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BACKGROUND RISK MODEL IN PRESENCE OF HEAVY TAILS

UNDER DEPENDENCE

DIMITRIOS G. KONSTANTINIDES, CHARALAMPOS D. PASSALIDIS

Abstract. We study the background risk model under a various forms of dependence
and some distribution classes of heavy tails. First, we study the asymptotic behavior of tail
expectation of a portfolios with unequal heavytailedness, of non-random sums and randomly
stopped sums, under some dependence structure which contains the independence as a
special case. Further we investigate the asymptotic behavior of a pair of randomly weighted
sums, generalizing the dependence structure among random vector components, our results
contains the finite ruin probability in bi-dimensional discrete time risk model with unequal
heavytailedness. Next, we carry out asymptotic analysis of the tail distortion risk measures
in background risk model under various forms of dependence, with multivariate regularly
varying risk distributions in each portfolio.
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1. Introduction

We have a n business lines insurance and we approximated some risk measures, in order
to evaluate its efficiency over a fixed time interval. Let us consider a random vector X =
(X1, . . . , Xn) ∈ R

n, that depicts the losses in the n lines of insurance business, in this
interval. Next, we denote by Θ = (Θ1, . . . , Θn) the vector, describing the systemic risk
factors.

Hence, the vector ΘX = (Θ1X1, . . . , ΘnXn) express the present value of the claims at
each business line, while the sum

n
∑

i=1

ΘiXi ,

denotes the total claim. In most papers on such models, consider that the main claims
X1, . . . , Xn are equally weighted, and usually accept as framework the class of regular vari-
ation. This means that the portfolios are homogeneous with respect to heavytailedness, see
for example [38], [54] and [10].

However, the homogeneity of the tails can be very restrictive, so we consider the asymptotic
behavior of a new risk measure, under non-equally weighted portfolios. Furthermore, we take
into account that for two portfolios the number of claims is random, and then we show the
asymptotic behavior of this new risk measure.

Finally, we study the tail distortion risk measure, on homogeneous portfolios under multi-
variate regular variation and we find the joint asymptotic behavior of two randomly weighted
sums, under a new dependence structure. This form of dependence permits dependencies
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among the members of the sequences of the main claims but also between the two sequences.
In most of these results the independence is included as special case.

Now we give some preliminaries results and notation. Let denote x = (x1, . . . , xn), the
scalar product cx = (c x1, . . . , c xn), x ∧ y = min{x, y}, x ∨ y = max{x, y}, x+ = x ∨ 0,
x− = (−x∨ 0) and ei represents the vector, whose all the components are 0, except the i-th,
that is 1. For two positive functions f and g we write f(x) = O(g(x)), as x→ ∞, if

lim sup
x→∞

f(x)

g(x)
<∞ .

and f(x) = o(g(x)), as x→ ∞, if

lim
x→∞

f(x)

g(x)
= 0 .

Let denote by F (x) = P(X ≤ x) the distribution of the random variable X and by
F (x) := 1 − F (x) = P(X > x), its tail. For two-dimensional functions all the convergences
holds as x ∧ y → ∞, unless otherwise stated. Next, we consider the value at risk

V aRp(X) := inf{x ∈ R : F (x) ≥ p} ,
for some p ∈ (0, 1) and the corresponding conditional tail expectation

CTEp(X) = E[X | X > V aRp(X)] .

Let see now the classes of heavy-tailed distributions and their properties. We assume that
all the distributions have infinite right endpoint, that means F (x) > 0 for all x > 0. We say
that distribution F has heavy tail, and write F ∈ H, if for any ǫ > 0 the relation

∫ ∞

−∞

eǫxF (dx) = ∞ ,

is true.
We say that distribution F has long tail (symbolically F ∈ L) if for some (or equivalently

for all) a 6= 0 holds

lim
x→∞

F (x+ a)

F (x)
= 1 .

The class L represents a subclass of heavy-tailed distributions L ⊂ H. If F ∈ L, then
there exists some function a : [0,∞) → [0,∞) such that a(x) → ∞, a(x) = o(x), and
F (x± a(x)) ∼ F (x), as x→ ∞. This a(x) is called insensitivity function.

We say that distribution F belongs to the class of subexponential distributions, and write
F ∈ S, if for some (or equivalently for any) n = 2, 3, . . . holds

F
n∗
(x)

F (x)
∼ n

when x→ ∞, where F n∗ is the n-fold convolution of distribution F , introduced in [18].
We say that F has dominatedly varying tail, and write F ∈ D, if holds

lim sup
x→∞

F (t x)

F (x)
<∞

for some (or equivalently, for all) 0 < t < 1. Let us make clear, that neither D ⊂ H nor
H ⊂ D are true. However D ∩ L = D ∩ S ⊂ L. Now, we remind some properties of regular
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variation. A random variable X with distribution F is regularly varying with index α > 0
and write F ∈ R−α if

F (tx)

F (x)
→ t−α ,

as x→ ∞, uniformly for any t > 0. The class of distributions with regularly varying tails is
contained in D ∩ L

R :=
⋃

α>0

R−α ⊂ D ∩ L ⊂ S ⊂ L ⊂ H

Let us now consider the limits

F ∗(t) := lim inf
x→∞

F (tx)

F (x)
, F

∗
(t) := lim sup

x→∞

F (tx)

F (x)
,

for all t > 0.
For some distribution F the upper and lower Matuszewska indexes are given by

αF := inf

{

− lnF ∗(t)

ln t
: t > 1

}

, βF := sup

{

− lnF
∗
(t)

ln t
: t > 1

}

.

respectively. For these indexes, that appeared in [39], the following relations hold. F ∈ D if
and only if 0 ≤ βF ≤ αF <∞ and F ∈ R−α if and only if βF = αF = α, (see [5]).

The class of regularly varying distributions have many closure properties, see for example
[30]. On of this properties is the asymptotic behavior of the tail product convolution, which
is the popular Breiman’s Theorem. In the [7], and [19] established the following result. If
X and Θ two independent random variables with X ∈ R−a for some α > 0 and Θ is non-
negative such that E[Θα+ǫ] < ∞ for some ǫ > 0 then P(X Θ > x) ∼ E(Θα)P(X > x), as
x→ ∞, which means that X Θ ∈ R−α.

Now we can go to the extension of regular variation in random vectors Let X be a random
vector in the space [0,∞]n. We remind that X follows the multivariate regularly varying
distribution, if there exists a function b : R+ → R+ and a non-degenerated Radon measure
v, such that holds in the space [0,∞]n \ {0}

tP

(

X

b(t)
∈ B

)

v→ ν(B) , (1.1)

where it refers to the vague convergence, as t → ∞ and for the measure ν : R
n → R it

holds ν((x,∞]) = x−α, and we write X ∈ MRV (α, b, ν). This measure ν is homogeneous,
whence for any Borel set B ⊆ [0,∞]n \ {0} we obtain

ν(tB) = t−αν(B) ,

for any t ≥ 0.
For the normalizing function b(·) we have that b(·) ∈ R1/α, as is indicated in [42]. Another

representation of (1.1) is in the following form

1

F (t)
P

(

X

t
∈ B

)

v→ ν(B)

as t→ ∞.
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Remark 1.1. The components of the random vector X ∈ MRV (α, b, ν) have the same
tail convergence speed, in the sense that each component belongs to R−α with the same
α > 0, however this does not mean that the components have the same distribution, as they
eventually differ in the part of the slowly varying functions.

Now let us remind the strong asymptotic independence (see [34, Assumption A]). Let X
and Y two real-valued random variables with distributions F and G respectively. We say
that X and Y are strongly asymptotically independent (SAI) if

P(X− > x, Y > y) = O[F (−x)G(y)] , P(X > x, Y − > y) = O[F (x)G(−y)] ,

P(X > x, Y > y) ∼ C F (x)G(y) ,

as (x, y) → (∞, ∞), for some constant C > 0.

Remark 1.2. It is easy to see that, SAI contains the independence as a special case. In the
case where X and Y are non-negative (or generally bounded from below) as in our case, then
X and Y are SAI if holds

P(X > x, Y > y) ∼ CF (x)G(y)

as (x, y) → (∞, ∞). The SAI covers a wide spectrum of dependence as for example Ali-
Mikhail-Haq, Farlie-Gumbel-Morgenstern and Frank copulas.

The rest of this paper structure is the following. In Section 2 we study one double back-
ground risk model, more specifically we study the tail expectation of this model and we
give our main result for tail expectation of unequal heavytailedness portfolios under depen-
dence.In section 3 we extend the jointly tail behavior of two weighted random sums, given in
[33], in the case of random vectors with generalized tail asymptotically independent compo-
nents. This dependence structure enables the study of the dependence between two random
vectors. Additionally we give the ruin probability in bi-dimensional discrete time risk model
under the assumptions of the results of this section. In Section 4, some extensions Breiman’s
theorem are presented which used to establish asymptotic results of tail distortion risk mea-
sure in various background risk models considering the dependence forms between systemic
risk factors and losses.

2. Tail expectation under unequal heavy-tailedness

2.1. Non-Random Sums. In this section we study the tail expectation in the case with
portfolios in MRV but with different tail indexes. We denote

Xn(Θ) :=

n
∑

i=1

ΘiXi , Ym(∆) :=

m
∑

j=1

∆j Yj .

We can consider this model as a double background risk model, which has reason to be
studied as well explain below. We give the tail expectation as follows

TE[Xn(Θ), Ym(∆), u] := E
[

Xn(Θ) + Ym(∆)
∣

∣ Xn(Θ) + Ym(∆) > u
]

,

for every n, m ∈ N and for some large enough u > 0.
The components of the vectors (X1, . . . , Xn) and (Y1, . . . , Ym) represent primary, non-

degenerated random variables, depicting the main risks. The components of the (Θ1, . . . , Θn)
and (∆1, . . . , ∆m) represent the systemic risk factors.
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This subsection focused to the following question: what happens when we want to study
n-independent portfolios, that are asymptotic marginal distributions, with tail F ∈ R−α
and other m-independent portfolios, that are asymptotic marginal distributions, with tail
G ∈ R−α′?

(1) If α = α′, then we can study the merging of the two random vectors into one multi-
variate regular varying vector with m+n components, that are arbitrarily dependent,
because n ∧m random variables are dependent with SAI. There is no reason to use
the tail expectation, but we used Corollary 4.2, with g(x) = x, and for some u not
necessarily equal to VaR, for the only sum of m+ n components.

(2) But if X and Y are dependent with α 6= α′ then things change. So we study the
relation of tail expectation, under a certain dependence, called strong asymptotic
independence.

The goal of this subsection is the asymptotic double-bound for TE(Xn(Θ), Ym(∆)) under
the assumptions at the beginning of this section. Furthermore this double-bound can be
done asymptotic equivalent under one extra condition.

The next result can be found in [33, Corollary 1].

Proposition 2.1 (Li (2018)). Let (Xi, Yi), i ∈ N be a sequence of mutually independent
random vectors with marginal distributions F i ∈ R−αi

and Gi ∈ R−α′

i
, for some αi, α

′
i ∈

[0,∞). Assume that for every pair (Xi, Yi) the components are SAI, with constant Ci > 0.
Let Si, ∆i, i ∈ N be a sequence of non-negative (and non-degenerated) arbitrarily dependent
random variables such that

E
[(

Θ
(αi−δ)+
i ∨Θ

(αi+δ)
i

)(

∆
(α′

j−δ)+

j ∨∆
(α′

j+δ)

j

)]

<∞ , (2.1)

for some δ > 0 and for any i, j ∈ N. Assume that (Xi, Yi), i ∈ N and Θi, ∆i, i ∈ N are
independent. Then

P(Xn(Θ) > x, Ym(∆) > y) (2.2)

∼
n
∑

i=1

m
∑

1=j 6=i

E
[

Θαi

i ∆
α′

j

j

]

F i(x)Gj(y) +
n∧m
∑

i=1

Ci E
[

Θαi

i ∆
α′

i

i

]

F i(x)Gi(y) ,

as (x, y) → (∞, ∞).

Remark 2.1. Because we study multivariate regular variation, the marginal distributions
have the same tail index, i.e. F i ∈ R−α and Gj ∈ R−α′ then (2.1), (2.2) are

E
[(

Θ
(α−δ)+
i ∨Θ

(α+δ)
i

)(

∆
(α′−δ)+
j ∨∆

(α′+δ)
j

)]

<∞ , (2.3)

for some δ > 0 and for any i, j ∈ N and

P(Xn(Θ) > x, Ym(∆) > y) ∼ K F (x)G(y), (2.4)

as (x, y) → (∞, ∞), where we denote

K :=

n
∑

i=1

m
∑

1=j 6=i

E
[

Θα
i ∆

α′

j

]

+ C

n∧m
∑

i=1

E
[

Θα
i ∆

α′

i

]

.

In fact, we study one background risk model, with n-portfolios that are part of some n-
dimensional regular varying vector with independent components (therefore the n-portfolios
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are independent) with tail index ”α” and m-independent portfolios that are part of m-
dimensional multivariate regular varying vector with independent components and with tail
index ”α′”. The systemic risk factors Θ1, . . . , Θn are independent and are independent of the
primary components X1, . . . , Xn (similarly for ∆1, . . . , ∆m and Y1, . . . , Ym). Additionally
the Xi and Yi are SAI while Xi and Yj are independent for any i 6= j, and Θi,∆i are
arbitrarily dependent (for the same i).

Theorem 2.1. Consider two vectors X ∈ MRV (α, b, ν) and Y ∈ MRV (α′, b′, ν ′), whose
components are non-negative and independent. Let us assume that Xi and Yi are SAI with
marginal distributions F and G, respectively, where α > 1 and α′ > 1 and Θ and ∆ are non-
negative, arbitrarily dependent random vectors, but with independent components. Assume
that (Θ, ∆) and (X, Y) are independent and the Θ, ∆ satisfy the relationship (2.3). Then

u+K

∫ ∞

u

F (x)G(x)dx . TE[Xn(Θ), Ym(∆), u]

. u+
1

KF (u)G(u)

n
∑

i=1

[

E[Θa
i ]

∫ ∞

u

F (x)dx+
m
∑

j=1

E[∆a′

j ]

∫ ∞

u

G(x)dx

]

, (2.5)

as u→ ∞.

Proof. We denote

FΘ(x, n) := P(Xn(Θ) > x) , G∆(x, m) := P(Ym(∆) > x) .

. We can write

TE[Xn(Θ), Ym(∆), u] = E[Xn(Θ) + Ym(∆) | Xn(Θ) + Ym(∆) > u]

=

∫ ∞

0

P(Xn(Θ) + Ym(∆) > x | Xn(Θ) + Ym(∆) > u) dx =

(∫ u

0

+

∫ ∞

u

)

P(Xn(Θ) + Ym(∆) > x |Xn(Θ) + Ym(∆) > u)dx =: J1(u) + J2(u).

For J1(u) we have

J1(u) =

∫ u

0

P(Xn(Θ) + Ym(∆) > x | Xn(Θ) + Ym(∆) > u)dx =

∫ u

0

1dx = u . (2.6)

Now we estimate the lower bound of J2(u)

J2(u) =

∫ ∞

u

P(Xn(Θ) + Ym(∆) > x)

P(Xn(Θ) + Ym(∆) > u)
dx . (2.7)

For the lower bound of integral, using relation (2.4), and dominated convergence theorem
(because α, α′ > 1) we obtain

J2 ≥
∫ ∞

u

P(Xn(Θ) + Ym(∆) > x) dx ≥
∫ ∞

u

P(Xn(Θ) > x , Ym(∆) > x) dx

∼ K

∫ ∞

u

F (x)G(x) dx , (2.8)

as u → ∞, which give the lower bound. For the denominator, taking into account that
the random variables are non-negative and further because of the closure property with
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respect to product convolution (see [7], because the assumptions of finite moments in (2.3))
and the closure property of the regular variation with respect to convolution (namely from
Xn(Θ) ∈ R−α and Ym(∆) ∈ R−α′), by non-negative assumption of the components we find
out

P(Xn(Θ) + Ym(∆) > x) ≤ P
(

Xn(Θ) >
x

2

)

+P
(

Ym(∆) >
x

2

)

∼ 2α FΘ(x, n) + 2α
′

G∆(x, m) . (2.9)

as x → ∞. Using again the expression in (2.7) for J2(u), we can estimate the upper bound
as well. Indeed, for the denominator in (2.7), we have the asymptotic estimation

P(Xn(Θ) + Ym(∆) > u) ≥ P(Xn(Θ) > u , Ym(∆) > u) ∼ K F (u)G(u) , (2.10)

as u→ ∞. Therefore, from (2.9) and (2.10) we find the following upper bound

J2(u) .
1

K F (u)G(u)

(
∫ ∞

u

2αFΘ(x, n) dx+

∫ ∞

u

2α
′

G∆(x, m) dx

)

, (2.11)

as u→ ∞. Thus from (2.8) and (2.11) we have that :

K

∫ ∞

u

F (x)G(x) dx . TE[Xn(Θ) , Ym(∆) , u]− u

.
1

K F (u)G(u)

∫ ∞

u

[

2αFΘ(x, n) + 2α
′

G∆(x, m)
]

dx , (2.12)

as u→ ∞ For the calculation of FΘ(x, n) and G∆(x, m), because of independence between
(X,Y) and (Θ,∆) we can used Breiman’s theorem. First, we see if P(Xi > u) = F (u) ∈
R−α, then we find ΘiXi ∈ R−α and

P(ΘiXi > u) ∼ E [Θα
i ] P(Xi > u) = E [Θα

i ] F (u) ,

as u→ ∞. If Θ has independent components, then by Theorem 2.3 of [31], we have:

P

(

n
∑

i=1

ΘiXi > u

)

∼
n
∑

i=1

P(ΘiXi > u) , (2.13)

as u → ∞, because of ΘiXi ∈ R−α ⊂ D ∩ L. Therefore with similar arguments for ∆j Yj ,
and via Breiman’s theorem we have:

FΘ(u, n) ∼ F (u)
n
∑

i=1

E [Θα
i ] , G∆(u, m) ∼ G(u)

m
∑

j=1

E
[

∆α′

j

]

,

as u→ ∞. Therefore under the same assumptions we obtain (2.5). �

For more details about the asymptotic behavior of

P

(

n
∑

i=1

ΘiXi > x

)

,

in a variety of dependence structures and heavy tail classes see [45], [46], [50], [53] among
others. We note that the conditions α > 1 and α′ > 1 are necessary, because without these
assumptions the primary random variables they do not hane first moment, as a result the
tail expectation does not exists in this case.
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2.2. Randomly stopped sums. Let study now the tail expectation in two randomly
stopped sums of the form

XN(Θ) :=
N
∑

i=1

ΘiXi , YM(∆) :=
M
∑

j=1

∆j Yj . (2.14)

where N and M represent positive, integer random variables, with finite right endpoint. We
can again imagine that we consider two portfolios with main claims {Xi} and {Yj}, where
i, j ∈ N, while the {Θi} and {∆j}, where i, j ∈ N, represent the discount factors. Namely,
the difference from the set up in the previous subsection is that the number of claim arrivals
in each portfolio is a random variable.

In this subsection we study the tail expectation for randomly stopped sums presented in
(2.14). The risk measures are usually considered for non-random sums, however the insurance
practice needs several times randomly stopped sums, since in non-life risk models is not
known in advanced the number of claims in a certain time interval. For recent information
on risk measures in renewal risk model see [35]. Motivated by the shortage of these topics in
scientific literature, in combination with increasing interest on stopped sums, see for example
[6], [41], [49], [29], we examine the tail expectation in two non-equally weighted portfolios.
The present set up can not be included in the MRV one when the regular variation indexes
α and α′ are equal, because of the random variables N and M . Thus, this case represent
interest, in opposite with the non-random sums, where we mentioned that the case α = α′

is not interesting as special case of previous results.

Assumption 2.1. Let {(Xi, Yi) , i ∈ N}, is a sequence of independent and identically
distributed non-negative random pairs, with the general pair (X, Y ) to be strongly asymptotic
independent (SAI) and where their distributions F ∈ R−α and G ∈ R−α′ respectively,
with α, α′ > 0. The {(Θi, ∆i) , i ∈ N} are non-negative, independent random pais, non-
degenerated to zero, such that

∞
∑

i=1

E
[

Θα+δ
i

]1/ρ
+
∞
∑

j=1

E
[

∆α′+δ
j

]1/ρ

+
∞
∑

i=1

∞
∑

j=1

E
[

Θα+δ
i ∆α′+δ

j

]

<∞ , (2.15)

for some ρ = 1+δ. Let N andM positive, integer random variables with finite right endpoint.
Further we assume that the {N, M}, {(Xi, Yi) , i ∈ N} and {(Θi, ∆i) , i ∈ N} and mutually
independent

Under Assumption 2.1, the dependence between the two randomly stopped sums follows
from the following three points

(1) Each pair of discount factors (Θi, ∆i) is arbitrarily dependent.
(2) Each pair of main claims (Xi, Yi) is strongly asymptotic in dependent (SAI).
(3) The counting random variables {N, M} are arbitrarily independent.

From the fact that N and M have finite right endpoint, we observe that

E
[

ekN
]

+ E
[

ekM
]

<∞ ,

for some k > 0.In the following proposition we provide a restriction of [33, Cor. 3].

Proposition 2.2. [Li (2018)] Under Assumption 2.1 we obtain

P [XN(Θ) > x , YM(∆) > y] ∼ K ′ F (x)G(y) , (2.16)
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as (x, y) → (∞, ∞), where we denote

K ′ := E

[

N
∑

i=1

M
∑

i 6=j=1

E
[

Θα
i ∆

α′

j

]

+ C
N∧M
∑

i=1

E
[

Θα
i ∆

α′

i

]

]

. (2.17)

The following result provides asymptotics bounds for the tail expectation of randomly
stopped sums.

Theorem 2.2. Under Assumption 2.1 we find

K ′
∫ ∞

u

F (x)G(x) dx . TE[XN(Θ) , YM(∆) , u]− u (2.18)

.
1

K ′ F (u)G(u)

∫ ∞

u

[

2α FΘ(x, N) + 2α
′

G∆(x, M)
]

dx .

as u→ ∞, where FΘ(x, N) = P[XN(Θ) > x] and G∆(x, M) = P[YM(∆) > x].

Proof. Initially, as in the proof of Theorem 2.1, we obtain

TE[XN(Θ) , YM(∆) , u] = E[XN(Θ) + YM(∆) | XN(Θ) + YM(∆) > u] (2.19)

=

(
∫ u

0

+

∫ ∞

u

)

P [XN (Θ) + YM(∆) > x | XN(Θ) + YM(∆) > u] dx =: I1(u) + I2(u) .

Following the argument in relation (2.6), we get

I1(u) = u . (2.20)

For the lower bound of I2(u) we find

I2(u) =

∫ ∞

u

P [XN(Θ) + YM(∆) > x]

P [XN(Θ) + YM(∆) > u]
dx ≥

∫ ∞

u

P [XN(Θ) + YM(∆) > x] dx

≥
∫ ∞

u

P [XN(Θ) > x , YM(∆) > x] dx ∼ K ′
∫ ∞

u

F (x)G(x) dx , (2.21)

as u → ∞, where in the pre-last step we use the fact that XN(Θ) ≥ 0 and YM(∆) ≥ 0 anBd
the elementary inequality P[A ∩ B] ≤ P[A]. Thence, from (2.21) we have the lower bound
of (2.18).

Now we look for the upper bound of I2(u). At first we obtain

P [XN(Θ) + YM(∆) > u] ≥ P [XN(Θ) > u , YM(∆) > u] ∼ K ′ F (u)G(u) , (2.22)

as u→ ∞. Further from (2.15) we find

E
[

Θα+δ
i

]

<∞ , E
[

∆α′+δ
j

]

<∞ ,

for some δ > 0 and for any i, j ∈ N. Therefore applying Breiman’s theorem we have
ΘiXi ∈ R−α and ∆j Yj ∈ R−α′ , for any i, j ∈ N. But since ΘiXi is independent of
ThetakXk for any k 6= i and ∆j Yj is independent of ∆l Yl for any l 6= j from Assumption
2.1, and the N andM have finite right endpoint, by [44, Th. 5] we get that the distributions
of XN(Θ) and YM(∆) belong to the classes R−α and R−α′ respectively. Hence,

P [XN (Θ) + YM(∆) > x] ≤ P
[

XN(Θ) >
x

2

]

+P
[

YM(∆) >
x

2

]

∼ 2α FΘ(x, N) + 2α
′

G∆(x, M) , (2.23)
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as x→ ∞. So, from relations (2.22) and (2.23) follows

I2(u) =

∫ ∞

u

P [XN(Θ) + YM(∆) > x]

P [XN(Θ) + YM(∆) > u]
dx

.
1

K ′ F (u)G(u)

∫ ∞

u

[

2α FΘ(x, N) + 2α
′

G∆(x, M)
]

dx , (2.24)

as x → ∞. This way, from relations (2.19), (2.20) and (2.24) we conclude also the upper
bound of (2.18). �

Remark 2.2. If we want to proceed in analysis of the distributions FΘ(x, N) and G∆(x, M),
then by [44, Th. 5] in combination with the last theorem, we obtain the asymptotic behavior
of the two tails

FΘ(x, N) ∼ x−α
Ň
∑

n=1

P [N = n]
Ň
∑

k=1

Lk(x) ,

G∆(x, M) ∼ x−α
′

M̌
∑

m=1

P [M = m]
M̌
∑

l=1

L′l(x) , (2.25)

as x → ∞, where Ň and M̌ denote the right endpoints of N and M respectively and the
functions Lk and L′l are slowly varying and stemming from the representations

P[ΘkXk > x] = x−α Lk(x) ,

P[∆l Yl > x] = x−α
′

L′l(x) . (2.26)

Thence, relation (2.18) through (2.25) renders

K ′
∫ ∞

u

F (x)G(x) dx . TE[XN(Θ) , YM(∆) , u]− u (2.27)

.
1

K ′ F (u)G(u)

[



2α
Ň
∑

n=1

P [N = n]





∫ ∞

u

x−α
Ň
∑

k=1

Lk(x) dx

+



2α
′

M̌
∑

m=1

P [M = m]





∫ ∞

u

x−α
′

M̌
∑

l=1

L′l(x) dx

]

,

as u→ ∞.

3. Generalized tail asymptotic independence

Next we establish the following relation

P(Xn(Θ) > x, Ym(∆) > y) ∼
n
∑

i=1

m
∑

j=1

P(ΘiXi > x, ∆j Yj > y) , (3.1)

as x∧ y → ∞, with Θi, ∆j , i ∈ N arbitrarily dependent non-negative random variables and
the primary risk components {(Xi, Yi), i ∈ N} independent random vectors, while Xi and
Yi are SAI (but Xi and Yj are independent for any i 6= j), P(Xi > x) = F i(x) ∈ D ∩ L and
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P(Yj > x) = Gj(x) ∈ D ∩ L. With joint behavior of two randomly weighted sums see also
[12], [43].

Although several dependence structures on finite sequences of random variables have been
studied in recent years (see [13], [25], [37]), the case of two sequences appears rarely. The
dependence structure between different sequences has good reason to be studied. In the
next definition we examine triples of random variables, where probably there exist different
dependence structure in each pair. For example in the triple (Xi, Xk, Yj), the pair (Xi, Xj)
are arbitrarily dependent and the (Xi, Yj) are SAI.

Definition 3.1. Let X1, . . . , Xn and Y1, . . . , Ym real valued random variables. Then we
say that X1, . . . , Xn, Y1, . . . , Ym are generalized tail asymptotic independent, symbolically
GTAI, if hold the following relations

lim
min(xi,xk,yj)→∞

P(|Xi| > xi | Xk > xk, Yj > yj) = 0 , (3.2)

for all 1 ≤ k /∈ {i, j} ≤ n and

lim
min(xi,yj ,yk)→∞

P(|Yj| > yj | Xi > xi, Yk > yk) = 0 , (3.3)

for all 1 ≤ k /∈ {i, j} ≤ m.

Remark 3.1. This dependence structure allows dependence between X1, . . . , Xn and depen-
dence between Xi and Yj (not only for i = j) and similarly for Y1, . . . , Ym. In this paper
we restrict ourselves in the case with Xi, Yi to be SAI dependent for the same i, and Xi, Yj
independent for any i 6= j.

Notice that if Xi and Yj are independent for any i, j ∈ N (i.e. the two sequences are
independent) then the relationships (3.2), (3.3) can be written as follows

lim
xi∧xk→∞

P(|Xi| > xi | Xk > xk) = 0 (3.4)

holds for all 1 ≤ i 6= k ≤ n and

lim
yj∧yk→∞

P(|Yj| > yj | Yk > yk) = 0 (3.5)

for all 1 ≤ j 6= k ≤ m Through (3.4), (3.5) we get the definition of tail asymptotic indepen-
dence of X1, . . . , Xn and Y1, . . . , Ym respectively, introduced in [25].

Assumption 3.1. We assume that the following random variables X1, . . . , Xn, Y1, . . . , Ym,
are GTAI, and the random discount factors

Θ1 , . . . , Θn, ∆1, . . . , ∆m ,

are non-negative and non-degenerated to zero random variables, that are upper bounded ran-
dom variables and independent of X1, . . . , Xn, Y1, . . . , Ym.

Lemma 3.1. Under the Assumption 3.1, we have that the products

Θ1X1, . . . , ΘnXn, ∆1Y1, . . . , ∆mYm ,

are GTAI.
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Proof. By definition of GTAI, for any ǫ > 0, there exist some constant κ0 > 0 such that for
any xi, xk, yj > κ0 the relation:

P(|Xi| > xi | Xk > xk, Yj > yj) < ǫ

holds for all 1 ≤ k /∈ {i, j} ≤ n. Let

P(Θi ≤ bi) = 1 , P(∆j ≤ dj) = 1 ,

where bi, dj > 0, for all i = 1, ..., n and j = 1, ..., m. Then for xi, xk, yj sufficiently large,
namely

xi
bi
> κ0 ,

xk
bk

> κ0 ,
yj
λj

> κ0 ,

we have that:

P(|ΘiXi| > xi,ΘkXk > xk,∆jYj > yj)

=

∫ bi

0

∫ bk

0

∫ dj

0

P

(

|Xi| >
xi
ci
, Xk >

xk
ck
, Yj >

yj
λj

)

P(Θi ∈ dci,Θk ∈ dck,∆j ∈ dλj)

=

∫ bi

0

∫ bk

0

∫ dj

0

P

(

|Xi| >
xi
ci

| Xk >
xk
ck
, Yj >

yj
λj

)

P

(

Xk >
xk
ck
, Yj >

yj
λj

)

×P(Θi ∈ dci,Θk ∈ dck,∆j ∈ dλj) ≤ ǫP(ΘkXk > xk,∆jYj > yj)

by arbitrariness of ǫ > 0, we have the first relation. The symmetrical relation, namely:

P(|∆jYj | > yj ,ΘiXi > xi,∆kYk > yk) ≤ ǫP(ΘiXi > xi,∆kYk > yk)

for some 1 ≤ k /∈ {i, j} ≤ m, can be obtain easily with similar arguments. And this complete
the proof. �

Assumption 3.2. Let {(Xi, Yi), i ∈ N} be some sequence of random vectors with marginal
distributions Fi ∈ D ∩ L and Gi ∈ D ∩ L for all i ∈ N. Assume that Xi and Yi are SAI for
the same i and Xi, Yj are independent for i 6= j.

Let {(Θi, ∆i), i ∈ N} be some sequence of arbitrarily dependent, non-negative, non-
degenerated and upper bounded random vectors, such that

E
[(

Θ
(βFi
−δ)+

i ∨Θ
αFi

+δ

i

) (

∆
(βGj

−δ)+

j ∨∆
αGj

+δ

j

)]

<∞

for some δ > 0 and for any i, j ∈ N. Assume also that {(Xi, Yi), i ∈ N} and {Θi, ∆i, i ∈ N}
are independent.

Next, we need two lemmas for the proof of Theorem 3.1 below.

Lemma 3.2. Under Assumption 3.1 and Assumption 3.2, we find

P(ΘiXi > x, ∆j Yj > y, Θk |Xk| > a(x)) = o (P(ΘiXi > x, ∆j Yj > y)) ,

as x ∧ y → ∞, for any i, j, k with i 6= k, with a(x) > 0 and a(x) → ∞, as x → ∞,
a(x) < x/2 and a ∈ R0.
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Proof. We can see that

P(ΘiXi > x, ∆j Yj > y, Θk |Xk| > a(x))

= P(Θk |Xk| > a(x) | ΘiXi > x, ∆j Yj > y)P(ΘiXi > x, ∆j Yj > y)

= o [P(ΘiXi > x, ∆j Yj > y)] ,

as x ∧ y → ∞, where in the last step we used Assumption 3.1. �

Before presenting next lemma, we need some comments. Let suppose that X follows
distribution F and Y follows distribution G, such that

P(X > x, Y > y) = O
(

F (x)G(y)
)

, (3.6)

as x ∧ y → ∞, whence we can see that there exists some constant Λ > 1, such that

P(X > x, Y > y) ≤ ΛF (x)G(y) ,

for any x, y ∈ R. By (3.6) we have that, there exist some x0 > 0 and Λ1 > 1 such that

P(X > x, Y > y)

F (x)G(y)
≤ Λ1 ,

holds for any x ≥ x0 and for any y ≥ x0.
We consider two independent random variables X∗, Y ∗ with respectively tails

F ∗(x) = 1 ∧
(√

Λ F (x)
)

, G∗(y) = 1 ∧
(√

ΛG(y)
)

,

thence we see

F ∗(x) ∼
√
Λ F (x) , G∗(y) ∼

√
ΛG(y) , (3.7)

as x→ ∞ and y → ∞ respectively. Thus for any x, y ∈ R

F (x) ≤ F ∗(x) , G(y) ≤ G∗(y) ,

P[X > x, Y > y] ≤ P[X∗ > x, Y ∗ > y] ,

Now we introduce sequences {X◦i , i ∈ N} and {Y ◦i , i ∈ N}. These sequences have i.i.d.
components and are independent each other. Their distribution tails are

F ◦(x) = 1 ∧
(√

Λ F ∗(x)
)

, G◦(y) = 1 ∧
(√

ΛG∗(y)
)

.

Therefore

F ◦(x) ∼
√
Λ F ∗(x) , F ◦ ∼ ΛF (x) , (3.8)

as x→ ∞ and

G◦(y) ∼
√
ΛG∗(y) ∼ ΛG(y) , (3.9)

as y → ∞. Further, for any x, y ∈ R and for any (i, j) ∈ N
2

F i(x) ≤ F ∗i(x) ≤ F ◦i(x) ,

Gj(y) ≤ G∗j(y) ≤ G◦j(y)

P(Xi > x, Yj > y) ≤ P(X∗i > x, Y ∗j > y) ≤ P(X◦i > x, Y ◦j > y) .
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Lemma 3.3. Let {(Xi, Yi), i ∈ N} be a sequence of identically distributed random vectors
with corresponding marginal distributions F and G such that

F ∈ D , G ∈ D ,

and (3.6) holds. Let {Θi, ∆i, i ∈ N} be a sequence of non-negative and non-degenerated
random variables such that

Eij := E[(Θ
(βF−δ)+
i ∨ΘαF+δ

i ) (∆
(βG−δ)+
j ∨∆αG+δ

j )] <∞ , (3.10)

for some δ > 0 and for any i, j ∈ N. Assume that

{(Xi, Yi), i ∈ N} , {(Θi, ∆i), i ∈ N} ,
are independent. Then

(i) There exist some x0 > 0 and some Λ > 1 such that for any x > x0 and for any y > x0
holds

sup
(i, j)∈N2

P(ΘiXi > x, ∆j Yj > y)

EijF (x)G(y)
≤ Λ (3.11)

(ii) If (3.10) holds with both Θ
(βF−δ)+
i , ∆

(βG−δ)+
j , replaced by 1, then (3.11) holds for any

x > 0 and any y > 0.

Proof. For the relations (3.7) and (3.8) we find

F (x) ≤ F ∗(x) ≤
√

Λ1 F (x) , F ∗(x) ≤ F ◦(x) ≤
√

Λ1 F ∗(x) ,

therefore we obtain

F (x) ≤ F ◦(x) ≤ Λ1F (x) , G(x) ≤ G◦(x) ≤ Λ1G(x) ,

for some Λ1 > 1 and for any x ∈ R. For the relations (3.8) adn (3.9) we have

F ◦ ∈ D , G◦ ∈ D .

Next, for the proof of (i), (ii) we follow [33, Lemma 2 (i), (ii)], with X∗ and Y ∗ replaced
by X◦ and Y ◦ respectively. �

Theorem 3.1. Under Assumption 3.1 and Assumption 3.2, for every pair (n, m) ∈ N
2 we

obtain (3.1).

Proof. We consider the events

H±x :=

{

n
∨

i=1

ΘiXi > x± a(x)

}

, H±y :=

{

m
∨

j=1

∆jYj > y ± a(y)

}

.

with a(x) defined in Lemma 3.2. Now, let us define the probabilities

I1(x, y) := P(Xn(Θ) > x, Ym(∆) > y, H−x , H
−
y ) ,

I2(x, y) := P(Xn(Θ) > x, Ym(∆) > y, (H−x )
c) ,

I3(x, y) := P(Xn(Θ) > x, Ym(∆) > y, (H−y )
c) ,

whence we can see that

P(Xn(Θ) > x, Ym(∆) > y) ≤ I1(x, y) + I2(x, y) + I3(x, y) , (3.12)

so we have to estimate the I1(x, y), I2(x, y), I3(x, y),
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I1(x, y) ≤ P(H−x , H
−
y ) = P

(

n
∨

i=1

ΘiXi > x− a(x),
m
∨

j=1

∆j Yj > y − a(y)

)

≤
n
∑

i=1

m
∑

j=1

P (ΘiXi > x− a(x), ∆j Yj > y − a(y))

∼
n
∑

i=1

m
∑

j=1

P(ΘiXi > x, ∆jYj > y) ,

as x ∧ y → ∞, where in the last step we used [33, Lemma 3(ii)] (as far as Xi and Yi are
SAI). Next

I2(x, y) = P

(

Xn(Θ) > x, Ym(∆) > y,
n
∨

i=1

ΘiXi >
x

n
,

m
∨

j=1

∆j Yj >
y

m
, (H−x )

c

)

= P

(

Xn(Θ) > x, Ym(∆) > y,

n
∨

i=1

ΘiXi >
x

n
,

m
∨

j=1

∆j Yj >
y

m
,

n
∨

i=1

ΘiXi < x− a(x)

)

≤
n
∑

i=1

m
∑

j=1

n
∑

1=k 6=i

P

(

ΘiXi >
x

m
, ∆j Yj >

y

m
, ΘkXk >

a(x)

n

)

= o

(

n
∑

i=1

m
∑

j=1

P(ΘiXi > x, ∆j Yj > y)

)

,

as x ∧ y → ∞, where in the last step we used Lemma 3.2 and [33, Lemma 3(i)].
Symmetrically we find

I3(x, y) = o

(

n
∑

i=1

m
∑

j=1

P(ΘiXi > x, ∆j Yj > y)

)

,

as x ∧ y → ∞. So from (3.12) we obtain

P(Xn(Θ) > x, Ym(∆) > y) .
n
∑

i=1

m
∑

j=1

P(ΘiXi > x, ∆j Yj > y) ,

as x ∧ y → ∞.
For the lower bound of

P(Xn(Θ) > x, Ym(∆) > y) ,

we get the inequality

P(Xn(Θ) > x, Ym(∆) > y) ≥ P(Xn(Θ) > x, Ym(∆) > y, H+
x , H

+
y ) .
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Applying Bonferroni inequality twice we obtain

P(Xn(Θ) > x, Ym(∆) > y, H+
x , H

+
y ) (3.13)

=

n
∑

i=1

m
∑

j=1

P(Xn(Θ) > x, Ym(∆) > y, ΘiXi > x+ a(x), ∆jYj > y + a(y))

−
∑

1≤i<k≤n

m
∑

j=1

P(ΘiXi > x+ a(x), ΘkXk > x+ a(x), ∆jYj > y + a(y))

−
n
∑

i=1

∑

1≤j<k≤m

P(ΘiXi > x+ a(x), ∆jYj > y + a(y), ∆kYk > y + a(y)) ,

and by [33, Lemma 2 (iii) and Lemma 3 (i)] the last two terms in (3.13) are asymptotically
negligible with respect to

n
∑

i=1

m
∑

j=1

P(ΘiXi > x, ∆j Yj > y) .

For the first term of right hand side in (3.13) we find a lower bound
n
∑

i=1

m
∑

j=1

P(ΘiXi > x+ a(x), ∆jYj > y + a(y))

−
n
∑

i=1

m
∑

j=1

n
∑

1=k 6=i

P

(

ΘiXi > x+ a(x), ∆jYj > y + a(y), ΘkXk < −a(x)
n

)

−
n
∑

i=1

m
∑

j=1

m
∑

1=k 6=i

P

(

ΘiXi > x+ a(x), ∆jYj > y + a(y), ∆kYk < −a(x)
n

)

,

which by Lemma 3.2 is asymptotically greater than
n
∑

i=1

m
∑

j=1

P(ΘiXi > x, ∆jYj > y) ,

as x ∧ y → ∞, and thus we have the asymptotic relation (3.1). �

Remark 3.2. We proved asymptotic estimation (3.1), when X1, . . . , Xn, Y1, . . . , Ym are
GTAI, as it comes by Definition 3.1, the Xi, Yi are SAI and the Θi, ∆i are upper bounded and
non-negative random variables. This restriction is relatively small compared to the extension
made in terms of dependence and at the same time reasonable in these models, since Θi and
∆j depicts the systemic risk factors.

Remark 3.3. We see that [33, Lemma 1, Lemma 2(iii), Lemma 3] continue to apply under
the generalization of conditions in Theorem 3.1 (with the help of Lemma 3.3).

Now applying [33, Lemma 3 (iii)] in (3.1) and we have the following consequence.

Corollary 3.1. Under Assumption 3.1 and Assumption 3.2 and if Fi ∈ R−αi
, for any i ∈ N

and Gj ∈ R−α′

j
, for any j ∈ N, with αi, α

′
j ∈ [0, ∞) and if Xi, Yi are SAI dependent, with

some constant Ci > 0, then we obtain (2.2).
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In the next corollary we show the asymptotic behavior for the tail expectation, under
conditions of Theorem 3.1, and specifically under conditions of Corollary 3.1. We have now
one extension of Theorem 2.1 in the case when X1, . . . , Xn, Y1, . . . , Ym are GTAI, in the
case when Xi, Yi are SAI and in the case when Xi, Yj are independent for any i 6= j, but
the systemic risk factors Θi, ∆i are positive and upper bounded, for all i ∈ N. Furthermore,
because of the grouping into two categories of regular variation, from relation (2.2) we pass
to relation (2.4).

Remark 3.4. We write

X±n (Θ) :=

n
∑

i=1

ΘiX
±
i , Y ±m (∆) :=

m
∑

j=1

∆jY
±
j .

We see that, the corresponding maximums for X±n (Θ) and Y ±m (∆), namely
∨n

i=1Xi(Θ) and
∨m

j=1 Yj(∆), satisfy the inequalities

P(Xn(Θ) > x, Ym(∆) > y) ≤ P

(

n
∨

i=1

Xi(Θ) > x,

m
∨

j=1

Yj(∆) > y

)

≤ P(X+
n (Θ) > x, Y +

m (∆) > y) ,

Therefore Theorem 3.1 and Corollary 3.1 are also satisfied after replacement with
(

n
∨

i=1

Xi(Θ),
m
∨

j=1

Yj(∆)

)

.

Finally, we present one bi-dimensional discrete time risk model, in two (or four) sub-models
with the same stochastic process of surplus.

Recently, the discrete time one-dimensional models have attracted attention by researchers,
see [36], [49], [51]. On the other hand more researchers study the multivariate risk models,
because it is rarely for an insurance company to operate with one line of business, see [14],
[15], [16], [27] among others.

We limit us in only two portfolios and discrete time, where Xi and Yi depicts the net loss
in i-th period, in the first and second portfolio respectively, Θi and ∆j they continue to be
systemic risk factors (or discount factors).

Therefore the stochastic discounted value of aggregate insurance losses to time n ∈ N

describe

Sn := (S1n, S2n) =

(

x−
n
∑

i=1

ΘiXi, y −
n
∑

j=1

∆j Yj

)

,

thence one type of ruin probability is given as

ψ(x, y, n) := P

(

n
∨

i=1

Xi(Θ) > x,
n
∨

j=1

Yj(∆) > y

)

,

for any n ∈ N, where x, y are initial capitals in each portfolio. This ruin probability depicts
the probability that both portfolios have been with negative surplus, but not necessarily
simultaneously.
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Corollary 3.2. (i) If Assumption 3.1 and Assumption 3.2 are true, then we obtain

ψ(x, y, n) ∼
n
∑

i=1

n
∑

j=1

P(ΘiXi > x, ∆j Yj > y) , (3.14)

as x ∧ y → ∞.
(ii) Under the conditions of Corollary 3.1 we obtain

ψ(x, y, n) ∼ P(Xn(Θ) > x, Yn(∆) > y) (3.15)

∼
n
∑

i=1

n
∑

1=j 6=i

E
[

Θαi

i ∆
α′

j

j

]

F i(x)Gj(y) +

n
∑

i=1

CiE
[

Θαi

i ∆
α′

i

i

]

F i(x)Gi(y) ,

as x ∧ y → ∞.

Proof. Directly from Remark 3.4, the definition of ruin probability, Theorem 4.1 and Corol-
lary 3.1. �

Remark 3.5. It is obvious that the net losses of each portfolio do not necessarily have the
same distribution in each period, but must be to the same class (i.e P(Xi > x) ∈ D ∩ L or
P(Xi > x) ∈ R for any i = 1, . . . , n) and similarly for Yj. Additionally, relations (3.14)
and (3.15) hold under the assumptions of Theorem 1 and Corollary 1 in [33] respectively.

4. Tail distortion risk measures

Let us define function Π : Rn
+ ×R

n
+ → R

n
+, as follows Π(r, u) := r u = (r1 u1, . . . , rd un).

Then the vector Π(Θ, X) = ΘX = (Θ1X1, . . . , ΘnXn), represents the real loss of the
portfolio over the given time interval.

Here limit our study in simple background risk model (without unequal heavytaildness)
and for this reason we have a general class of risk measures and various forms of dependence
between systemic risk factors and losses. In order to make the model more realistic, we
allocate the initial capital into d lines of business, in general of different amounts. Thus we
need non-random, positive weights w1, . . . , wn, with

n
∑

i=1

wi = 1 . (4.1)

Then the loss portfolio is presented as

ΘX(w) :=

n
∑

i=1

wiΘiXi .

This model called background risk model and is a special case of systemic risk model. For
more details about Background risk model see [3], [20] and [47].

The class of regular variation although represents a small class of heavy-tailed distribu-
tions, has been studied much deeper than any other class of heavy-tailed distributions. It
comes by the mathematical convenience of its properties, its frequent appearance in real
data in the form of Pareto distribution, and its easy extension in higher dimensions.

However the most significant feature of MRV is the fact that its components can be
arbitrarily dependent, and have some very good properties. For example, if X ∈ MRV ,
with index α then every (non-degenerated to zero) linear combination of the components of
X belongs to the class R−α, see section 7.3 in [42]. As a result, for wi > 0, for i = 1, . . . , n,
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satisfying a normalization condition (4.1) we find that the weighted sum has distribution
with regularly varying tail

P

(

n
∑

i=1

wiXi > x

)

∈ R−α , (4.2)

with the same parameter α > 0.
In [11] was examined the distortion tail risk measure in a similar background risk model.

In [11] are developed asymptotic results for the tail risk measure of the quantity ΘX(w),
where ΘX(w)i = ΘXi and the weights wi for i = 1, . . . , n are defined as above, with Θ to
be one-dimensional, and therefore is common for all business lines, and independent of X,
and also we have continuous distortion function.

In the last section we develop the background risk model, in case of a systemic risk factor
Θ, which represents a random vector, that means the risk factor is not necessary the same in
all the businesses, and then we study several cases, where the Θ and X are not independent.

In our methodology we use the closure property of MRV under the product convolution,
or under the scalar product. Next we remind the extension of Breiman’s theorem in case of
two independent random vectors, one of them multivariate regularly varying, established in
[4].

Proposition 4.1 (Basrak-Davis-Mikosch (2002)). Let two non-negative random vectors X ∈
MRV (α, b, ν) and Θ with arbitrarily dependent components and

E
(

Θα+ε
i

)

<∞ , (4.3)

for any i = 1, . . . , n and some ε > 0. If the Θ and X are independent, then ΘX ∈
MRV (α, b, νΘ) where

νΘ(B) = E
[

ν
(

Θ−1B
)]

=

∫

[0,∞]d
ν(s−1B)PΘ (du) ,

with PΘ(·) a probability measure, corresponding to distribution of Θ.

In this result the independence assumption between the X and Θ is definitely restrictive.
Therefore in [24] are found the following three extensions of this result. We present two
of them, restricted only on the positive quadrant. The first assumes from one side X ∈
MRV (α, b, ν) and from the other side that the vectors Θ, X are asymptotically independent
(wich contains the independence assumption as a special case). The asymptotic independence
was introduced in [40].

Proposition 4.2 (Fougeres-Mercadier (2012)). Let X ∈MRV (α, b, ν) and Θ be two non-
negative random vectors and the Θ and X be asymptotically independent, in the sense

tP

((

X

b(t)
, Θ

)

∈ B

)

v→ (ν × L)(B) , (4.4)

as t→ ∞, on the Borel sets B ⊆ [0,∞]n \{0}× [0,∞]n, ν is a Radon measure in [0,∞]n \0
and L as probability measure on [0,∞]n, corresponds to the distribution of S. If for some
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δ > 0 and for any i = 1, . . . , n hold

lim
ǫ→0

lim sup
t→∞

tE

[

(‖X‖ |Θi|
b(t)

)δ

1{‖X‖/b(t)<ǫ})

]

= 0 , (4.5)

∫

[0,∞]n
‖u‖α L(du) <∞ , (4.6)

with ‖ · ‖ any norm in R
n and νL is a measure of the form

νL(A) := (ν × L){(r, u) , r ∈ u−1A} =

∫

[0,∞]n
ν
(

u−1A
)

L(du) ,

for any A ⊂ [0, ∞]n \ {0}, then ΘX ∈MRV (α, b, νL).

The next result comes from [24] considers the case ofΘ andX jointly multivariate regularly
varying, and at least one couple of components are asymptotically dependent, namely there
exist normalizing functions b(·), c(·), such that holds

tP

((

Xi

b(t)
,

Θi

c(t)

)n

i=1

∈ B

)

v→ νΘ,X(B) , (4.7)

as t → ∞, in some non-zero Radon measure on the space [0, ∞]2n \ {0}. We assume that
the measure νΘ,X ◦Π←(·) is not degenerated to zero. Hence, there exists an i, such that the
couple (Xi, Θi) is dependent, namely there exists i ∈ {1, . . . , n} such that

ν
(i)
Θ,X((0, ∞]2) > 0 , (4.8)

where ν
(i)
Θ,X(·) is the restriction of ν to its i-th components of Θ and X. The normalizing

functions b, c are regularly varying with parameters 1/κ and 1/λ respectively, with κ, λ > 0.

Proposition 4.3 (Fougeres-Mercadier (2012)). Let hold the relations (4.7) and (4.8), then

ΘX ∈MRV

(

κλ

κ + λ
, b c, νΘ,X ◦ Π←

)

Now in the classic one-dimensional Background risk model we study the asymptotic be-
havior of tail distortion risk measure which is more general than conditional tail expectation.
The following class of measures was introduced in [48]. For a given non-decreasing function
g : [0, 1] → [0, 1], such that g(0) = 0, g(1) = 1, and for any non-negative random variable
X , with distribution F , the measure

ρg[X ] =

∫ ∞

0

g
[

F (x)
]

dx

is called distorted risk measure and the function g is called distortion function. It is well-
known that the V aR and CTE are distortion risk measures (see for example [55]).

Definition 4.1 (Zhu-Li (2012)). Let g : [0, 1] → [0, 1] be non-decreasing, such that g(0) = 0
and g(1) = 1, then the tail distortion risk measure of a non-negative random variable X with
distribution F is given by

ρg[X | X > V aRp(X)] =

∫ ∞

0

g
[

FX|X>V aRp(X)(x)
]

dx

where FX|X>y(x) = P(X > x | X > y).
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Obviously, the tail distortion risk measure is a distortion risk measure. Furthermore, if the
distortion function is the identical function g(x) = x, then the tail distortion risk measure
coincides with the conditional tail expectation.

From [55] we find that if X ∈ R−α, with α > 0 and additionally
∫ ∞

1

g

(

1

yα−k

)

dy <∞ ,

for some 0 < k < α, then ρg[X|X > V aRp(X)] ∼ Cα(g) V aRp(X), as p→ 1, where

Cα(g) :=

∫ 1

0

y−1/α g(dy) = 1 +

∫ ∞

1

g

(

1

yα

)

dy .

This last result was shown for any distortion function, without continuity requirement.
From [22] we find for the function BX , defined as quantile of 1/F ,

BX(s) :=

(

1

F

)←

(s) = F←
(

1− 1

s

)

, (4.9)

for any s ≥ 1, and for some continuous distortion function g the representation

ρg[X | X > V aRp(X)] =

∫ 1

0

BX

(

1

y(1− p)

)

dg(y) (4.10)

for any non-negative random variable X with distribution F .
It is clear that the previous asymptotic expressions in section 4 depend on the distortion

function only though the constant Cα(g), and therefore the quantiles of random variables
remain clear of distortion. This helps in practical applications, since the only we need for
the application of the model, when the distortion function is varying for the same risks, is
the calculation of the integral.

Next, we study a first sub-model of background risk, where X ∈ MRV (α, b, ν), with its
components to be eventually dependent and the systemic risk factor Θ to be asymptotically
independent of X. So, in this model we permit dependence among the risks of the d-business
and dependence among the systemic risk factors with the risks, but if some of the risks
becomes too large, practically if it cross some high enough threshold, then this dependence
between Θ and X get eliminated.

Theorem 4.1. Consider the product ΘX, with Θ and X two non-negative random vectors.
Under the conditions of Proposition 4.2 if (4.3) holds and

∫ ∞

1

g

(

1

yα/(1+ζ)

)

dy <∞ , (4.11)

for some ζ > 0 hold, then

ρg
[

ΘX(w)
∣

∣ ΘX(w) > V aRp (ΘX(w))
]

∼ Cα(g)
γ
1/α
w

Γα

n
∑

i=1

V aRp (ΘiXi) , (4.12)

as p→ 1, with

γw := lim
t→∞

P(ΘX(w) > t)

P (
∑n

i=1ΘiXi > t)
, Γα :=

n
∑

i=1

γ1/αei
. (4.13)
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Proof. From Proposition 4.2, since relations (4.4), (4.5) and (4.6) are satisfied, we obtain
that ΘX ∈ MRV (α, b, νL), therefore ΘX(w) ∈ R−α, see for example (4.2). From relation
(4.10) and the fact that

V aRp (ΘX(w)) = BΘX(w)

(

1

1− p

)

, (4.14)

we can show

1

BΘX(w)

(

1

1− p

)

∫ 1

0

BΘX(w)

(

1

y(1− p)

)

dg(y) ∼ Cα(g) , (4.15)

as p→ 1. Indeed, from the [23], [21, Th. B.2.18] we get that there exists a 0 < p̃ < 1, which
depends on ζ > 0, such that for p̃ ≤ p < 1 and 0 < y < 1 holds

∣

∣

∣

∣

∣

∣

∣

∣

BΘX(w)

(

1

y(1− p)

)

− BΘX(w)

(

1

1− p

)

1

α
BΘX(w)

(

1

1− p

) − y−1/α − 1

1/α

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

BΘX(w)

(

1

y(1− p)

)

1

α
BΘX(w)

(

1

1− p

) − y−1/α

1/α

∣

∣

∣

∣

∣

∣

∣

∣

≤ y−(1+ζ)/α . (4.16)

Further we have
∣

∣

∣

∣

∣

∣

∣

∣

BΘX(w)

(

1

y(1− p)

)

1

α
BΘX(w)

(

1

1− p

)

∣

∣

∣

∣

∣

∣

∣

∣

− y−1/α

1/α
≤

∣

∣

∣

∣

∣

∣

∣

∣

BΘX(w)

(

1

y(1− p)

)

1

α
BΘX(w)

(

1

1− p

) − y−1/α

1/α

∣

∣

∣

∣

∣

∣

∣

∣

, (4.17)

Hence from relations (4.16) and (4.17) we obtain

∣

∣

∣

∣

∣

∣

∣

∣

BΘX(w)

(

1

y (1− p)

)

BΘX(w)

(

1

1− p

)

∣

∣

∣

∣

∣

∣

∣

∣

≤ y−1/α +
y−(1+ζ)/α

α
. (4.18)

Since the integral in (4.11) converges for some ζ > 0, it follows

∫ 1

0

y−1/α g(dy) ≤
∫ 1

0

y−(1+ζ)/α g(dy) <∞ ,

whence we obtain
∫ 1

0

(

y−1/α +
y−(1+ζ)/α

α

)

g(dy) <∞ .
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Therefore from (4.18) and by dominated convergence theorem, we find

lim
p→1

∫ 1

0

BΘX(w)

(

1

y (1− p)

)

BΘX(w)

(

1

1− p

) g(dy) =

∫ 1

0

lim
p→1

BΘX(w)

(

1

y (1− p)

)

BΘX(w)

(

1

1− p

) g(dy)

=

∫ 1

0

y−1/α g(dy) = Cα(g) ,

where the pre-last equality follows from BΘX(w)(·) ∈ R1/α, see (4.9) and [42, sec. 2.4].
Therefore, relation (4.15) is true.

Furthermore, taking into account relation (4.13) we obtain

lim
p→1

∑n
i=1 V aRp(ΘiXi)

V aRp (ΘX(w))
=

Γα

γ
1/α
w

. (4.19)

However we also obtain

ρg
[

ΘX(w)
∣

∣ ΘX(w) > V aRp (ΘX(w))
]

=

∫ 1

0

BΘX(w)

(

1

y (1− p)

)

g(dy) ,

while by (4.14) and (4.15) we find

∫ 1

0

BΘX(w)

(

1

y (1− p)

)

g(dy) ∼ Cα(g) V aRp (ΘX(w)) ,

as p→ 1 and consequently from relation (4.19) and the last two expressions we find relation
(4.12). �

In the following background risk model, we have Θ, X with both dependence and asymp-
totic dependence, as well as the jointly multivariate regular variation.

Corollary 4.1. If the assumptions of Proposition 4.3 are true, where Θ and X are non-
negative random vectors with property (4.3) and the integral in (4.11) converges for some
ζ > 0, then we obtain (4.12) with

a :=
κλ

κ + λ
, (4.20)

instead of α.

Proof. From Proposition 4.3 we get

X ∈MRV

(

κλ

κ+ λ
, b c, νΘ,X ◦ Π←

)

.

Hence, since P(Xi ≤ x) = F (x) with F ∈ R−a with a given in (4.20), we obtain ΘX(w) ∈
R−a and further the proof follows the proof of Theorem 4.1. �

Next we provide a simple corollary, which is an extension of the result from [11, Theorem
3.1] in case when the systemic risk factor is independent of the risk vector X ∈MRV .
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Corollary 4.2. Let assume that the assumptions of Proposition 4.1 hold, with Θ and X non-
negative random vectors, that are mutually independent. If the integral in (4.11) converges
for some ζ > 0, then we obtain

ρg
[

ΘX(w)
∣

∣ ΘX(w) > V aRp (ΘX(w))
]

∼ Cα(g)
γ
1/α
w

Γα

n
∑

i=1

[E (Θα
i )]

1/α V aRp(Xi) , (4.21)

as p→ 1.

Proof. Firstly we have ΘX ∈ MRV (α, b, νΘ). Hence, we find that ΘX(w) ∈ R−α, from
the assumptions of Proposition 4.1, as a result we obtain (4.12), because Θi and Xi are
independent (namely a special cace of asymptotic independence). From [9] we find

V aRp(Xi) = V aRp(ΘiXi) ∼ [E (Θα
i )]

1/α V aRp(Xi) , (4.22)

as p→ 1. Hence from relation (4.22) and relation (4.12) we obtain (4.21). �

In our effort to enrich the models, we study a slightly different dependence structure
between Θ and X which is called conditional dependence. This last result in tail distortion
risk measure goes back to the case when the systemic risk factor Θ is one-dimensional, that
means it is common of all X1, . . . , Xn.

We consider Θ to be one-dimensional, namely common for all components, and take the
restriction to one concrete dependence model, the conditional dependence model, that covers
a wide spectrum of dependence, as for example the Farlie-Gumbel-Morgenstern copulas or
the Ali-Mikhail-Haq copulas.

Let check this form of dependence for n = 1, in the form of X , with P(X ≤ x) = F1(x),
whence we obtain

P(X > x | Θ = t) ∼ h1(t)F 1(x) , (4.23)

as x → ∞, with h1(·) : [0, ∞) → (0, ∞) measurable function. This dependence model was
suggested in [2]. The first application of conditional dependence in risk models was done in
[1]. This dependence structure has the property to begin independence asymptotically (as
the Asymptotic independence).

In [32] there exists an important extension of this dependence structure. Especially it
was considered a n-variate function V : [0,∞]n \ {0} → (0,∞) and a uni-variate function
h2 : (0,∞) → (0,∞), that satisfies the inequalities

0 < inf
t∈(0,∞)

h2(t) ≤ sup
t∈(0,∞)

h2(t) <∞ ,

and let F2 be a distribution defined on the interval (0,∞) with infinite upper bound, then
for any y ∈ [0,∞]n \ {0} holds

P(X > yx | Θ = t) ∼ V (y)h2(t)F 2(x) (4.24)

as x → ∞. If F 2 ∈ R−α, for some α > 0 then X ∈ MRV , with the same index α as it
appears from [32, remark 2.1].

In [17] was shown that under dependence structure (4.24) between Θ and X, the proba-
bility of joint excess of the product ΘX comes in the form

P[ΘX > y x] = P[ΘX1 > y1 x, . . . , ΘXn > yn x] ∼ E[h2(Θ)]V (y)E[(Θ∗)α]F 2(x) , (4.25)

as x→ ∞, for any y ∈ [0, ∞]n \ {0}, under the condition

E[Θα+ε] <∞ , (4.26)
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for some ε > 0, where by Θ∗ we denote a random variable independent of random vector X,
with distribution

P[Θ∗ ∈ dθ] =
1

E[h2(Θ)]
h2(θ)P[Θ ∈ dθ] , (4.27)

Thence, from relation (4.25), it follows that the vector ΘX ∈MRV with the same variation
index α. So we find the next result, appearing in vague form in [17].

Proposition 4.4 (Cheng-Konstantinides-Wang (2024)). If X ∈ MRV (α, b, ν) and Θ is
a non-degenerated to zero random variable, such that (4.26) is true for some ε > 0, then
ΘX ∈MRV , with the same index α.

Remark 4.1. It worth to observe that

(1) From the dependence structure in relation (4.24), we obtain

P[Xi > x | Θ = θ] ∼ 1

E[h2(Θ)]
h2(θ)F i(x) , (4.28)

as x→ ∞, for any i = 1, . . . , n, see for example in [32, Rem. 2.1]. Relation (4.28),
in fact renders the conditional dependence in (4.23) for any pair (Xi, Θ).

(2) In [28, Rem. 5.3] can be found a comment about the conditions under which the
dependence structure (4.24) contains the independence, as a special case. Next, we
examine the asymptotic independence case between Θ and X, to show that Proposition
4.4 does not represent a special case of [24, Prop. 4.2]. If Θ and X are asymptotically
independent, then by relation (4.24) we find

P[ΘX1 > y1 x, . . . , ΘXn > yn x, Θ = θ]

P[Θ = θ]
∼ V (y) h2(θ)F 2(x) ,

from where follows

P[X1 > y1 x, . . . , Xn > yn x] ∼ V (y) h2(θ)F 2(x) , (4.29)

as x → ∞, where in the second step we use that Θ and X are asymptotically inde-
pendent.
Now, for the random vector X, we say that it has asymptotically dependent com-

ponents if

lim
x→∞

P[X1 > y1 x, . . . , Xn > yn x]

F (x)
> 0 , (4.30)

while in opposite case we say that it has asymptotically independent components.
Thus, in case (4.30) is true, there exists some number ε > 0, which represents the

limit of the ratio. Therefore by (4.29) we obtain

ε F 2(x) ∼ V (y) h2(θ)F 2(x) ,

that means

V (y) h2(θ) = ε > 0 , (4.31)

hence the dependence (4.24) represents a sub-case of asymptotic independence for Θ
and X. However, if the vector X has asymptotically independent components then
ε = 0. So from (4.31) we conclude either V (y) = 0 or h2(θ) = 0, which is not true
by definition. Namely, the asymptotic independence for Θ and X fails.
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Corollary 4.3. Let X ∈ MRV (α, b, ν) be a non-negative random vector and Θ be a non-
negative random variable. Under the assumptions of Theorem proposition 4.4 and if the
integral in (4.11) converges for some ζ > 0, then for ΘX we obtain (4.12).

Proof. As the conditions of proposition 4.4 hold, it follows ΘX ∈ MRV (α, b, ν), and con-
sequently ΘX(w) ∈ R−α, for some α > 0. Further the proof follows the route of Theorem
4.1. �

5. Conclusion

The asymptotic analysis of the tail distortion risk measures in background risk model can
bring better understanding of the role of the dependence structures. In fact we intent to
approach the real situations, where several kind of dependencies interact simultaneously.

In fact, the first models with interdependence among Θi and Xi, namely the main claims
X1, . . . , Xn to be dependent, the discount factors Θ1 , . . . , Θn to be also dependent and the
two sequences {X1, . . . , Xn} and {Θ1 , . . . , Θn} to be mutually dependent, are restricted
to the case of multivariate regular variation of main claims. The GTAI dependence struc-
ture in two dimensional models provides a form of interdependence among X1, . . . , Xn and
Θ1 , . . . , Θn.

Finally, in actuarial practice the randomly stopped sums gain more popularity, which is
plausible with respect to applications.
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