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SIMILAR POINT CONFIGURATIONS VIA GROUP ACTIONS

P. BHOWMIK, A. GREENLEAF, A. IOSEVICH, S. MKRTCHYAN, AND F. RAKHMONOV

Abstract. We prove that for d ≥ 2, k ≥ 2, if the Hausdorff dimension of a

compact set E ⊂ R
d is greater than d2

2d−1
, then, for any given r > 0, there exist

(x1, . . . , xk+1) ∈ Ek+1, (y1, . . . , yk+1) ∈ Ek+1, a rotation θ ∈ Od(R), and a vector
a ∈ R

d such that rxj = θyj − a for 1 ≤ j ≤ k + 1. Such a result on existence
of similar k-simplices in thin sets had previously been established under a more
stringent dimensional threshold in Greenleaf, Iosevich and Mkrtchyan [5]. The
argument we are use to prove the main result here was previously employed in
Bhowmik and Rakhmonov [1] to establish a finite field version. We also show
the existence of multi-similarities of arbitrary multiplicity in R

d, show how to
extend these results from similarities to arbitrary proper continuous maps, as well
as explore a general group-theoretic formulation of this problem in vector spaces
over finite fields.

1. Introduction

The celebrated Falconer distance conjecture (see e.g. [4], [7]) states that if the
Hausdorff dimension dimH(E) of a compact set E ⊂ R

d, d ≥ 2, is greater than
d
2
, then the Lebesgue measure of the distance set ∆(E) := {|x − y| : x, y ∈ E} is

positive. Currently, the best threshold known for the Falconer distance problem in
two dimensions is 5

4
, due to Guth, Iosevich, Ou and Wang ([6]). In higher dimensions,

the best exponent known is d
2
+ 1

4
− 1

8d+4
, due to Du, Ou, Ren, and Zhang ([2]).

More generally, given a compact set E ⊂ R
d, d ≥ 2, let

∆k(E) = {v(x1, . . . , xk+1) : xj ∈ E} ⊂ R
(k+1

2 ),

where v(x1, . . . , xk+1) is the
(
k+1
2

)
-vector whose entries are |xi−xj |, 1 ≤ i < j ≤ k+1,

listed in the dictionary order.

We can think of ∆k(E) as the set of non-congruent (k + 1)-tuples of elements
of E (modulo the action of the symmetric group Sk+1). More precisely, we say
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that (x1, . . . , xk+1) ∈ Ek+1 is congruent to (y1, . . . , yk+1) ∈ Ek+1 if there exists an
orthogonal matrix θ ∈ Od(R) and a ∈ R

d such that yj = θxj + a for 1 ≤ j ≤ k + 1.
Equivalently, for k ≤ d, one can consider ∆k(E) as the set of congruence classes of
k-simplices generated by points in E.

One can also consider similarity classes of k-simplices. Greenleaf, Iosevich, and
Mkrtchyan proved in [5] that if the Hausdorff dimension of E, dimH(E), satisfies
dimH(E) > sk :=

dk+1
k+1

, then

for every r > 0, there exist distinct

(x1, . . . , xk+1) ∈ Ek+1, (y1, . . . , yk+1) ∈ Ek+1(1.1)

such that |yi − yj| = r|xi − xj | for every 1 ≤ i < j ≤ k + 1.

In other words, given any r > 0, there exist two (k + 1)-tuples of elements of
E which are similar via a translation, rotation, and the prescribed scaling factor r.
More precisely, the following was proved in [5]: Given E with dimH(E) > sk, let
sk < s < dimH(E) and µ be a Frostman measure on R

d, supported on E and of
finite s-energy, as in Frostman’s Lemma (see [7]). From µ one forms the natural

configuration measure νk on ∆k(E), i.e., for any f ∈ C0

(
R
(k+1

2 )
)
,

∫
f(~t) dνk(~t) =

∫
· · ·
∫

f
(
v(x1, . . . , xk+1)

)
dµ(x1)dµ(x2) . . . dµ(xk+1).

For 0 < r < ∞, define

(1.2) ∆r
k(E) =

{
~t ∈ ∆k(E) : r~t ∈ ∆k(E)

}
⊂ ∆k(E),

which records the (k+1)-point configurations in E which also have an r-scaled similar
copy in E. Then, in [5] it was shown that if dimH(E) > sk, then

(1.3) νk(∆
r
k(E)) > 0,

which implies (and is in fact much stronger than) statement (1.1).

In the first results of the current paper, Theorem 1.1 and Corollary 1.2, we will
show that while (1.3) might require the full strength of the machinery used in [5],
one can derive the conclusion (1.1) for any k under a much lower, k-independent

dimensional threshold, dimH(E) > d2

2d−1
, and extend it to k > d (for which (k + 1)-

point sets no longer correspond to k-simplices). In brief, the work in [5] shows, and

uses, that if dimH(E) > sk = dk+1
k+1

defined above, then the measure νk on R
(k+1

2 ),

supported on ∆k(E), is absolutely continuous with respect to Lebesgue measure d~t,

with a density in L2
(
R(

k+1

2 )
)
. In contrast the method we employ in this paper merely
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requires use of the lower threshold, dimH(E) > d2

2d−1
, above which the configuration

measure ν1 on the distance set ∆(E) = ∆1(E) is known to be in L2(R). Theorem 1.3
then uses a continuous version of the pigeonhole principle (Proposition 2.3, from [5])
to extend these results to multi-similarities of any multiplicity, while Theorem 1.4 in
Section 3 shows how these results can be extended to more general transformations
in R

d.

In addition to the Euclidean setting described so far, we also examine an analogous
problem in the context of general transitive group actions on vector spaces over finite
fields. See Theorems 1.5 and 1.6, and Corollary 1.7 and their proofs in Section 4.
Our goal is to lay the groundwork for future explorations in this broader context,
including both finite field and Euclidean problems.

1.1. Results in Euclidean spaces. In the Euclidean setting, our main result is:

Theorem 1.1. Let E ⊂ R
d, d ≥ 2, be compact with Hausdorff dimension satisfying

dimH(E) > d2

2d−1
. Then, for any r > 0, there exist θ ∈ Od(R) and a ∈ R

d such that
rE ∩ (θE−a) has positive Hausdorff dimension, and is thus uncountably infinite. In
particular, for every k ∈ N, (1.1) holds.

An immediate consequence of Theorem 1.1 is the following.

Corollary 1.2. Let E ⊂ R
d, d ≥ 2, be a compact set with dimH(E) > d2

2d−1
.

Then, for any k ≥ 1 and r > 0, there exist distinct (x1, . . . , xk+1) ∈ Ek+1 and
(y1, . . . , yk+1) ∈ Ek+1, such that |xi−xj | = r|yi−yj | for all 1 ≤ i < j ≤ k+1. Thus,
if 1 ≤ k ≤ d, for any r > 0 there exist r-similar k-simplices in E.

As in [5] for the higher threshold sk, a measure-theoretic pigeonhole principle allows
one to leverage the proof of Theorem 1.1 to obtain the existence of multi-similarities
in E, of arbitrarily large multiplicity, for dimH(E) above the new, lower threshold:

Theorem 1.3. Let E ⊂ R
d, d ≥ 2, be a compact set with dimH(E) > d2

2d−1
. Then

for all n ≥ 1 and any compact interval I ⊂ (0,∞), there exists M = M(n,E, I) ∈ N

such that for any distinct r1, . . . , rM ∈ I, there exist distinct ri1, . . . , rin such that:

For every k ≥ 1, there is a ~t ∈ R
(k+1

2 ) such that
{
ri1~t, ri2~t, . . . , rin~t

}
⊂ ∆k(E),

i.e., there exists an n-similarity of (k+1)-point sets in E with scaling factors coming
from among {ri}Mi=1.
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See Section 2.2 for the relevant definitions, statements and proof.

We also extend Theorem 1.1 by showing that the dilations in Theorem 1.1 can be
replaced by more general transformations:

Theorem 1.4. Suppose T : Rd → R
d is a proper continuous map, and E ⊂ R

d is
compact. Given s < dimH(E), let µ be a Frostman measure µ supported on E and
of finite s-energy. Define the pushforward measure µT by its action on f ∈ C0(R

d),
∫

f(x)dµT (x) :=

∫
f(T (x))dµ(x).

If s is such that ∫
|µ̂T (ξ)|2|ξ|−s d−1

d dξ < ∞

then T (E) ∩ (θE − a) has positive Hausdorff dimension, and is thus uncountably
infinite. Thus, for any k ∈ N, we can find points (x1, . . . , xk+1) ∈ Ek+1 and
(y1, . . . , yk+1) ∈ Ek+1 such that T (xi) = θyi − a for all i for some θ ∈ Od(R).

For example, Theorem 1.4 applies if T is a diffeomorphism of Rd which is the
identity outside of a compact set, since such maps preserve Sobolev spaces of all
orders.

1.2. Finite field setting and transitive group actions. The idea behind the
proof of (1.1) was originally implemented in the finite field setting by Bhowmik and
Rakhmonov in [1].

Let F
d
q be the vector space of dimension d ≥ 2 over the finite field Fq with q

elements. We define a function ‖·‖ : Fd
q → Fq by ‖α‖ := α2

1 + · · · + α2
d for α =

(α1, . . . , αd) ∈ F
d
q . Note that this is not a norm, as it is Fq-valued (and homogeneous

of degree 2), and we do not impose any metric structure on F
d
q . However, ‖·‖ does

share an important feature of the Euclidean norm: it is invariant under orthogonal
transformations.

For m ≥ 2, let (Fq)
m := {am : a ∈ Fq}; in particular, (Fq)

2 is the set of quadratic
residues in Fq. Then the following holds.

Theorem 1.5. [1, Thm. 1.3] Let k ≥ 1. Suppose ∅ 6= A ⊂ {(i, j) : 1 ≤ i < j ≤ k+1}
and r ∈ (Fq)

2\{0}. If E ⊂ F
d
q with |E| ≥

√
k + 1q

d
2 , then there exist (x1, . . . , xk+1) ∈

Ek+1 and (y1, . . . , yk+1) ∈ Ek+1 such that ‖yi − yj‖ = r‖xi − xj‖ for (i, j) ∈ A, and
xi 6= xj, yi 6= yj, for all 1 ≤ i < j ≤ k + 1.

As a straightforward corollary, through the variation of the underlying set A, we
can establish thresholds for the existence of dilated k-cycles, k-paths, and k-stars
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(for k ≥ 3) with a dilation ratio r ∈ (Fq)
2 \{0}. Notably, Rakhmonov has previously

examined the cases of 2-paths, 4-cycles, and k-simplices in [8].

The original idea for a proof of Theorem 1.5 was based on the a group-theoretic
approach. (However, in [1], the first and fifth listed authors opted for an alternative,
weaker version of this method.) This group-theoretic approach can be generalized to
arbitrary transitive group actions, which we state here and prove in Section 4:

Theorem 1.6. Suppose that G is a finite group acting transitively on a set X, and
let E and H be subsets of X. Then

(1.4) max
g∈G

|H ∩ gE| ≥ |H||E|
|X| .

Another application of Theorem 1.6 pertains to SLd(Fq) actions:

Corollary 1.7. Suppose k ≥ d. Let E ⊂ F
d
q, with |E| ≥

√
k + 1q

d
2 . Then for every

r ∈ (Fq)
d \{0}, there exist (x1, . . . , xk+1) ∈ Ek+1 and (y1, . . . , yk+1) ∈ Ek+1 such that

det(xi1 , xi2 , . . . , xid) = r det(yi1, yi2, . . . , yid)

for all d-tuples of elements from (x1, . . . , xk+1) ∈ Ek+1 and (y1, . . . , yk+1) ∈ Ek+1,
respectively, where det(u1, u2, . . . , ud) is the determinant of the d × d matrix where
the columns are vectors in F

d
q.

The paper is organized as follows. In Section 2 we prove Theorem 1.1 in R
d,

and recall in Section 2.2 the material needed to state and prove Theorem 1.3 on
multi-similarities. Then, in Section 3 we prove Theorem 1.4, extending the context
of Theorem 1.1 from dilations to more general transformations in R

d. Finally, in
Section 4 we prove the group action result Theorem 1.6 and show how it implies
Theorem 1.5 and Corollary 1.7 in the finite field setting.

2. Similarities and multi-similarities in R
d

2.1. Proof of Theorem 1.1. Let E ⊂ R
d be compact. Then, for any s < dimH(E),

we can equip E with a Frostman measure µ, a probability measure supported on E,
of finite s-energy and satisfying a dimension s ball condition. For 0 < r < ∞ and
θ ∈ Od(R), the group of orthogonal transformations of Rd, define µr and µθ, also
probability measures of dimension s, by their actions on f ∈ C0(R

d),
∫

f(x)dµr(x) :=

∫
f(rx)dµ(x),

∫
f(x)dµθ(x) :=

∫
f(θx)dµ(x),
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with Fourier transforms µ̂r(ξ) = µ̂(rξ) and µ̂θ(ξ) = µ̂ (θ−1ξ). Using this notation,
consider

(2.1)

∫ (
µr ∗ µθ

)
(x)dx.

If the expression in (2.1) converges we are done because, formally, it equals
(∫

dµr(x)

)
·
(∫

dµθ(x)

)
=

∫
dµr(x) ·

∫
dµθ(x) = 1.

However, in order to decouple the integrals, one needs to demonstrate that (2.1)
converges, at least for a set of θ of full measure. If this convergence is established,
and if we define

Ar,θ := supp
(
µr ∗ µθ

)
⊂ R

d,

then one has

1 =

∫ (
µr ∗ µθ

)
(x)dx =

∫
1Ar,θ

(x) ·
(
µr ∗ µθ

)
(x) dx.

Squaring this, applying Cauchy-Schwarz and then integrating with respect to the
normalized Haar measure dθ on Od(R), it follows that

1 = 12 =

∫

Od(R)

(∫

Rd

1Ar,θ
(x) ·

(
µr ∗ µθ

)
(x)dx

)2

dθ

≤
∫

Od(R)

(∫

Rd

1Ar,θ
(x)2dx

)
·
(∫

Rd

(
µr ∗ µθ

)
(x)2dx

)
dθ

=

∫
Ld (Ar,θ) ·

∫
(µr ∗ µθ)(x))

2
dx dθ

≤
(

sup
θ∈Od(R)

Ld (Ar,θ)

)
·
∫ ∫

(µr ∗ µθ)(x))
2
dx dθ,

where Ld denotes Lebesgue measure on R
d. Hence,

(2.2) sup
θ

Ld (Ar,θ) ≥
1∫ ∫

(µr ∗ µ(θ·)(x))2dx dθ
.

To obtain a lower bound for the left hand side of (2.2), we need an upper bound
on the denominator

∫ ∫
(µr ∗ µ(θ·)(x))2dx dθ of the right hand side. To obtain this,

we use the following result.
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Theorem 2.1. (Wolff [9] for d = 2; Du and Zhang [3] for d ≥ 3) Let µ be a measure,
supported on a compact set on R

d and of dimension α for some α ∈
(
d
2
, d
)
. Then,

∫

Sd−1

|µ̂(Rω)|2 dω ≤ Cα,µR
−α d−1

d .

Returning to the proof of Theorem 1.1, define Fr,θ(x) =
(
µr ∗ µθ

)
(x). Then,

∫ ∫
F 2
r,θ(x)dθ dx =

∫ ∫
|µ̂r(ξ)|2|µ̂(θξ)|2dθ dξ .

∫
|µ̂r(ξ)|2|ξ|−α d−1

d dξ,

where for the inequality we have used Theorem 2.1 for any d
2
< α < dimH(E).

Taking α = s, the dimension of µ, then if s > d2

2d−1
, the denominator of the right side

of (2.2) is bounded above if dimH(E) > d2

2d−1
, and thus the left hand side is bounded

below, say by cr > 0. This also shows that in fact the integral in (2.1) converges,
thereby justifying the calculations above.

(Note for use in the next subsection that cr depends on s and the s-energy of µr;
thus, as r ranges over any compact interval I ⊂ (0,∞), cr is uniformly bounded
away from 0.)

We have shown that, for any r > 0, there exists θ ∈ Od(R) such that

Ld (Ar,θ) ≥ cr > 0,

or equivalently

Ld
(
{a ∈ R

d : µ{y ∈ E : (∃ x ∈ E) ( rx = θy − a ) } > 0}
)
≥ cr > 0.

Fixing any one such a, it follows that {y ∈ E : (∃ x ∈ E) rx = θy − a} has pos-
itive µ measure, thus has positive Hausdorff dimension, and hence is an (uncount-
ably) infinite set. In particular, for any k ≥ 1, there exist (x1, . . . , xk+1) ∈ Ek+1,
(y1, . . . , yk+1) ∈ Ek+1, θ ∈ Od(R), and a ∈ R

d such that rxj = θyj − a for
1 ≤ j ≤ k + 1. This completes the proof of Theorem 1.1.

2.2. Extension to multi-similarities: Proof of Theorem 1.3. By the paren-
thetical comment above,

(2.3) (∀ I ⊂ (0,∞), I compact) (∃ cI > 0) (∀ r ∈ I) cr ≥ cI .

Modifying slightly the proof of Theorem 1.1 and using a continuous version of the
pigeonhole principle from [5] will allow us to prove the existence of arbitrarily many
simultaneous similarities in E. We start with some background.

The set ∆r
k(E) defined in (1.2) records the pairs {~t, r~t} ⊂ ∆k(E) of (k + 1)-point

sets in E which are similar by an r-scaling and translation. Similarly, one can look
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at n-tuples of similar (k+1)-point sets. Recall the following definition from [5]; since
all line segments are similar to each other, this is only interesting for k ≥ 2.

Definition 2.2. Let n ≥ 1. A multi-similarity of multiplicity n of (k + 1)-point

sets in E is a set of the form {r1~t, r2~t, . . . , rn~t} ⊂ ∆k(E), for some ~t ∈ R
(k+1

2 ) and
r1, r2, . . . , rn ∈ (0,∞), pairwise distinct. (If k ≤ d, this is a simultaneous similarity
of k-simplices in E under n different scalings.)

In [5], it was shown that the version of our Theorem 1.1 with the higher threshold
dimH(E) > sk had as a corollary a multi-similarity version, [5, Thm. 1.7]. This
was done by combining a multi-similarity version of (1.3) with a measure-theoretic
version of the pigeonhole principle [5, Lem. 2.1]. We can combine this reasoning
with a modification of the proof of Theorem 1.1 to obtain Theorem 1.3, i.e., the
existence, above the same lower threshold of Theorem 1.1, of multi-similarities of all
multiplicities.

We start from the same expression (2.1) as above, but now consider θ as a variable
rather than a parameter. Define Dr = supp x,θ

(
µr ∗ µθ

)
⊂ R

d ×Od(R). Then, from

1 =

∫ ∫

Rd×Od(R)

(
µr ∗ µθ

)
(x) dx dθ =

∫ ∫

Rd×Od(R)

1Dr
(x, θ) ·

(
µr ∗ µθ

)
(x) dx dθ,

a variation of the calculation in the previous section yields

1 ≤
(
Ld × dθ

)
(Dr) ·

∫ ∫
Fr,θ(x, θ)

2 dx dθ

and thus

(2.4)
(
Ld × dθ

)
(Dr) ≥ cr.

Now recall the

Proposition 2.3. Measure-theoretic Pigeonhole Principle ([5])
Let X = (X,M, σ) be a measure space with σ(X) < ∞. For 0 < c < σ(X),
define Mc = {A ∈ M : σ(A) ≥ c}. Then, for every n ≥ 1, there exists an
N = N(X , c, n) such that: for any collection {A1, . . . , AN} ⊂ Mc of cardinality N ,
there is a subcollection {Ai1 , . . . , Ain} of cardinality n such that σ(Ai1∩· · ·∩Ain) > 0
and hence Ai1 ∩ · · · ∩ Ain 6= ∅.

From (2.3), (2.4), we see that {Dr}r∈I is a family of measurable subsets of the
finite measure space B(0, R)×Od(R), equipped with Ld × dθ, where

R = 2(sup{r : r ∈ I}) · (sup{|x| : x ∈ E}),
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with measures bounded below by cI . Applying Proposition 2.3, there exists anM ∈ N

such that, for any distinct {ri}Mi=1 ⊂ I, there is a subset
{
rij
}n
j=1

such that

(
Ld × dθ

)
(

n⋂

j=1

Drj

)
> 0.

Thus, there exists a θ0 ∈ Od(R) such that

Ld

(
n⋂

j=1

Drj ∩ {θ = θ0}
)

> 0.

Since ∩n
j=1Drj ∩ {θ = θ0} has positive Lebesgue measure, it is infinite and hence for

any k ∈ N we can find {xl}k+1
l=1 and {yl}k+1

l=1 such that

rijx
l = θ0y

l − a, ∀ 1 ≤ j ≤ n, 1 ≤ l ≤ k + 1.

This finishes the proof of Theorem 1.3. Note that what was established is consider-
ably stronger than the statement of the theorem.

3. Proof of Theorem 1.4

Since T : Rd → R
d is proper and continuous, the Frostman measure µ on E defines

a measure µT by
∫

f(x)dµT (x) :=

∫
f(T (x))dµ(x), ∀ f ∈ C0(R

d).

Suppose that ∫
|µ̂T (ξ)|2|ξ|−s d−1

d dξ < ∞.

Arguing as in the proof of Theorem 1.1, if we set

AT,θ := supp
(
µT ∗ µθ

)
⊂ R

d,

one sees that there exists a cT > 0 such that

sup
θ∈Od(R)

Ld (AT,θ) ≥ cT ,

from which it follows that there exists a θ0 ∈ Od(R) such that

Ld
(
{a ∈ R

d : µ{y ∈ E : (∃ x ∈ E) ( T (x) = θ0y − a ) } > 0}
)
≥ cT > 0.

It follows that for all k ∈ N, there are points a ∈ R
d and x1, . . . , xk+1, y1, . . . , yk+1 ∈ E

and such that T (xi) = θ0yi − a for all 1 ≤ i ≤ k + 1.
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Remark 3.1. Similarly to how one can go from a single dilation factor in Theorem 1.1
to the multi-similarities in Theorem 1.3, one can boost from the one transformation
T in Theorem 1.4 to multiple transformations. Suppose that T is a family of proper,
continuous maps and s is such that there is a uniform bound,

∫
|µ̂T (ξ)|2|ξ|−s d−1

d dξ ≤ C, ∀ 1 ≤ j ≤ m, T ∈ T .

Following the proof of Theorem 1.3 in Section 2.2, one can show that for all n ∈ N,
there exists an M ∈ N such that for any distinct {Tj}Mj=1 ⊂ T , there exists a subset

{Tjl}nl=1, a θ0 ∈ Od(R), a ∈ R
d, and for all k ∈ N, points x1, . . . , xk+1, y1, . . . , yk+1 ∈

E such that Tjl(xi) = θ0yi − a for all 1 ≤ i ≤ k + 1, 1 ≤ l ≤ n.

4. Proofs of Theorem 1.6, Theorem 1.5 and Corollary 1.7

We start with the proof of Theorem 1.6, and then show how to apply it to obtain
the similarity set results Theorem 1.5 and Corollary 1.7.

Proof of Theorem 1.6. Suppose that G is a finite group acting transitively on a
set X , and let H and E be subsets of X . For each x ∈ X , let Ox := {gx : g ∈ G} be
the orbit of x, and Sx := {g ∈ G : gx = x} be the stabilizer of x. The orbit-stabilizer
theorem tells us that |G| = |Ox| · |Sx|. Since the action of G on X is transitive, then
Ox = X , and hence |Sx| = |G|/|X|.

Let Sxy := {g ∈ G : gx = y}. It is not difficult to prove that |Sxy| = |Sx|. Indeed,
consider the map φ : Sxy × Sx → Sxy defined by (h, g)

φ7−→ hg. We observe that
every u ∈ Sxy has exactly |Sxy| preimages, i.e., |φ−1({u})| = |Sxy|. This immediately
implies that |Sxy × Sx| = |Sxy|2, and hence |Sxy| = |Sx|. Therefore, we have shown
that |Sxy| = |G|/|X| for any x, y ∈ X .

Now, define a set P by

P = {(g, y) ∈ G×X : y ∈ H ∩ gE}.

We can compute the cardinality of P in two ways using a double-counting argu-
ment. On one hand, we have:
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|P| =
∑

y∈H

∑

g∈G
y∈gE

1 =
∑

y∈H

|{g ∈ G : y ∈ gE}|

=
∑

y∈H

∑

x∈E

|{g ∈ G : y = gx}| =
∑

y∈H

∑

x∈E

|Sxy|

=
|G||H||E|

|X| ,

(4.1)

where we have used the fact that |Sxy| = |G|/|X|. On the other hand,

|P| =
∑

g∈G

∑

y∈H∩gE

1 =
∑

g∈G

|H ∩ gE|

≤ max
g∈G

|H ∩ gE| · |G|.
(4.2)

Combining (4.1) and (4.2), one finds that

(4.3) max
g∈G

|H ∩ gE| ≥ |H||E|
|X| ,

as claimed in (1.4). This completes the proof of Theorem 1.6.

Proof of Theorem 1.5. Consider X = F
d
q and E ⊂ F

d
q . For r ∈ (Fq)

2 \ {0}, let √r

be any square root of r, and set H =
√
rE. Note that |H| = |E|. Finally, let G be

the group of translations of Fd
q , acting transitively on F

d
q . Theorem 1.6 implies that

(4.4) max
a∈Fd

q

∣∣(√rE
)
∩ (E + a)

∣∣ ≥ |E|2
qd

.

If |E| ≥
√
k + 1q

d
2 , then maxa∈Fd

q
|√rE ∩ (E + a)| ≥ k + 1. Thus, there exists an

element a ∈ F
d
q such that |√rE ∩ (E + a)| ≥ k + 1. Consequently, we can establish

the existence of a sequence {z1, . . . , zk+1} such that {z1, . . . , zk+1} ⊂ √
rE ∩ (E + a).

This implies the existence of sequences {x1, . . . , xk+1} ⊂ E and {y1, . . . , yk+1} ⊂ E,
such that zi =

√
rxi and zi = yi + a for 1 ≤ i ≤ k + 1.

In summary, we have demonstrated the existence of (k+1)-tuples (x1, . . . , xk+1) ∈
Ek+1 and (y1, . . . , yk+1) ∈ Ek+1 satisfying the following conditions:

(1) xi 6= xj and yi 6= yj for 1 ≤ i < j ≤ k + 1.

(2) yi + a =
√
rxi for i ∈ {1, . . . , k + 1}.
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Therefore, for 1 ≤ i < j ≤ k + 1, we have:

‖yi − yj‖ = ‖(√rxi − a)− (
√
rxj − a)‖ = ‖√rxi −

√
rxj‖

= (
√
r)2‖xi − xj‖ = r‖xi − xj‖.

Since A is a nonempty subset of {(i, j) : 1 ≤ i < j ≤ k + 1}, we have shown that
there exist two (k+1)-point configurations, (x1, . . . , xk+1) ∈ Ek+1 and (y1, . . . , yk+1) ∈
Ek+1, satisfying the following conditions:

(1) xi 6= xj and yi 6= yj for 1 ≤ i < j ≤ k + 1.

(2) ‖yi − yj‖ = r‖xi − xj‖ for (i, j) ∈ A.

This completes the proof of Theorem 1.5.

Proof of Corollary 1.7. Let G = SLd(Fq), X = F
d
q , and suppose that E ⊂ F

d
q with

|E| ≥
√
k + 1q

d
2 . The action of SLd(Fq) on F

d
q is transitive for d ≥ 2 (this is just a

special case of the general fact, valid for any field F). Consequently, Theorem 1.6 is
applicable, and we now show that it leads to the conclusion stated in Corollary 1.7.

If we let r
1

d be any dth root of r ∈ (Fq)
d\{0}, define H = r

1

dE. Then Theorem 1.6

yields maxg∈G |r 1

dE ∩ gE| ≥ k+1. Let g ∈ SLd(Fq) be such that |r 1

dE ∩ gE| ≥ k+1,
so that there is a set

{z1, . . . , zk+1} ⊂ r
1

dE ∩ gE.

This implies the existence of {x1, . . . , xk+1} ⊂ E and {y1, . . . , yk+1} ⊂ E, such

that zi = r
1

dyi and zi = gxi for 1 ≤ i ≤ k + 1.

Hence,

det(zi1 , . . . , zid) = det(r
1

dyi1, . . . , r
1

d yid) = r det(yi1 , . . . , yid).

On the other hand, since g ∈ SLd,

det(zi1 , . . . , zid) = det(gxi1, . . . , gxid) = det(xi1 , . . . , xid).

Comparing the previous two equalities yields the statement of Corollary 1.7.

Remark. Let X = Sd−1 be a d-dimensional sphere in F
d
q . Then G = Od(Fq)

acts transitively on Sd−1. By Theorem 1.6 we have that if E 6= H and |E||H| ≥
(k + 1)qd−1, then maxg∈Od

|H ∩ gE| ≥ k + 1.
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