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Abstract

In this paper, we study orbit counting problems for inner functions using

geodesic and horocyclic flows on Riemann surface laminations. For a one

component inner function of finite Lyapunov exponent with F (0) = 0, other

than z → zd, we show that the number of pre-images of a point z ∈ D \ {0}
that lie in a ball of hyperbolic radius R centered at the origin satisfies

N (z,R) ∼ 1

2
log

1

|z|
· 1´

∂D log |F ′|dm
, as R→∞.

For a general inner function of finite Lyapunov exponent, we show that the

above formula holds up to a Cesàro average. Our main insight is that itera-

tion along almost every inverse orbit is asymptotically linear. We also prove

analogues of these results for parabolic inner functions of infinite height.
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1 Introduction

A finite Blaschke product F (z) is a holomorphic self-map of the unit disk

which extends to a continuous dynamical system on the unit circle. Loosely

speaking, an inner function is a holomorphic self-map of the unit disk which

extends to a measure-theoretic dynamical system of the unit circle. More

precisely, we require that for a.e. θ ∈ [0, 2π), the radial boundary value

F (eiθ) := limr→1 F (reiθ) exists and has absolute value 1.

If the Denjoy-Wolff point of F is in the unit disk, then without loss of

generality we may assume that F (0) = 0, so that 0 is an attracting fixed point

of F and the normalized Lebesgue measure m = |dθ|/2π is invariant under F .

(In this case, we say that F is centered .)

Let z ∈ D \ {0} be a point on the unit disk, other than the origin. For

R > 0, we may count the number of repeated pre-images w which lie in the

ball of hyperbolic radius R centered at the origin:

N (z,R) = #
{
w ∈ Bhyp(0, R) : F ◦n(w) = z for some n ≥ 0

}
.

Our first main theorem states:

Theorem 1.1. Let F be an inner function of finite Lyapunov exponent

χm =

ˆ
∂D

log |F ′(reiθ)|dm <∞,

with F (0) = 0 which is not a rotation. If z ∈ D \ {0} lies outside a set of

Lebesgue zero measure, then

lim
R→+∞

1

R

ˆ R

0

N (z, S)

eS
dS =

1

2
log

1

|z|
· 1´

∂D log |F ′|dm
. (1.1)

According to the original definition of W. Cohn in [Coh82], an inner func-

tion F (z) is a one component inner function if the set {z ∈ D : |F (z)| < ρ}
is connected for some 0 < ρ < 1. For applications to dynamical systems, it is

more useful to say that an inner function is a one component inner function if

the set of singular values is compactly contained in the unit disk. This implies

that backward iteration along every inverse orbit is asymptotically linear.

Our second main theorem states:
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Theorem 1.2. Let F be a one component inner function of finite Lyapunov

exponent with F (0) = 0, other than z → zd for some d ≥ 2. Suppose z ∈ D\{0}
lies outside a set of countable set. Then,

N (z,R) ∼ 1

2
log

1

|z|
· 1´

∂D log |F ′|dm
· eR, (1.2)

as R→∞.

We also obtain analogous results for finite Lyapunov exponent parabolic

inner functions of infinite height (in this case, the Denjoy-Wolff point lies on

the unit circle). Precise statements will be given in Part IV of the paper.

Remark. (i) Theorems 1.1 and 1.2 may not hold for every point z ∈ D. For

instance, the inner function

f(z) = exp

(
z + 1

z − 1

)
omits the value 0. Post-composing with a Möbius transformation, we get an

inner function F with F (0) = 0 which omits a value p ̸= 0. For z = p, the set

of repeated pre-images of z is empty.

(ii) For z → zd, d ≥ 2, repeated pre-images of a point come in packets, so

N (z,R) is a step function.

(iii) For an alternative approach to orbit counting using thermodynamic

formalism, see [Ivr15, Section 7] and [IU23]. The results in this paper are

somewhat stronger because they only require the minimal hypotheses on the

inner function F ; however, the techniques are specific to inner functions.

(iv) For an analytic characterization of inner functions of finite Lyapunov

exponent, we refer the reader to the works [Ivr19, Ivr20, IK22].

1.1 An overview of the proofs

To prove Theorems 1.1 and 1.2, we study the geodesic flow on the Riemann

surface lamination X̂F associated to F , which was described in [McM08] for

finite Blaschke products. (Definitions will be given in Section 3.) McMullen’s

construction generalizes to one component inner functions without much dif-

ficulty. According to Sullivan’s dictionary, the Riemann surface lamination is

analogous to the unit tangent bundle of a Riemann surface. McMullen showed
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that the geodesic flow on X̂F is ergodic by relating it to a suspension flow over

the solenoid. Applying the ergodic theorem to a particular function on the

lamination shows Theorem 1.2 up to taking a Cesàro average.

To give a full proof of Theorem 1.2, one needs to show that the geodesic flow

on X̂F is mixing. As in the case of the geodesic flow on a finite area hyperbolic

surface, this is done by first showing that the horocyclic flow is ergodic. The

main step is to show that the horocyclic flow on X̂F has a dense orbit. This

uses an argument of A. Glutsyuk [Glu10] which involves examining horocycles

on a special leaf of X̂F associated to a repelling fixed point on the circle.

From here, the ergodicity of the horocyclic flow follows from an argument of

Y. Coudène [Cou09].

Theorem 1.1 requires more work because one has to manually construct the

natural volume form dξ and the geodesic flow gt on the lamination X̂F for a

general inner function F of finite Lyapunov exponent. To do this, we first show

that iteration along almost every inverse orbit is asymptotically linear. The

proof uses a number of concepts from differential geometry such as Gaussian

and geodesic curvatures.

Remark. In [McM09, Section 10], one learns that inner functions are close to

hyperbolic isometries away from the critical points. Consequently, a generic

inverse orbit stays away from the critical points.

2 Inner functions

As is well known, any inner function F can be factored into a Blaschke product

and a singular inner function:

B(z) = eiθ
∏
− ai
|ai|
· z − ai
1− aiz

, ai ∈ D,

S(z) = exp

(
−
ˆ
∂D

ζ + z

ζ − z
dµ(ζ)

)
, µ ≥ 0, µ ⊥ m.

In this decomposition, the Blaschke product records the zero set of F , while

the singular factor records the zeros of F “dissolved” on the unit circle.

The above decomposition privileges the set of pre-images of 0. To view an

inner function from the perspective of a point a ∈ D, we consider the Frostman
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shift

Fa(z) =
F (z)− a

1− aF (z)
.

A point a ∈ D is called exceptional if Fa has a non-trivial singular factor. Frost-

man showed that the set of exceptional points in the unit disk has logarithmic

capacity 0, while Ahern and Clark [AC74] observed that for inner functions of

finite Lyapunov exponent, the exceptional set is at most countable.

The following identity will play an important role in this work:

Lemma 2.1. Suppose F is an inner function with F (0) = 0. For a non-

exceptional point z ∈ D \ {0},∑
F (w)=z

log
1

|w|
= log

1

|z|
. (2.1)

The ≤ inequality holds for every z ∈ D.

A proof can be found in [Ivr20, Lemma A.4]. A holomorphic self-map of the

unit disk F has an angular derivative in the sense of Carathéodory at ζ ∈ ∂D
if

F (ζ) := lim
r→1

F (rζ) ∈ ∂D and F ′(ζ) := lim
r→1

F ′(rζ) <∞.

We will use the following two lemmas on angular derivatives from [AC74]:

Lemma 2.2. If we decompose F = BSµ into a Blaschke product with zero set

{ai} and a singular inner function with singular measure µ, then

|F ′(ζ)| =
∑ 1− |ai|2

|ζ − ai|2
+

ˆ
∂D

2dµ(z)

|ζ − z|2
, ζ ∈ ∂D.

In particular, if F (0) = 0 and F is not a rotation, then |F ′(ζ)| > c > 1.

Lemma 2.3. If an inner function F has an angular derivative at ζ ∈ ∂D,
then

|F ′(rζ)| ≤ 4|F ′(ζ)|, 0 < r < 1. (2.2)

The following lemma is a simple consequence of the Schwarz lemma and

the triangle inequality:
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Lemma 2.4. Suppose F is an inner function with F (0) = 0, which is not a

rotation. There exists a number γ = γ(F ) > 0 so that for any z ∈ D with

dD(0, z) ≥ 1, the hyperbolic distance

dD(0, f(z)) ≤ dD(0, z)− 4γ.

The above lemma shows that any ball B of hyperbolic radius γ contained in

{w ∈ D : dD(0, w) ≥ 1} does not intersect its forward orbit, i.e. F ◦n(B)∩B =

∅, which implies that its inverse images {F−n(B)} are disjoint.

Lemma 2.5. Let F (z) be an inner function with F (0) = 0 that is not a

rotation. For a point z ∈ D in the unit disk with dD(0, z) > 1, we have:

N (z,R− 1, R) := N (z,R)−N (z,R− 1) ≤ CeR−dD(0,z). (2.3)

In particular,

N (z,R) ≤ CeR−dD(0,z), (2.4)

albeit with a slightly larger constant C.

Proof. Since F is not a rotation, by Lemma 2.4,

dD(0, F (w)) ≤ dD(0, w)− γ, (2.5)

for any w ∈ D with dD(0, w) ≥ 1. Repeated use of Lemma 2.1 shows that for

any R ≥ 1, ∑
log

1

|w|
≤ log

1

|z|
, (2.6)

where the sum is over N (z,R− γ,R) repeated pre-images w of z for which

R− γ ≤ dD(0, w) < R.

In terms of hyperbolic distance from the origin, (2.6) says that

N (z,R− γ,R) · e−R ≲ e−dD(0,z),

which shows (2.3) with N (z,R − γ,R) in place of N (z,R − 1, R). To obtain

the original statement, one just needs to partition the annulus{
w ∈ D : R− 1 < dD(0, w) < R

}
into 1 + ⌈1/γ⌉ concentric annuli of hyperbolic widths ≤ γ.
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Part I

Centered One Component

Inner Functions
We say that an inner function F is singular at a point ζ ∈ ∂D if it does not

admit any analytic extension to a neighbourhood of ζ. Let Σ ⊂ ∂D be the

set of singularities of F . It is clear from this definition that Σ is a closed set.

While one usually thinks of inner functions as holomorphic self-maps of the

unit disk, one may also view F as a meromorphic function on Ĉ \ Σ.
In this work, we say that an inner function F is a one component inner

function if there is an annulus Ã = A(0; ρ, 1/ρ) such that F : Ĉ \Σ → Ĉ is

a covering map over Ã. For the equivalence of this definition with the two

definitions from the introduction, we refer the reader to [IU23].

Throughout Part I, we assume that F is a centered one component inner

function of finite Lyapunov exponent that is not a rotation. We denote the

class of all such inner functions by Λ.

In Section 3, we define the Riemann surface lamination X̂ associated to F ,

as well as the geodesic and horocyclic flows on X̂. In Section 4, we discuss

almost invariant functions on the unit disk and explain how one can derive

orbit counting results from ergodicity and mixing of the geodesic flow.

In Section 5, we show that the horocyclic flow is ergodic and deduce that

the geodesic flow is mixing.

3 Background on Laminations

The solenoid associated to an inner function F ∈ Λ is defined as the inverse

limit

Ŝ1 = lim
←−

(F : S1 → S1) =
{
(ui)

0
i=−∞ : F (ui) = ui+1

}
.

In other words, a point on the solenoid is given by a point u0 on the unit circle

together with a consistent choice of pre-images u−n = F−n(u0).
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Similarly, we can form the space of backwards orbits of F on the unit disk

D̂ = lim
←−

(F : D→ D) \ {0} =
{
(zi)

0
i=−∞ : F (zi) = zi+1

}
\ {0},

where 0 = · · · ← 0← 0← 0 is the constant sequence. As we have removed the

constant sequence 0, each backward orbit tends to the unit circle, i.e. |zi| → 1

as i→ −∞.

For both Ŝ1 and D̂, we write π−n for the projection onto the (−n)-th
coordinate, i.e. the map (zi)

0
i=−∞ 7→ z−n.

Let F̂ : D̂→ D̂ be the map which applies F to each coordinate. Its inverse

(zi)
0
i=−∞ 7→ (zi−1)

0
i=−∞ is often called the shift map. The quotient

X̂ = D̂ \ F̂

is called the Riemann surface lamination associated to F .

The term Riemann surface lamination refers to the fact that X̂ is locally

homeomorphic to D × C, where C is some topological space. By contrast,

the solenoid Ŝ1 is locally homeomorphic to (−1, 1) × C. When F is a finite

Blaschke product, the fiber C is a Cantor set, while if F is an infinite-degree

one component inner function, then C is homeomorphic to the shift space

on infinitely many symbols {1, 2, . . . }N. In particular, the lamination X̂ is

a Polish space, that is, a separable completely metrizable topological space.

A particular complete metric compatible with the topology will be given in

Section 5.1.

We now describe a particularly convenient collection of local charts or flow

boxes for X̂. Take a ball B = B(a, r) contained in the annulus A
(
0; 1+ρ

2 , 1
)

such that F ◦n(B) ∩B = ∅ for any n ≥ 1. Under this assumption, the sets

{F−n(B)}n≥0 are disjoint. Furthermore, by Koebe’s distortion theorem, for

any n ≥ 0, the connected components of F−n(B) are approximately round

balls that are conformally mapped onto B by F ◦n. Let

B̂ := π−10 (B) ⊂ X̂,

i.e. B̂ is the collection of all inverse orbits z = (zi)
0
i=−∞ with z0 ∈ B. For a

finite Blaschke product, one needs finitely many such flow boxes to cover X̂

but for one component inner functions, which are not finite Blaschke products,

one needs countably many.
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3.1 Transverse measures

For a point z ∈ D, the transversal T (z) is defined as the collection of inverse

orbits w with w0 = z. If w is a repeated pre-image of z, we write T (w, z) ⊂
T (z) for the subset of inverse orbits which pass through w. We define the

Nevanlinna counting measure on T (z) by specifying it on the “cylinder” sets

T (w, z) ⊂ T (z), where w ranges over repeated pre-images of z:

cz(T (w, z)) = log
1

|w|
.

We also define the normalized counting measure by

cz(T (w, z)) =
log 1

|w|

log 1
|z|

.

If z ∈ D is not a repeated pre-image of an exceptional point, then cz is a

probability measure on T (z). By Frostman’s theorem, this holds for all but a

logarithmic capacity zero set of points in the unit disk.

3.2 Linear structure

We now show that each connected component or leaf of D̂ associated to a one

component inner function from the class Λ is conformally equivalent to (H,∞),

while leaves of the solenoid Ŝ1 are homeomorphic to the real line R ∼= ∂H.

The marked point at infinity providesH with a sense of an upward direction:

one can define the upward-pointing vector field v↑(z) = y · ∂
∂y on H. Indeed, v↑

is well-defined since it is invariant under

Aut(H,∞) =
{
z 7→ Az +B : A > 0, B ∈ R

}
.

As backward iteration is essentially linear near the unit circle, one may

define an action of the half-plane H on X̂ by

L(z, w)j := lim
n→∞

F ◦n(Zj−n(w)), (3.1)

where

Zj(w) =
zj
|zj |

+

(
zj −

zj
|zj |

)
w

i
.
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With this definition, L(z, i) = z while the leaf L of X̂ containing z is given by

{L(z, w) : w ∈ H}.
By restricting w to the imaginary axis, we obtain the geodesic flow on D̂:

gt(z) := L(z, eti), t ∈ R. (3.2)

By instead restricting w to the line {Imw = 1}, we obtain the horocyclic flow

on D̂:
hs(z) := L(z, i+ s), s ∈ R. (3.3)

The two flows satisfy the relation

g−ths(z) = hetsg−t(z), s, t ∈ R. (3.4)

The leaves of X̂ are hyperbolic Riemann surfaces covered by (H,∞). In

fact, most leaves are conformally equivalent to (H,∞). The only exceptions

are leaves associated to repelling periodic orbits on the unit circle. In this

case, one needs to quotient (H,∞) by multiplication by the multiplier of the

repelling periodic orbit. See Section 5.2 for details.

It is easy to see that the geodesic and horocyclic flows descend to the

Riemann surface lamination X̂. In Section 5, we will see that unless F (z) = zd

for some d ≥ 2, the geodesic flow on X̂ is mixing, while the horocyclic flow on

X̂ is ergodic. In the exceptional case, the geodesic flow will be ergodic but not

mixing.

3.3 Natural measures

We endow the solenoid with the probability measure m̂ obtained by taking the

natural extension of the Lebesgue measure on the unit circle with respect to

the map F : S1 → S1. The measure m̂ which is uniquely characterized by the

property that its pushforward under any coordinate function πi : Ŝ1 → S1,

i ∈ −N0, is equal to m. Equivalently, m̂ is the unique F̂ -invariant measure

on Ŝ1 whose pushforward under π0 is equal to m. As the Lebesgue measure

m on the unit circle is ergodic for F : S1 → S1, the measure m̂ is ergodic for

F̂ : Ŝ1 → Ŝ1.

We define a natural measure on the Riemann surface lamination X̂ by

dξ = m̂× (dy/y) = cz ×
dxdy

y2
,
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of total mass
´
S1 log |F ′| dm, where x+ iy is an affine parameter on each leaf of

X̂. Note that dy/y is a well-defined 1-form on the Riemann surface lamination

since it is invariant under Aut(H,∞). By construction, dξ is invariant under

the geodesic and horocyclic flows on X̂.

For a measurable set A contained in the unit disk, we write Â for the

collection of inverse orbits z with z0 ∈ A. By Koebe’s distortion theorem, we

have:

Lemma 3.1. For a measurable set A contained in the annulus A
(
0; 1+ρ

2 , 1
)
,

ξ(Â) ≍
ˆ
A

dA(z)

1− |z|
.

In fact, for any ε > 0, there exists an 1+ρ
2 < ρ′ < 1 so that

(1− ε) · 1

2π

ˆ
A

dA(z)

1− |z|
≤ ξ(Â) ≤ (1 + ε) · 1

2π

ˆ
A

dA(z)

1− |z|

for any measurable set A ⊂ A(0; ρ′, 1).

3.4 Exponential coordinates and the suspension flow

In order to show that the geodesic flow gs : X̂ → X̂ is ergodic, McMullen

[McM08, Theorem 10.2] relates it to a suspension flow over the solenoid. Let

ρ(z) = log |F ′(z)|. The suspension space

Ŝ1
ρ = Ŝ1 × R+ /

(
(z, t) ∼ (F (z), eρ(z) · t)

)
carries a natural measure m̂ρ = m̂× (dt/t) that is invariant under the suspen-

sion flow σs : Ŝ1
ρ → Ŝ1

ρ which takes (z, t)→ (z, es · t).

Theorem 3.2. The geodesic flow (X̂, dξ, gs) on the Riemann surface lamina-

tion is equivalent to the suspension flow (Ŝ1
ρ , m̂ρ, σs) on the suspension of the

solenoid with respect to the roof function ρ = log |F ′|.

Sketch of proof. The isomorphism between Ŝ1 × R+ and D̂ is given by the

exponential map

E(u, t) = lim
n→∞

F ◦n(ui−n + vi−n), (3.5)
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where

vi−n = − t · ui−n
|(Fn−i)′(ui−n)|

.

By Koebe’s distortion theorem,

E(u, t)i = ui + vi + o(|vi|). (3.6)

In these exponential coordinates, the geodesic flow gs : D̂→ D̂ takes the form

gs(E(u, t)) = E(u, es · t). (3.7)

As a result, the exponential map descends to an isomorphism between Ŝ1
ρ and

X̂ and intertwines the geodesic and suspension flows.

Since m is ergodic under F on the unit circle, m̂ is ergodic under F̂ on

the solenoid and m̂ρ is ergodic under the suspension flow on Ŝ1
ρ . The above

theorem then implies that the geodesic flow on X̂ is ergodic.

Remark. The presentation of this section is inspired by [McM08, Section 10].

In Part III, we will give another perspective on the measure ξ and the geodesic

and horocyclic flows on X̂, in the context of general inner functions of finite

Lyapunov exponent (which may not be one component).

4 Almost Invariant Functions

We say that a function h : D→ C is almost invariant under F if

lim sup
|F ◦n(z)|→1

|h(F ◦n(z))− h(z)| = 0.

In particular, for every backward orbit z = (zi)
0
i=−∞ ∈ D̂, limi→−∞ h(zi) exists

and defines a function on the Riemann surface lamination:

ĥ(z) = lim
i→−∞

h(zi).

4.1 Consequences of ergodicity and mixing

In the following two theorems, we use ergodicity and mixing of the geodesic

flow on X̂ to study almost invariant functions. The first theorem is a slight
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generalization from [McM08, Theorem 10.6], which was originally stated for

finite Blaschke products. For the convenience of the reader, we describe its

proof in the setting of one component inner functions.

Theorem 4.1. Let F ∈ Λ be a one component inner function for which the

geodesic flow on X̂ is ergodic. Suppose h : D→ C is a bounded almost invariant

function that is uniformly continuous in the hyperbolic metric. Then for almost

every ζ ∈ S1, we have

lim
r→1

1

| log(1− r)|

ˆ r

0
h(sζ) · ds

1− s
=

 
X̂
ĥdξ.

In particular,

lim
r→1

1

2π| log(1− r)|

ˆ
Dr

h(z) · dA(z)
1− |z|

=

 
X̂
ĥdξ.

Proof. The ergodic theorem tells us that for almost every u ∈ Ŝ1, the backward

time averages

lim
T→0

1

| log T |

ˆ 1

T
ĥ(E(u, t)) · dt

t
=

 
X̂
ĥdξ.

Write z(t) = E(u, t). By almost-invariance, we have

ĥ(E(u, t)) = h(z0(t)) + o(1), as t→ 0+,

while

h(z0(t)) = h((1− t)u0) + o(1), as t→ 0+,

by (3.6) and the uniform continuity of h in the hyperbolic metric. Conse-

quently,

lim
T→0

1

| log T |

ˆ 1

T
ĥ((1− t)u0) ·

dt

t
=

 
X̂
ĥdξ.

The proof is completed after making the change of variables s = 1 − t and

relabeling ζ = u0 and T = 1− r.

Theorem 4.2. Let F ∈ Λ be a one component inner function for which the

geodesic flow on X̂ is mixing. Suppose h : D→ C is a bounded almost invariant

function that is uniformly continuous in the hyperbolic metric. Then,

lim
r→1

ˆ
|z|=r

h(z)dm =
1´

S1 log |F ′|dm

ˆ
X̂
ĥdξ.
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Proof. Consider a thin annulus

A = Ahyp(0;R0, R0 + δ) = {w : R0 < dD(0, w) < R0 + δ} ⊂ D

of hyperbolic width δ. Let Â ⊂ X̂ be the collection of backwards orbits that

pass through A. Since the geodesic flow is mixing, we have that

lim
t→∞

1

ξ(Â)
· ⟨χ

Â
◦ gt, h⟩ =

1´
S1 log |F ′|dm

ˆ
X̂
ĥdξ. (4.1)

In view of Lemma 3.1, when R0 > 0 is large,

ξ(Â) ≈ 1

2π

ˆ
A

dA(z)

1− |z|
≈ δ, χ

Â
◦ gt ≈ χ

Ât
,

where At = Ahyp(0;R0 + t, R0 + t+ δ). Therefore, by the almost invariance of

h, the left hand side of (4.1) is approximately

1

2πδ

ˆ
At

h(z)
dA(z)

1− |z|
.

When δ > 0 is small, by the uniform continuity of h, this is approximately

ˆ
∂Bhyp(0,R0+t)

h(z)dm

as desired.

4.2 Orbit counting in presence of mixing

For a point z ∈ D sufficiently close to the unit circle and 0 < δ < 1, we

construct an almost invariant function hz,δ concentrated on a hyperbolic O(δ)-

neighbourhood of the inverse images of z:

1. By a box in the unit disk, we mean a set of the form

□ = {w ∈ D : θ1 < argw < θ2, r1 < |w| < r2}.

For a point z with |z| > 1/2 and δ > 0 small, we write □ = □(z, δ) for

the box centered at z of hyperbolic height δ and hyperbolic width δ.
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2. Recall that a one component inner function F acts as a covering map over

an Ã = A(0; ρ, 1/ρ). In particular, when |z| is close to 1 and δ is small,

the repeated pre-images F−n(□) consist of disjoint squares of roughly the

same hyperbolic size as the original, albeit distorted by a tiny amount.

Define hrough(w) = 1 if w ∈ F−n(□) for some n ≥ 0 and hrough(w) = 0

otherwise.

3. We now smoothen the function from the previous step. To that end,

consider a slightly smaller box □2 = □(z, δ− η) with η << δ. Define hz,δ

to be a smooth function on □ which is 1 on □2, 0 on ∂□, and takes values

between 0 and 1. Extend hz,δ to
⋃

n≥1 F
−n(□) by backward invariance.

Finally, extend hz,δ by 0 to the rest of the unit disk. Using the Schwarz

lemma, it is not hard to see that hz,δ is uniformly continuous in the

hyperbolic metric.

Theorem 4.3. Let F ∈ Λ be a one component inner function for which the

geodesic flow on X̂ is mixing. Suppose z ∈ D\{0} lies outside a set of countable

set. Then,

N (z,R) ∼ 1

2
log

1

|z|
· 1´

∂D log |F ′|dm
· eR, (4.2)

as R→∞.

Proof. We will show (4.2) for any point z ∈ D \ {0} which does not belong to

a forward orbit of an exceptional point of F . From the results of Ahern and

Clark discussed in Section 2, it is easy to see that this set is at most countable.

Below, we write A ∼ε B if

1− Cε ≤ A/B ≤ 1 + Cε,

for some constant C depending only on the inner function F (and not on z or

R). More generally, we use the notation A ∼ε,δ,R B to denote that

(1− o(1))(1− Cε) ≤ A/B ≤ (1 + o(1))(1 + Cε)

as δ → 0+ and R→∞.

Step 1. Suppose z ∈ A(0; 1 − ε, 1) where ε > 0 is sufficiently small so the

function hz,δ is defined. In this step, we show that

N (z,R) ∼ε,R
1

2
log

1

|z|
· 1´

∂D log |F ′|dm
· eR. (4.3)
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To this end, we apply Theorem 4.2 with h = hz,δ. In view of Lemma 3.1,

1´
S1 log |F ′|dm

ˆ
X̂
ĥz,δ dξ ∼ε,δ

1´
S1 log |F ′|dm

· δ
2

2π
· log 1

|z|
.

Since hyperbolic distance δ along the circle ∂Bhyp(0, R) corresponds to Eu-

clidean distance of roughly (2/eR)δ,

ˆ
∂Bhyp(0,R)

hz,δ dm ∼ε,δ,R
1

2π
· 2δ
eR
· N (z,R− δ,R),

where

N (z,R− δ,R) = #
{
w ∈ Ahyp(0;R− δ,R) : F ◦n(w) = z for some n ≥ 0

}
.

Comparing the two equations above, we see that

N (z,R− δ,R) ∼ε,δ,R
δ´

S1 log |F ′|dm
· log 1

|z|
· e

R

2
.

Integrating with respect to R and taking δ → 0 shows (4.3).

Step 2. Let z ∈ D \ {0} be an arbitrary point in the punctured unit disk,

which is not contained in the forward orbit of an exceptional point. In view of

Lemma 2.4, for any ε > 0, one can find an integer m ≥ 0, so that any m-fold

pre-image of z is contained in A(0; 1− ε, 1).

By Lemma 2.1, ∑
F ◦m(w)=z

log
1

|w|
= log

1

|z|
.

We choose a finite set of m-fold pre-images Gm so that∑
w∈Gm

log
1

|w|
> log

1

|z|
− ε.

By Step 1, there exists a constant C > 0 (depending on F ) so that

N (z,R) ≥
∑

w∈Gm

N (w,R) ≥ (1− Cε) · 1
2
log

1

|z|
· 1´

∂D log |F ′|dm
· eR,

for any R > R0(F, z) sufficiently large, depending on the inner function F and

the point z ∈ D \ {0}.

18



Step 3. It remains to prove a matching upper bound. We use the same

m ≥ 0 as in the previous step. For any 0 ≤ k ≤ m, let Tk denote the set of

repeated pre-images of z of order k. Since∑
w∈Tk

log
1

|w|
= log

1

|z|

is finite by Lemma 2.1, one can find a finite set Gk ⊂ Tk so that∑
w∈Tk\Gk

log
1

|w|
< ε/m. (4.4)

Let G =
⋃m

k=0Gk and B =
⋃m

k=0(Tk \Gk). A somewhat crude estimate shows

that

N (z,R) ≤ |G|+
∑

w∈Gm

N (w,R) +
∑
w∈B
N (w,R).

By Step 1,∑
w∈Gm

N (w,R) ≤ (1 + Cε) · 1
2
log

1

|z|
· 1´

∂D log |F ′|dm
· eR,

while
∑

w∈B N (w,R) can be estimated using (4.4) and Lemma 2.5.

4.3 Orbit counting in presence of ergodicity

We now explain how to use the ergodicity of the geodesic flow to show orbit

counting up to a Cesàro average:

Theorem 4.4. Let F ∈ Λ be a one component inner function for which the

geodesic flow on X̂ is ergodic. If z ∈ D \ {0} lies outside a countable set, then

lim
R→+∞

1

R

ˆ R

0

N (z, S)

eS
dS =

1

2
log

1

|z|
· 1´

∂D log |F ′|dm
. (4.5)

As the proof follows the same pattern as that of Theorem 4.3, we only

sketch the differences.

Sketch of proof. Step 0. The theorem boils down to showing

1

R

∑
Fn(w)=z, n≥0
w∈Bhyp(0,R)

e−dD(0,w) → 1

2
log

1

|z|
· 1´

∂D log |F ′|dm
, (4.6)
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as R→∞. Indeed, once we show (4.6), the theorem follows from the following

computation:

1

R

ˆ R

0

N (z, S)

eS
dS =

1

R

∑
Fn(w)=z, n≥0
w∈Bhyp(0,R)

ˆ R

dD(0,w)
e−SdS

=
1

R

∑
Fn(w)=z, n≥0
w∈Bhyp(0,R)

(e−dD(0,w) − e−R)

=
1

R

∑
Fn(w)=z, n≥0
w∈Bhyp(0,R)

e−dD(0,w) + o(1),

where in the last step we have used the a priori bound (2.3) to estimate the

number of terms.

Step 1. Suppose z ∈ A(0; 1 − ε, 1) where ε > 0 is sufficiently small so the

function hz,δ is defined. In this step, we show that

1

R

∑
Fn(w)=z, n≥0
w∈Bhyp(0,R)

e−dD(0,w) ∼ε,R
1

2
log

1

|z|
· 1´

∂D log |F ′|dm
. (4.7)

Applying Theorem 4.1 to the almost invariant function h = hz,δ, we get

lim
R→∞

{
1

2πR

ˆ
Bhyp(0,R)

h(x)
dA(x)

1− |x|

}
=

1´
∂D log |F ′|dm

ˆ
X̂
ĥdξ. (4.8)

The left hand side of (4.8) is approximately

∼ε,δ,R
1

2πR

∑
Fn(w)=z, n≥0
w∈Bhyp(0,R)

ˆ
□(w,δ)

h(x)
dA(x)

1− |x|

∼ε,δ,R
1

πR

∑
Fn(w)=z, n≥0
w∈Bhyp(0,R)

e−dD(0,w) ·
ˆ
□(w,δ)

h(x)
dA(x)

(1− |x|2)2
.

Meanwhile, by Lemma 3.1, the right hand side of (4.8) is more or less

∼ε,δ
1

2π
´
∂D log |F ′|dm

ˆ
□(z,δ)

h(x) · dA(x)
1− |x|

∼ε,δ
1

2π
´
∂D log |F ′|dm

· log 1

|z|
·
ˆ
□(z,δ)

h(x)
dA(x)

(1− |x|2)2
.
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As h is almost invariant, we have

ˆ
□(w,δ)

h(x)
dA(x)

(1− |x|2)2
∼ε,δ

ˆ
□(z,δ)

h(x)
dA(x)

(1− |x|2)2
,

for any repeated pre-image w of z. Putting the above equations together and

taking δ → 0+, we get (4.7).

Step 2. Let z ∈ D \ {0} be an arbitrary point in the punctured unit disk,

which is not contained in the forward orbit of an exceptional point. Arguing

as in Step 2 of Theorem 4.3, one can show that for any ε > 0,

1

R

∑
Fn(w)=z, n≥0
w∈Bhyp(0,R)

e−dD(0,w) ≥ (1− Cε) · 1
2
· log 1

|z|
· 1´

∂D log |F ′|dm
, (4.9)

provided that R > R0(F, z) is sufficiently large, which may depend on the

inner function F and the point z ∈ D \ {0}.

Step 3. Arguing as in Step 3 of Theorem 4.3, it is not difficult to find a

matching upper bond

1

R

∑
Fn(w)=z, n≥0
w∈Bhyp(0,R)

e−dD(0,w) ≤ (1 + Cε) · 1
2
· log 1

|z|
· 1´

∂D log |F ′|dm
, (4.10)

for R > R0(F, z) is sufficiently large. As ε > 0 was arbitrary in Steps 2 and 3,

the proof is complete.

5 Mixing of the Geodesic Flow

In this section, F ∈ Λ will be a centered one component inner function of finite

Lyapunov exponent, which is not z → zd for some d ≥ 2. We will show that

the horocyclic flow on X̂ is ergodic and the geodesic flow on X̂ is mixing. The

proof proceeds in four steps.

1. One first shows that the multipliers of the repelling periodic orbits are

not contained in a discrete subgroup of R+. This step has been completed

in [IU23, Section 5]. This provides a large supply of homoclinic orbits.
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2. We use an argument of Glutsyuk [Glu10] to show that the horocyclic flow

has a dense trajectory.

3. We use an argument of Coudène [Cou09] to promote the existence of a

dense horocycle to the ergodicity of the horocyclic flow.

4. Finally, we use the ergodicity of the horocyclic flow to show the mixing

of the geodesic flow. This can be done as in the case of a hyperbolic toral

automorphism.

5.1 A metric on the lamination

In order to discuss uniformly continuous functions on X̂, we endow X̂ with

a metric that is compatible with the topology described in Section 3. For

z,w ∈ D̂, we define

dD̂
(
z,w) := min

n∈Z

{
max(1− |z−n|, 1− |w−n|

)
+ dD(z−n, w−n)

}
.

To define a metric on the lamination, we try to align the indices as closely as

possible:

d
X̂
(z,w) := min

m∈Z
dD̂(z, F̂

◦m(w)).

As the above metric is complete and separable, X̂ is a Polish space, but it is

not locally compact unless F is a finite Blaschke product.

Lemma 5.1. Any leaf L is dense in X̂.

Proof. Suppose z ∈ L and we want to show that w ∈ X̂ lies in the closure of

L. For all n ≥ 0 sufficiently large, the points z−n and w−n lie in the annulus

A(0; ρ, 1). Connect z−n and w−n by a curve γ that lies in A(0; ρ, 1). Following

the inverse orbit z along the curve γ, we come to a point z′ ∈ L which agrees

with w up to z′−n = w−n. From the definition of d
X̂
, it is clear that as n→∞,

these inverse orbits converge to w.

5.2 Finding a dense horocycle

Pick a repelling fixed point ξ on the unit circle. Let r = F ′(ξ) be its multiplier;

it is real and positive. The leaf Lξ which consists of all backwards orbits that
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tend to ξ is conformally equivalent to H/(· r). Let z ∈ Lξ be a point in this

leaf and consider the horocycle H(z) = {hs(z) : s ∈ R} passing through z.

The horocycle is just a horizontal line in Lξ ∼= H/(· r). Lifting to the upper

half-plane H, we get countably many horizontal lines.

Lemma 5.2. The horocycle H(z) is dense in the leaf Lξ and hence dense in

the lamination X̂.

We may view ImH(z) as a number in R+/(· r). Glutsyuk’s idea was to

modify the backward orbit z ∈ Lξ to obtain a new orbit w ∈ Lξ with d
X̂
(z,w)

small, so that ImH(w) is close to any given number in R+/(· r).
By a ξ-homoclinic orbit x ∈ Ŝ1, we mean an inverse orbit

· · · → x−3 → x−2 → x−1 → x0, x−n ∈ S1,

on the unit circle so that

x0 = ξ, lim
n→∞

x−n = ξ.

We can view the “multiplier”

m(x) = lim
n→∞

(F ◦n)′(x−n)

rn

as an element of R+/(· r).

Lemma 5.3. The multipliers of ξ-homoclinic orbits are dense in R+/(· r).

Proof. As explained in [IU23], if F ∈ Λ is a centered one component inner

function of finite Lyapunov exponent, which is not z → zd for some d ≥ 2,

then the multipliers of repelling periodic orbits on the unit circle span a dense

subgroup of R+.

For simplicity of exposition, assume that there is a single repelling periodic

orbit F ◦k(η) = η on the unit circle such that (F ◦k)′(η) and r span a dense

subgroup of R+. As the inverse iterates of a point are dense on the unit circle

[IU23, Lemma 3.4], for any ε > 0, one can find a ξ-homoclinic orbit x which

passes within ε of η :

· · · → x−3 → x−2 → x−1 → x0, |x−n − η| < ε.
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We can form a new ξ-homoclinic orbit x(p) which starts with

x−n → · · · → x−3 → x−2 → x−1 → x0,

then follows the periodic orbit F ◦k(η) = η for pk steps, where p ≥ 1 is a

positive integer, and then follows the tail of x:

· · · → x−n−3 → x−n−2 → x−n−1 → x−n → . . . .

Above, “to follow an inverse orbit” means to use the same branches of F−1

defined on balls B(ζ, 1 − ρ), centered on the unit circle. By construction, for

any given p ≥ 1, we can make m(x(p)) as close to (F ◦k)′(η)p ·m(x) as we want

by requesting ε > 0 to be small. By the assumption on the multiplier of η, the

numbers (F ◦k)′(η)p ·m(x) are dense in R+/(· r).

Proof of Lemma 5.2. Let z ∈ Lξ be a backward orbit in the unit disk. We can

form a new backward orbit w by keeping

z−n+1 → · · · → z−3 → z−2 → z−1 → z0

and approximating

· · · → z−n−3 → z−n−2 → z−n−1 → z−n

with a ξ-homoclinic orbit

· · · → x−3 → x−2 → x−1 → x0.

In other words, for m ≥ 0, we replace z−n−m with a point close to x−m. By

choosing n ≥ 0 sufficiently large and the ξ-homoclinic orbit appropriately, this

construction produces inverse orbits w ∈ Lξ as close to z ∈ Lξ as we want

with ImH(w) prescribed to arbitrarily high accuracy in R+/(· r).

5.3 Ergodicity of the horocyclic flow

Lemma 5.4. Suppose F ∈ Λ is a centered one component inner function of

finite Lyapunov exponent, other than F (z) ̸= zd with d ≥ 2. The horocyclic

flow hs on the Riemann surface lamination X̂ is ergodic.
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Following Coudène, for t > 0, we define the operators

Mtf(z) =

ˆ 1

0
f(g− log t(hs(z)))ds (5.1)

on the space of uniformly continuous functions UC(X̂). Let

Stf(z) =

ˆ t

0
f(hs(z))ds

denote the integral along the trajectory of the horocyclic flow up to time t.

The motivation for the operators (5.1) is the relation

Stf(z)

t
=Mtf(glog t(z)),

which follows from (3.4) and a change of variables.

Lemma 5.5. Suppose F ∈ Λ is a centered one component inner function of

finite Lyapunov exponent, other than F (z) ̸= zd with d ≥ 2. If f is a bounded

uniformly continuous function on X̂, then the functions {Mtf}t≥0, defined on

X̂, form a uniformly equicontinuous family.

Sketch of proof. The point is that if we do not change the point zmuch, we also

do not change the horocycle of length t from the point g− log t(z) much. While

the length of the horocycle is increasing (we are running it for time t), we are

also starting it from the point g− log t(z). Koebe’s distortion theorem implies

that the horocycles of length t started at points g− log t(w), with d
X̂
(z,w) < ε,

are within O(ε) of one another.

Proof of Lemma 5.4. In view of Lemma 5.5, the Arzela-Ascoli theorem tells us

that any sequence of functionsMtkf with tk →∞ contains a subsequence that

converges uniformly on compact subsets of X̂ to a function in UC(X̂). Our

goal is to show that for a positive function f ∈ UC(X̂), any accumulation point

f ofMtf as t→∞, is a constant function c = c(f), which would necessarily

be
ffl
X̂
fdξ. Once we have done this, the rest is easy: as the functions Mtf

converge uniformly on compact subsets of X̂ to c as t→∞, they also converge

to c in L2(X̂, dξ). Here we are using that the metric space X̂ is Polish, which

implies that the measure ξ is inner regular on open sets and so there exists
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an increasing sequence of compact sets Kn ⊂ X̂ such that ξ(Kn) → ξ(X̂).

Consequently, St(f)/t→ c in L2(X̂, dξ) and the flow hs is ergodic.

Let {tk} be a sequence of times tending to infinity for whichMtkf converges

uniformly on compact subsets to an accumulation point f ∈ UC(X̂). Using

the invariance of the measure ξ under geodesic flow, we see that

lim
k→∞

∥(1/tk)Stk(f)− f ◦ glog tk∥L2(X̂,dξ)
= 0.

According to von Neumann’s ergodic theorem, there is an hs-invariant L2

function Pf on X̂ such that

lim
t→∞
∥(1/t)St(f)− Pf∥

L2(X̂,dξ)
= 0.

From these two observations and the gt-invariance of ξ, we get:

∥f − Pf ◦ g− log tk∥L2(X̂,dξ)
= ∥f ◦ glog tk − Pf∥

L2(X̂,dξ)
→ 0, as k →∞.

The commutativity property of the geodesic and horocyclic flows (3.4) shows

that Pf ◦ g− log tk is invariant under the horocyclic flow hs. Therefore, f must

also be invariant under hs. As f is a continuous function with a dense hs-orbit,

it must be constant. The proof is complete.

5.4 Mixing of the geodesic flow

We now deduce the mixing of the geodesic flow from the ergodicity of the

horocyclic flow:

Lemma 5.6. If F ∈ Λ is a centered one component inner function of finite

Lyapunov exponent, other than F (z) ̸= zd with d ≥ 2, then the geodesic flow

g−t on the Riemann surface lamination X̂ with respect to the measure ξ is

mixing.

Proof. For t ∈ R, the Koopman operator [g−t]u = u◦ g−t acts isometrically on

L2(X̂). For r > 0, let Sr(u) be the average of u ◦ hs over s ∈ [−r, r], i.e.

Sr(u)(x) =
1

2r

ˆ r

−r
u(hs(x))ds.
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This defines a bounded linear operator Sr : L2(X̂) → L2(X̂). The commuta-

tion relation (3.4) tells us that

Sr[g−t] = [g−t]Setr (5.2)

as operators on L2(X̂).

Let u, v ∈ Cb(X̂) be two bounded continuous functions of zero mean with

respect to the measure ξ. Since ξ is invariant with respect to both the horo-

cyclic flow hs and the geodesic flow g−t, by using Fubini’s Theorem, we get for

every r > 0 and t ∈ R that

⟨Sru, [g−t]v⟩ = ⟨u, Sr[g−t]v⟩ = ⟨u, [g−t]Setrv⟩ = ⟨[gt]u, Setrv⟩. (5.3)

As
´
X̂
vdξ = 0, it follows from the ergodicity of the horocyclic flow and von

Neumann’s Ergodic Theorem that Setrv → 0 in L2(X̂) as t→ +∞. Since the

set {[gt]u : t ∈ R} is bounded in L2(X̂), (5.3) tells us that

lim
t→+∞

⟨Sru, [g−t]v⟩ = 0,

for any r > 0. As

lim
r→0
∥u− Sru∥L2(X̂)

= 0,

we also have

lim
t→+∞

⟨u, [g−t]v⟩ = 0.

The result now follows from the density of Cb(X̂) in L2(X̂).

Part II

Background in Geometry and

Analysis
In this part of the manuscript, we gather some facts from differential geometry

and complex analysis that will allow us to study the dynamics of inner functions

with finite Lyapunov exponent.
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In Section II, we see use (hyperbolic) geodesic curvature to estimate how

much a curve in the unit disk deviates from a radial ray [0, ζ). In Section 7,

we define the Möbius distortion of a holomorphic self-map F of the unit disk

and use it to estimate the curvature of F ([0, ζ)).

In Section 8, we give another interpretation of the Möbius distortion in

terms of how much F−1 expands the hyperbolic metric and define the linear

distortion of F . Finally, in Section 9, we give a bound on the total linear

distortion of F along [0, ζ) in terms of the angular derivative |F ′(ζ)|, from

which we conclude that if F is an inner function with finite Lyapunov exponent

then the total linear distortion of F on the unit disk is finite.

6 Curves in Hyperbolic Space

We first recall the definition and basic properties of geodesic curvature in the

Euclidean setting. Suppose γ : [a, b] → R2 is a C2 curve, parameterized with

respect to arclength. Its curvature

κEuc(γ; t) = ∥γ′′(t)∥

measures the rate of change of the tangent vector of γ. The signed curvature

κs,Euc(γ; t) = ±κEuc(γ; t) also takes into account if γ is turning left or right.

It is well known that a curve is uniquely determined (up to an isometry) by

its signed curvature, e.g. see [Pre10, Theorem 2.1].

Example. A circle of radius R has constant curvature 1/R. The signed curva-

ture is either −1/R or 1/R depending on the orientation of γ.

We now turn our attention to the hyperbolic setting. Let γ : [a, b]→ D be a

C2 curve, parametrized with respect to hyperbolic arclength. The hyperbolic

geodesic curvature κhyp(γ; t) measures how much γ deviates from a hyperbolic

geodesic at γ(t).

We now describe a convenient way to compute κhyp(γ; t). Suppose first γ

passes through the origin, e.g. γ(t0) = 0 for some t0 ∈ [a, b]. As the hyperbolic

metric osculates the Euclidean metric to order 2 at the origin, but is twice

as large there, the hyperbolic geodesic curvature of γ is half the Euclidean

geodesic curvature of γ. One may compute the hyperbolic geodesic curvature

at other points by means of Aut(H) invariance.
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Example. (i) Hyperbolic geodesics have zero geodesic curvature.

(ii) To compute the curvature of a horocycle, we may assume that the

horocycle passes through the origin and compute its curvature there. Since

a horocycle which passes through the origin is a circle of Euclidean radius

1/2, its Euclidean geodesic curvature at the origin is 2. Consequently, every

horocycle has constant hyperbolic geodesic curvature 1.

(iii) Curves of constant hyperbolic geodesic curvature κ ∈ (0, 1) are circular

arcs which cut the unit circle at two points at an angle θ ∈ (0, π/2) with

κ = cos θ.

The following two lemmas are well-known:

Lemma 6.1. If γ : [a, b]→ D is a C2 curve with hyperbolic geodesic curvature

κhyp(γ; t) ≤ 1, then γ is a simple curve.

Lemma 6.2. If γ : [a, b]→ D is a C2 curve with hyperbolic geodesic curvature

κhyp(γ; t) ≤ c < 1, then γ lies within a bounded hyperbolic distance of some

geodesic.

We also record the following comparison theorem:

Theorem 6.3. Suppose γ : [a,∞)→ D is a C2 curve with hyperbolic geodesic

curvature κhyp(γ; t) ≤ κ ≤ 1. Let γ1, γ2 : [a,∞) → D be curves with constant

signed geodesic curvatures κ and −κ respectively that have the same tangent

vector at t = a, i.e.

γ1(a) = γ2(a) = γ(a), γ′1(a) = γ′2(a) = γ′(a).

Then, γ lies between γ1 and γ2.

6.1 Inclination from the Vertical Line

We now switch to the upper half-plane model of hyperbolic geometry. In this

section, we assume that γ : [a,∞) → H is a C2 curve of curvature κ ≤ 0.2,

parametrized with respect to arclength. For any a ≤ t < ∞, we can look at

the tangent vector γ′(t) to γ at the point γ(t). We define α(t) ∈ [0, π] to be the

angle that γ′(t) makes with the downward pointing vector field v↓ = −y · ∂
∂y .
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Figure 1: Inclination from the vertical line

We first describe the behaviour of α(t) when γ is a hyperbolic geodesic in

the upper half-plane. Inspection shows that the derivative α′(t) ≤ 0, where

equality holds if and only if γ is a vertical line, pointing straight up or straight

down. If γ is not a vertical line, then α(t) satisfies the differential equation

α′(t) = −G(α(t)),

for some non-negative differentiable function G : [0, π] → R, which vanishes

only at the endpoints. (The function G does not depend on the geodesic γ

since any two non-vertical geodesics in the upper half-plane are related by a

mapping of the form z → Az+B with A > 0 and B ∈ R.) For future reference,

we note that G′(0) > 0.

Lemma 6.4. Suppose γ : [a, b] → H is a piece of a hyperbolic geodesic. If

α(a) ≤ 2π/3, then ˆ b

a
α(t) ≲ α(a), (6.1)

where the implicit constant is independent of b.

Proof. From the discussion above, it follows that α(t) satisfies the differential

inequality

α′(t) ≤ −c1α(t), t ∈ [a,∞),

for some c1 > 0. In view of Grönwall’s inequality, α(t) decreases exponentially

quickly, which clearly implies (6.1).

We now turn to investigating α(t) for general curves γ with small geodesic

curvature. We begin with the following preliminary observation:
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Lemma 6.5. If γ : [a,∞) → H is a C2 curve parametrized with respect to

hyperbolic arclength with curvature κ ≤ 0.2. If α(a) < 2π/3, then

α(t) ≤ 2π/3

for all t ∈ [a,∞).

Sketch of proof. From the discussion above, a straight line in the upper half-

plane with α(t) = 2π/3 has constant curvature κ =
√

3/2 > 0.2. By Theorem

6.3, if α(t) = 2π/3 then α′(t) ≤ 0. Consequently, α(t) cannot rise above

2π/3.

Lemma 6.6. If γ ⊂ H is a C2 curve parametrized with respect to hyperbolic

arclength, with curvature ≤ 0.2, then

α′(t) ≤ −G(α(t)) + 4κhyp(γ; t).

Sketch of proof. We have seen that at the origin, the hyperbolic metric is twice

as large as the Euclidean metric. As a result, the parametrization with respect

to the hyperbolic arclength is twice as fast as with Euclidean arclength. In

addition, the Euclidean geodesic curvature is twice as large as the hyperbolic

geodesic curvature. Consequently, the instrinsic change in the direction of the

tangent vector γ′(t) is four times the signed hyperbolic geodesic curvature.

However, in hyperbolic geometry, we must also account for the fact that

geodesics naturally change direction with respect to the vertical, which is de-

scribed by the first term in the equation above.

To conclude this section, we extend Lemma 6.4 to the case of small geodesic

curvature:

Lemma 6.7. Suppose γ : [a, b] → H has geodesic curvature at most 0.2. If

α(a) ≤ 2π/3, then ˆ b

a
α(t) ≲ α(a) +

ˆ b

a
khyp(γ; t).

Proof. From the lemma above, it follows that

α′(t) ≤ −c1α(t) + 4κhyp(γ; t), (6.2)
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for some c1 > 0. Grönwall’s inequality shows that

α(t) ≤ e−c1t
(
α(a) + 4

ˆ t

a
ec1s · κhyp(γ; s)ds

)
,

for all t ∈ [a, b]. Integrating over t proves the result.

7 Möbius Distortion

Let λD = 2
1−|z|2 be the hyperbolic metric on the unit disk. A holomorphic

self-map F of the unit disk naturally defines the pullback metric

λF = F ∗λD =
2|F ′(z)|

1− |F (z)|2
.

With the above definition, if γ ⊂ D is a rectifiable curve, then the hyperbolic

length of F (γ) is
´
γ λF .

By the Schwarz lemma, µF (z) := 1−(λF /λD)(z) is zero if and only if F is a

Möbius transformation. In general, for any a ∈ D, the Möbius distortion µF (a)

measures how much F deviates from being a Möbius transformation near a.

A normal families argument shows that when µF (a) is small, F is close to a

Möbius transformation m ∈ Aut(D) near a. The following lemma provides a

more quantitative estimate:

Lemma 7.1. Let F be a holomorphic self-map of the unit disk. For any

R, ε > 0, there exists a δ > 0, so that if µF (a) < δ, a ∈ D, then on Bhyp(a,R),

F is univalent and dD
(
F (z),m(z)

)
< ε for some Möbius transformation m ∈

Aut(D) which takes a to F (a). Furthermore, for a fixed R > 0, δ can be taken

to be comparable to ε.

The argument below is taken from [McM09, Proposition 10.9]:

Proof. By Möbius invariance, we may assume that a = F (a) = 0 and 0 ≤
F ′(0) ≤ 1. For convenience, we abbreviate µ = µF (0) = 1 − F ′(0). Applying

the Schwarz lemma to F (z)/z shows that the hyperbolic distance

dD(F (z)/z, F ′(0)) = O(1), for z ∈ Bhyp(0, R+ 1).
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Taking note of the location of F ′(0) ∈ D, this implies that |F (z)− z| = O(µ)

on Bhyp(0, R+ 1). Cauchy’s integral formula then tells us that

|F ′(z)− 1| = O(µ), |F ′′(z)| = O(µ), for z ∈ Bhyp(0, R).

From here, the lemma follows from the definition of the Möbius distortion and

some arithmetic.

Lemma 7.2. Suppose γ is a hyperbolic geodesic in the unit disk passing through

z ∈ D. Let F (γ) be the image of γ under a holomorphic self-map F of the unit

disk. Then the geodesic curvature of F (γ) at F (z) is bounded by

min
(
1, κF (γ)(F (z))

)
≲ µ(z).

Proof. By Möbius invariance, one can consider the case when γ = [−1, 1],
z = 0, F (0) = 0 and F ′(0) > 0. Arguing as in the proof of Lemma 7.1, we get

|F ′′(0)| = O(µ) where µ = 1− F ′(0). Therefore, F (γ) lies in a wedge{
x+ iy : |y| < Cµx2

}
near z = 0, which gives the desired curvature bound.

The same argument shows:

Lemma 7.3 (Stability of µ under perturbations). There exists a constant

K > 0 so that any holomorphic self-map F of the unit disk,

|∇hypµ(a)| ≤ Kµ(a), a ∈ D.

In particular, for any two points a, b ∈ D, we have

e−KdD(a,b)µ(a) ≤ µ(b) ≤ eKdD(a,b)µ(a).

For a finer estimate, we refer the reader to [BM07, Corollary 5.7].

Hyperbolic expansion factor. Suppose F is a holomorphic self-map of

the unit disk. By the Schwarz lemma, the hyperbolic expansion factor E(a) :=

∥F ′(a)∥−1hyp ≥ 1. The hyperbolic expansion factor could be infinite if a is a

critical point of F . The hyperbolic expansion factor is related to the Möbius

distortion via

E(a) =
1

1− µ(a)
.

As a result, the two quantities are essentially interchangeable.
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8 Linear Distortion

Recall that the downward pointing vector field v↓ = −y · ∂
∂y assigns each point

in H a vector of hyperbolic length 1 which points toward the real axis. By the

Schwarz lemma, the quotient

p(z) =
F∗v↓(z)

v↓(F (z))
∈ D.

We consider the following quantities:

• Möbius distortion: µ = 1− |p|.

• Linear distortion: δ = |1− p|.

• Vertical inefficiency: η = Re(1− p).

• Vertical inclination: α = | arg p| ∈ [0, π).
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t

r
p
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Figure 2: Notions of distortion

In practice, estimating δ(a) directly is rather difficult. From the picture

above, it is clear that α(a) + η(a) ≥ δ(a), which allows us to estimate lin-

ear distortion by estimating the vertical inefficiency and vertical inclination

separately.

For a holomorphic self-map of the upper half-plane F , the linear distortion

δF (a) measures how much F deviates from the unique linear map La→F (a) ∈
Aut(H,∞) which takes a to F (a). Evidently, the linear distortion is zero if

and only if F = La→F (a). Similarly to Lemma 7.1, we have:
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Lemma 8.1. Let F be a holomorphic self-map of the upper half-plane. For

any R, ε > 0, there exists a δ > 0, so that if δF (a) < δ, a ∈ H, then on

BH
hyp(a,R), F is univalent and dH

(
F (w), La→F (a)(w)

)
< ε. Furthermore, for

a fixed R > 0, δ can be taken to be comparable to ε.

Proof. By Aut(H,∞) invariance, we may assume that a = F (a) = i. In view

of Lemma 7.1, F is injective on the ball BH
hyp(a,R), where it resembles an

elliptic Möbius transformation in Aut(H) which fixes i ∈ H. We need to show

that F is close to the identity mapping.

Let mD→H be a Möbius transformation which maps D to H and takes the

tangent vector (∂/∂x)(0) to v↓(i). As δF (i) < δ, the composition

G = mH→D ◦ F ◦mD→H

defines a holomorphic self-map of the unit disk with G(0) = 0 and |G′(0)−1| =
O(δF (i)). Following the proof of Lemma 7.1, we see that |G(z)−z| = O(δF (i))

for z ∈ Bhyp(0, R), which in the upper half-plane translates to

|F (w)− w| = O(δF (i)), for w ∈ BH
hyp(i, R), (8.1)

as desired.

Lemma 8.2. In the lemma above, we may choose δ ≍ ε so that

(1− ε) · 1

Imw
<
|F ′(w)|2

ImF (w)
< (1 + ε) · 1

Imw
, (8.2)

for any w ∈ BH
hyp(a,R).

Proof. We continue to use the normalization a = F (a) = i. In view of (8.1)

and Cauchy’s integral formula, there exists a constant C > 0 depending only

on R so that

1− CδF (i) < |F ′(w)| < 1 + CδF (i),

for any w ∈ BH
hyp(a,R− 1). Together with (8.1), this shows

(1− C ′δF (i)) ·
1

Imw
<
|F ′(w)|2

ImF (w)
< (1 + C ′δF (i)) ·

1

Imw
,

for some constant C ′ > 0 which also only depends on R. To obtain the corollary

as stated, we work with R + 1 in place of R and divide δ by a constant if

necessary so that C ′δ < ε.
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Lemma 8.3 (Stability of δ under perturbations). There exists a constant

K > 0 such that for any holomorphic self-map F of the upper half-plane,

|∇hypδ(a)| ≤ Kδ(a), a ∈ H.

In particular, for any two points a, b ∈ H, we have

e−KdD(a,b)δ(a) ≤ δ(b) ≤ eKdD(a,b)δ(a).

Proof. Since we have already estimated |∇hypµ(a)| in Lemma 7.3, it remains

to control the gradient of the angular inclination |∇hypα(a)|. By Aut(H,∞)

invariance, we may assume that a = F (a) = i. We may also assume that

δ(i) < 1/2, otherwise the lemma is trivial, in which case, |F ′(i)| ≍ 1 and the

gradient |∇α(i)| = |∇ argF ′(i)| is controlled by the second derivative |F ′′(i)|.
As in the proof of Lemma 8.1, we have |F (w) − w| = O(δ(i)) for w ∈

BH
hyp(i, 1). An application of Cauchy’s integral formula gives the desired esti-

mate |F ′′(i)| = O(δ(i)).

Working in the unit disk. For a centered holomorphic self-map F of

the unit disk, one can define the notions of δ, η, α using the radial vector

field vrad(z) = 2
1−r2 ·

∂
∂r , which assigns each point in D \ {0} an outward

pointing vector of hyperbolic length 1. Note that δ, η, α are only defined when

a, F (a) ̸= 0 and as a result are somewhat awkward to work with. Nevertheless,

near the unit circle, δ, η, α resemble their counterparts in the upper half-plane.

Assuming that a, F (a) ̸= 0, the radial distortion δF (a) measures how much

F deviates from ma→F (a) near a, the “straight” Möbius transformation which

takes

a→ F (a),
a

|a|
→ F (a)

|F (a)|
, − a

|a|
→ − F (a)

|F (a)|
.

To ensure that F is close to the linear map ℓa→F (a) which takes a→ F (a) and
a
|a| →

F (a)
|F (a)| on Bhyp(a,R), we will often ask that 1−|F (a)| < δ/eR in addition

to δF (a) < δ.

9 Distortion Along Radial Rays

Suppose F is a holomorphic self-map of the unit disk. Recall that F has

an angular derivative at ζ ∈ ∂D in the sense of Carathéodory if F (ζ) :=
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limr→1 F (rζ) belongs to the unit circle and F ′(ζ) := limr→1 F
′(rζ) is finite.

The following theorem says that the logarithm of the angular derivative at ζ

controls the total linear distortion along the radial geodesic [0, ζ):

Theorem 9.1. Suppose F is a holomorphic self-map of the disk with F (0) = 0.

If F has an angular derivative at ζ ∈ ∂D, then
ˆ ζ

0
δ dρ ≲ log |F ′(ζ)|. (9.1)

In particular, if F is an inner function with finite Lyapunov exponent,
ˆ
D
δ(z) · dA(z)

1− |z|
≲
ˆ
∂D

log |F ′(reiθ)|dm. (9.2)

In view of the inequality α(z)+η(z) ≥ δ(z), we may split the proof Theorem

9.1 into two lemmas:

Lemma 9.2. Suppose F is a holomorphic self-map of the disk with F (0) = 0.

If F has an angular derivative at ζ ∈ ∂D, then
ˆ ζ

0
η dρ ≤ log |F ′(ζ)|. (9.3)

Lemma 9.3. Suppose F is a holomorphic self-map of the disk with F (0) = 0.

If F has an angular derivative at ζ ∈ ∂D, then
ˆ ζ

0
αdρ ≲ log |F ′(ζ)|. (9.4)

9.1 Bounding the radial inefficiency

We first estimate the radial inefficiency:

Proof of Lemma 9.2. Let ζ be a point on the unit circle where F has an angular

derivative. Join the points 0 and ζ by a hyperbolic geodesic γ = [0, ζ). The

image F (γ) is a curve which connects 0 to F (ζ) ∈ ∂D. From the definition of

the radial inefficiency, it is clear that

ˆ ζ

0
η dρ ≤ lim

r→1

{
dD(0, rζ)− dD(0, F (rζ))

}
= log |F ′(ζ)|,

as desired.
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In view of the elementary estimate µ ≤ η and Lemma 7.2, the total Möbius

distortion and geodesic curvature are finite along F ([0, ζ)):

Corollary 9.4. Suppose F is a holomorphic self-map of the disk with F (0) =

0. If F has an angular derivative at ζ ∈ ∂D, then
ˆ ζ

0
µdρ ≤ log |F ′(ζ)|.

and ˆ ζ

0
min

(
1, κF ([0,ζ))(F (z))

)
dρ(z) ≲ log |F ′(ζ)|.

Below, we will use the following lemma which follows from compactness:

Lemma 9.5. There exists a δ > 0 so that for any holomorphic self-map F of

the unit disk and any point z ∈ D with dD(0, z) ≥ 1, we have

η(z) < 0.1 =⇒ η(w) < 0.15, w ∈ Bhyp(z, δ).

9.2 Bounding the radial inclination

To complete the proof of Theorem 9.1, it remains to estimate the radial in-

clination. We parametrize the radial geodesic γ(t) = [0, ζ) with respect to

arclength. We break up (γ(1), γ(∞)) into a union of thick and thin intervals.

By a thin interval (γ(pi), γ(qi)) ⊂ (γ(1), γ(∞)), we mean a maximal interval

for which η(γ(pi)) < 0.1 and η(γ(qi)) < 0.2. The thick intervals are then

defined as the connected components of the complement of the thin intervals.

In view of Lemma 9.5, the hyperbolic length of a thin interval is bounded

from below. Therefore, by Lemma 9.2, the number of thin intervals n(ζ) ≲

log |F ′(ζ)|. As thin and thick intervals alternate, the number of thick intervals

is also ≲ log |F ′(ζ)|.

Proof of Lemma 9.3. Since η(t) ≥ 0.1 on any thick interval, by Lemma 9.2,

the sum of the hyperbolic lengths of the thick intervals is ≲ log |F ′(ζ)|, so that∑
γi thick

ˆ
γi

αdρ ≲ log |F ′(ζ)|.

From the definitions of the radial inclination and the radial inefficiency, it

follows that on a thin interval α(t) ≤ | arg(0.8+0.2i)| ≈ 0.644 < 2π/3, so that
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Lemma 6.7 is applicable (see the remark below). Together with Corollary 9.4,

this shows ∑
γi thin

ˆ
γi

αdρ ≲ n(ζ) +
n∑

i=1

ˆ
γi

κ dρ ≲ log |F ′(ζ)|.

The proof is complete.

Remark. Actually, one needs to be a bit more precise in the proof above since

Lemma 6.7 is stated on the upper half-plane. On the unit disk, one can only

apply Lemma 6.7 as long as one is working sufficiently close to the unit circle.

As η(z) < 0.2 on a thin interval, F (z) moves towards the unit circle at a

definite rate, so after O(1) time, Lemma 6.7 will indeed be applicable. The

waiting time contributes at most O(1) to each integral
´
γi
αdρ over a thin

interval γi.

Part III

General Centered Inner

Functions of Finite Lyapunov

Exponent
In this part, F will denote an arbitrary centered inner function of finite Lya-

punov exponent, other than a rotation. In Section 10, we define the Möbius

and linear laminations X̂mob and X̂lin associated to F and describe the geodesic

and horocyclic flows on X̂lin. To be fair, the term “lamination” is not entirely

accurate here as X̂lin and X̂mob may not locally be product sets.

In Section 11, we construct a natural volume form dξ on X̂. According

to Theorem 11.2, the total volume of X̂ is just the Lyapunov exponent of

F . From the finiteness of volume, it follows that iteration along almost every

backward orbit is asymptotically Möbius, i.e. ξ(X̂ \ X̂mob) = 0. In Section 12,

we improve this to asymptotically linearity, i.e. ξ(X̂ \ X̂lin) = 0.
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In Section 13, we study how the trajectories of the geodesic flow foliate D̂lin

and conclude that the geodesic flow on X̂lin is ergodic. Finally, in Section 14,

we apply the ergodic theorem to a slight modification of the almost invariant

function from Section 4.2 to prove Theorem 1.2.

10 Möbius and Linear Laminations

For a general centered inner function, the lamination X̂ = D̂ / F̂ defined in

Section 3 has limited use. In this section, we describe two subsets

X̂mob = D̂mob / F̂ and X̂lin = D̂lin / F̂ ,

which we refer to as the Möbius and linear laminations of F respectively. Here,

D̂mob ⊂ D̂ is the collection of inverse orbits z = (z−n)
∞
n=0 on which backward

iteration is asymptotically Möbius:

µF ◦m(z−m−n)→ 0, as m,n→∞,

while D̂lin ⊂ D̂ consists of inverse orbits on which backward iteration is asymp-

totically linear:

δF ◦m(z−m−n)→ 0, as m,n→∞.

(As δF ◦m(z−m−n) is small, F ◦m is close to a straight Möbius transformation

near z−m−n. Asymptotic linearity follows from the fact that |z−n| → 1.) Since

µ ≤ δ, it is clear that X̂lin ⊂ X̂mob ⊂ X̂.

On the set X̂mob ⊂ X̂, one can define a leafwise hyperbolic Laplacian and

study mixing properties of hyperbolic Brownian motion, but we will not pursue

this here. On X̂lin ⊂ X̂, one can define geodesic and horocyclic flows as in

Section 3.

10.1 Rescaling along inverse orbits

Inspection shows that a backward orbit z = (z−n)
∞
n=0 ∈ D̂ belongs to D̂mob if

and only if there exists a sequence of Möbius transformations m−N ∈ Aut(D),
N ∈ N, with

m−N (0) = z−N
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for which the sequence

(F ◦N ◦m−N )∞N=0

converges uniformly on compact subsets of the unit disk as N → ∞. In this

case, we denote the limiting map by Fz,0. In fact, when Fz,0 exists, so does

Fz,−n = lim
N→∞

F ◦(N−n) ◦m−N , for any n ∈ N,

and (Fz,−n(w))
∞
n=0 defines an inverse orbit in D̂mob for any w ∈ D.

We say that a backward orbit w = (w−n)
∞
n=0 lies in the same leaf of D̂mob

as z = (z−n)
∞
n=0 if there is a w ∈ D such that

w−n = Fz,−n(w),

for all integers n ∈ N.
For a point p ∈ D \ 0, we write Mp for the conformal map from H to D

which takes

0→ p

|p|
, i→ p, ∞→ − p

|p|
.

Similarly, a backward orbit z = (z−n)
∞
n=0 ∈ D̂ belongs to D̂lin if and only if for

some (and hence any) n ∈ N, the sequence of rescaled iterates

F ◦(N−n) ◦Mz−N ,

converges uniformly on compact subsets of H as N → ∞. We denote the

limiting maps by

Fz,−n := lim
N→∞

F ◦(N−n) ◦Mz−N .

We partition D̂lin into a union of leaves analogously to D̂mob.

Lemma 10.1. Two inverse orbits z = (z−n)
∞
n=0 and z′ = (z′−n)

∞
n=0 in D̂lin

belong to the same leaf L ⊂ D̂lin if and only if
(
dD(z−n, z

′
−n))

∞
n=0 is uniformly

bounded. In this case, the leafwise hyperbolic distance

dL(z, z
′) = lim

n→∞
dD(z−n, z

′
−n).

We define the geodesic and horocyclic flows on D̂lin by the following for-

mulas:

gt(z)−n := Fz,−n(e
t · i), t ∈ R
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and

hs(z)−n := Fz,−n(i+ s), s ∈ R.

Clearly, the (−n)-th coordinates of geodesic trajectories which foliate the leaf

L(z) ⊂ D̂lin containing z are images of vertical geodesics {w ∈ H : Rew = x}
under Fz,−n.

The choices of basepoints 0 ∈ D and i ∈ H in the definitions above are of

course arbitrary.

Remark. For a general centered inner function, the laminations X̂mob and X̂lin

could be empty. For instance, there exists a centered inner function F whose

critical set forms a net , i.e. there exists an R > 0 so that any point in the unit

disk is within hyperbolic distance R of a critical point. However, in view of

Jensen’s formula, F does not have a finite Lyapunov exponent.

10.2 Cumulative distortion

We now introduce some notions which allow us to check whether an inverse

orbit z lies in D̂mob or D̂lin.

We denote the cumulative hyperbolic expansion factor by

E(w, z) = ∥(F ◦n)′(w)∥−1hyp

if F ◦n(w) = z and

E(w) = E(w, z) = lim
n→∞

∥(F ◦n)′(w−n)∥−1hyp

if w = (w−n)
∞
n=0 ∈ D̂ is an inverse orbit with w0 = z. It is easy to see that

w ∈ D̂mob if and only if E(w) <∞.

We denote the cumulative linear distortion along an inverse orbit z ∈ D̂ by

δ̂F (z) :=
∞∑
n=1

δF (z−n). (10.1)

Lemma 10.2. Suppose F and G are holomorphic self-maps of the unit disk.

For a point a ∈ D such that a,G(a), F (G(a)) ̸= 0, we have

δF◦G(a) ≤ δF (G(a)) + δF (a).
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In particular, if a, F (a), . . . , F ◦n−1(a) ̸= 0, then

δF ◦n(a) ≤
n−1∑
k=0

δF (F
◦k(a)).

Proof. Notice that if p, q ∈ D, then

|1− pq| = |1− p|+ |p− pq| ≤ |1− p|+ |1− q|.

The lemma follows from the above identity, with

p =
G∗vrad(a)

vrad(G(a))
and q =

F∗vrad(G(a))

vrad(F (G(a)))
,

as δG(a) = |1− p|, δF (G(a)) = |1− q| and δF◦G(a) = |1− pq|.

From the lemma above, it is clear that if δ̂F (z) <∞, then z ∈ D̂lin.

11 Area on the Lamination

Throughout this section, F will be a centered inner function with finite Lya-

punov exponent. For a measurable set A compactly contained in the unit disk,

we write Â for the collection of inverse orbits z with z0 ∈ A. We define an

F̂ -invariant measure ξ on D̂ by specifying it on sets of the form Â ⊂ D̂ in a

consistent manner:

ξ(Â) = lim
n→∞

1

2π

ˆ
F−n(A)

log
1

|z|
dAhyp(z). (11.1)

In order to show that the limit in (11.1) exists, we check that the numbers

ˆ
F−n(A)

log
1

|z|
dAhyp

are increasing and uniformly bounded above. This follows from Lemma 11.1

and Theorem 11.2 below:

Lemma 11.1. For a measurable subset E of the unit disk,

ˆ
F−1(E)

log
1

|z|
dAhyp ≥

ˆ
E
log

1

|z|
dAhyp.
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Proof. A change of variables shows that
ˆ
F−1(E)

log
1

|w|
dAhyp(w) =

ˆ
E

{ ∑
F (w)=z

∥F ′(w)∥−2hyp log
1

|w|

}
dAhyp(z)

By the Schwarz lemma and Lemma 2.1, this is

≥
ˆ
E

{ ∑
F (w)=z

log
1

|w|

}
dAhyp(z) =

ˆ
E
log

1

|z|
dAhyp

as desired.

Theorem 11.2. The total mass ξ(X̂) =
´
S1 log |F ′(z)|dm.

Proof. Since F has an angular derivative a.e. on the unit circle, for any ε > 0,

there is a Borel set Aε ⊂ S1 with m(Aε) ≥ 1− ε and an 0 < r0 = r0(ε) < 1 so

that

|F (reiθ)− F (eiθ)− (1− r)F ′(eiθ)| < ε(1− r),

for all eiθ ∈ Aε and r ∈ [r0, 1). Consider the set

Ãε =

{
reiθ ∈ D : eiθ ∈ Aε, r0 ≤ r ≤ 1− 1− r0

|F ′(eiθ)| − ε

}
,

where we use the convention that |F ′(eiθ)| =∞ if the angular derivative does

not exist. By construction, the image F (Ãε) is contained in the ball B(0, r0)

so that Ãε does not intersect any of its forward iterates. Therefore, by Lemma

11.1,

ξ(X̂) ≥ 1

2π

ˆ
Ãε

log
1

|z|
dAhyp ≥

ˆ
Aε

(log |F ′(eiθ)| − ε)dm.

Taking ε→ 0 proves the lower bound.

For the upper bound, suppose that E is a subset of the unit disk which is

disjoint from its backward iterates. We want to show that

1

2π

ˆ
E
log

1

|z|
dAhyp ≤

ˆ
S1

log |F ′(z)|dm.

Truncating E if necessary, we may assume that E is contained in a ball B(0, r0)

for some 0 < r0 < 1. Consider the set E∗ = F−1(B(0, r0)) \ B(0, r0). By

construction, ˆ
E
log

1

|z|
dAhyp ≤

ˆ
E∗

log
1

|z|
dAhyp.
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By Lemma 2.3, the set E∗ is contained in the union of

E∗1 =

{
reiθ ∈ D : eiθ ∈ Aε, r0 ≤ r ≤ 1− 1− r0

|F ′(eiθ)|+ ε

}
and

E∗2 =

{
reiθ ∈ D : eiθ /∈ Aε, r0 ≤ r ≤ 1− 1− r0

4|F ′(eiθ)|

}
,

so that

1

2π

ˆ
E∗

log
1

|z|
dAhyp ≤

1

2π

ˆ
E∗

1

log
1

|z|
dAhyp +

1

2π

ˆ
E∗

2

log
1

|z|
dAhyp.

The theorem follows after taking ε→ 0.

11.1 Möbius structure

We will deduce the following theorem from the finiteness of the area of the

Riemann surface lamination:

Theorem 11.3 (Möbius structure). Backward iteration along ξ a.e. inverse

orbit is asymptotically close to a Möbius transformation, i.e. ξ(D̂ \ D̂mob) = 0.

Suppose z ∈ D is a point in the unit disk, which is not contained in the

forward orbit of an exceptional point so that cz is a probability measure on

T (z), see Section 3.1 for the relevant definitions. We fix a constant 0 < γ ≤ 1

for which Lemma 2.4 holds. Then for any ball B = Bhyp(z, γ) with dD(0, z) >

1 + γ, the natural projection from D̂→ X̂ is injective on B̂.

Proof. From the definition of the measure ξ, we have

ξ(B̂) =

ˆ
B
Ψ(z′) log

1

|z′|
dAhyp(z

′)

where

Ψ(z′) = lim
n→∞

∑
F ◦n(w′)=z′

log
1

|w′|
· ∥(F ◦n)′(w′)∥−2hyp

=

ˆ
T (z′)

E(w′, z′)2 dcz′(w
′)
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is the average area expansion factor . Since ξ is a finite measure, Ψ(z′) < ∞
for Lebesgue a.e. z′ ∈ B and E(w′, z′) <∞ for ξ a.e w′ ∈ B̂. As discussed in

Section 7, this implies that w′ ∈ D̂mob.

The theorem follows from the observation that countably many sets of the

form B̂ cover X̂.

11.2 Möbius decomposition theorem

We say that a repeated pre-image w of z is ε-(Möbius good) if the hyperbolic

expansion factor

1 ≤ ∥(F ◦n)′(w)∥−1hyp < 1 + ε, where F ◦n(w) = z.

In view of Lemma 7.1, when ε > 0 is sufficiently small, the connected compo-

nent of F−n(B) containing w maps conformally onto B under the dynamics

of F . Naturally, we call it Bw. By shrinking ε > 0 further, we may assume

that

1 ≤ ∥(F ◦n)′(q)∥−1hyp < 2, for any q ∈ Bw.

Similarly, we say that an inverse orbit w ∈ T (z) is ε-(Möbius good) if

1 ≤ ∥(F ◦n)′(w−n)∥−1hyp < 1 + ε,

for any integer n ∈ N. We define

B̂ε-M.good :=
⋃

w∈Tε-M.good(z)

Bw,

where w ranges over Tε-M.good(z), the set of ε-(Möbius good) inverse orbits

with w0 = z. On B̂ε-M.good, the measure ξ is comparable to the product

measure

log
1

|q|
dAhyp(q)︸ ︷︷ ︸

on B

× cz︸︷︷︸
on Tε-M.good(z)

. (11.2)

Remark. In the one component case, the Riemann surface lamination X̂ is

locally a product space. The “charts” B̂ε-M.good may be viewed as substitutes

of the product sets B̂ from the one component setting.
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We say that a point z ∈ D is ε-(Möbius nice) if most inverse branches

w ∈ T (z) are ε-(Möbius good):

cz(Tε-M.good(z)) > 1− ε,

which is the same as asking that∑
F ◦n(w)=z, n≥0
w ε-M.good

log
1

|w|
> (1− ε) log

1

|z|
,

for any n ≥ 0.

Theorem 11.4 (Möbius decomposition theorem). For a centered inner func-

tion F with finite Lyapunov exponent, the following two assertions hold:

(a) For any ε > 0 and almost every point z ∈ D, there exists an n ≥ 0 so

that ∑
F ◦n(w)=z

w is ε-M.nice

log
1

|w|
> (1− ε) · log 1

|z|
. (11.3)

(b) For any ε > 0, one can find finitely many ε-(Möbius nice) points

z1, z2, . . . , zN , so that the sets

B̂i, ε-M.good, i = 1, 2, . . . , N,

cover X̂ up to ξ-measure ε, i.e.

ξ

(
X̂ \

N⋃
i=1

B̂i, ε-M.good

)
< ε.

Proof. (a) Suppose w ∈ T (z) is a backward orbit. By the Schwarz lemma,

the numbers E(w−n, z) increase to E(w, z) as n→∞, which may be infinite.

Consequently, if (11.3) fails at a point z ∈ D for all n ≥ 0, then for at least cz

measure ε backward orbits w ∈ T (z), the area expansion factor E(w, z) =∞.

In this case, the average area expansion factor Ψ(z) = ∞. However, in the

proof of Theorem 11.3, we saw that Ψ(z) < ∞ a.e., so (11.3) can only fail on

a set of Lebesgue measure zero.

(b) If z ∈ D is not ε-(Möbius nice), then

ξ
(
B̂hyp(z, γ)

)
> Θ

ˆ
Bhyp(z,γ)

log
1

|z|
dAhyp,
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for some Θ(ε) > 1. An examination of the proof of Theorem 11.2 shows that

for any η > 0,

ˆ
E∗

log
1

|z|
dAhyp ≥ (1− η)

ˆ
S1

log |F ′(z)|dm,

where E∗ = F−1(B(0, r0)) \B(0, r0) and 0 < r0 < 1 is sufficiently close to 1.

Therefore, by asking for r0 to be sufficiently close to 1, we can make the

log 1
|z| dAhyp(z) area of

S = {z ∈ E∗ : z is not ε-M. nice}

as small as we wish. We may choose finitely many ε-(Möbius nice) points

{zi}Ni=1 in E∗ \ S such that the balls of hyperbolic radius γ centered at these

points cover E∗ \ S up to small log 1
|z| dAhyp(z) measure. Consequently, the

sets

B̂hyp(zi, γ), i = 1, 2, . . . , N,

cover X̂ up to small measure.

12 Linear structure

In this section, we show that backward iteration along almost every inverse

orbit is asymptotically linear:

Theorem 12.1 (Linear structure). For ξ a.e. inverse orbit z = (z−i)
∞
i=0 ∈ D̂,

the cumulative linear distortion δ̂(z) <∞. Consequently, ξ(D̂ \ D̂lin) = 0.

Proof. In view of Theorem 11.4, we may show that δ̂(w) <∞ for a.e. inverse

orbit w ∈ B̂ε-M.good where B = Bhyp(z, γ) is a ball centered at an ε-(Möbius

nice) point z ∈ D.
Let B̃ε-M.good ⊂ D be the union of topological disks Bw, where w ranges

over the repeated pre-images of z with E(w, z) < 1 + ε. We may assume that

ε > 0 is sufficiently small so that E(w, z) < 1 + ε implies that E(w̃, z̃) < 2 for

any w̃ ∈ Bw and z̃ ∈ B. By Theorem 9.1, we have

ˆ
B̂ε-M.good

δ̂(w)dξ ≤ 4

ˆ
B̃ε-M.good

δ(w) · log 1

|w|
dAhyp(w)
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≲
ˆ
D
δ(z) · log 1

|w|
dAhyp(w)

≲
ˆ
∂D

log |F ′(reiθ)|dm

<∞,

which shows that δ̂(w) is finite ξ almost everywhere. By the discussion in

Section 10.2, ξ gives full mass to D̂lin ⊂ D̂.

Corollary 12.2. Let z = (z−i)
∞
i=0 ∈ D̂ be a generic backwards orbit. For any

R, ε > 0, there exists an n0 = n0(z, ε, R) > 0 sufficiently large so that for any

n > m ≥ n0, the inverse branch gm,n of Fm−n : z−m → z−n is well-defined

on Bhyp(z−m, R), where it is within hyperbolic distance O(ε) of the linear map

ℓm,n ∈ Aut(C) which takes

z−m → z−n and
z−m
|z−m|

→ z−n
|z−n|

.

Proof. For an inverse orbit z = (z−i)
∞
i=0 with δ̂(z) < ∞, we choose n0 =

n0(z, ε, R) sufficiently large so that

∞∑
n=n0+1

δ(z−i) < ε and 1− |z−n0 | < ε/eR.

In view of Lemma 7.1, gm,n is well-defined on Bhyp(z−m, R), where it is within

hyperbolic distance O(ε) of the straight Möbius transformation in Aut(D)
which takes z−m → z−n. The second condition 1− |z−n0 | < ε/eR ensures that

gm,n is within hyperbolic distance O(ε) of ℓm,n on Bhyp(z−m, R).

A similar argument involving Lemma 8.2 shows:

Corollary 12.3. In the above corollary, we can select n0 = n0(z, ε, R) > 0

sufficiently large so that
ˆ
gm,n(E)

log
1

|z|
dAhyp(z) ∼ε

ˆ
E
log

1

|z|
dAhyp(z),

for any measurable set E ⊂ Bhyp(z−m, R), where the notation A ∼ε B indicates

that (1 − Cε)A ≤ B ≤ (1 + Cε)A for some constant C > 0, which depends

only on R.
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12.1 Linear decomposition theorem

We say that a point z ∈ D is ε-(linear nice) if 1 − |z| < ε/eγ and for most

inverse branches, backward iteration is close to a linear mapping:

cz
(
{w ∈ T (z) : δ̂(w) < ε}

)
> (1− ε) · log 1

|z|
,

where δ̂(w) is the cumulative linear distortion defined in Section 10.2.

Theorem 12.4 (Linear decomposition theorem). (a) For any ε > 0 and al-

most every point z ∈ D, there exists an n ≥ 0 so that∑
F ◦n(w)=z
w is ε-L.nice

log
1

|w|
> (1− ε) · log 1

|z|
. (12.1)

(b) For any ε > 0, one can find finitely many ε-(linear nice) points z1, z2, . . . , zN

so that

ξ

(
X̂ \

N⋃
i=1

B̂i, ε-L.good

)
< ε.

Proof. (a) For a point z′ ∈ D, let ∆z′ denote the set of inverse orbitsw
′ ∈ T (z′)

for which the cumulative linear distortion δ̂(w′) =∞. If (12.1) fails at z′ ∈ D,
then cz′(∆z′) ≥ ε.

For the sake of contradiction, assume that (12.1) fails on a set of positive

Lebesgue measure A in the unit disk. However, by the Schwarz lemma, this

would imply that

ˆ
Â
χ{w: δ̂(w)=∞}dξ(w) =

ˆ
A

ˆ
T (z′)

χ{w: δ̂(w)=∞}E(w′, z′)2 dcz′(w
′) log

1

|z′|
dAhyp(z

′)

≥
ˆ
A
cz′(∆z′) log

1

|z′|
dAhyp(z

′)

> 0,

contradicting Theorem 12.1 which says that δ̂(z′) <∞ for Lebesgue a.e. z′ ∈ D̂.
(b) The proof is similar to that of part (b) in Theorem 11.4.
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13 The Geodesic Foliation Theorem

In this section, we show the following theorem which describes the structure

of geodesic trajectories in D̂lin :

Theorem 13.1. (i) For ξ a.e. backward orbit z ∈ D̂lin and n ≥ 0, the limit

ζ−n(z) := lim
t→∞

(g−t(z))−n

exists and (ζ−n(z)) belongs to the solenoid.

(ii) Let γ(t) = (g−t(z))0. If γ(t) is the radial geodesic that connects 0 with

ζ0 = ζ0(z) parametrized with respect to unit hyperbolic speed, then

1

T

ˆ T

0
min

{
1, dD(γ(t), γ(t0 + t))

}
dt→ 0, as T →∞,

for some offset t0 ∈ R depending on z.

(iii) For m̂ a.e. x ∈ Ŝ1, there exists a unique backward orbit in D̂lin that

lands at x.

(iv) If E ⊂ Ŝ1 has m̂ measure zero, then ζ−1(E) ⊂ D̂lin has ξ measure zero.

As a consequence, we deduce that the geodesic flow is ergodic:

Corollary 13.2. The geodesic flow on the Riemann surface lamination X̂lin

is ergodic.

Proof. Suppose A ⊂ X̂lin is a gt-invariant set. Lifting to D̂lin, we get a (gt, F̂ )-

invariant set Ã, which is a necessarily a union of geodesic trajectories. The

endpoints of these trajectories under the backward geodesic flow form an F̂ -

invariant set ζ0(Ã) in the solenoid. Since the action of F̂ on the solenoid

is ergodic, either ζ0(Ã) or its complement has m̂ measure 0. By Theorem

13.1(iv), either Ã or its complement has ξ measure 0, and thus the same is

true of A.

13.1 Trajectories land on the solenoid

For 0 < r < 1, we define the function δ̂r : X̂lin → R by

δ̂r(z) := max

{
1,

∑
δ(z−k)

}
,
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where we sum over the part of the inverse orbit contained in the annulus

A(0; r, 1). For any 0 < r < 1, the function δ̂r(z) belongs to L2(X̂lin), and the

functions δ̂r(z) decrease pointwise a.e. to 0 as r → 1.

By the ergodic theorem for invariant measures, for ξ a.e. z ∈ X̂lin, the

backward time average

δ̂r,−(z) := lim
T→∞

1

T

ˆ T

0
δ̂r(g−t(z))dt

is the orthogonal projection of δ̂r onto the subspace of gt-invariant functions

in L2(X̂lin). This implies that for ξ a.e. z ∈ X̂lin, we have

lim
T→∞

1

T

ˆ T

0
δ̂(g−t(z)) = 0,

which implies (i) and (ii) by Theorem A.1.

13.2 Uniqueness

Suppose z, z′ ∈ D̂lin are two generic inverse orbits with respect to the measure

ξ for which ζ(z) = ζ(z′). By part (ii), we know that for each n ≥ 0, the

trajectories g−t(z)−n and g−t(z
′)−n both weakly shadow the same radial ray

[0, ζ−n]. By Lemma 10.1, the trajectories g−t(z) and g−t(z
′) belong to the

same leaf, which means that there exists a vertical geodesic

Vξ′ = {z ∈ H : Rex = ξ′} ⊂ H

so that {gt(z′)−n : t ∈ R} = Fz,−n(Vξ′). Weak shadowing forces ξ′ = 0, i.e. z

and z′ belong to the same geodesic trajectory, which proves the uniqueness

statement in (iii).

13.3 Rescaling limits and measures

A set A ⊂ B̂ε-L.good is naturally decomposed as a union of slices:

A =
⋃

z∈Tε-L.good(z)

Az,

with the slice Az ⊂ Bz consisting of inverse orbits w which follow z, i.e. w−n

lies in the same connected component of F−n(B) as z−n for any n ∈ N.
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Via rescaling maps, we may view the slices of A as subsets of the upper

half-plane. More precisely, for z ∈ Tε-L.good(z), we may define the sets

A∗z ⊂ B∗z = F−1z,0 (B) ⊂ H.

Theorem 13.3. The following equalities hold:

ξ(A) =

ˆ
Tε-L.good(z)

{ˆ
A∗

z

dA(w)

Imw

}
dcz

and

m̂(ζ(A)) =

ˆ
Tε-L.good(z)

ℓ(ΠH→R(A
∗
z))dcz,

where ΠH→R is the orthogonal projection onto the real line and ℓ is the Lebesgue

measure on the real line.

The proof of the above theorem is somewhat involved and will be given in

Appendix C.

13.4 Abundance of landing points

We now show that the landing points of backward trajectories of the geodesic

flow cover a positive m̂ measure of the solenoid Ŝ1. Since m̂ is ergodic with

respect to the action of F̂ , it will then follow that landing points of back-

ward trajectories cover the solenoid up to measure zero, proving the existence

statement in (iii).

For this purpose, we take A = B̂ε-L.good in Theorem 13.3. By the Schwarz

lemma, each A∗z with z ∈ Tε-L.good(z) contains the ball BH
hyp(i, γ), while by

ε-linearity, A∗z is contained in the larger ball BH
hyp(i, 2γ). Consequently,

m̂(ζ(A)) =

ˆ
Tε-L.good(z)

ℓ(ΠH→R(A
∗
z))dcz ≳ cz(Tε-L.good(z)),

which is certainly positive if z ∈ D is ε-(linear nice).

13.5 Non-singularity

Finally, we show that if a set A ⊂ D̂ has positive ξ measure, then its projection

ζ(A) to the solenoid has positive m̂ measure. As the intersection of A with
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some set of the form B̂ε-L.good has positive ξ measure, we may assume that A

is contained in a single B̂ε-L.good. Sinceˆ
K

dA(w)

Imw
≲ ℓ(ΠH→R(K)),

for any measurable set K ⊂ BH
hyp(i, 2γ) ⊂ H, we have

ξ(A) ≲ m̂(ζ(A)),

so m̂(ζ(A)) > 0 as well, which proves (iv).

14 Orbit Counting

In this section, we prove Theorem 1.1 on averaged orbit counting for centered

inner functions of finite Lyapunov exponent.

Theorem 14.1. Let F be an inner function of finite Lyapunov exponent with

F (0) = 0 for which the geodesic flow is ergodic on the Riemann surface lami-

nation X̂lin. Suppose z ∈ D \ {0} lies outside a set of measure zero. Then,

lim
R→+∞

1

R

ˆ R

0

N (z, S)

eS
dS =

1

2
log

1

|z|
· 1´

∂D log |F ′|dm
. (14.1)

We say that a function h : D→ C is weakly almost invariant under F if for

a.e. every backward orbit z = (zi)
0
i=−∞ ∈ D̂, limi→−∞ h(zi) exists and defines

a function on the Riemann surface lamination:

ĥ(z) = lim
i→−∞

h(zi).

Theorem 14.2. Let F be a centered inner function of finite Lyapunov expo-

nent for which the geodesic flow on X̂lin is ergodic. Suppose h : D → C is a

bounded weakly-almost invariant function that is uniformly continuous in the

hyperbolic metric. Then for almost every ζ ∈ S1, we have

lim
r→1

1

| log(1− r)|

ˆ r

0
h(sζ) · ds

1− s
=

 
X̂
ĥdξ.

In particular,

lim
r→1

1

2π| log(1− r)|

ˆ
Dr

h(z) · dA(z)
1− |z|

=

 
X̂
ĥdξ.
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Proof. For simplicity, we first consider the case when h : D→ C is eventually

invariant under F , i.e. there exists a 0 < ρ < 1 such that

h(F ◦n(z)) = h(z), |F ◦n(z)| > ρ.

By the ergodic theorem, for ξ a.e. inverse orbit z ∈ X̂lin, we have

lim
T→∞

1

T

ˆ T

0
ĥ(g−t(z))dt =

 
X̂
ĥdξ. (14.2)

By Theorem 13.1(ii), for ξ a.e. z ∈ D̂lin, {g−t(z)0 : t > 0} weakly shadows a

radial ray [0, ζ0(z)]. Since h is eventually invariant and {g−t(z)0 : t > 0} is

eventually contained in the annulus A(0; ρ, 1),

lim
T→∞

1

T

ˆ T

0
ĥ(g−t(z))dt = lim

T→∞

1

T

ˆ T

0
h(g−t(z)0)dt. (14.3)

By the weak shadowing and the uniform continuity of h in the hyperbolic

metric,

lim
r→1

1

| log(1− r)|

ˆ r

0
h(s · ζ0(z)) ·

ds

1− s
=

 
X̂
ĥdξ. (14.4)

According to Theorem 13.1(iv), endpoints ζ(z) of inverse orbits z ∈ D̂lin sat-

isfying (14.4) cover the solenoid up to a m̂ measure zero set. Projecting onto

the 0-th coordinate, we see that (14.4) holds for m-a.e. ζ ∈ S1.

We now turn to the general case when h is only a weakly almost invariant

function. The missing step is to show that (14.3) holds for ξ almost every

inverse orbit z ∈ D̂lin.

Given ε > 0 and 0 < ρ < 1, let E(ε, ρ) ⊂ X̂lin be the complement of the set

of the inverse orbits z = (zn)
∞
n=−∞ for which

|h(zn)− ĥ(z)| < ε,

for all n ∈ Z with |zn| > ρ. By the definition of a weakly almost invariant

function, for any fixed ε > 0, ξ(E(ε, ρ)) → 0 as ρ → 1. We may therefore

choose ρ = ρ(ε) so that ξ(E(ε, ρ)) < ε.

By the ergodic theorem, a generic backward trajectory {g−t(z) : t > 0}
spends little time in E(ε, ρ), i.e.

lim
T→∞

1

T

ˆ T

0
χE(ε,ρ)(g−t(z)) dt < ε.
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As {g−t(z)0 : t > 0} is eventually contained in the annulus A(0; ρ, 1), the

difference

lim sup
T→∞

1

T

ˆ T

0

{
ĥ(g−t(z))− h(g−t(z)0)

}
dt ≲ ε+ ε∥h∥∞,

which can be made arbitrarily small by requesting that ε > 0 is small, thereby

justifying (14.3).

14.1 A weakly almost invariant function

To prove Theorems 14.1, we will use a slight modification hnice of the almost

invariant function hsmooth from Section 4.2, which was constructed by first

defining hsmooth on a box □ = □(z, δ) and then extending it to the repeated

pre-images of □ = □(z, δ) by invariance.

On the box □ = □(z, δ), we set hnice = hsmooth. Let w be a repeated

pre-image of z, i.e. F ◦n(w) = z for some n ≥ 0. Recall that w is an ε-(linear

good) pre-image if eγ(1− |z|) < ε and

δ̂(w, z) :=
n∑

i=0

δ(F ◦i(w)) ≤ ε.

When ε > 0 is sufficiently small, the connected component

□w = F−1(□(z, δ))

containing w is a topological disk which has roughly the same hyperbolic size

and shape as □. On each such good box □w, we define hnice by invariance.

Outside the good boxes, we set hnice to be zero.

In view of Theorem 12.4, hnice is a weakly almost invariant function on

the unit disk. Recall from Section 4.2 that hnice = hsmooth was chosen to be

uniformly continuous in the hyperbolic metric on □. By the Schwarz lemma,

hnice is uniformly continuous in the hyperbolic metric on D. We denote its

natural extension to the Riemann surface lamination by ĥnice.

The proof of Theorems 14.1 is nearly the same as that of Theorem 4.4. We

therefore point out the differences: In Step 1, we assume that z ∈ A(0; 1−ε, 1)

is an ε-(linear nice) point and we show that

1

R

∑
Fn(w)=z, n≥0

w∈Bhyp(0,R), ε-good

e−dD(0,w) ∼ε,R
1

2
log

1

|z|
· 1´

∂D log |F ′|dm
, (14.5)
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where we only count the number of ε-(linear good) pre-images. Steps 2 and

3 proceed as before for ε-(linearly decomposable) points, i.e. points satisfying

(12.1).

Part IV

Parabolic Inner Functions
By a parabolic inner function, we mean an inner function F whose Denjoy-Wolff

fixed point p ∈ ∂D with F ′(p) := limr→1 F
′(rp) = 1.

We view parabolic inner functions as holomorphic self-maps of the upper

half-plane, with the parabolic fixed point at infinity. In this case, Lebesgue

measure ℓ on the real line is invariant, e.g. see [DM91]. We say that a parabolic

inner function F : H→ H has finite Lyapunov exponent if

χℓ =

ˆ
R
log |F ′(x)|dℓ <∞.

By Julia’s lemma, for any point z0 ∈ H, the imaginary parts {ImF ◦n(z0)}
are increasing. We say that F has finite height if {ImF ◦n(z0)} are uniformly

bounded and infinite height if ImF ◦n(z0)→∞. In view of the Schwarz lemma,

this definition is independent of the choice of the starting point z0 ∈ H.

In this final part of the paper, we discuss orbit counting theorems for

parabolic inner functions of infinite height. As the proofs are essentially the

same, we only give a brief description of the results and leave the details to

the reader.

15 Statements of Results

For a bounded interval I ⊂ R and a real number R > 0, consider the counting

function

NI(z,R) = #
{
w ∈ I × [e−R, 1] : F ◦n(w) = z for some n ≥ 0

}
.
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Theorem 15.1. Let F : H→ H be an infinite height parabolic inner function

of finite Lyapunov exponent. Suppose z ∈ H lies outside a set of zero measure.

Then,
1

R

ˆ R

0

NI(z, S)

eS
dS ∼ |I| · 1´

R log |F ′|dℓ

as R→∞.

When a parabolic inner function F : D→ D is holomorphic in a neighbour-

hood of the Denjoy-Wolff point p ∈ ∂D, we can classify it as singly parabolic

or doubly parabolic depending on whether the Taylor expansion is

F (z) = p+ (z − p) + a2(z − p)2 + . . . , a2 ̸= 0

or

F (z) = p+ (z − p) + a3(z − p)3 + . . . , a3 ̸= 0.

Singly and doubly parabolic inner functions on the upper half-plane are defined

by conjugating with a Möbius transformation that takes D to H. For example,

z → z − 1/z + T is doubly-parabolic for T = 0, while singly-parabolic for T ∈
R \ {0}. Singly parabolic functions have finite height, while doubly parabolic

functions have infinite height.

Theorem 15.2. Let F : H → H be a doubly-parabolic one component inner

function of finite Lyapunov exponent. For all z ∈ H lying outside a countable

set, we have

NI(z,R) ∼ |I| · 1´
R log |F ′|dℓ

,

as R→∞.

15.1 Background on parabolic inner functions

In the upper half-plane, Lemmas 2.1, 2.2 and 2.3 read as follows:

Lemma 15.3. Suppose F is a parabolic inner function with the parabolic fixed

point at infinity. For a non-exceptional point z ∈ H,

Im z =
∑

F (w)=z

Imw. (15.1)
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An inner function viewed as self-mapping of the upper half-plane can be

expressed as

F (z) = αz + β +

ˆ
R

1 + zw

w − z
dµ(w),

for some constants α > 0, β ∈ R and a finite positive singular measure µ on

the real line, e.g., see [Tsu59]. Differentiating, we get

F ′(z) = α+

ˆ
R

w(w − z) + (1 + wz)

(w − z)2
dµ(w),

= α+

ˆ
R

w2 + 1

(w − z)2
dµ(w).

Since α = limt→∞ F ′(it), an inner function has a parabolic fixed point at

infinity if and only if α = 1. The following two lemmas are straightforward

consequences of the above formula:

Lemma 15.4. If F is a parabolic inner function with the parabolic fixed point

at infinity, then for a bounded interval J in the real line, there exists a constant

cJ > 1 such that F ′(ζ) > cJ for all ζ ∈ J .

Lemma 15.5. If F (z) is an inner function, viewed as a map of the upper

half-plane to itself, then

|F ′(x+ iy)| ≤ |F ′(x)| (15.2)

for all x+ iy ∈ H.

15.2 Riemann surface laminations

For a parabolic inner function F , we may form the space of backward orbits

Ĥ = lim
←−

(F : H→ H) =
{
(zi)

0
i=−∞ : F (zi) = zi+1

}
.

The Riemann surface lamination is then defined as X̂ = Ĥ/F̂ . In view of

Lemma 15.3, the natural measure dξ on X̂ is now given by the formula

ξ(B̂) = lim
n→∞

ˆ
F−n(B)

|dz|2

Im z
. (15.3)

Adapting the proof of Theorem 11.2 to the current setting shows that

ξ(X̂) =

ˆ
R
log |F ′(x)|dℓ.
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Remark. (i) The infinite height condition guarantees that every inverse orbit

passes through a backward fundamental domain of the form

F−1(Ht) \Ht,

where Ht = {z ∈ H : Im z > t}.
(ii) Without the infinite height condition, the Riemann surface lamination

X̂ may not have finite volume. For instance, for the singly parabolic Blaschke

product z → z − 1/z + T with T ∈ R \ {0}, the volume of X̂ is infinite, even

though ˆ
R
log

(
1 +

1

z2

)
dℓ(z) = 2π.

(iii) By Lemma 15.4, a generic inverse orbit (zi) does not converge to in-

finity, and therefore Im zi → 0.

As in Section 12, one can show:

Lemma 15.6. For a finite Lyapunov exponent inner function F : H→ H with

a parabolic fixed point at infinity,ˆ
H
δ(x+ iy) · dxdy

y
<∞.

The above lemma implies that iteration along a.e. inverse orbit is essentially

linear and therefore a.e. leaf of X̂ is covered by (H,∞), which allows one to

define geodesic and horocyclic flows on X̂.

The following theorems are analogues of Theorems 4.1 and 4.2 respectively:

Theorem 15.7. For an infinite height parabolic inner function F : H→ H of

finite Lyapunov exponent, the geodesic flow on X̂ is ergodic. In particular, if

h : H→ C is a bounded almost invariant function that is uniformly continuous

in the hyperbolic metric, then for almost every x ∈ R, we have

lim
t→0

1

| log t|

ˆ 1

t
h(x+ iy) · dy

y
=

1´
R log |F ′|dℓ

ˆ
X̂
ĥdξ.

Theorem 15.8. For a doubly parabolic one component inner function F :

H→ H of finite Lyapunov exponent, the geodesic flow on X̂ is mixing. In par-

ticular, if h : H→ C is a bounded almost invariant function that is uniformly

continuous in the hyperbolic metric and I ⊂ R is a bounded interval, then

lim
y→0

ˆ
I
h(x+ iy)dℓ(x) =

|I|´
R log |F ′|dℓ

ˆ
X̂
ĥdξ.
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Again, the proofs are similar to the case when the Denjoy-Wolff point

is inside the disk. (To show the mixing of the geodesic flow, we use that

for doubly parabolic one component inner functions, the multipliers of the

repelling periodic orbits on the real line do not belong to a discrete subgroup

of R+, for a proof, see [IU23, Section 9.4].)

Part V

Appendices

A A Shadowing Lemma

The following theorem roughly says that if you drive a car in the upper half-

plane with the desire to reach the real axis, and you are able to steer the car

for most of the time, then on average, your path will be close to a vertical

geodesic:

Theorem A.1. Let γ : [0,∞) → H be a C1 parametrized curve in the upper

half-plane with ∥γ′(t)∥hyp ≤ 1. Suppose [0,∞) = G ∪B is partitioned into good

and bad times such that at good times, γ′(t) = v↓ = −y · ∂
∂y , while at bad times,

γ′(t) can point in any direction.

(i) If the upper density of bad times

lim sup
T→∞

|{0 < t < T : t ∈ B}|
T

= 0, (A.1)

then the limit ζ = limt→∞ γ(t) exists and lies on the real axis.

(ii) Furthermore, if γ(t) is the vertical geodesic to ζ, then

1

T

ˆ T

0
min

{
1, dH(γ(t), γ)

}
dt→ 0, as T →∞. (A.2)

Remark. The above the theorem remains true if during a good time, we allow

γ′(t) to be only approximately equal to v↓, rather than exactly equal: it is

enough to require that ∥γ′(t)− v↓∥ < c for some c < 1/2.

The proof of Theorem A.1 is based on the following simple observation:

61



Lemma A.2. Suppose σ ≥ 0 is a locally finite singular measure on [0,∞)

such that σ([0, T ])/T → 0 as T →∞. The function

∆∞(t) =

ˆ ∞
t

e−(τ−t)dσ(τ)

is sub-linear: ∆∞(T )/T → 0 as T →∞.

The above lemma easily follows from Fubini’s theorem. In the proof below,

we will also use the function

∆T (t) =

ˆ T

t
e−(τ−t)dσ(τ).

Proof of Theorem A.1. Step 1. For clarity, we first examine the case when

during a bad time, γ′(t) = v→ = y · ∂
∂x . Consider the map q : [0,∞)→ [0,∞)

which “collapses” the set of bad times:

q(t) = |{0 ≤ s ≤ t : s /∈ B}|.

and let σ = q∗(χB dℓ) be the push-forward of the part of the Lebesgue measure

supported on B. By assumption (A.1) on the bad set, we have

q(t)

t
→ 1 and

σ([0, T ])

T
→ 0, as T →∞.

From the definitions, is clear that ∆T (q(t)), with 0 < t ≤ T < ∞, is

the hyperbolic length of the horizontal segment between γ(t) and the vertical

geodesic γT which passes through γ(T ). Lemma A.2 prevents the geodesic γT

from moving too much, so it converges as T → ∞. We denote the limiting

vertical geodesic by γ. Lemma A.2 also shows that restricted to good times,

the average distance from γ(t) to γ is small.

Step 2. We now assume that during a bad time

γ′(t) = v↑ + v→ = y ·
{

∂

∂x
+

∂

∂y

}
,

which is worse than the worst case scenario allowed in Theorem A.1. Let

B∗ ⊃ B be the set of s > 0 for which there exists t > s so that∣∣[s, t] ∩ B∣∣ ≥ 1

3
· |t− s|.
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In view of the Hardy-Littlewood Maximal Theorem,∣∣[0, T ] ∩ B∗∣∣ ≤ C
∣∣[0, T ] ∩ B∣∣, for some C > 0,

and therefore,
|{0 < t < T : t ∈ B∗}|

T
→ 0.

This time, we define

q(t) = |{0 ≤ s ≤ t : s /∈ B∗}|

and σ = q∗(χB∗ dℓ). Inspection shows that ∆T (q(t)) provides an upper bound

for the hyperbolic length of the horizontal segment between γ(t) and the ver-

tical geodesic γT . The proof is completed by Lemma A.2 as in Step 1.

B A Criterion for Angular Derivatives

In this appendix, we show the following theorem, answering a question posed

in [BKR24]:

Theorem B.1. A holomorphic self-map of the unit disk F has a finite angular

derivative at ζ ∈ ∂D in the sense of Carathéodory if and only if

ˆ ζ

0
µ(z) dρ =

ˆ ζ

0

(
1− (1− |z|2)|F ′(z)|

1− |F (z)|2

)
2|dz|

1− |z|2
< ∞. (B.1)

By composing with a Möbius transformation, we may assume that F (0) =

0. By the Schwarz lemma, the function

L(r) =
{
dD(0, rζ)− dD(0, F (rζ))

}
, 0 < r < 1,

is increasing. The limit

lim
r→1

L(r) <∞

is finite if and only if F has an angular derivative at ζ, in which case,

lim
r→1

L(r) = log |F ′(ζ)|.

In other words, F possesses an angular derivative at ζ if when moving from

0 to ζ along the radial geodesic ray γ = [0, ζ) at unit hyperbolic speed, the

63



image point efficiently moves toward the unit circle. Expressed infinitesimally,

this says that F has a finite angular derivative at ζ ∈ ∂D if and only if

ˆ ζ

0
η(z) dρ <∞. (B.2)

The main difficulty in proving Theorem B.1 is replacing the radial inefficiency

η with the Möbius distortion µ.

Proof of Theorem B.1. Since µ ≤ η ≤ µ+ α, it is enough to show that

ˆ ζ

0
µ(z) dρ <∞ =⇒

ˆ ζ

0
α(z) dρ <∞.

Step 1. A compactness argument shows that for every ε > 0, there is a

δ > 0 so that if µ(z) < δ then µ(w) < ε for all w ∈ Bhyp(z, 1).

As a result, the Möbius distortion µ(rζ)→ 0 as r → 1. Lemma 7.2 tells us

that the geodesic curvature

κF (γ)(F (rζ))→ 0, r → 1.

Therefore, by Lemma 6.2, F (γ) lies within a bounded hyperbolic distance of

the geodesic ray [0, F (ζ)). In particular, this shows that F possesses a radial

boundary value at ζ somewhere on the unit circle.

Step 2. By Lemma 7.2, the total geodesic curvature of F (γ) is finite:

ˆ ζ

0
κF (γ)(F (z)) dρ <∞.

Since F (γ) lies within a bounded hyperbolic distance of the geodesic ray

[0, F (ζ)), there is a sequence of rn’s tending to 1 so that αF (rnζ) < 2π/3.

(It is not possible for F (γ) to approach the unit circle if the tangent vector

always points away from the unit circle.)

Therefore, there exists an 0 < rn < 1 so that

αF (rnζ) < 2π/3 and

ˆ ζ

rnζ
κF (γ)(F (z)) dρ < 0.1.

Lemma 6.7 tells us ˆ ζ

rnζ
α(z) dρ = O(1),

which is what we wanted to show.
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C Integrating over Leaves

In this appendix, we prove Theorem 13.3, which describes the measures ξ

and m̂ in terms of integration along leaves, similar to McMullen’s original

definitions of these measures given in Section 3.3.

C.1 The case of D̂
We define a σ-finite measure ξleaf on the solenoid X̂ so that its restriction to

any “chart” of the form B̂ε-L.good ⊂ X̂ is given by

ξleaf(A) =

ˆ
Tε-L.good(z)

{ˆ
A∗

z

dA(w)

Imw

}
dcz,

while the set of points not contained in any chart have ξleaf measure zero. After

lifting to D̂, we obtain an F̂ -invariant measure on D̂, which we also denote by

ξleaf . Our objective is to show that ξ = ξleaf :

Theorem C.1. The measures ξ and ξleaf on D̂ are equal.

We begin by checking that the measure ξleaf is well-defined:

Lemma C.2. If B′ = Bhyp(z
′, γ) is another ball of hyperbolic radius γ which

intersects B and A ⊂ B̂ ∩ B̂′ then
ˆ
Tε-L.good(z)

{ˆ
A∗

z

dA(w)

Imw

}
dcz =

ˆ
Tε-L.good(z′)

{ˆ
A∗

z

dA(w)

Imw

}
dcz′ .

Proof. Given an inverse orbit z ∈ T (z), we can select an inverse orbit z′ ∈
T (z′) which follows z by using the same inverse branches. As the dynamics is

asymptotically linear, the limit

ρz,z′ = lim
n→∞

1− |z′−n|
1− |z−n|

exists. Inspection shows that ρz,z′ = dcz′/dcz is just the Radon-Nikodym

derivative of the transverse measures cz and c′z.

Recall from Section 10 that when we define the slice A∗z ⊂ H, we rescale

by a Möbius transformation so that z−n ∈ D maps to i ∈ H, while when

we define the slice A∗z′ ⊂ H, we rescale so that z′−n ∈ D maps to i ∈ H.
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Consequently, when changing from z to z′, the integrand
´
A∗

z

dA(w)
Imw decreases

by the factor ρz,z′ , compensating for the Radon-Nikodym derivative. As a

result, the expression for ξleaf(A) remains unchanged.

Lemma C.3. The measure ξleaf is absolutely continuous with respect to ξ.

Proof. To prove the lemma, it is enough to show that ξleaf(Â) = 0 for any

Borel set A ⊂ D with ξ(Â) = 0, as sets of this form generate the σ-algebra of

Borel subsets of D̂. From the definition of the measure ξ given in Section 11,

it is easy to see that one has “ξ(Â) = 0” if and only if “A has 2-dimensional

Lebesgue measure zero.” As a result, we need to show that ξleaf(Â) = 0 for

any measurable set A ⊂ D with 2-dimensional Lebesgue measure zero.

For this purpose, consider a chart B̂ε-L.good where B = Bhyp(z, γ). As

the slice (Â ∩ B̂ε-L.good)
∗
z ⊂ H along any inverse orbit z ∈ T (z) also has

zero 2-dimensional Lebesgue measure, ξleaf(Â∩ B̂ε-L.good) = 0. Since the chart

B̂ε-L.good was arbitrary, ξleaf(Â) = 0 as desired.

For a measurable set A contained in a ball B = Bhyp(z, γ), we write

Âε-L.good = Â ∩ B̂ε-L.good.

Perhaps, the main difficulty in showing that ξ = ξleaf is that the measure ξ

was defined in terms of the “full” cylinders Â while the measure ξleaf is given

in terms of the “partial” cylinders Âε-L.good.

In the following two lemmas, we evaluate ξ(Âε-L.good) and ξleaf(Âε-L.good)

up to multiplicative error ε. As before, we use A ∼ε B to denote that

1− Cε ≤ A/B ≤ 1 + Cε,

for some constant C > 0 depending only on the inner function F .

Lemma C.4. We have

ξ(Âε-L.good) = lim
n→∞

∑
F ◦n(w)=z
w ε-L.good

ˆ
Aw

log
1

|z|
dAhyp (C.1)

∼ε cz(Tε-L.good(z))

ˆ
A
log

1

|z|
dAhyp. (C.2)
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Proof. Step 1. We may write F−j(A) = Gj ⊔ Bj , where Gj is the union of

the ε-(linear good) pre-images of A of generation j and Bj be the union of the

“bad” pre-images. Then,

Âε-L.good = Â \
∞⊔
j=1

B̂j ,

where we are slightly abusing notation by viewing B̂j as a subset of Â. (We

should really be writing F̂ ◦j(B̂j) in place of B̂j .) Consequently,

ξ̂(Âε-L.good) = ξ(Â)−
∞∑
j=1

ξ(B̂j).

Step 2. From the definition of the measure ξ on the cylindrical sets Â and

B̂j and Lemma 11.1, it follows that for any n ∈ N, we have

ξ(Â)−
n∑

j=1

ξ(B̂j) ≥
∑

F ◦n(w)=z
w ε-L.good

ˆ
Aw

log
1

|z|
dAhyp, (C.3)

where Aw = F−n(A) ∩Bw ranges over the ε-(linear good) pre-images of A of

generation n. In Section 11, we saw that the error

Err(n, Â) := ξ(Â)−
ˆ
F−n(A)

log
1

|z|
dAhyp.

decreases to 0 as n→∞. As Err(n, Ĝn) ≤ Err(n, Â),

ξ(Â)−
n∑

j=1

ξ(B̂j) ≤ Err(n, Â) +
∑

F ◦n(w)=z
w ε-L.good

ˆ
Aw

log
1

|z|
dAhyp. (C.4)

Taking n→∞ in (C.3) and (C.4), we obtain (C.1).

Step 3. For j ≥ 1, let T
(j)
ε-L.good(z) ⊂ T (z) denote the set of inverse orbits

w ∈ T (z) which are ε-(linear good) for the first j steps, i.e. δ̂(w−j , z) ≤ ε.

Since

Tε-L.good(z) =
∞⋂
n=1

T
(n)
ε-L.good(z)

is a decreasing intersection, cz(T
(n)
ε-L.good(z)) decreases to cz(Tε-L.good(z)). With

this in mind, (C.2) follows from (C.1) and ε-linearity.
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Lemma C.5. For a measurable set A contained in B = Bhyp(z, γ),

ξleaf(Âε-L.good) ∼ε cz(Tε-L.good(z))

ˆ
A
log

1

|z|
dAhyp.

Proof. The lemma follows from the definition of the measure ξleaf and ε-

linearity.

With help of Theorem 12.4, one may express a cylinder set as a countable

union of partial cylinders:

Lemma C.6. For any measurable set A in the unit disk and ε > 0, there

exists countably many disjoint partial cylinders Âk, ε-L.good which cover Â up

to a set of ξ measure zero:

Â =
⊔
k

Âk, ε-L.good ⊔N.

We are now ready to show that the measures ξ and ξleaf are equal:

Proof of Theorem C.1. To show that the measures ξ and ξleaf are equal, it

is enough to show that they agree on sets of the form {Â : A ⊂ D Borel}
as these generate the Borel σ-algebra of Borel subsets of D̂. For a cylinder

Â ⊂ D̂, examine the decomposition given by Lemma C.6. As ξleaf is absolutely

continuous with respect to ξ, we also have ξleaf(N) = 0. Lemmas C.4 and C.5

imply that

ξ(Âk, ε-L.good) ∼ε ξleaf(Âk, ε-L.good)

for any k. Summing over k shows that ξ(Â) ∼ε ξleaf(Â). Since ε > 0 was

arbitrary, ξ(Â) = ξleaf(Â) as desired.

C.2 The case of Ŝ1

We define a measure m̂leaf on the solenoid Ŝ1 so that its restriction to any

“chart” ζ(B̂ε-L.good) ⊂ Ŝ1 is given by

m̂leaf(E) =

ˆ
Tε-L.good(z)

ℓ(E∗z)dcz,

while the set of points in the solenoid which are not contained in any chart

have m̂leaf measure zero. As in the case of ξleaf considered previously, m̂leaf is

a σ-finite F̂ -invariant measure. Our objective is to show:
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Theorem C.7. The measures m̂leaf and m̂ on Ŝ1 are equal.

We begin by noticing:

Lemma C.8. The measure m̂leaf is absolutely continuous with respect to m̂.

The proof below uses Löwner’s lemma which says that if φ : (D, a)→ (D, b)
is a holomorphic self-map of the unit disk then for any measurable set E ⊂ S1,

ωa(φ
−1(E)) ≤ ωb(E), where ωa and ωb are harmonic measures on the unit

circle as viewed from a and b respectively. Evidently, Löwner’s lemma also

applies to maps between arbitrary simply-connected domains.

Proof. Let E ⊂ S1 be a Borel set withm(E) = 0. Consider a chart ζ(B̂ε-L.good)

where B = Bhyp(z, γ). For any inverse orbit z ∈ Tε-L.good(z), we can apply

Löwner’s lemma to the map Fz,0 : (H, i)→ (D, z) to conclude that

ℓ
(
(Ê ∩ ζ(B̂ε-L.good))

∗
z

)
= 0.

As the chart ζ(B̂ε-L.good) and inverse orbit z ∈ Tε-L.good(z) were arbitrary, we

have m̂leaf(Ê) = 0.

Since m̂leaf is F̂ -invariant and m̂ is ergodic, the above lemma tells us that:

Corollary C.9. The measure m̂leaf is finite. In fact, m̂leaf = c · m̂ for some

c ≥ 0.

To complete the proof of Theorem C.7, it remains to show that c = 1.

Unfortunately, we do not have a simple proof of this fact and the argument

below is somewhat involved.

Step 1. We say that a trajectory of the geodesic flow {gt(z) : t ∈ R} is

generic if

lim
t→∞

1

t

ˆ t

0
δ̂
(
F̂ ◦n[g−s(w)]

)
ds = 0, for any n ∈ Z.

Let G0 be the set of generic trajectories. Recall that in Section 13.1, we used

the ergodic theorem to show that G0 foliates D̂ up to ξ measure zero. We also

saw that under the backward geodesic flow, a generic trajectory lands on the

solenoid.
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We define the measure m̂gen as the restriction of m̂leaf to the set ζ(G0) of

landing points of generic trajectories. Since G0 is F̂ -invariant (by definition), so

are ζ(G0) and m̂gen. Notice that m̂leaf − m̂gen ⊥ m̂gen as the two measures are

supported on different sets: m̂gen gives full mass to ζ(G0), while m̂leaf − m̂gen

gives full mass to Ŝ1 \ ζ(G0).

Lemma C.10. The measure m̂gen is a probability measure.

Once we prove the above lemma, c = 1 follows almost immediately: As m̂

is ergodic and m̂gen << m̂, the two measures must be equal: m̂ = m̂gen. As

the difference m̂leaf − m̂gen << m̂ = m̂gen, it must be zero. Hence, m̂ = m̂gen =

m̂leaf as desired.

Step 2. For 0 < ε < 0.1, we define Aε ⊂ D̂ as the set of inverse orbits

w = (w−n)
∞
n=0 which satisfy the following three conditions:

1. δ̂(w) < ε.

2. For any t > 0, the hyperbolic distance dD(g−t(z)0, 0) > dD(z0, 0).

3. The geodesic trajectory passing through w is generic.

For each 1− ε/eγ < r < 1, we define the auxiliary measure

m̂r,ε = m̂leaf |ζ(Ar,ε),

where Ar,ε = Aε ∩ {|z| = r}. From Condition 3, it is clear that

m̂r,ε ≤ m̂gen ≤ m̂leaf .

Recall from Section 3.1 that the set of points z ∈ D for which cz is not a

probability measure has logarithmic capacity zero. In particular, the intersec-

tion with any circle {|z| = r} has zero 1-dimensional Lebesgue measure. The

main difficulty towards proving Lemma C.10 is to show that the measures m̂r,ε

exhaust m̂gen as r → 1 :

Lemma C.11. For any 0 < ε < 0.1,

lim
r→1

ˆ
|z|=r

cz(Ac
ε ∩ T (z)) |dz| = 0. (C.5)
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We now explain how to derive Lemma C.10 (and Theorem C.7) from

Lemma C.11. By Condition 2 above, for each non-exceptional 0 < r < 1,

ζ is injective on Ar,ε. By ε-linearity, the mass of m̂r,ε is approximately

m̂r,ε(Ŝ1) ∼ε
1

2π

ˆ
|z|=r

cz(Aε ∩ T (z)) |dz|.

Together with Lemma C.11, this implies that

m̂r,ε(Ŝ1) ∼ε 1. (C.6)

Since any generic geodesic trajectory participates in “density 1” measures

m̂s,ε, i.e.
1

| log(1− r)|

ˆ r

0
χAε(gs(z))

ds

s
→ 1, as r → 1,

we have:

Lemma C.12. For any 0 < ε < 0.1,

m̂gen = lim
r→1

1

| log(1− r)|

ˆ r

0
m̂s,ε ·

ds

s
, (C.7)

in the sense of strong limits of measures.

Combining (C.6) and (C.7), we see that m̂gen is a probability measure.

Step 3. By Lemmas 8.3 and 10.2, there exists a universal constant 0 < γ0 <

γ so that if z ∈ D̂ is an inverse orbit with δ̂(z) < 0.1 then δ̂(w) < 2 δ̂(z) < 0.2

for any inverse orbit w ∈ B̂ε-L.good which follows z with dD(z0, w0) < γ0. In

particular,

dD(g−t(z)−n, 0) > dD(z−n, 0), t ∈ (0, γ0] (C.8)

and

dD(g−γ0(z)−n, 0) > dD(z−n, 0) + 0.8 γ0, (C.9)

for any n ≥ 0.

We define the set Ãε ⊂ Aε ⊂ D̂, where Condition 2 is replaced with a

slightly stronger condition (2 + 2′), where we additionally require

2′. For any t > γ0, we have dD(0, g−t(w)0) > dD(0, w0) + γ0/2.
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In view of the buffer provided by (2′), we have:

Lemma C.13. Suppose 0 < ε < 0.05. There exists 0 < γ1 < γ0 so that if z ∈
Ãε then any generic orbit z′ ∈ B̂ε-L.good which follows z with dD(z0, z

′
0) < γ1

belongs to A2ε.

Step 4. The following lemma says that from some point on, almost every

inverse orbit belongs to Ãε :

Lemma C.14. For ξ a.e. inverse orbit w ∈ D̂, there exists an N(w) ≥ 0 such

that F̂−n(w) ∈ Ãε for all n ≥ N(w).

Proof. Recall that by Theorem 12.1, for ξ a.e. inverse orbit, we have δ̂(w) <∞
and therefore, δ̂(F̂−n(w))→ 0 as n→∞. Consequently, for n sufficiently large,

δ̂(F̂−n(w)) < ε and Condition 1 holds.

Condition 3 is also easy to check since ξ a.e. inverse orbit is generic and the

property of an inverse orbit belonging to a generic trajectory is F̂ -invariant by

definition. To verify Condition (2 + 2′), we examine three cases:

1. For t ∈ (0, γ0], Condition 2′ for F̂−n(w) follows from Condition 1 for

F̂−n(w) and (C.8).

2. By the definition of a generic trajectory, there exists a T = T (w) > 0

sufficiently large so that

1

t

ˆ t

0
δ̂(g−s(w))ds < 1/2, t > T.

As a result, for t > T , we have

dD(0, g−t(w)−n) > dD(0, g0(w)−n) + t/2.

3. Finally, to handle the case when t ∈ [γ0, T ], we use that the sequence of

functions

∆n(t) = δ̂(F̂−n[g−t(w)]) =

∞∑
k=n+1

δ(g−t(w))−k,

decreases pointwise to 0.

The proof is complete.
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For an inverse orbit w = (wn)
∞
n=−∞ ∈ D̂ and 0 < r < 1, we write wr for

the last point of the orbit that lies in the annulus A(0; r, 1), that is, wr = wn(r)

where n(r) ∈ Z is the largest integer for which wn(r) ∈ A(0; r, 1). One may

interpret Lemma C.14 as saying that

ˆ
X̂
χ{wr∈Ãc

ε}
dξ(w)→ 0, as r → 1. (C.10)

With the above preparations, we are now ready to prove Lemma C.11:

Proof of Lemma C.11. Suppose that one could find a sequence of r’s tending

to 1 so that ˆ
|z|=r

cz(Ac
2ε ∩ T (z)) |dz| ≥ δ,

for some δ > 0. By Lemma C.13, we would also have

ˆ
|z|=s

cz(Ãc
ε ∩ T (z)) |dz| ≥ δ,

for any 0 < s < 1 with dD(r, s) < γ1/2. Consequently,

1

γ0

ˆ
A
cz(Ac

ε ∩ T (z)) · 2 dA(z)
1− |z|2

≥ δ, (C.11)

where A = {z ∈ D : dD(|z|, r) < γ1/2} is an annulus of hyperbolic width γ1.

Since we requested that γ1 < γ, the quotient map π : D̂→ X̂ is injective on Â

and (C.11) contradicts (C.10) if r is sufficiently close to 1.
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