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Abstract

In the mixture of experts model, a common assumption is the linearity between
a response variable and covariates. While this assumption has theoretical and com-
putational benefits, it may lead to suboptimal estimates by overlooking potential
nonlinear relationships among the variables. To address this limitation, we propose
a partially linear structure that incorporates unspecified functions to capture non-
linear relationships. We establish the identifiability of the proposed model under
mild conditions and introduce a practical estimation algorithm. We present the
performance of our approach through numerical studies, including simulations and
real data analysis.

Keywords: Machine learning, Mixture of experts, Model-based clustering, Partially linear
models

1 Introduction

Quandt (1972) introduced a finite mixture of regressions (FMR) for uncovering hidden latent
structures in data. It assumes the existence of unobserved subgroups, each characterized by
distinct regression coefficients. Since the introduction of FMR, extensive research has been
conducted to enhance its performance, with contributions from Neykov et al. (2007), Bai et al.
(2012), Bashir and Carter (2012), Hunter and Young (2012), Yao et al. (2014), Song et al.
(2014), Zeller et al. (2016), Zeller et al. (2019), Ma et al. (2021), Zarei et al. (2023), and Oh
and Seo (2024).

However, because FMRs assume that the assignment of each data point to clusters is in-
dependent of the covariates (Hennig, 2000), FMR can be undermined with regard to the per-
formance of regression clustering when the assumption of assignment independence is violated.
Alternatively, Jacobs et al. (1991) introduced the mixture of linear experts (MoE), allowing
for the assignment of each data point to depend on the covariates. Nguyen and McLachlan
(2016) suggested the Laplace distribution for the error distributions, while Chamroukhi (2016)
and Chamroukhi (2017) used t distributions and skew-t distributions for errors, respectively.
Murphy and Murphy (2020) further extended MoE with a parsimonious structure to improve
estimation efficiency. Mirfarah et al. (2021) introduced the use of scale mixture of normal dis-
tributions for errors within MoE. Recently, Oh and Seo (2023) proposed a specific MoE variant,
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assuming that covariates follow finite Gaussian location-scale mixture distributions and that
the response follows finite Gaussian scale mixture distributions.

In spite of extra flexibility for errors in these models, they assumed linear structures in
each mixture component, which makes too simple to capture the hidden latent structures. In
homogeneous population, Engle et al. (1986) introduced a partial linear model, comprising a
response variable Y is represented as a linear combination of specific p-dimensional covariates X
and an unspecified non-parametric function that includes an additional covariate U , as follows.

y = x⊤β + g(u) + ϵ, (1)

where U ⊂ R, ϵ is an error term with a mean zero and finite variance, and the function g(·) is an
unknown non-parametric function. This model has the advantages of interpretability, stemming
from its linearity, with the flexibility to capture diverse functional relationships through an
unspecified function g(·). The differentiation betweenX and U is determined either theoretically
based on established knowledge in the application field or through methods like scatter plots
or statistical hypothesis testing. Wu and Liu (2017) and Skhosana et al. (2023) suggested the
FMR to accommodate a partially linear structure within a heterogeneous population.

In this paper, we consider a novel approach that incorporates partially linear structures
into MoE, utilizing unspecified functions based on kernel methods. This allows proposed model
to effectively capture various relationships between the response and covariates, while latent
variable is dependent on some covariates. This flexibility can significantly impact the estimation
of regression coefficients and enhance clustering performance by mitigating misspecification
problems arising from assumptions about the relationships between variables. In addition, we
address the issue of identifiability in the proposed model to ensure the reliability of the outcomes
derived from proposed approach.

The remainder of this paper is organized as follows. Section 2 reviews MoE and introduces
the proposed models, addressing the identifiability. Section 3 outlines the estimation procedure,
while Section 4 deals with practical issues related to the proposed models. We present the results
of simulation studies in Section 5 and apply the models to real datasets in Section 6. Finally,
we provide a discussion in Section 7.

2 Semiparametric mixture of partially linear experts

2.1 Mixture of linear experts

Let Z be a latent variable indicating the membership of the observations. MoE is a useful tool
when exploring the relationship between the response variable and covariates in the presence
of unobserved information about C heterogeneous subpopulations by latent variable Z. Jacobs
et al. (1991) presented the conditional probability distribution of the response variable given
the covariates as

p(y|x) =
C∑
c=1

p(Z = c | x)p(y | x, Z = c) =
C∑
c=1

πc(x)ϕ(y;β0c + x⊤βc, σ
2
c ), (2)

where πc(·), c = 1, . . . , C, represents a mixing probability that depends on the given covariates,
with 0 < πc(x) < 1 and

∑C
c=1 πc(x) = 1. Additionally, (β0c,β

⊤
c ) represents a (p+1)-dimensional

vector for c = 1, . . . , C, and ϕ(·;µ, σ2) denotes the probability density function of the normal
distribution with mean µ and variance σ2.
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Regression clustering, the process of identifying the latent variable Z, holds significant im-
portance in understanding the prediction mechanism employed by MoE. The predicted value of
the response variable for new covariate X = x is determined as

E(Y | X = x) =
C∑
c=1

πc(x) · (β0c + x⊤βc),

where πc(x) is often called as the gating network, while (β0c+x⊤βc) is referred to as the expert
network. That is, the prediction structure can be understood as an ensemble model as shown
in Figure 1 because the predicted values are obtained by combining the outcomes of the expert
networks using the gating network. Consequently, selecting an appropriate latent variable Z is
a crucial aspect of the MoE model.

Figure 1: Predicting mechanism of MoE

MoE is applied in various fields as a machine learning model. For example, Li et al. (2019)
used MoE to explain differences in lane-changing behavior based on driver characteristics. Shen
et al. (2019) extended MoE to adapt to the characteristics of data for creating a translation
model capable of various translation styles. Additionally, Riquelme et al. (2021) proposed Vision
MoE, which maintains superior performance compared to existing models in image classification
while significantly reducing estimation time.

2.2 Proposed model

In this section, we introduce a semiparametric mixture of partially linear experts (MoPLE)
model. The MoPLE is constructed by considering each expert network of the MoE model as a
partial linear model (1), which can be defined as

p(y | x, u) =
C∑
c=1

πc(x;α0c,αc)ϕ(y;x
⊤βc + gc(u), σ

2
c ). (3)

Here, πc(x;α0c,αc) is defined as πc(x;α0c,αc) =
exp(α0c+x⊤αc)∑C
j=1 exp(α0j+x⊤αj)

, where (α0c,α
⊤
c ) represents

a (p + 1)-dimensional vector (c = 1, 2, . . . , C), especially with (α0C ,α
⊤
C) being a zero vector.
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When C = 1, since πC(x;α0C ,αC) is equal to 1, (3) simply represents a partial linear model
(1). If C > 1 and gc(·) = 0, (3) is equivalent to the MoE (2).

Identifiability is a fundamental concern when dealing with finite mixture models. Hennig
(2000) established that finite mixture of regressions is identifiable when the domain of X in-
cludes an open set in Rp. Additionally, Huang and Yao (2012) demonstrated that (2), with
unspecified πc(x) for c = 1, 2, . . . , C, is identifiable up to a permutation of relabeling. Fur-
thermore, Wu and Liu (2017) extended these findings by establishing the identifiability of the
mixture of partially linear regressions, assuming that α = (α⊤

1 ,α
⊤
2 , . . . ,α

⊤
C)

⊤ is a zero vector
in (3). Building upon these results, the following theorem establishes the identifiability of model
(3).

Theorem 1. Suppose that the functions gc(·), c = 1, 2, . . . , C, are continuous, and the parameter
vectors (βc, σ

2
c ) are distinct in Rp+1 for c = 1, 2, . . . , C. Additionally, assume that the covariate

X does not contain a constant, and none of its components can be a deterministic function of
U . If the support of X contains an open set in Rp, then (3) is identifiable up to a permutation
of its components for almost all (x⊤, u)⊤ ∈ Rp+1.

Proof. In (3), suppose that there exist α̃0k, α̃k, β̃k and g̃k(·), k = 1, 2, . . . ,K, satisfying

C∑
c=1

πc(x;α0c,αc)ϕ(y;x
⊤βc + gc(u), σ

2
c ) =

K∑
k=1

πk(x; α̃0k, α̃k)ϕ(y;x
⊤β̃k + g̃k(u), σ̃

2
k), (4)

where (β̃k, σ̃
2
k), k = 1, 2, . . . ,K, are distinct. Consider the set {x ∈ Rp : x⊤βc1 + gc1(u) =

x⊤βc2 + gc2(u)} for any βc1 and βc2 (c1, c2 ∈ 1, 2, . . . , C ), where βc1 ̸= βc2 and σ2
c1 = σ2

c2 , for
a given U = u. This set represents a (p− 1)-dimensional hyperplane in Rp. For any pair of βc1

and βc2 with βc1 ̸= βc2 and σ2
c1 = σ2

c2 , the union of a finite number of such hyperplanes, where
(x⊤βc1 , σ

2
c1) = (x⊤βc2 , σ

2
c2), has a zero Lebesgue measure in Rp. This fact remains true for the

finite number of sets {x ∈ Rp : x⊤β̃k1 + g̃k1(u) = x⊤β̃k2 + g̃k2(u)} for any β̃k1 and β̃k2 (k1, k2
∈ {1, 2, . . . ,K} ), where β̃k1 ̸= β̃k2 and σ̃2

k1
= σ̃2

k2
for given U = u.

From Lemma 1 of Huang and Yao (2012), it can be established that (4) is identifiable
when conditioned on w = (x⊤, u)⊤, under the condition that both sets of (x⊤βc, gc(u)) for
c = 1, 2, . . . , C and (x⊤β̃k, g̃k(u)) for k = 1, 2, . . . ,K are distinct. That is, if w is given, we
obtain C = K, and there exists a permutation τw = {τw(1), τw(2), . . . , τw(C)} among the finite
number of possible permutations of {1, 2, . . . , C} such that

πc(x;α0c,αc) = πτw(c)(x; α̃0τw(c), α̃τw(c)), x⊤βc + gc(u) = x⊤β̃τw(c) + g̃τw(c)(u), σ2
c = σ̃2

τw(c)

where c = 1, 2, . . . , C.
Now, let us consider any permutation τ = {τ(1), τ(2), . . . , τ(C)} that satisfies

x⊤βc + gc(u) = x⊤β̃τ(c) + g̃τ(c)(u), σ2
c = σ̃2

τ(c), c = 1, 2, . . . , C, (5)

for some w, and verify that τw has to be unique τ . Suppose that βc ̸= β̃τ(c) and gc(u) ̸= g̃τ(c)(u).
This contradicts to the assumption that X cannot be a deterministic function of U . When
βc ̸= β̃τ(c) and gc(u) = g̃τ(c)(u), the set {x ∈ Rp : x⊤βc = x⊤β̃τ(c)} has zero Lebesgue measure

since it is a (p−1) dimensional hyperplane in Rp. Because βc = β̃τ(c) indicates gc(u) = g̃τ(c)(u),
we obtain that

βc = β̃τ(c), gc(u) = g̃τ(c)(u)
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for c = 1, 2, . . . , C. Since the parameter sets (βc, σ
2
c ) and (β̃k, σ̃

2
k) for c, k ∈ {1, 2, . . . , C} are

distinct, the permutation τ , satisfying (5) on a subset of the support ofw with nonzero Lebesgue
measure, is unique.

Because πc(·) and πτ(c)(·) are continuous and one to one function, it follows that α0c +

x⊤αc = α̃0τ(c)+x⊤α̃τ(c) for c = 1, 2, . . . , C. Moreover, as X cannot be a constant, α0c = α̃0τ(c)

must be hold. Consequently, this indicates αc = α̃τ(c) , except for the set {x ∈ Rp : α0c+x⊤αc =

α̃0τ(c) + x⊤α̃τ(c)}, which has a zero Lebesgue measure in Rp, for c = 1, 2, . . . , C. Therefore, we
can conclude that (3) is identifiable up to a permutation of its components.

3 Estimation

When considering the observed data {(yi,xi, ui)}ni=1, the log-likelihood function is defined as

ℓ(Θ, g) =
n∑

i=1

log

[
C∑
c=1

πc(x)ϕ{yi;x⊤
i βc + gc(ui), σ

2
c}

]
, (6)

where Θ is the set of all parameters and g = (g1(·), . . . , gC(·))⊤. To find Θ̂ and ĝ that maximize
equation (6), we propose the Expectation Conditional Maximization (ECM) algorithm (Meng
and Rubin, 1993) using the profile likelihood method. The latent indicator variable Zic (c =
1, . . . , C), which indicates to which latent cluster the observed values belong, and the complete
log-likelihood function are respectively defined as

Zic =

{
1, if the i-th observation belongs to the c-th latent cluster

0, otherwise

and

ℓc(Θ, g) =
n∑

i=1

C∑
c=1

Zic log

[
πc(x)ϕ{yi|x⊤

i βc + gc(ui), σ
2
c}

]
.

In the E-step for the (t + 1)th iteration of the ECM algorithm, t = 0, 1, . . ., we obtain

Q(Θ(t), g(t)) = E[ℓc(Θ, g)|Θ(t), g(t)] using the posterior probability z
(t+1)
ic given Θ(t) and g(t),

which is represented as

z
(t+1)
ic = E(Zic|xi, yi,Θ

(t), g(t)) =
π
(t)
c (x)ϕ{yi;xT

i β
(t)
c + g

(t)
c (ui), σ

2
c
(t)}∑C

j=1 π
(t)
j (x)ϕ{yi;x⊤

i β
(t)
j + g

(t)
j (ui), σ2

j
(t)}

.

While keeping Θ(t) (c = 1, 2, . . . , C) fixed, CM-step 1 involves updating g(t) to g(t+1) that
maximizes the following local likelihood:

ℓh(g) =
n∑

i=1

C∑
c=1

z
(t+1)
ic

[
log ϕ{yi;xT

i β
(t)
c + gc(uj), σ

2
j
(t)}

]
Kh(ui − uj),

where j ∈ {1, 2, . . . , n}, andKh(ui−uj) represents the kernel weighting function with bandwidth

h. Consequently, g
(t+1)
c (uj) can be calculated as

g(t+1)
c (uj) =

∑n
i=1 z

(t+1)
ic (yi − x⊤

i β
(t)
c )Kh(ui − uj)∑n

i=1 z
(t+1)
ic Kh(ui − uj)

.
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In CM-step 2, after fixing g
(t+1)
c (uj), we can determine Θ(t+1) as follows.

α(t+1)
c = α(t)

c −

[
∂2Q(Θ(t), g(t+1))

∂αc∂α⊤
c

]−1[
∂Q(Θ(t), g(t+1))

∂αc

]
,

β(t+1)
c = (X̃

⊤
Z(t+1)

c X̃)−1X̃
⊤
Z(t+1)

c ỹ,

σ2
c
(t+1)

=

∑n
i=1 z

(t+1)
ic (yi − xiβ

(t+1)
c − g

(t+1)
c (ui))

2∑n
i=1 z

(t+1)
ic

.

Here, X̃ = (I −S)X, ỹ = (I −S)y, Z
(t+1)
c is a diagonal matrix with diagonal elements z

(t+1)
ic ,

I is a n× n identity matrix, and S is a n× n matrix with elements defined as

Sij =
z
(t+1)
ic Kh(ui − uj)∑n

i=1 z
(t+1)
ic Kh(ui − uj)

.

4 Practical issues

In practice, it is recommend to explore multiple initial values when employing the ECM al-
gorithm, as the mixture likelihood inherently exhibits multimodality. To acquire appropriate
initial values, we utilize the mixture of linear experts approach as proposed by Jacobs et al.
(1991) for parameters such as α0c, αc, βc, gc(u), and σ2

c , where c = 1, 2, . . . , C. Specifically,
we set gc(u) as β0c in (2) when employing the mixture of linear experts, where c = 1, 2, . . . , C.
Multiple initial values are then selected by repeating the process of generating initial values and
choosing the ones with the highest likelihood. In this study, we repeat this process 10 times to
ensure the acquisition of suitable initial values.

Furthermore, it is crucial to employ suitable methods for determining the optimal number
of mixture components. In this paper, we utilized the Bayesian information criterion (BIC;
Schwarz 1978) obtained as −2ℓ+ log(n) × df , where ℓ is the log-likelihood function and df is
degree of freedoms, to select the number of components. However, directly applying the BIC to
the proposed model is challenging due to the complexity of calculating degrees of freedom, par-
ticularly in the presence of non-parametric functions. Therefore, we adopt a modified approach
for determining degrees of freedom, inspired by Wu and Liu (2017), as follows.

df = C × τKh−1|Ω|
{
K(0)− 1

2

∫
K2(t)dt

}
+ (2C − 1)(p+ 1),

where Ω represents the support of the non-parametric component covariates and

τK =
K(0)− 0.5

∫
K2(t)dt∫

{K(t)− 0.5K(t)}2dt
.

Given that the degrees of freedom depends on the bandwidth, we chose the bandwidth associated
with the lowest BIC among the candidates.
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5 Simulaton studies

In this section, we present simulation results demonstrating the performance of the proposed
method compared to other estimation methods under various cases. Specifically, we consider
the following methods for each simulated sample:

1. MoE: Mixture of linear experts

2. FMPLR: Finite mixture of partially linear regressions.

3. MoPLE: Mixture of partially linear experts.

FMPLR was introduced byWu and Liu (2017), where it is assumed that allα = (α1,α2, . . . ,αC)
to be zero vectors. We utilize the MoEClust in R package (Murphy and Murphy, 2022) for MoE,
while we implement our R program for FMPLR and MoPLE.

We conduct three simulation scenarios, each comprising two mixture components as detailed
in Table 1. In each of these experiments, we assume that the covariatesX and U are independent
random variables following a standard uniform distribution. In the first experiment, we assume a
linear relationship between Y and (X,U) within each mixture component, with the probability
of observations belonging to latent clusters dependent on X. In the second experiment, we
introduce partially linear relationships between Y and (X,U) while keeping the probability of
observations belonging to latent clusters independent of X. In the third experiment, we also
consider partially linear relationships, but it features the probability of observations belonging
to latent clusters as dependent on X. Hence, we can expect that MoE, FMPLR and MoPLE
represent efficient methods for Case I, Case II, and Case III, respectively.

Table 1: True parameters for each simulation scenarios

Scenarios
Gating Network Component 1 Component 2
α01 α11 β1 g1(u) σ2

1 β2 g2(u) σ2
2

Case I -0.5 2 -3 -3u 0.5 3 3u 0.25
Case II 0 0 -3 2u2 0.5 3 2 cos(πu)2 0.25
Case III -0.5 2 -3 2u2 0.5 3 2 cos(πu)2 0.25

The performance of each method is evaluated by calculating the bias as 1
r

∑r
j=1(β̂c(j) − βc)

and mean square error (MSE) as 1
r

∑r
j=1(β̂c(j)−βc)

2, where βc and β̂c(j) are the true regression
coefficient in cth expert network and the estimate of the βc from the jth sample for c = 1, 2 and
j = 1, 2, . . . , r, respectively, for every regression parameter across a total of r = 400 replicated
samples, with sample sizes of n =250, 500 and 1000. To assess the quality of the estimated
nonparametric function ĝ = (ĝ1(·), ĝ2(·)) for g = (g1(·), g2(·)), we utilize the mean absolute
error (MAE) defined as

MAE = D−1
D∑

d=1

|ĝc(ud)− gc(ud)|,

where c = 1, 2, . . . , C. We chose {ud, d = 1, . . . , D} as grid points evenly distributed within the
range of the covariate u, with D set to 100. We employ the Epanechnikov kernel function and
determine regression clusters for observations using the maximum a posteriori. To assess the
clustering performance, the Adjusted Rand Index (ARI, Hubert and Arabie, 1985) and Adjusted
Mutual Information (AMI, Vinh et al., 2009) are computed. Note that smaller values of bias,
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Table 2: Performance of each method for regression coefficients in Case I (Boldfaced
numbers indicate the best in each criterion)

Method n
β1 β2 g1(·) g2(·) ARI AMI

MSE (bias) MSE (bias) MAE MAE

MoE
250 0.045 (0.016) 0.037 (0.005) 0.087 0.077 0.961 0.923
500 0.024 (0.010) 0.017 (-0.005) 0.059 0.052 0.962 0.922
1000 0.011 (-0.003) 0.009 (-0.005) 0.042 0.036 0.963 0.923

FMPLR
250 0.049 (-0.033) 0.040 (-0.023) 0.159 0.130 0.952 0.908
500 0.026 (-0.004) 0.019 (-0.034) 0.113 0.093 0.954 0.908
1000 0.014 (-0.051) 0.010 (-0.032) 0.084 0.070 0.955 0.910

MoPLE
250 0.047 (0.014) 0.040 (0.006) 0.154 0.127 0.960 0.920
500 0.024 (0.011) 0.018 (-0.006) 0.110 0.089 0.961 0.921
1000 0.011 (-0.001) 0.051 (-0.016) 0.082 0.081 0.961 0.920

Table 3: Performance of each method for regression coefficients in Case II (Boldfaced
numbers indicate the best in each criterion)

Method n
β1 β2 g1(·) g2(·) ARI AMI

MSE (bias) MSE (bias) MAE MAE

MoE
250 0.077 (-0.062) 0.120 (-0.036) 0.362 1.056 0.652 0.562
500 0.041 (-0.079) 0.056 (-0.033) 0.361 1.063 0.657 0.562
1000 0.019 (-0.053) 0.030 (-0.033) 0.356 1.063 0.664 0.565

FMPLR
250 0.069 (0.014) 0.035 (0.015) 0.169 0.231 0.737 0.639
500 0.079 (0.026) 0.043 (0.005) 0.126 0.204 0.741 0.643
1000 0.033 (0.040) 0.009 (0.001) 0.095 0.160 0.748 0.649

MoPLE
250 0.071 (0.014) 0.035 (0.012) 0.171 0.214 0.734 0.640
500 0.035 (0.006) 0.018 (0.010) 0.125 0.171 0.744 0.646
1000 0.022 (0.029) 0.031 (-0.013) 0.101 0.131 0.750 0.651

Table 4: Performance of each method for regression coefficients in Case III (Boldfaced
numbers indicate the best in each criterion)

Method n
β1 β2 g1(·) g2(·) ARI AMI

MSE (bias) MSE (bias) MAE MAE

MoE
250 0.062 (-0.074) 0.230 (-0.169) 0.361 1.100 0.641 0.529
500 0.034 (-0.079) 0.127 (-0.175) 0.357 1.074 0.645 0.529
1000 0.020 (-0.076) 0.087 (-0.207) 0.348 1.0578 0.652 0.533

FMPLR
250 0.078 (-0.118) 0.215 (-0.170) 0.182 0.270 0.661 0.556
500 0.044 (-0.132) 0.075 (-0.130) 0.146 0.203 0.671 0.562
1000 0.036 (-0.123) 0.075 (-0.145) 0.125 0.193 0.675 0.566

MoPLE
250 0.066 (0.038) 0.064 (-0.020) 0.172 0.245 0.743 0.638
500 0.038 (0.038) 0.086 (-0.039) 0.123 0.200 0.748 0.641
1000 0.017 (0.038) 0.076 (-0.045) 0.094 0.161 0.771 0.667

8



MSE and MAE indicate better performance, while larger values of ARI and AMI signify better
performance.

In Case I, MoE exhibits the best performance across all criteria, while MoPLE ranks second
in terms of clustering performance. In Case II, MoPLE performs the best in terms of ARI and
AMI, while FMPLR and MoPLE are competitive with regard to the estimating parameters.
In Case III, MoPLE demonstrates the best with regard to almost all criteria compared to the
other methods. Overall, MoPLE demonstrates competitive performance, ranking either as the
best or the second best method across all cases.

6 Real data analysis

6.1 Prestige dataset

For the first real data analysis, we consider the Prestige dataset, which is available in the
car package in R. It comprises 102 observations with the variable such as Prestige, indicating
occupational prestige from a mid-1960s social survey, Education, representing the average years
of education for workers in 1971, Income, denoting the standardized average income of workers
in 1971, and Occupational types, specifying occupational categories like professional, white-
collar, and blue-collar occupations. In this study, we model the response variable Y as Prestige,
where X represents Education, and U represents Income. Additionally, we assume that the
latent variable is associated with Occupational types.

Table 5 displays the BIC values obtained by each method for the Prestige dataset. MoPLE
correctly selects the expected number of components, while MoE and FMPLR yield fewer clus-
ters than expected. The clustering performance of each method is summarized in Table 6. MoE
performs the best in terms of ARI, whereas MoPLE excels in terms of AMI. As a result, MoPLE
is considered the best method since it not only produces the expected number of clusters but
also delivers competitive clustering performance. MoE is the second-best method, despite not
selecting the expected number of clusters. This suggests that occupational types are dependent
on education, and there are nonlinear relationships between prestige and income, at least within
one component.

Table 5: BIC values for each method in prestige dataset (Boldfaced numbers indicate the
smallest value in each criterion)

Number of clusters MoE FMPLR MoPLE
1 724.22 947.23 947.23
2 718.24 864.11 852.19
3 735.49 951.21 823.31
4 736.40 1042.96 1126.14
5 763.94 1633.26 1186.94

Based on the findings from MoPLE, the clusters denoted as 1, 2, and 3 correspond to profes-
sional, white-collar, and blue-collar occupations, respectively. The estimated coefficients for the
Education in Class 1, 2, and 3 are 2.331, 5.446, and 2.547, respectively. This suggests that the
impact of the education on the prestige is most pronounced in white-collar. Figure 2 illustrates
the estimated gc(u) for each cluster, where c = 1, 2, 3. We note a nonlinear association between
prestige and income within cluster 1, whereas clusters 2 and 3 exhibit a positive relationship
between prestige and income, indicating an increasing trend.
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Table 6: Clustering performance for each method in prestige dataset (Boldfaced numbers
indicate the largest value in each criterion)

Index MoE FMPLR MoPLE
ARI 0.5096 0.0597 0.4779
AMI 0.4012 0.0725 0.4506

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3

Figure 2: Estimated gc(·), c = 1, 2, 3, through MoPLE for the Prestige dataset

6.2 Gross domestic product dataset

In the second real data analysis, we examine gross domestic product (GDP) dataset sourced from
the STARS database of World Bank. This dataset comprises information from 82 countries over
the period 1960 to 1987 and includes some variables such as log(GDP), indicating logarithm
of real gross domestic product in million dollars, log(Labor), representing logarithm of the
economically active population aged 15 to 65, log(Capital), implying logarithm of the estimated
initial capital stock in each country, and log(Education), denoting logarithm of the average
years of education.

Previously, researchers such as Duffy and Papageorgiou (2000) utilized this dataset to inves-
tigate the Cobb-Douglas specification, while Wu and Liu (2017) examined how education and
two other variables influence GDP using FMPLR with a fixed two-component mixture. In this
paper, we investigate countries in 1975 with Y = log(GDP), X = (log(Labor), log(Capital))
and U = log(Education), comparing clustering performance. To evaluate the clustering per-
formance, we introduce a latent variable that indicates whether the country was classified as
advanced or developing in 1975 based on International Monetary Fund (IMF).

Table 7 and Table 8 present the BIC values and clustering performance, respectively. In
Table 7, MoPLE yield the expected number of clusters, while MoE and FMPLR selects more
clusters than expected. In Table 8, MoPLE achieves the best results in terms of both ARI and
AMI, followed by MoE. These findings suggest that MoPLE is the most suitable method when
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Table 7: BIC values for each method in GDP dataset (Boldfaced numbers indicate the
smallest value in each criterion)

Number of clusters MoE FMPLR MoPLE
1 74.46 337.10 337.10
2 88.05 176.92 134.64
3 60.95 169.90 178.15
4 114.48 265.12 232.49
5 110.04 419.94 405.89

Table 8: Clustering performance for each method in GDP dataset(Boldfaced numbers
indicate the largest value in each criterion)

Index MoE FMPLR MoPLE
ARI 0.3449 -0.1238 0.7165
AMI 0.3280 0.1042 0.6152

attempting to identify clusters among countries based on their classification as advanced or
developing.

According to the results derived from MoPLE, the clusters labeled as 1 and 2 represent
advanced and developing countries, respectively. In addition, cluster 1 reveals estimated coef-
ficients for log(Labor) and log(Capital) as (0.14, 0.86), while cluster 2 displays coefficients as
(0.17, 0.82). These results suggest that the impact of labor and capital on GDP does not signif-
icantly differ between advanced and developing countries. Figure 3 depicts the estimated gc(u)
for each cluster, with c = 1, 2. Specifically, in cluster 1, the values of log(GDP) appear to be
higher compared to those in cluster 2, while their shapes look similar.

7 Discussion

In this paper, we propose MoPLE, which applies a partial linear structrure to the expert net-
work of MoE, replacing the linear structure. In numerical studies, MoPLE demonstrates the
ability to estimate both parametric and non-parametric components effectively, not only un-
der linear relationships between the response variable and covariates but also under non-linear
relationships. Furthermore, it gives comparative performance in terms of the regression clus-
tering. These results imply that MoPLE is a valuable model regardless of whether the data
exhibits linear or non-linear relationships, excelling not only in parameter estimation but also
in clustering.

While this study assumed univariate covariates for the non-parametric component, it is
possible to extend this approach to higher dimensions. Nevertheless, we must acknowledge the
curse of dimensionality as a limitation of non-parametric methods. One potential alternative
approach is to structure each expert as a partially linear additive model. Furthermore, although
we postulate a specified variable following nonlinear relationships based on the previous work, it
is still necessary to construct statistical hypothesis tests for nonlinear relationships, even though
it may be challenging due to the presence of a hidden latent structure.
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(a) Cluster 1 (b) Cluster 2

Figure 3: Estimated gc(·), c = 1, 2, through MoPLE for the GDP dataset
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