automaton
was shown to be universal by Cook [6], see also Wolfram [29, Section 11.8, pp. 675–
689]13. The universality of the rule-110 automaton comes from the fact that rule 110 can
simulate cyclic tag systems. Tag systems are a special type of string rewriting systems,
where symbols are deleted from the front of a string, and other symbols are appended
to the end of a string, according to certain rules. Cyclic tag systems are a particularly
simple variation of tag systems. Tag systems as well as cyclic tag systems are known to
be universal, because they can simulate Turing machines.

The primary reason why these small Turing machines are not useful for our purposes
is that, like in the weakly universal machines of Section 8.1, the repeating patterns by

13on-line at https://www.wolframscience.com/nks/p675--the-rule-110-cellular-automaton/

https://www.wolframscience.com/nks/p675--the-rule-110-cellular-automaton/
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which the ends of the tape are filled are not fixed, but depend on the tag system in a
complicated way, see [29, Note on initial conditions, p. 1116]14. As a consequence, we
don’t have a fixed replacement for the padding pair (#, ␣#␣). Thus we cannot use them
for the proof of Theorems 2 and 4, where only the first (or last) pair of the PCP should
depend on the input. As in the previous section, one could start with a universal Turing
machine U0, construct from it a fixed cyclic tag system, and hope to obtain fixed periodic
padding patterns. This remains to be investigated.

There is another reason why we cannot use these machines directly: they have no
provision for halting, or for otherwise determining some set of inputs that they accept.15

This is natural in the context of a cellular automaton, which performs an infinite process.
However, a cyclic tag system, which the automaton supposedly simulates, does have
a way of terminating, namely when the string on which it operates becomes empty.
Fortunately, Cook gives a few hints about termination and about undecidable questions
for the corresponding Turing machines: Questions about their behavior, such as “Will this
sequence of symbols ever appear on the tape?”, are undecidable [6, Note [7], p. 38]. More
specifically, Cook mentions some particular undecidable questions for so-called glider
systems. Some consequences of this discussion for Rule 110 are briefly touched upon in
[6, Section 4.6, p. 37]: So another specific example of an undecidable question for Rule 110
is: Given an initial middle segment, will there ever be an F? Here, an F is a particular
type of “glider”, a cyclically repeated sequence of patterns that moves at constant speed
through the cellular automaton as long as it does not meet other patterns or irregularities.
I suppose the presence of such a glider could be detected by the occurrence of a particular
pattern F̂ in the cellular automaton, or on the Turing machine tape. If this is indeed the
case, such a criterion could be translated into a string pair (F̂ ,H) that introduces the
halting symbol H, and this would lead to small undecidable instances of the MPCP.

8.3 Wolfram’s 2,3 Turing machine

An even smaller Turing machine with only 2 symbols and 3 states was proposed by
Wolfram [29, Section 11.12, p. 709]17 and was shown to be universal, in a certain sense,
by Alex Smith [25]18. As above in Section 8.2, the proof performs a reduction from cyclic
tag systems, and again, this machine does not halt. Smith showed that the 2,3 Turing
machine can simulate cyclic tag systems. Unfortunately, it is not addressed at all what
happens when the operation of the simulated cyclic tag system terminates. Hypothesizing
that such a halting computation would lead to some repeating cycle of movements of
the Turing machine, such a configuration could be recognized by the occurrence of a
certain pattern on the tape, and an appropriate PCP pair (vi, wi) could be created that
introduces the halting state H.

14https://www.wolframscience.com/nks/notes-11-8--initial-conditions-for-rule-110/
15Curiously, while the survey of Woods and Neary [30] carefully distinguishes semi-weak and weak

universality, the fundamental characteristic whether the Turing machine has a provision for halting is
treated only as an afterthought.16

16Incidentally, in Turing’s original article [27] from 1937, where Turing machines were first defined, the
good machines are those that don’t halt or go into a loop (the circle-free ones), because they are capable
of producing an infinite sequence of zeros and ones on dedicated “output cells” on the tape, forming
the fractional bits of a computable number. The question about his machines that Turing proved to be
undecidable is: Does this machine ever print a 0?

17on-line at https://www.wolframscience.com/nks/p709--universality-in-turing-machines-a
nd-other-systems/

18The reader should be warned that the journal version [25] is partly incomprehensible, since the
proper horizontal alignment in the tabular presentation of the Turing machines has been destroyed in
the typesetting process. Understandable versions can be found elsewhere on the web, see for example
https://www.wolframscience.com/prizes/tm23/TM23Proof.pdf. In any case, the paper could have
benefited from some reviewing and editorial guidance.

https://www.wolframscience.com/nks/notes-11-8--initial-conditions-for-rule-110/
https://www.wolframscience.com/nks/p709--universality-in-turing-machines-and-other-systems/
https://www.wolframscience.com/nks/p709--universality-in-turing-machines-and-other-systems/
https://www.wolframscience.com/prizes/tm23/TM23Proof.pdf
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9 Outlook

9.1 Equality testing

For the reader who has well digested the basic ideas in the two different proof approaches
of PFA Emptiness undecidability, it is an instructive exercise to see how Nasu and
Honda’s method of testing acceptance probabilities for equality by formula (8) (Sec-
tion 5.3) would apply to the Equality Checker problem of Section 4.1 for the string
aibj#: It is straightforward to set up a PFA with two states that accepts aibj# with
probability ϕ = 1/2i, and another that accepts it with probability ψ = 1/2j .

The construction of Figure 6a, translated into the language of the Equality Checker,
leads to the following algorithm: The coins are flipped as usual. In the end, when reading
the symbol #, the PFA flips two more coins, and

• with probability 1/4, it accepts if the red coin was unlucky;
• with probability 1/4, it accepts if the orange coin was unlucky
• with probability 1/2, it accepts if the blue coin was lucky.

The green coin is ignored. The resulting probability of acceptance is

1
4(1− 1/4i) + 1

4(1− 1/4j) + 1
2 · 1/2i+j = 1

2 − 1
4(1/2

i − 1/2j)2, (17)

which reaches its maximum value 1/2 if and only if i = j. (To save coin flips, one would
of course rather take the decision between the three branches in advance.)

We notice a sharp contrast between the character of the outcome in the two cases.
The equality test by formulas (8) and (17) capitalizes on the capability of a PFA to
detect a tiny fluctuation of the acceptance probability above the cut-point. On the other
hand, the Equality Checker, as illustrated in Figure 2, almost always leaves the answer
“Undecided”, but if it makes a decision, the probabilities of the two outcomes, in case of
inequality, differ by several orders of magnitude.

9.2 Shortcutting the reduction

Figure 10 illustrates the chain of reductions leading to the two undecidability proofs of
PFA Emptiness. In both cases, undecidability ultimately stems from the Halting Problem
for Turing machines.

The earliest universal Turing machines simulate general Turing machines directly, as
indicated by the dotted arrow. However, the smallest universal Turing machines known
today do not simulate Turing machines, but tag systems (Section 8.2). In particular, this
is true for the machine U15,2 of Neary and Woods, on which Theorems 2–4 are based.
This has the somewhat curious effect that our construction of specialized undecidable
instances of PFA Emptiness proceeds by reduction from tag systems, which operate on
strings, via universal Turing machines, to another problem on strings: the PCP. It would
seem natural to shortcut this detour and try to go from tag systems to the PCP directly.
Tag systems are universal in the sense that every Turing machine can be simulated by
some tag system. What might be useful for us is a tag system with a (small) fixed set of
rules for which the halting problem is undecidable, depending on the starting string. It
seems that such tag systems have not been studied in their own right. Of course, one can
take a tag system that simulates a universal Turing machine. This would add another
round to the detour, but it might be interesting to pursue this idea.

9.3 Strictly positive matrices

We have established a couple of undecidability results where all transition probabilities
are constrained to be positive (Theorems 2a and 4a), but only for the case when accep-
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Turing machine

tag system

universal Turing machine

Post’s Correspondence Problem (PCP)

Probabilistic finite automaton (PFA) Emptiness

various problems about matrix products

2-counter machine

Figure 10: Reductions for proving undecidability. The four topmost boxes concern the
Halting Problem for the respective systems. The dashed arrow represents the reduction
that is sufficient for the plain undecidability result of PFA Emptiness (Propositions 1–4),
without the specializations of Theorems 2–4.

tance is by the criterion ≥ λ. We don’t know whether this can be achieved with the
classic acceptance criterion > λ.

9.4 The minimum number of states

It is a natural question to ask for the smallest number of states for which the PFA
Emptiness Problem is undecidable. Depending on the precise technical formulation of
the question, we could reduce the number of states to 11 (Theorems 2b and 4b) or to 9
(Theorem 4a). Even without insisting on a fixed set M of transition matrices, this is
the best upper bound that we have. We are not aware of any lower bound, except for
the obvious fact that the emptiness question can be decided for one-state PFAs. As the
example of binary automata shows, already a 2-state PFA can be very powerful.

10 Epilogue: How to present a proof

Struggling through the literature and writing this article has prompted me to reflect on
the different possible ways of presenting things. In this final section, which has become
quite long, I want to discuss two issues: (1) Choosing the right level of abstraction.
(2) Presenting material in a self-contained way versus relying on powerful general results.

10.1 Levels of abstraction

We have initially defined PFAs by a high-level informal description as an algorithm,
referring to finite-range variables and using metaphors such as flipping of coins. We have
complemented this with a low-level, formal definition in terms of transition matrices.

An even larger range of abstraction levels exists for Turing machines. We know that
a Turing machine can implement any algorithm. So we may just specify at a high level
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what the machine should do, trusting that the reader has internalized the Church–Turing
thesis. At an intermediate level, we may describe how the Turing machine marks cells or
carries information back and forth on the tape in fulfilling its task. The lowest level is
the description in terms of the transition function, in “assembly-language”, so-to-speak.

Each level has its proper place. For example, the description of the PFA for the
Condon–Lipton proof in Section 4 remains exclusively at an abstract level. On the other
hand, the binary PFA in Section 5.1 is best described in terms of its transition matrix.
There is nothing to say about its behavior besides that it performs its transitions as
specified by the matrix.

People might have different preferences in this matter. If an informal and high-level
description is complemented by a more concrete “implementation” at a lower level, such
a presentation may offer something for every taste. The low-level description may be
useful to confirm the understanding or to dispel doubts.

Anyway, an experienced reader will be able to translate between the levels. For
example, when a machine does several things simultaneously or keeps track of several
counters, this corresponds to taking the product of the state sets, and the Kronecker
product of transition matrices (cf. Section 7.2).

10.2 Case study 1: Restricting the output vector f to a 0-1-vector

In the proof of Theorem 2a in Section 7.5 (p. 30), we convert a PFA with arbitrary
output values (acceptance probabilities) f from the interval [0, 1] to an equivalent PFA
with 0-1-values, i.e., with a set of accepting states.

Let us review this proof from the point of view of the abstraction levels used. After
stating the idea, we give an informal description of the conversion process. Then we
describe the process formally in terms of transition matrices and the starting distribution.
Finally, we make an observation on the resulting matrices, and confirm the understanding
by interpreting it in terms of the original idea. A formal proof that the new PFA yields
the same acceptance probabilities is omitted.

The same statement is proved as the last step of the proof of Turakainen’s more
general theorem [26, p. 308] that has been mentioned in Section 7 (see footnote 11). In
this proof, the probabilities are first rescaled to ensure that

∑
fq = 1. Then the basic idea

is the same as in our proof of Theorem 2a: Concurrently with every step, we generate
a random variable X. In contrast to our proof, this random variable has d possible
outcomes. Each outcome corresponds to one of the states. Moreover, the distribution of
X is always the same, independently of the current state: The d outcomes ofX are chosen
according to the distribution f . This variable is sufficient to make a decision whether
the input word should really be accepted: It is accepted if the value of X matches the
current state q, which happens with probability fq. Since there are d copies of every
state, the number of states increases quadratically.

The idea, however, is not explained in [26]. Turakainen writes down the d2×d2 tran-
sition matrix, the corresponding starting distribution, and the accepting set. Correctness
is proved formally by multiplying out the matrices and showing that they lead to the
same acceptance probabilities.19 The presentation does not go beyond the formal level.

Our own proof in Section 7.5 is not only less wasteful of states, by generating a
customized random variable X depending on the state, but it also gives explanations
and some intuition of what one tries to achieve.

19The treatment in the textbook [4, Step V, pp. 123–124], follows Turakainen: It gives the transition
matrices, starting vectors, and accepting set, but it even omits the calculation: “Man verifiziert nun
leicht . . . ” [It is easy to verify that . . . ].
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Incidentally, the same statement is proved by Paz with a quite different argument,
which is very elegant. It appears on [18, p. 151] as part of the proof of a more general
statement, Theorem 2.4 of Section IIIA. The output vector f ∈ [0, 1]d can be represented
as a convex combination of 0-1-vectors (vertices of the hypercube [0, 1]d). Appealing to a
general statement about convex combinations [18, Corollary 1.7 of Section IIIA, p. 148])
concludes the proof. The number of states of the construction is not discussed. As stated,
the construction may lead to an exponential blow-up of the number of states. However,
with appropriate extra considerations, for example, by appealing to Carathéodory’s The-
orem, the blow-up can be reduced to quadratic.

10.3 Case study 2: Coding in binary

As another example, let us look at Lemma 3 from Section 7.6 about encoding the input
alphabet in binary for input to the PFA. Binary coding is a fundamental and common
procedure in Computer Science, and when one thinks about it in terms of a (randomized
or deterministic) algorithm, it is a small technical issue that should hardly be worth
mentioning. It has been explicitly formulated as a lemma in order to say something
about the number of states.

Lemma 3. Consider a PFA A with input alphabet Σ of size k = |Σ| > 2, and let
τ : Σ∗ → {a, b}∗ be a coding function using the codewords b, ab, aab, . . . , ak−2b, ak−1.

Then there is a PFA A′ with input alphabet {a, b} that accepts each word τ(u) with the
same probability as A accepts u ∈ Σ∗. Words that are not of the form τ(u) are accepted
with probability 0.

The number of states is multiplied by k − 1 in this construction.

The proof of this lemma in Section 7.6 is direct and straightforward. It describes the
PFA A′ that does the job. The proof is perhaps even a little too verbose. Writing the
two explicit transition matrices is an add-on, to make the description more concrete.

For comparison, let us look at the treatment in the original sources in Nasu and
Honda [13, Lemma 19, p. 269] and in Paz [18, Lemma 6.15, p. 190].

They appeal to a general statement that acceptance probabilities are preserved under
GSM-mappings (mappings induced by a generalized sequential machine) [18, Definition
6.2 and Theorem 6.10, p. 186]. A sequential machine is a finite automaton with output.
The machine is generalized in the sense that, in one step, the machine can also produce
several symbols or no output at all.

Decoding from the binary alphabet {a, b} to the original alphabet Σ can be easily
carried out by a GSM. However, the application of a GSM incurs a complication. More
concretely, the encoding function τ in this construction encodes some 7-letter alphabet Σ
(see Appendix A) by the binary codewords aib for i = 1, . . . , 7. (Lemma 3 uses a slightly
more efficient variant of this code, which is optimized to minimize the number of states.)

Any GSM that performs the decoding τ−1 : {a, b}∗ → Σ∗ has the undesirable property
that “unfinished” strings, whose last codeword is incomplete, are mapped to some word
in Σ∗, namely to the decoding of the last complete prefix of the form τ(u). The same
happens for completely illegal words, for example those that contain bb. This behavior
is inherent in the way of operation of a GSM.

As a consequence, words x ∈ {a, b}∗ that are not of the form τ(u) for some u can be
accepted with some probability different from 0, contrary to what is required in Lemma 3.
(In terms of the algorithm in our proof of Lemma 3, the PFA A′ would accept the input
based solely on the state q, ignoring the counter i.)

Thus, in a separate step [13, p. 269, last line], the probabilities have to be patched
up to correct this. A finite automaton, and in particular a PFA, can easily check the
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well-formedness of x, i.e., membership in the regular language {ab, aab, . . . , a7b}∗. Both
in [13] and in Paz [18, p. 190, lines 12–13], the correction is expressed very concisely in
two lines in terms of a characteristic function χ of this regular language (“event”) and
the elementwise minimum operation g′ = g ∧ χ. This refers to the intersection f ∧ g of
two fuzzy events (probabilistic languages), which is defined in [13, Definition 2, p. 251].

In Nasu and Honda’s proof [13, p. 269, last line], there is an additional complication:
The probabilities have to be patched up in two different ways, because of the more
ambitious goal of establishing that the encoded language is an E-set. This requires two
PFAs: In one PFA, the ill-formed words are accepted with probability 1, in the other,
with probability 0.20

Closure under intersection and union with a regular set (or event) is treated by Nasu
and Honda in [13, Theorem 4, p. 252] in somewhat obfuscated form, citing their earlier
paper [12] from 1968. In Paz, it appears in the same form in [18, Proposition 1.9 of
Chapter IIIA, pp. 148–9] with proper credit to [12] (see [18, Section IIIA.3, p. 152]).

However, when one looks up these statements, one does not directly find the required
closure property but something more general. Formulated in our notation, the statement
says the following: If ϕ(u) and ψ(u) are acceptance probabilities of (rational?) PFAs
and the set {u ∈ Σ∗ | ϕ(u) > ψ(a) } is a regular language, then max{ϕ(u), ψ(u)} and
min{ϕ(u), ψ(u)} (the union and intersection of two fuzzy languages) are also acceptance
probabilities of (rational?) PFAs. Still, the required statement (closure under intersection
or union with a regular language) it is derivable as an easy corollary.

Overall, applying the results on GSM-maps makes the proofs very concise: The proof
of Lemma 19 by Nasu and Honda [13, p. 269] takes 17 lines, of which 7 are used for the
complete and detailed specification of the GSM. The proof in Paz [18, Proof of Lemma
6.15, p. 190], where the GSM is left to the reader (see footnote 29), consists of only 8
lines. However, as we have discussed, the application of the general results about GSMs
comes with a considerable conceptual and technical overhead, some of which is hidden
by appealing to statements that don’t quite fit.

There is a final ironic twist: Since we are concerned with the emptiness question, the
inaccuracy introduced by the GSM would be of no consequence! It we assign to a word x
that is not of the form τ(u) the acceptance probability of some other word u′, this does
not change the answer to the question whether acceptance probabilities > λ exist. In
the context of the emptiness question, patching up the probabilities of ill-formed words
is unnecessary.

After this confusing turmoil, the reader may want to go back and savor the directness
of the self-contained 13-lines proof of Lemma 3 on p. 31.

10.4 Case study 3: Testing equality

The equality test requires a PFA with acceptance probability 1/2 − (ϕ(a) − ψ(a))2/4
according to formula (8). In Section 5.3, we have directly the PFA for this particular
example. By contrast, the original proof [13, Lemma 11 on p. 259] refers to general
closure properties of probabilistic events (languages) under complementation, convex
combination, and multiplication [13, Propositions 1–2 and Theorem 3 on p. 252, which
are taken from [12]].

In contrast to the previous example of binary coding, there is not such a clear win for
one version of the proof or the other. While the proof in Section 5.3 is direct and does not
build on auxiliary results, it talks informally about “mixing” several PFAs, which is just a
different way of saying that one forms a convex combination. Moreover, it introduces the

20In Paz [18], the same situation occurs at a different place, namely when dealing with deterministic
linear languages [18, Proof of Lemma 6.11, p. 188].
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dash-dotted transitions of Figure 6 that are taken before reading the input, and discusses
their elimination only informally. The details, how this elimination would be expressed
in terms of transition matrices, are swept under the rug. The proof in [12, Theorem 4.2]
presents those details for the case of convex combinations: one does not need an extra
starting state; one can just adapt the starting distribution π.

10.5 Using auxiliary results or starting from scratch

In a monograph, a textbook, or a longer treatise, it is natural to accumulate a body of
techniques and results, as well as notation and abbreviations, on which further results
rest.

Of course, after erecting such an edifice it makes sense to build on it. Such an
approach may allow short and potentially elegant proofs. However, if a proof comes
out too terse, especially if this is coupled with inaccuracies21 and a lack of explanations
(What is the main idea? Which parts of the construction are only technical machinery
to change acceptance ≥ λ into > λ or to reduce the alphabet size to 2?), it makes a proof
practically inaccessible to a reader who is interested only in a particular result, to the
point of becoming hermetic.22 24

In this article, I have enjoyed the freedom of concentrating on a single result and
proving everything from scratch. Working with concrete automata in terms of explicit
transition matrices has allowed me to come up with the specializations and strengthenings
that I have presented.
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A The original Nasu–Honda proof in a nutshell

For comparison, we summarize the proof originally given by Nasu and Honda in [13] and
reproduced in the monograph of Paz [18, Chapter IIIB, Section 6]. The presentation of
Paz is quite faithful to the original, to the point of using identical notation for many
notions. It is more condensed, slightly simplified, but defaced by the occasional typo-
graphic or editing error, such as a mysterious passage in a proof that should obviously
belong to another proof.

We have adapted the notation to our notation. All references to [18] are to Chapter
IIIB. (Items in that book are numbered separately in each chapter.)

Post’s Correspondence Problem. The PCP with k string pairs (vi, wi) over {0, 1}
is represented by the language L(v, w) of words of the form

0am1 . . . 0a210a11+va1va2 . . . vamXw
R
bn . . . w

R
b2w

R
b1+10

b110b2 . . . 10bn

for sequences a1 . . . am and b1 . . . bn with ai, bj ∈ {1, . . . , k}, where the superscript R

denotes reversal, see [13, p. 265, before Lemma 16], [18, Lemma 6.13, p. 189]. This
language is intersected with the set Ls = { y+zXzR+yR | y, z ∈ {0, 1}∗ } of palindromes
with central symbol X and two occurrences of the separator symbol “+” [13, p. 265,
Lemma 15]. The intersection L(v, w) ∩ Ls is well-known to represent the PCP solutions
[13, p. 270, Lemma 20], because the palindrome property ensures that both the index
sequences and the produced words match between the two sides. Its emptiness (apart
from the single word +X+) is therefore undecidable [18, Lemma 6.16, p. 190].

Actually, the alphabet of these languages is Σ = {0, 1, +, X, 0̄, 1̄, +̄}, because, for tech-
nical reasons, every symbol σ in the right half, after the X, is replaced by another symbol,
its “complemented” version σ̄.

Rational automata, P -sets, and E-sets.

Definition 2 ([13, Definition 17, p. 259]). A rational PFA is a PFA where all components
of π, f , and the transition matrices M ∈ M are rational numbers.

An E-set is the set of words u with ϕ(u) = ψ(u), where ϕ(u) and ψ(u) are the
acceptance probabilities of two rational PFAs.

A P -set is a language recognized by a rational PFA with some rational cut-point λ,
or in other words, the set of words u with ϕ(u) > λ.

We have already seen in Section 5.3 the very important statement that every E-set
is a P -set [13, Lemma 11, p.261], [18, Corollary 6.4, p. 183].26

Deterministic linear languages. The goal is to show that L(v, w), Ls, and finally
L(v, w) ∩ Ls are E-sets (and therefore P -sets).

This is done by defining a certain class of context-free languages, the so-called de-
terministic linear languages ([13, Definition 18, p. 263], [18, Definition 6.3, p. 187]), and
appealing to the fact that these languages are E-sets [13, Lemma 14, pp. 263–265], [18,
Lemma 6.11, pp. 187–188]. The proof relies on m-ary automata.

It is then easy to see that this language class includes Ls, and also the language L(v)
of words of the form

0am1 . . . 0a210a11+va1va2 . . . vam ,
26In [18, p. 182], these sets have been renamed to E-events and P -events, respectively. I find this choice

of terminology, which goes back to Rabin [19, p. 233] and pervades much of the literature, unfortunate,
since an event is rather something whose probability is to be measured. The terms E-language and
P -language would have been even more specific.
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which form the left half of the words of L(v, w), up to the X symbol. Similarly, the right
halves form a deterministic linear language.

Putting the two halves together to get the language L(v, w) takes more effort. The
proof in [13, Lemma 17, p. 265–269] is cumbersome and stretches over more than three
pages. Paz formulates the argument as a separate lemma [18, Lemma 6.12, p. 188]:

Lemma 4. If L1 and L2 are deterministic linear languages over disjoint alphabets Σ1

and Σ2 not containing the letter X, then L1XL2 is an E-set.

The trick is to mix two m-ary automata (one for L1 and one for L2) into an m2-ary
automaton: Out of them2 digits, one automaton uses the digitsm, 2m, . . . , (m−1)m; the
other automaton uses the digits 1, 2, . . . ,m−1. The acceptance probability is constructed
as an m2-ary number, but when it is viewed in the m-ary expansion, the digits alternate
between the digits for L1 and the digits for L2.

The construction is repeated for the two other PFAs defining the E-sets L1 and L2.
Equality of acceptance probabilities then means equality for both L1 and L2.27

Intersections of E-sets. To get from L(v, w) and Ls to L(v, w) ∩ Ls, one uses the
property that E-sets are closed under intersection. This is easy to prove by comparing
the acceptance probabilities 1

2 −
1
4(ϕ1−ψ1)

2 and 1
2 +

1
4(ϕ2−ψ2)

2, which are constructed
along the lines of formula (8) on p. 15 [13, Lemma 12, p. 261].28

Actually, this intersection property leads to a simple alternative proof of a generalized
version of Lemma 4, where L1 and L2 can be arbitrary E-sets:

Lemma 4′. If L1 and L2 are E-sets over some alphabet Σ not containing the letter X,
then L1XL2 is an E-set.

Proof. The languages L1XΣ∗ and Σ∗XL2 are certainly E-sets: A PFA can simply ignore
all symbols before or after the X. Their intersection is L1XL2.

Coding with 2 symbols. Finally, the 7-character alphabet Σ = {0, 1, +, X, 0̄, 1̄, +̄} is
converted to binary by a coding function τ that uses the codewords aib for i = 1, . . . , 7.
We have already seen in Lemma 3, for a very similar code, that this can be done while
preserving the acceptance probabilities. The step is discussed in detail in Section 10.3.

Paz appeals to a general statement that acceptance probabilities are preserved under
GSM-mappings (mappings induced by a generalized sequential machine) [18, Definition
6.2 and Theorem 6.10, p. 186]. (A generalized sequential machine is a finite automaton
with output over some alphabet Σ. The machine is generalized in the sense that the
output at every step is from Σ∗, i.e., the machine can produce several symbols or no
output at all.) Nasu and Honda use their even more general statement about PGSM-
mappings (mappings induced by a probabilistic GSM [13, Definition 13 and Theorem 6,
pp. 253–255]), which are an object of study in the paper [13] and figure prominently in
its title.

27The requirement of disjoint alphabets is the reason for introducing the complemented symbols 0̄, 1̄, +̄.
Technically, it should not be necessary; any PFA could do this conversion implicitly after the letter X as
it reads the input from left to right.

I believe the whole proof would have been simpler with the more straightforward representation

0a110a21 . . . 0am1+va1va2 . . . vamX0b110b21 . . . 0bn1+wb1wb2 . . . wbn ,

replacing Ls by the set { y+zXy+z | y, z ∈ {0, 1}∗ }. One could not have applied the results about
deterministic linear languages, but one would get rid of all reversals in the proofs.

28Paz, in the corresponding passage of his proof [18, Proof of Lemma 6.14, p. 190], appeals to “Exercise
4.a.3”, but in that exercise [18, p. 172], closure under intersection is only proved for E-sets that are defined
by the condition ϕ(u) = λ for a constant λ.
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Nasu and Honda use this to show that τ(L(v, w) ∩ Ls) is an E-set [13, Lemma 19,
p. 269]. Paz proves the weaker statement that τ(L(v, w) ∩ Ls) is a P -set [18, Lemma
6.15, p. 190] and is therefore able to shortcut the proof.29

Since every E-set is a P -set (Section 5.3) and since PFA Emptiness is about P -sets,
the undecidability of PFA Emptiness is established.

A.1 Deciding whether the recognized language is a regular language,
or whether it is context-free

It is also shown to be undecidable whether a P -set is a regular language, or whether it is
context-free [13, Theorem 22, p. 270], [18, Theorem 6.17, p. 190]. This can be established
by the following arguments, which are not given explicitly in [13] or [18], but only through
unspecific references to the theory of context-free languages.

If the PCP has a solution, then the language L(v, w)∩Ls contains some word of the
form

y+zXẑ+̄ŷ

with nonempty y, z ∈ {0, 1}∗, where ŷ = ȳR denotes simultaneous complementation and
reversal. We fix y and z. Since a PCP solution can be repeated arbitrarily, all words

yi+ziXẑi+̄ŷi (18)

for i ≥ 0 are also in the language. Moreover, intersecting with the regular language
{y}∗+{z}∗X{ẑ}∗+̄{ŷ}∗ leaves exactly the words of the form (18), but for such a language
it is known that it is not context-free.30 Since the intersection of a context-free language
with a regular language is context-free, the language L(v, w) ∩ Ls cannot be context-
free in this case. We conclude that the recognized language is context-free, or regular,
(namely, the one-word language {+X+}) if and only if the PCP has no solution.

To get the result for a binary input alphabet, this whole chain of arguments must be
transferred from L(v, w)∩Ls to the encoded language τ(L(v, w)∩Ls), but this does not
change the situation.

There is an alternative proof, following an exercise in Claus [4, p. 158, Aufgabe]. The
exercise asks to derive the undecidability of testing whether a given P -set is a regular
language as a corollary of the emptiness question. The hint for the solution suggests to
take the language L of nonempty solution sequences a1a2 . . . am of the PCP, and append
some nonregular P -set L̃ to it. This can be done by appealing to Lemma 4′. We have
already established that L is an E-set (Section 5.2). Taking some nonregular E-set L̃, for
example the language { aibi# | i ≥ 0 } of Section 9.1, we can form the E-set L′ = LXL̃. If
the PCP has no solution, L′ is empty and therefore regular. If the PCP has a solution,
L′ is not regular because L̃ is not regular.

This construction can be extended for context-free languages by taking the language
L̃ = { aibici# | i ≥ 0 }. It is not context-free, but it is the intersection of two E-sets
{ aibicn# | i, n ≥ 0 } ∩ { anbici# | i, n ≥ 0 } and therefore an E-set.

29This proof has a small technical mistake [18, Proof of Lemma 6.15, p. 190, line 8]: It claims that
one can easily construct a GSM mapping ΨA to do the decoding. Some words x are not decodable for
the reason that they contain more than 7 a’s in a row or do not end with b. For these words, it cannot
be ensured that ΨA(x) = e (e denotes the empty word, cf. [18, p. xix, and the footnote on p. 155])
as Paz claims. The mistake is of no consequence because such ill-formed strings x are filtered out in
a subsequent step, see Section 10.3. In the original proof of Nasu and Honda [13, p. 269], a GSM for
decoding is described explicitly.

30In fact, a language like { aibici | i ≥ 0 } with just three blocks of equal length is the prime example
of a language that is not context-free.
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