arXiv:2405.03034v1 [cs.RO] 5 May 2024

FlexKalmanNet: A Modular AI-Enhanced Kalman
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Abstract—The estimation of relative motion between spacecraft
increasingly relies on feature-matching computer vision, which
feeds data into a recursive filtering algorithm. Kalman filters, al-
though efficient in noise compensation, demand extensive tuning
of system and noise models. This paper introduces FlexKalman-
Net, a novel modular framework that bridges this gap by
integrating a deep fully connected neural network with Kalman
filter-based motion estimation algorithms. FlexKalmanNet’s core
innovation is its ability to learn any Kalman filter parameter
directly from measurement data, coupled with the flexibility to
utilize various Kalman filter variants. This is achieved through
a notable design decision to outsource the sequential compu-
tation from the neural network to the Kalman filter variant,
enabling a purely feedforward neural network architecture. This
architecture, proficient at handling complex, nonlinear features
without the dependency on recurrent network modules, captures
global data patterns more effectively. Empirical evaluation using
data from NASA’s Astrobee simulation environment focuses on
learning unknown parameters of an Extended Kalman filter for
spacecraft pose and twist estimation. The results demonstrate
FlexKalmanNet’s rapid training convergence, high accuracy, and
superior performance against manually tuned Extended Kalman
filters.

Index Terms—Kalman filter, spacecraft motion estimation,
artificial neural network

I. INTRODUCTION

Recent advancements in vision sensor technology have
significantly impacted on-board pose estimation and tracking
capabilities of space objects, a key technology for On-Orbit
Servicing (OOS) and Active Debris Removal (ADR) missions.
These missions require real-time information about the target’s
pose relative to the servicer spacecraft to safely and efficiently
execute autonomous rendezvous and docking trajectories. The
main challenge is the limited prior knowledge about the target
object’s structure and motion. Vision sensors acquire two-
dimensional images of the three-dimensional scene. The 3D
to 2D mapping can be modeled in several ways, but all of
them lead to nonlinear measurement equations. This paper
proposes a filtering framework for handling the complications
encountered in such scenarios.
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While methods like the Kalman Filter (KF) offer noise com-
pensation with lower computational demands than alternatives
like the Particle Filter (PF), they require precise knowledge
or extensive tuning of inherently nonlinear systems and noise
models. The integration of Artificial Intelligence (AI) with
KFs presents an opportunity to learn these statistics and to
automate tuning, potentially surpassing manual calibration in
efficiency. In their comprehensive survey, Kim et al. [1] cat-
egorized various Al-based KF approaches, highlighting their
effectiveness in dynamic environments. For example, Jiang and
Nong’s [2] approach treats KFs as a kernel in Recurrent Neural
Networks (RNNs) to dynamically predict key parameters,
improving adaptability and accuracy, particularly in estimating
noise covariance matrices. With a similar objective, Ullah et
al. [3]] developed an Artificial Neural Network (ANN)-based
module to dynamically update the measurement noise covari-
ance matrix R in response to environmental changes, yielding
more accurate results than conventional KFs. Expanding on
this, Jouaber et al. [4] introduced a RNN-based KF focusing
on the dynamic process noise covariance matrix @, a critical
factor during maneuvers with increased uncertainties. Apply-
ing reinforcement learning, Xiong et al. 5] combination of an
Extended Kalman Filter (EKF) with Q-learning for adaptive
covariance significantly improved estimation performance over
traditional EKFs. For non-adaptive scenarios, Xu and Niu’s [6]]
data-driven Al approach, EKFNet, learns optimal noise co-
variance values from multiple KF components, surpassing the
capabilities of manually tuned EKFs. Similarly, Revach et
al. [7] developed KalmanNet, replacing key portions of the KF
with an ANN, handling nonlinearities and model mismatches
and outperforming classical KFs.

For spacecraft motion estimation, most existing algorithms
overlook the twist component. Notable exceptions include Park
and D’ Amico’s work [8]], which integrates Convolutional Neu-
ral Network (CNN)-based pose estimation with an Unscented
Kalman Filter (UKF) for both pose and twist estimation. How-
ever, this approach does not leverage Al for parameterization
and requires substantial computational resources to adaptively



tune the noise covariance matrices online.

Altogether, current algorithms predominantly focus on sin-
gle aspects of the KF’s application, either in specific scenarios
or for particular variants of the filter. This specialization limits
the scope of existing solutions, leaving a gap for a more
versatile and comprehensive approach. Addressing this gap,
this work introduces FlexKalmanNet, a novel framework that
combines a Deep Fully Connected Neural Network (DFCNN)
with a motion estimation algorithm, specifically the Kalman
filter. FlexKalmanNet’s primary contribution lies in its ability
to learn any KF parameter directly from measurement data,
while allowing the use of different KF variants. A critical
innovation in this framework is the outsourcing of the recursive
computations from the neural network to the KF. This design
choice enables the use of a purely feedforward neural network
architecture, adept at mapping complex and nonlinear features
without relying on recurrent network modules. While recurrent
architectures are limited to sequential patterns, the proposed
architecture is capable of capturing global patterns.

The paper is organized as follows: Section 2 details the
relevant EKF equations and defines the required dynamics of
spacecraft relative motion, selected for the exemplary imple-
mentation. Following this, section 3 comprehensively outlines
the FlexKalmanNet architecture. Section 4 covers the materials
and methods utilized on the study, while Section 5 summarizes
the simulation results and discusses performance aspects. The
paper concludes with Section 6, summarizing the key lessons
learned from the research and discussing limitations, ongoing
tasks, and future challenges.

II. EXTENDED KALMAN FILTER FOR TUMBLING
SPACECRAFT STATE ESTIMATION

Extensions to the KF like the EKF and UKF have been
applied for state estimation in case of nonlinear systems [9].
The EKEF, preferred for its computational efficiency, is chosen
for this study. In all KF variants, state estimates are itera-
tively computed through two primary steps: propagation and
update [9]]. Initializing the EKF requires initial guesses for the
state vector oo and error covariance matrix Py. The EKF’s
propagation step, formulated in and (@), involves a one-
step-ahead forecast for the current state estimate &} and state
covariance matrix P; following an update.

Ty = f(@,uk) (1)
P =F(&),w)P{F" (&), u) + Q, )

In these equations f represents the linearized state transition
model, F' is the Jacobian of f, uy the control input, and Q,
is the process noise covariance matrix. The subscripts £ and
k + 1 denote the current and forecasted time steps, while the
superscripts — and + indicate state estimates before and after
a measurement update, respectively. Prior to the update, the
Kalman gain K is computed using (3). Subsequently, the
measurement update, elaborated in @) and (9), is performed.
This step involves updating the propagations using the current
measurement 4, the linearized observation model h, and its

Jacobian H, along with the measurement noise covariance
matrix Ry, and the state covariance matrix P, where I is
the identity matrix.
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For a servicer spacecraft closely observing a free-tumbling
target in Earth orbit, a 13-component state vector is adopted,
comprising orientation as a quaternion g in the Hamilton wxyz
convention, position r, translational velocity v, and angular
velocity w.

T = [q,r,w,v]T
r ©
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Considering the brief observation time (few minutes) and prox-
imity to the target (few meters) compared to the orbital cycle,
the translational dynamics of the spacecraft are effectively
modeled using a double integrator, setting aside relative orbital
dynamics. Furthermore, for ease of modeling, we assume
isotropic, torque-free rotational motion. The time-discrete state
transition model f(x), detailed in to (T0), along with its
Jacobian F'(x), are derived based on these assumptions.

Tit1 =Tk + v At (7)
V41 = Vg (8)

At
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The term At denotes the time interval between two consecu-
tive discrete-time steps, while @y is a matrix that maps the
quaternion components to the angular velocity components in
the inertial world frame defined as:
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Further, orientations and positions are assumed to be pro-
vided by a vision-based relative navigation system. This al-
lows for the derivation of the observation model h(x) and
its Jacobian H (x). Assuming the state features’ noises are
uncorrelated, the process noise covariance @ is modeled as a
diagonal matrix [10]:

Q=ILi303 3 (12)

Here, 0@, 13 represents standard deviations for each state
vector component in . Similarly, the measurement noise
covariance R is defined:

R=1I;0%; (13)

with o R 7 indicating standard deviations for each measure-
ment vector component in y. The architecture of FlexKalman-
Net, which enables the estimation of @ and R, will be
introduced in the next section.
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Fig. 1. Forward pass of the computational graph of FlexKalmanNet. The flow
of activations during a forward pass is illustrated via the solid arrows. Dashed
arrows represent data flows that are relevant for the framework, but not part
of the computational graph. The backward pass for the gradients goes in the
opposite direction of the illustrated solid lines.

III. FLEXKALMANNET ARCHITECTURE

FlexKalmanNet is introduced to address the evolving com-
putational needs and restrictions, which may favor to use a
linear KF or a UKF over an EKF in future scenarios. Offering
modular treatment of the KF, it uniquely supports the inter-
changeable use of KF variants, a feature not seen in current
approaches. This framework enables training a DFCNN to
learn any unknown KF parameter from measurement data.
Hence, the parameters to be learned can be chosen with full
flexibility. FlexKalmanNet augments the existing state-of-the-
art approaches by providing a generalized versatile framework.

In this work, FlexKalmanNet integrates an EKF to identify
the noise covariances @ and R. The computational graph
of FlexKalmanNet, detailed in Fig. depicts how noisy
inputs are concurrently processed by the DFCNN for global
parameter learning and by the KF variant for sequential state
estimation. Initially, the DFCNN learns from the noisy inputs
to generate parameters (e.g. noise covariance) for the KF,
which then estimates the system’s state at sequential time
steps. Discrepancies between estimates and available data from
the true states across all time steps are quantified as loss,
which is used to train the DFCNN through backpropagation
(backward pass).

Unlike KalmanNet or EKFNet, FlexKalmanNet’s training
bypasses the limitations of sequential data learning, such as
computational demands and gradient instabilities, by outsourc-
ing the sequential computation to the KF variant. Moreover,
in contrast to KalmanNet, FlexKalmanNet learns required
parameters for the KF instead of providing a trained model to
substitute a specific component within the KF. This approach
results in a learning model that captures global patterns
effectively, leveraging the strength of DFCNNs to connect any

input to any output, all without focusing on sequential patterns,
as is common with RNNs.

The learning process in FlexKalmanNet follows a chained
structure, where measurements fed through the network yield
parameters for the KF instance to process, which eventually
yields estimates utilized for the loss computation. This struc-
ture not only has the potential to improve data processing
efficiency but also provides adaptability to learn different
parameters and use different KF variants. This shift from
an end-to-end approach to a chained process represents a
contribution towards a more scalable and potentially robust
framework for dynamic state estimation.

IV. MATERIALS AND METHODS

We evaluated FlexKalmanNet in a space scenario with the
state estimation of a free flying Astrobee robot [[11]] rotating
at constant angular velocity. FlexKalmanNet learned the noise
covariance parameters of the EKF from noisy measurement
data and ground truth using the state transition model in

Sec.

A. Data Generation

To generate the necessary measurement data, we introduced
noise to the ground truth, resulting in a dataset that realistically
represented Astrobee’s pose in the world frame. This data gen-
eration process was accomplished using the Robot Operating
System (ROS)-based Astrobee Robot Software (ARS) [[12f],
which offers a simulation environment for controlling and vi-
sualizing Astrobees within a virtual International Space Station
(ISS). To facilitate systematic testing, the constant rotation of
Astrobee in the simulation is achieved through forced motion
using thrusters, rather than free tumbling motion. However,
this still effectively simulates isotropic torque-free motion. We
created two datasets under different conditions:

o Dataset 1 (DS1): Realistic angular velocity with w =
[0.02,0.04,0.06]* rad /s, approximately twice the rota-
tion magnitude of Earth’s orbiting satellite, Envisat [[13]].

o Dataset 2 (DS2): Excessive angular velocity with w =
[0.10, 0.20,0.30] T rad /s, used to assess the stability and
sensitivity of the trained EKF.

Both datasets contain position and orientation data. While
Orientation data, provided as unit quaternions, did not require
normalization, the position data were normalized for better
training convergence [14]]. This normalization followed the
standard score approach [[15]], which accounts for statistical
outliers typically introduced by Gaussian noise, the same type
of noise added to simulate measurement noise (o = 0.1,
1 = 0) in this study. For position data, the noise is directly
added to the measurements. For quaternions, we introduce
the noise as an error rotation quaternion, with each axis
experiencing a rotation angle equal to the standard deviation in
radians. This results in a probabilistic rotation error magnitude
of around 10°.

In the context of spacecraft stand-off observation from a
safe hold point, the translational velocity was set to Om/s
during data recordings. Both datasets were sampled at a rate



TABLE I
BEST FOUND COMMON HYPERPARAMETER SET TO TRAIN
FLEXKALMANNET WITH THE DATA OF THIS WORK

Hyperparameter \ Optimal value
Random seed 0

Input size 7

Output size 20

Batch size 512

Hidden size 512

Number of layers 7

Learning rate le~®
Dropout probability 0

Weight decay penalty term 0

Loss function MSE

Loss scheduler ReduceLROnPlateau
Loss cut 100

Optimizer Adam

Activation function LeakyReLu
Number of epochs 100

Early stopping after epochs | 20

of 10 Hz providing 16000 samples each. The data were divided
into training (80 %), validation (10 %), and testing (10 %) sets.

B. Training and Hyperparameters

During DFCNN training, FlexKalmanNet faces the chal-
lenge of learning the parameters for the process noise covari-
ance matrix @@ and the measurement noise covariance matrix
R, which add up to a total of 20 parameters to be learned. To
compute the loss, all estimated state features from the EKF
are compared to the noise-free ground truth. Furthermore, a
loss cut is introduced to enhance learning. This cut excludes
the initial portion of estimated states and their corresponding
ground truths from the loss calculation, reducing the impact of
large errors during the EKF’s settling time. While it is possible
to apply a weighting policy to all losses, the cut is chosen
for loss optimization to avoid introducing bias to the learning
process [16].

Besides the loss cut, there are several hyperparameters that
must be set before training. To determine the best hyperparam-
eters for both datasets, a two-step approach was used: first,
a random search to narrow down a reduced hyperparameter
space, followed by a grid search. After defining the hyperpa-
rameter space, DFCNN training sessions were executed, and
their performance, specifically their lowest validation losses,
was recorded. Analyzing the losses across the various hyperpa-
rameters used in each run allowed for the identification of the
most suitable hyperparameters (cf. Fig. 2). This search aimed
not only to find the best hyperparameters for each dataset but
also to discover a set of hyperparameters that can generalize
well across datasets with varying angular velocities in similar
training scenarios. Table [I| presents the best hyperparameters
found for training FlexKalmanNet with the data in this study.

The training was conducted on a virtual server, equipped
with a Solid State Drive (SSD), with 8 GB of memory, and
with 4 virtual cores accessing a AMD EPYC 7452 Rome
Central Processing Unit (CPU) providing 32 cores with each

2.35 GHz clock speed. The virtual server ran on Ubuntu 20.04
and with no access to a Graphics Processing Unit (GPU).

C. Evaluation Criteria

To evaluate the EKF using the learned parameters, we
applied it to large sequences of the recorded datasets rather
than just short batches. This approach was selected because
running the EKF on short batch lengths during training may
not reveal instability over time. Further, in real-life scenarios,
measurements may only be available at a low frequency.
Therefore, we simulated sparse measurements, making them
available every 10 discrete-time steps. With the ground truth
available, EKF state estimates can be directly compared, using
the Root Mean Squared Error (RMSE) as a measure of
accuracy. The RMSE computes the loss between estimated
and true states, preserving the original loss variable domain.
During training, three distinct types of losses are considered.
Firstly, the training loss evaluates how well the predictions
align with the ground truth during the training phase. Secondly,
the validation loss assesses the model’s performance on data
not encountered during training, offering insights into its
generalization capability. Lastly, the test loss measures the
model’s performance using a separate dataset that was not
part of the training process, providing an overall indicator of
predictive accuracy.

The performance of the trained EKF was eventually com-
pared to a baseline, a manually tuned EKF. In the manually
tuned EKF, we matched the entries of R to the ground truth
noise standard deviation (cp = 0.1). For the quaternion
components and angular velocities, which involve linearized
approximations, we adjusted the entries of Q to ogq,,,
0.005. However, for positions and translational velocities,
where perfect model dynamics are assumed, we opted for
lower values in Q, specifically oq,,... = 0.0001.

V. SIMULATION RESULTS

In this section, the analysis focuses on the training and
performance of FlexKalmanNet. The goal is to evaluate the
learned EKF parameters for accuracy, stability, robustness,
sensitivity, and settling time. Additionally, a comparison is
made with a manually tuned EKF, which serves as the base-
line.

A. Training and Parameter Convergence

In Fig. 3] we can observe the convergence of FlexKalman-
Net’s training using DS2. The training appears stable and
converges quickly, with convergence beginning around the
sixth epoch. However, at epoch 27, a negative peak in the
validation loss is noticeable. After 20 more epochs, the training
is terminated due to early stopping because no lower loss than
the one at epoch 27 is achieved.

To assess the learned parameter convergence, we consider
the evolution of the learned noise covariance parameters in
Fig. @ Similar to training convergence, the learned noise
covariance parameters start converging after approximately
six epochs. After that, there are only minor changes in the
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Fig. 2. Hyperparameter grid search mapped to the best validation loss for DS1. Each column represents a variable in the hyperparameter space that has
more than one available value. Sweeps are traversing these columns from the left hand side to the right hand side, mapping their hyperparameters to their
best validation loss as root mean squared error. The color map indicates the magnitude of the loss relative to the minimum and maximum loss values of all

sweeps. Plot generated via Weights and Biases [[17].
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Fig. 3. Convergence behavior of the RMSE losses during training with DS2.
Two RMSE losses of each epoch during the training of the DFCNN model
using DS2 are presented: The loss from the training phase, blue, and the loss
of the validation phase, orange.
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Fig. 4. Convergence behavior of the learned parameters during training with
DS2. The 20 noise covariance terms that the DFCNN is learning from the
DS2 are tracked over each epoch and depicted in this graph.

parameters, and at epoch 27, the parameters remain relatively
stable, yielding the lowest loss.

Table summarizes the final training results for both
datasets, including the best validation epoch, best validation
RMSE, test RMSE, and computation time per epoch. Notably,
the losses for both datasets are fairly small, indicating high
EKF accuracy. Additionally, the close match between valida-
tion and test losses suggests good generalization to unseen
data. DS1 has significantly smaller losses compared to DS2,

TABLE II
FINAL RESULTS OF THE TRAINING SESSIONS WITH THE BEST FOUND
HYPERPARAMETERS FOR EACH DATASET

Dataset  Best val.  Best val. Test Computation time
epoch RMSE loss  RMSE loss  [s/epoch]

DS1 49 0.0059 0.0067 39.4286

DS2 27 0.0176 0.0189 41.2500

which can be attributed to the differences in angular veloc-
ities between the datasets. DS2’s higher angular velocities
lead to more significant and faster changes, making it more
challenging to compensate for, and resulting in higher losses.
Furthermore, the performance of the controller actuating the
rotational motion of the target may also contribute to these
differences, potentially introducing errors that manifest as
inaccuracies in the ground truth.

The computation times don’t provide significant insights.
While using GPUs for parallel computing might speed up
convergence, the bottleneck may be the EKF state estimation,
which cannot be parallelized efficiently and may take even
longer when deployed on a GPU core instead of a compu-
tational faster CPU core. The best validation epochs indicate
favorable and relatively fast convergence, considering the di-
mension of the parameter space being learned. Finally, Table
can serve as a reference for tuning FlexKalmanNet under
different settings, evaluating its performance with various KFs
like the UKF, and comparing it to alternative networks like
EKFNet or KalmanNet on the same dataset.

B. Evaluation of the Learned Parameters

The learned parameters from DS1 and DS2 are summarized
in Table [T} Notably, higher values for process noise covari-
ances are learned from DS2, making the EKF more sensitive,
which is attributed to the higher dynamics present in DS2.
Striking a balance in parameter values is crucial; excessively
high values can lead to noise sensitivity and hence overfitting,



TABLE III
LEARNED STANDARD DEVIATION PARAMETERS FROM DS1 AND DS2

Trained Learned value  Learned value
parameter | for DS1 or DS2
ORg, 0.042746 0.045785
OR,, 0.036301 0.038067
TR, 0.048697 0.048149
OR,, 0.029550 0.035209
OR,, 0.078810 0.073300
OR,, 0.058190 0.054914
OR,, 0.082663 0.081457
TQuuw 0.000161 0.000145
Qs 0.000090 0.000667
Qq, 0.000071 0.002006
Q. 0.000026 0.000026
0Qy, 0.000150 0.006237
°Qr, 0.000010 0.004650
UQT'Z 0.000132 0.006365
Qo 0.000079 0.000575
OQuy 0.000145 0.000515
O'Qw; 0.000037 0.000876
OQu, 0.000023 0.000087
oQu, 0.000028 0.000022
O'Qv; 0.000025 0.000040

while too low values may result in underfitting [[18]]. The
parameters for measurement noise covariances are very similar
for both datasets, indicating that the same underlying noise can
be learned from both datasets. However, the DFCNN adjusts
the process noise covariance parameters to best-fit the present
dynamics in each dataset during training, resulting in different
sensitivities of the trained parameters.

Subsequent tests primarily focus on the trained parameters
obtained from the more realistic dataset DS1. In Fig. ] an
EKF with the learned parameters for DS1 is applied to the
corresponding dataset (DS1) with moderate angular velocities.
This initial test demonstrates several important aspects. Firstly,
the EKF converges and remains stable over time. Secondly,
all variables appear to be filtered effectively, with only small
uncertainties observed around the ground truth of angular
velocities. The EKF successfully tracks the quaternion evo-
Iution and follows the slightly changing angular velocities.
The position and translational velocities, which lack significant
changes, are correctly estimated by the EKF. Moving on to
DS2, please note that the related plots have been omitted for
the sake of brevity. Trained parameters obtained from DS2
and applied to the corresponding dataset DS2 exhibit similar
behavior, resulting in accurate estimations. However, when we
apply the learned parameters from DS1 to DS2, the estimates
remain accurate but exhibit a slight lag behind the true states.
This lag can be attributed to the lack of learned sensitivity
to the higher dynamics present in DS2. Conversely, when
applying learned parameters from DS2 to DS1, the estimates
tend to overreact to noise inputs due to the higher values
learned for the noise covariances.
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Fig. 5. EKF results using the trained parameters for DS1 applied on DSI.
Each of the four subplots depicts one of the four motion components from the
state vector: orientation, position, angular velocity and translational velocity.
In every subplot, the EKF estimate and the corresponding measurement or
ground truth are plotted, denoted as &, Z and z, respectively.
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Fig. 6. Uncertainties of the EKF angular velocity estimates using the trained
parameters from DS1 on DSI1. Each of the three subplots depicts one of the
components of the angular velocities. In every subplot, the EKF estimate and
the corresponding ground truth, denoted as & and x, and the uncertainty space
are plotted. For the uncertainty space, the double standard deviation (207) of
the corresponding error state feature is utilized.

To evaluate the accuracy and stability of the filter, we
examine the standard deviations of each feature of the EKF
error state. We conduct the EKF runs on the first 500 samples
of DSI to enhance the resolution of the settling phase. As
representative feature, the evolution of uncertainties in angular
velocities during the EKF filtering is depicted in Fig. [6]
The uncertainty is calculated as a double standard deviation,
representing the space within which the estimate will fall
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with a 95.4 % probability. When observing the uncertainties
of angular velocities, we notice a significant decrease within
the first 100 to 150 discrete-time steps. After this phase, the
uncertainty boundaries start converging towards the ground
truth. This plot also facilitates the analysis of settling time,
which correlates with the phase of a significant decrease in
state uncertainty.

To assess robustness to noise, the learned parameters from
DSI1 are tested on DS1 with increased noise, five times larger
than during training (0 = 0.5). Fig. [7| depicts the results
of the EKF run with DS1 parameters on DS1, applying the
increased noise in the data. The impact of large noise is
visible in the ground truth of the orientation and position
subplots. Despite the noise magnitude being five times larger,
the translational motion estimates remain stable. The rotational
components exhibit uncertainties in angular velocity estimates,
although they are still within a relatively small range, indicat-
ing accurate estimates despite the increased noise.

To assess robustness in scenarios with limited data, we ex-
tend the number of discrete-time steps without measurements
from 10 to 100. This simulates scenarios with low measure-
ment update rates or potential data dropout. Fig. [§] presents the
results of this stability test using the trained parameters from
DS1 on DSI1. The settling time appears to increase, but the
filter remains stable over time. The simulations of increased
data dropout reaffirm the robustness of the learned parameters.

Finally, the accuracy of EKF runs using the parameters
trained with DS1 and the manually tuned parameters are com-
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Fig. 8. EKF results for the trained DS1 parameters on DS1 with increased lack
of data. Each of the four subplots depicts one of the four motion components
from the state vector. In every subplot, the EKF estimate and the corresponding
measurement or ground truth are plotted, denoted as &, & and x, respectively.
The square-like shapes in the data are caused by an introduced lack of data
of a discrete-time step size of 100.

TABLE IV
RMSE OF EACH VARIABLE OF THE STATE VECTOR FOR EKF RUNS USING
LEARNED PARAMETERS FROM DS1 AND USING THE MANUALLY TUNED
PARAMETERS, BOTH RUN ON DS1

State RMSE RMSE
variable ~ DSI1 manual tuning
qu 0.044  0.047
qz 0.046  0.050
qy 0.039  0.041
q- 0.047  0.052
Tz 0.102  0.103
Ty 0.103  0.103
Tz 0.101 0.103
[ 0.001  0.008
Wy 0.001 0.008
wz 0.001 0.008
Vg 0.002  0.002
vy 0.001 0.001
vz 0.001 0.001

pared using the RMSE metric. The results are presented in Ta-
ble [[V] It shows that the RMSE of all features estimated by the
EKF using parameters from DS1 is less than or equal to those
using manually tuned parameters. The rotational components,
which are more challenging to tune due to faster dynamics,
are all more accurate when using the trained parameters.
Translational features are similar, indicating that the initial
estimate for manually tuned parameters of translational motion
is well-selected. A reduction in process covariance magnitudes



may lead to less sensitivity to noise and better results for
manually tuned parameters. This manual tuning process is
precisely the operation that FlexKalmanNet aims to replace, as
it involves the true standard deviation of measurement noise,
which is often unavailable, making FlexKalmanNet essential
to find it.

Moreover, Table demonstrates that all state features
estimated using parameters from DS1 are very accurate. For
example, the RMSE of w, is 0.001rad/s, equivalent to
0.057°/s. The overview of feature-wise errors also shows
that the features introduced as noisy measurements exhibit
significantly larger RMSE compared to the twist features. This
difference can be attributed to the fact that, unlike orientations
and positions, the time derivatives (angular and translational
velocities) of these features are not directly measured and are
more sensitive to inaccuracies in the underlying motion model.

VI. DISCUSSION AND OUTLOOK

Motion estimation algorithms are essential in various fields,
including space operations, where precise parameter tuning
can be challenging. This work focuses on developing an
Al-based algorithm for motion estimation in the context of
tumbling objects, using the Astrobee free flyers as an example.
The state of interest encompasses pose and twist, and data
is generated through a ROS-based simulation environment
for the ARS. To address this challenge, a framework called
FlexKalmanNet is proposed. FlexKalmanNet combines KF
variants with a DFCNN. This framework is promising because
it can potentially capture complex and nonlinear patterns more
effectively than RNN-based architectures. FlexKalmanNet,
with its modular structure, allows for the learning of any
parameter of different KF variants.

In this work, an EKF is incorporated into FlexKalmanNet
to estimate the states of nonlinear systems efficiently. The
states to be estimated include the pose and twist of a target.
Noisy measurement comprise position and orientation data,
represented as unit quaternions. The framework demonstrates
that learning the unknown parameters of the EKF, specifically
the covariances of the process Q and measurement noise R,
is feasible using the DFCNN architecture. The testing of the
EKF with the trained parameters reveals several key findings:
It remains stable over time, is robust against larger noise
levels than those present in the training dataset, and is also
robust against measurement lags. EKF estimates are accurate
but depends on the sensitivity learned through the data; higher
sensitivity improves reaction to state changes but may decrease
accuracy. The settling of the EKF takes approximately 10 to
15 seconds to converge, which is acceptable for spacecraft
rendezvous scenarios. After convergence, the trained EKF
provides reliably accurate filtered data. To reduce the settling
phase, introducing chaser motion can increase certainty in
target state estimates.

Comparing the EKF results using the learned parameters for
the most realistic dataset (DS1) to manually tuned parameters,
the EKF with learned parameters outperforms the manually
tuned one. Manual tuning requires prior knowledge of noise

characteristics, while FlexKalmanNet can learn parameters
without prior information. However, FlexKalmanNet has two
limitations: it must be trained before deployment and requires
target data and corresponding ground truth, which may not
always be available.

Future evaluations of FlexKalmanNet may involve com-
parisons with state-of-the-art approaches like EKFNET or
KalmanNet, exploring the use of UKF, and adopting more
advanced dynamics models. To improve accuracy, investi-
gating learning beyond just the diagonal covariance matrix
entries and considering potential noise feature dependencies is
a possibility. Additionally, using larger batch sizes for training
to capture more measurement data context could be explored.
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