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ABSTRACT

Brain tumor segmentation is a fundamental step in assessing
a patient’s cancer progression. However, manual segmen-
tation demands significant expert time to identify tumors in
3D multimodal brain MRI scans accurately. This reliance on
manual segmentation makes the process prone to intra- and
inter-observer variability. This work proposes a brain tumor
segmentation method as part of the BraTS-GoAT challenge.
The task is to segment tumors in brain MRI scans automati-
cally from various populations, such as adults, pediatrics, and
underserved sub-Saharan Africa. We employ a recent CNN
architecture for medical image segmentation, namely Med-
NeXt, as our baseline, and we implement extensive model
ensembling and postprocessing for inference. Our experi-
ments show that our method performs well on the unseen
validation set with an average DSC of 85.54% and HD95 of
27.88. The code is available on https://github.com/
BioMedIA-MBZUAI/BraTS2024_BioMedIAMBZ.

Index Terms— BraTS-GoAT, Brain MRI, Tumor Seg-
mentation, MedNeXt, Model Ensembling

1. INTRODUCTION

Cancer is a leading cause of death worldwide, specifically
brain tumors. Many initiatives have been presented to en-
hance automatic brain tumor segmentation, aiming to in-
crease the quality of diagnosis. The Brain Tumor Segmenta-
tion (BraTS) challenge is one of the most notable initiatives
in this area. However, previous BraTS challenges have been
tailored to address specific types of tumors within a sin-
gle patient demographic, e.g., Adult Glioma [1, 2, 3, 4, 5],
Pediatrics [6], sub-Saharan African brain glioma patient pop-
ulation [7], Brain Meningioma [8], and Brain Metastasis
[9]. To fill this gap, the organizer introduces a new chal-
lenge segment, namely BraTS Generalizability Across Tu-
mors (BraTS-GoAT). This manuscript is our contribution to
the BraTS-GoAT challenge. In summary, we implement the
MedNeXt [10] architecture to segment tumors, an ensembling
mechanism to enhance prediction, and a set of postprocessing
to remove prediction noises. We submitted our models for
the testing phase using MedPerf [11].

2. METHODS

2.1. Dataset

The dataset for this challenge was compiled from diverse pop-
ulations, including adults, pediatrics, and underrepresented
groups from sub-Saharan Africa. It comprises 2,251 brain
MRI scans in the training set and 360 scans in the validation
set. The provided MRI modalities are T1, T1Gd, T2, and
T2-FLAIR. Each scan includes expert annotations that iden-
tify three tumor subtypes: enhancing tumor (ET), tumor core
(TC), and whole tumor (WT). It is interesting to note that each
MRI scan contains one or more tumors. The size of each MRI
scan is consistently 240x240x155.

2.2. Network Architecture

We implemented MedNeXt, the successor to the renowned
nnU-Net framework, as our baseline architecture. Med-
NeXt draws inspiration from the ConvNeXt [12] architecture,
which is prominent in 2D natural image classification. Ma-
jor components of MedNeXt include residual connections,
depth-wise convolution with a variety of large kernel sizes
(k ∈ {3, 5, 7, 9}), and point-wise convolution with wide
channels. MedNeXt offers a range of model sizes: small
(S), base (B), medium (M), and large (L). Further details on
this architecture can be found in [10]. For this competition,
the model input channel is 4, and the output channel is 3,
corresponding to TC, WT, and ET.

2.3. Inference

Given that the typical size of a brain MRI scan exceeds the
model’s input sizes, we employed a sliding window infer-
ence approach to segment tumor(s). Additionally, to enhance
the reliability of predictions, we implemented test-time aug-
mentation (TTA) by flipping the scans across all possible
dimensions (23 = 8) and averaging the predicted tumor
probabilities. Further improvement in segmentation accuracy
was achieved through model ensembling, leveraging models
trained using 5-fold cross-validation (CV), and aggregating
their probability outputs. We devised a set of post-processing
steps to refine our predictions and reduce the false positives
(FPs) in tumor detection. For each output channel (i.e. TC,
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Fig. 1. The MedNeXt [10] architecture. It combines the benefits of CNNs and transformers by designing transformer-inspired
ConvNeXt [12] blocks for image segmentation tasks.

WT, and ET), we first conducted a connected component
analysis to cluster predicted voxels into groups (i.e. tumors),
estimated the size of these groups, and computed the average
probability of tumor voxels within each group. Subsequently,
we eliminated groups characterized by small sizes and low
mean tumor voxel probabilities.

3. EXPERIMENTAL SETUP

3.1. Model Training

We conducted our experiments on an NVIDIA GPU with 24
GB of memory. The models’ input size is 128x128x128 vox-
els. Employing 5-fold cross-validation on the training set, we
developed MedNeXt-B and MedNeXt-M models. Both mod-
els were initially trained with a kernel size of 3 for 55 epochs,
after which kernel upsampling to 5 was applied, and the mod-
els were further trained for an additional 90 epochs. The
optimization was carried out using the AdamW optimizer,
set with a learning rate of 3e-4 and a weight decay of 1e-6.
We employed a cosine annealing scheduler, initiating with a
warm-up period of 3 epochs, a start learning rate of 1e-7 dur-
ing the warm-up, and concluding with a final learning rate of
1e-6. We used a batch size of 2 for training. In terms of the
objective function (loss), deep supervision, brain MRI prepro-
cessing, and data augmentation, we followed [13].

We tuned postprocessing hyperparameters using Wandb
[14] sweep on the 5-fold CV and then manually tuned them
to adapt to the unseen validation set.

3.2. Model Inference

We begin by preprocessing the input MRI scans: first, by
cropping them to isolate the brain region and eliminate back-

ground, and then by normalizing the intensity of each MRI
channel using mean and standard deviation, excluding back-
ground pixels in this process. Tumor probability maps are
generated through sliding window inference, employing a
50% overlap between windows to enhance the precision of
our predictions. Subsequently, we improve the robustness of
these predictions by averaging the tumor probability masks
from all models in an ensemble approach, resulting in a re-
fined final tumor probability map. We then postprocess the
tumor probability map to detect and segment tumors.

4. RESULTS AND DISCUSSION

We summarize our results on the validation leaderboard in
Table 1. We provide a qualitative result for the median case of
our submission in Figure 2. We began by utilizing MedNeXt-
B with a kernel size 5, trained using 5-fold cross-validation
(CV), and averaged the tumor probability maps from these
models’ predictions. Our post-processing step enhances the
average Dice Similarity Coefficient (DSC) by 3.18%. Em-
ploying a larger model, MedNeXt-M, further boosts the av-
erage DSC by 0.52%. Based on our experiments, automatic
hyperparameter tuning with Weights and Biases (Wandb)
sweeps did not significantly improve performance on the
validation leaderboard. We hypothesize that the sweeps are
less effective because they tune the hyperparameters based
solely on the 5-fold CV results without ensembling, whereas
ensembling is implemented when submitting to the validation
leaderboard.

Training with the full dataset enhanced model perfor-
mance, particularly for the WT class. In this study, we
trained our models using five different seeds. We applied a
0.5 threshold to each channel (ET, TC, and WT). For post-



Table 1. Summary of our results on the validation leaderboard. Each row represents a submission with potentially different sets
of post-processing hyperparameters. Full training refers to models trained using all training samples (with 5 different seeds)
instead of 5-fold CV.

BraTS 2024 Score Legacy Score
Dice HD95 Dice HD95

ET TC WT Avg ET TC WT Avg ET TC WT Avg ET TC WT Avg
MedNeXt-B5 0.7755 0.8380 0.8335 0.8157 53.24 30.91 40.63 41.59 0.8306 0.8699 0.9026 0.8677 24.83 14.98 12.36 17.39

+ postprocessing 0.8292 0.8450 0.8682 0.8475 33.77 31.29 26.39 30.48 0.8450 0.8671 0.9004 0.8708 24.75 21.04 13.44 19.74
MedNeXt-M5 0.8381 0.8485 0.8716 0.8527 30.94 29.53 25.35 28.61 0.8509 0.8697 0.9041 0.8749 23.88 19.21 11.81 18.30

+ Sweep for ET 0.8390 0.8485 0.8716 0.8530 30.45 29.53 25.35 28.44 0.8511 0.8697 0.9041 0.8750 23.79 19.21 11.81 18.27
+ Full training 0.8397 0.8501 0.8746 0.8548 30.69 29.31 24.30 28.10 0.8524 0.8713 0.9063 0.8767 25.62 20.97 13.58 20.06
+ Post. hyp. tuning 0.8405 0.8510 0.8746 0.8554 30.36 28.97 24.30 27.88 0.8524 0.8713 0.9063 0.8767 24.89 20.24 12.85 19.33

T1C T1N T2F T2W

DSC  : 0.9642
HD95: 1.0000TC DSC  : 0.9333

HD95: 3.4641WT DSC  : 0.8880
HD95: 2.4495ET

DSC  : 0.9285
HD95: 2.3045AVG

Fig. 2. Qualitative result showing median performance on the validation leaderboard.

processing, we removed detected tumors with sizes smaller
than 100 voxels for ET, 150 voxels for TC, and 500 voxels
for WT.

5. CONCLUSION

This work represents our contribution to the BraTS-GoAT
competition. We utilized a CNN-based model to detect tu-
mors from brain MRI scans. The model processes four MRI
input channels and produces three output channels for TC,
WT, and ET, respectively. We implemented model ensem-
bling and postprocessing techniques to enhance predictions
and reduce noise. Our experiments demonstrated that larger
models perform better in this competition, suggesting that the
BraTS-GoAT competition is more challenging than previous
BraTS competitions.
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