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Abstract

We prove the following group analogue of the well-known Heyde theorem on a characterization of the
Gaussian distribution on the real line. Let X be a second countable locally compact Abelian group
containing no subgroups topologically isomorphic to the 2-dimensional torus. Let G be the subgroup
of X generated by all elements of X of order 2 and let α be a topological automorphism of the group
X such that Ker(I + α) = {0}. Let ξ1 and ξ2 be independent random variables with values in X and
distributions µ1 and µ2 with nonvanishing characteristic functions. If the conditional distribution of
the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric, then µj are convolutions of Gaussian
distributions on X and distributions supported in G. We also prove that this theorem is false if X is
the 2-dimensional torus.
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1 Introduction

The following characterization theorem was proved in [15, Theorem 3.1].

Theorem A Let X be a second countable locally compact Abelian group with the connected component

of zero of dimension 1. Let G be the subgroup of X generated by all elements of X of order 2 and let

α be a topological automorphism of the group X satisfying the condition

Ker(I + α) = {0}. (1)

Let ξ1 and ξ2 be independent random variables with values in X and distributions µ1 and µ2 with

nonvanishing characteristic functions. If the conditional distribution of the linear form L2 = ξ1 +
αξ2 given L1 = ξ1 + ξ2 is symmetric, then µj are convolutions of Gaussian distributions on X and

distributions supported in G.

Theorem A can be considered as a group analogue for two independent random variables of the
well-known theorem of C.C. Heyde ([18], see also [19, § 13.4.1]), where the Gaussian distribution on
the real line is characterized by the symmetry of the conditional distribution of one linear form of
independent random variables given another.

Denote by R the additive group of real numbers and by T the circle group (the one-dimensional
torus), i.e., the multiplicative group of all complex numbers with absolute value 1. The aim of the article
is, firstly, to prove that Theorem A is true for a much wider class of locally compact Abelian groups,
namely for second countable locally compact Abelian groups containing no subgroups topologically
isomorphic to the 2-dimensional torus T

2 (Theorem 2.1). Secondly, to prove that Theorem A is false
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when X is the 2-dimensional torus T
2 (Theorem 3.1). We emphasize that the proof of Theorem 2.1

given in the article is fundamentally different from the proof of Theorem A, which is based on the
proof of the theorem for the group X of the form X = R ×D, where D is a second countable totally
disconnected locally compact Abelian group, and uses complex analysis.

Many studies have been devoted to analogues of Heyde’s theorem for different classes of locally
compact Abelian groups (see e.g. [3–5, 7–13, 20–22], and also [14, Chapter IV], where one can find
additional references). In the article we continue this research.

We use in the article standard facts related to abstract harmonic analysis, see e.g. [17]. Let X be a
second countable locally compact Abelian group, let Aut(X) be the group of topological automorphisms
of the group X, and let I be the identity automorphism of a group. Denote by Y = X∗ the character
group of the group X, and by (x, y) the value of a character y ∈ Y at an element x ∈ X. For a closed
subgroup K of the group X, denote by A(Y,K) = {y ∈ Y : (x, y) = 1 for all x ∈ K} its annihilator.
The character group of the factor-group X/K is topologically isomorphic to the annihilator A(Y,K).
Let α : X → X be a continuous endomorphism of the group X. The adjoint endomorphism α̃ : Y → Y
is defined as follows: (αx, y) = (x, α̃y) for all x ∈ X, y ∈ Y . Let n be a natural number. Put
X(n) = {nx : x ∈ X}. A topological isomorphism of locally compact Abelian groups X1 and X2 is
denoted as X1

∼= X2. Denote by Z the additive group of integers.
Let f(y) be a function on the group Y and let h ∈ Y . Denote by ∆h the finite difference operator

∆hf(y) = f(y + h)− f(y), y ∈ Y.

Denote by M1(X) the convolution semigroup of probability distributions on the group X. Let
µ ∈ M1(X). Denote by

µ̂(y) =

∫

X

(x, y)dµ(x), y ∈ Y,

the characteristic function (Fourier transform) of the distribution µ. The characteristic function of a
signed measure is defined in the same way. Denote by σ(µ) the support of µ. Define the distribution
µ̄ ∈ M1(X) by the formula µ̄(B) = µ(−B) for any Borel subset B in X. Then ˆ̄µ(y) = µ̂(y). If F is
a Borel subgroup of X, denote by M1(F ) the subsemigroup of M1(X) consisting of all distributions
concentrated on F .

A distribution γ ∈ M1(X) is called Gaussian ([24, Chapter IV, §6]) if its characteristic function
can be represented in the form

γ̂(y) = (x, y) exp{−ϕ(y)}, y ∈ Y, (2)

where x ∈ X and ϕ(y) is a continuous nonnegative function on the group Y satisfying the equation

ϕ(u+ v) + ϕ(u− v) = 2[ϕ(u) + ϕ(v)], u, v ∈ Y. (3)

A Gaussian distribution is called symmetric if x = 0 in (2). Denote by Γ(X) the set of Gaussian
distributions on the group X. Note that in particular, the degenerate distributions are Gaussian. Let
x ∈ X. Denote by Ex the degenerate distribution concentrated at the point x ∈ X.

Denote by mX a Haar measure on the group X. It is well known that mX is unique up to a positive
multiplicative constant. If X is a compact group, then mX(X) < ∞. We suppose that in this case
mX ∈ M1(X). Note that, if X is an arbitrary locally compact Abelian group and K is a compact
subgroup of X, then the characteristic function m̂K(y) is of the form

m̂K(y) =

{
1, if y ∈ A(Y,K),

0, if y 6∈ A(Y,K).
(4)
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2 Proof of the main theorem

The main result of the article is the following theorem.

Theorem 2.1 Let X be a second countable locally compact Abelian group containing no subgroups

topologically isomorphic to the 2-dimensional torus T
2. Let G be the subgroup of X generated by all

elements of X of order 2 and let α be a topological automorphism of the group X satisfying condition

(1). Let ξ1 and ξ2 be independent random variables with values in the group X and distributions µ1
and µ2 with nonvanishing characteristic functions. If the conditional distribution of the linear form

L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric, then µj ∈ Γ(X) ∗M1(G), j = 1, 2.

To prove Theorem 2.1 we need some lemmas.

Lemma 2.2 ([21, Lemma 3.8], see also [14, Corollary 9.7]) Let X be a second countable locally compact

Abelian group and let α be a topological automorphism of X. Let ξ1 and ξ2 be independent random

variables with values in the group X. If the conditional distribution of the linear form L2 = ξ1 + αξ2
given L1 = ξ1+ ξ2 is symmetric, then the linear forms P1 = (I +α)ξ1 +2αξ2 and P2 = 2ξ1 +(I +α)ξ2
are independent.

Lemma 2.3 ( [6, Lemma 10.1]) Let X be a second countable locally compact Abelian group with

character group Y . Let αj, βj , j = 1, 2, be continuous endomorphisms of the group X. Let ξ1 and ξ2
be independent random variables with values in the group X and distributions µ1 and µ2. The linear

forms L1 = α1ξ1+α2ξ2 and L2 = β1ξ1+β2ξ2 are independent if and only if the characteristic functions

µ̂j(y) satisfy the equation

µ̂1(α̃1u+ β̃1v)µ̂2(α̃2u+ β̃2v) = µ̂1(α̃1u)µ̂2(α̃2u)µ̂1(β̃1v)µ̂2(β̃2v), u, v ∈ Y. (5)

Lemma 2.4 ([7, Lemma 6], see also [14, Lemma 5.1]) Let Y be a locally compact Abelian group and

let A(y) be a continuous function on the group Y satisfying the equation

∆2k∆
2
hA(y) = 0, y, k, h ∈ Y,

and the conditions A(−y) = A(y), A(0) = 0. Let

Y =
⋃

ι

(yι + Y (2)), y0 = 0, (6)

be a Y (2)-coset decomposition of the group Y . Then the function A(y) can be represented in the form

A(y) = ϕ(y) + rι, y ∈ yι + Y (2), (7)

where ϕ(y) is a continuous function on the group Y satisfying equation (3).

Let us recall some definitions. LetX be an Abelian group. We do not assume that X is a topological
group. If each element of X has finite order, then we say that X is a torsion group. We say that X is
a torsion-free group if each element of X, except zero, has infinite order. The subgroup consisting of
all elements of finite order of the group X is called a torsion part of X.

We formulate as a lemma the following corollary of the well-known Baer–Fomin theorem ( [16,
Theorem 100.1]).

Lemma 2.5 Let Y be an Abelian group and let H be a torsion part of Y . If H is a bounded subgroup,

then H is a direct factor of Y .
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Using Lemma 2.5 we shall prove the following statement.

Lemma 2.6 Let X be a locally compact Abelian group containing no subgroups topologically isomorphic

to the circle group T. Let K be a closed bounded subgroup of X. Then the factor-group X/K also

contains no subgroups topologically isomorphic to the circle group T.

Proof. The lemma is true if K = X, so we suppose that K 6= X. Assume that the factor-group X/K
contains a subgroup F such that F ∼= T. Let us prove that in this case we arrive at a contradiction.
Let p : X → X/K be the natural homomorphism. Put S = p−1(F ). The group S is closed and hence
locally compact. Consider the restriction of p to the subgroup S. We have p : S → S/K and S/K ∼= T.
Thus, we can prove the lemma assuming that X/K ∼= T. By the structure theorem for locally compact
Abelian groups, the group X is topologically isomorphic to a group of the form R

m × G, where a
locally compact Abelian group G contains a compact open subgroup. Since K is a bounded subgroup,
K ⊂ G. It follows from X/K ∼= T that m = 0, i.e., the group X itself contains a compact open
subgroup. Denote by Y the character group of the group X.

First suppose that X is a compact group. Then Y is a discrete group. Denote by H the torsion
part of the group Y . We have A(Y,K) ∼= (X/K)∗. Since X/K ∼= T, this implies that

A(Y,K) ∼= Z. (8)

Inasmuch as K is a bounded group, there is a natural n such that nx = 0 for all x ∈ K. It follows
from this that ny ∈ A(Y,K) for each y ∈ Y , i.e.,

Y (n) ⊂ A(Y,K). (9)

In particular,
H(n) ⊂ A(Y,K). (10)

In view of (8), (10) implies that
H(n) = {0}. (11)

Hence H is a bounded group. By Lemma 2.5, H is a direct factor of Y . We have Y = H × L, where
L is a torsion-free group. Taking into account (11), this implies that Y (n) = L(n). For this reason, it
follows from (8) and (9) that L ∼= Z. This implies that the group X contains a subgroup topologically
isomorphic to the circle group T, contrary to the assumption. Thus, the lemma is proved if the group
X is compact.

Consider the general case. Let B be a compact open subgroup of the group X. As far as p is a
continuous open epimorphism, p(B) is an open subgroup of the factor-group X/K. Since X/K ∼= T, we
have p(B) = X/K. Moreover, p(B) ∼= B/(K ∩B). Thus, B/(K ∩B) ∼= T. As has been shown above,
this implies that the group B, and hence the group X, contains a subgroup topologically isomorphic
to the circle group T, contrary to the assumption.

Let Rℵ0 be the space of all sequences of real numbers considering in the product topology. We will
need the definition of the Gaussian distribution in R

ℵ0 . The space R
ℵ0 is one of the simplest examples

of a locally convex space. We note that Gaussian distributions in arbitrary locally convex spaces are
studied in details in the fundamental monograph [1].

Denote by R
ℵ0∗ the space of all finitary sequences of real numbers with the topology of strictly

inductive limit of spaces R
n. Let t = (t1, t2, . . . , tn, . . . ) ∈ R

ℵ0 and s = (s1, s2, . . . , sn, 0, . . . ) ∈ R
ℵ0∗.

Set

〈t, s〉 =
∞∑

j=1

tjsj .
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Let µ be a distribution on R
ℵ0 . We define the characteristic function of µ by the formula

µ̂(s) =

∫

Rℵ0

exp{i〈t, s〉}dµ(t), s ∈ R
ℵ0∗.

Let A = (αij)
∞
i,j=1 be a symmetric positive semidefinite matrix, i.e., the quadratic form

〈As, s〉 =
∞∑

i,j=1

αijsisj

is nonnegative for all s = (s1, s2, . . . , sn, 0, . . . ) ∈ R
ℵ0∗.

A distribution µ on the group R
ℵ0 is called Gaussian if its characteristic function is represented in

the form
µ̂(s) = exp{i〈t, s〉 − 〈As, s〉}, s ∈ R

ℵ0∗,

where t ∈ R
ℵ0 and A = (αij)

∞
i,j=1 is a symmetric positive semidefinite matrix.

Lemma 2.7 ([2], see also [6, §3]) Let X be a second countable locally compact Abelian group con-

taining no subgroups topologically isomorphic to the circle group T. Then there exists a continuous

monomorphism p : E → X, where either E = R
n for some n or E = R

ℵ0, such that if γ is a symmetric

Gaussian distribution on X, then γ = p(M), where M is a symmetric Gaussian distribution on E.

Lemma 2.8 Let X be a second countable locally compact Abelian group containing no subgroups

topologically isomorphic to the circle group T. Let G be the subgroup of X generated by all elements of

X of order 2. Let µ ∈ Γ(X) ∗M1(G) and suppose that the characteristic function of the distribution µ
does not vanish. If µ = µ1 ∗ µ2, where µj ∈ M1(X), then µj ∈ Γ(X) ∗M1(G), j = 1, 2.

Proof. Since the group X contains no subgroups topologically isomorphic to the circle group T, let p
be a continuous monomorphism p : E → X which exists by Lemma 2.7. As far as p is a monomorphism,
we have p(E) ∩ G = {0}. Hence p can be extended to a continuous monomorphism p̄ : E × G → X
by the formula p̄(t, g) = p(t) + g, t ∈ E, g ∈ G, and p̄ generates an isomorphism of the semigroups
M1(E ×G) and M1(p(E) ×G). Let µ = γ ∗ ω, where γ ∈ Γ(X), ω ∈ M1(G). We can assume without
loss of generality that γ is a symmetric Gaussian distribution. By Lemma 2.7, γ = p(M), where
M ∈ Γ(E). Hence µ = p̄(N), where N = M ∗ ω. Obviously, the distribution µ is concentrated on
the Borel subgroup p(E) ×G of the group X. Substituting, if it is necessary, the distributions µj by
their shifts, we can assume that µj are also concentrated on the Borel subgroup p(E) ×G. Since the
semigroups M1(E×G) and M1(p(E)×G) are isomorphic, we have µj = p̄(Nj), where Nj ∈ M1(E×G)
and Nj is a factor of N . By [4, Lemma 5 and Remark 4], we have Nj = Mj ∗ ωj, where Mj ∈ Γ(E),
ωj ∈ M1(G). Hence

µj = p̄(Nj) = p̄(Mj ∗ ωj) = p̄(Mj) ∗ p̄(ωj) = p(Mj) ∗ ωj = γj ∗ ωj ,

where γj = p(Mj). Since γj ∈ Γ(X), the lemma is proved.

Proof of Theorem 2.1 Assume that a locally compact Abelian group X contains no subgroups topo-
logically isomorphic to the 2-dimensional torus T2 but contains a subgroup topologically isomorphic to
the circle group T. Obviously, there can be only one such subgroup. Hence it is invariant with respect
to each topological automorphism of the group X. Since Aut(T) = {±I}, this implies that there is no
topological automorphism α of the group X satisfying condition (1). Hence we can prove the theorem
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assuming from the beginning that the group X contains no subgroups topologically isomorphic to the
circle group T.

Denote by Y the character group of the group X. By Lemma 2.2, the symmetry of the conditional
distribution of the linear form L2 given L1 implies that the linear forms P1 = (I + α)ξ1 + 2αξ2 and
P2 = 2ξ1 + (I + α)ξ2 are independent. By Lemma 2.3, it follows from this that the characteristic
functions µ̂j(y) satisfy equation (5), which takes the form

µ̂1((I + α̃)u+ 2v)µ̂2(2α̃u+ (I + α̃)v)

= µ̂1((I + α̃)u)µ̂2(2α̃u)µ̂1(2v)µ̂2((I + α̃)v), u, v ∈ Y. (12)

Put νj = µj ∗ µ̄j . We have ν̂j(y) = |µ̂j(y)|
2 > 0 for all y ∈ Y , j = 1, 2. The characteristic functions

ν̂j(y) also satisfy equation (12). Set ψj(y) = − ln ν̂j(y), j = 1, 2. It follows from (12) that the functions
ψj(y) satisfy the equation

ψ1((I + α̃)u+ 2v) + ψ2(2α̃u+ (I + α̃)v) = A(u) +B(v), u, v ∈ Y, (13)

where
A(y) = ψ1((I + α̃)y) + ψ2(2α̃y), B(y) = ψ1(2y) + ψ2((I + α̃)y), y ∈ Y. (14)

Equation (13) has already appeared earlier in the study of Heyde’s theorem on various locally compact
Abelian groups (see e.g. [10], [11]). For completeness, we give here its solution. We use the finite
difference method. Take an arbitrary element h1 of the group Y . Substitute u + (I + α̃)h1 for u and
v − 2α̃h1 for v in equation (13). Subtracting equation (13) from the obtaining equation we get

∆(I−α̃)2h1
ψ1((I + α̃)u+ 2v) = ∆(I+α̃)h1

A(u) + ∆−2α̃h1
B(v), u, v ∈ Y. (15)

Take an arbitrary element h2 of the group Y . Substitute u + 2h2 for u and v − (I + α̃)h2 for v in
equation (15). Subtracting equation (15) from the resulting equation we obtain

∆2h2
∆(I+α̃)h1

A(u) + ∆−(I+α̃)h2
∆−2α̃h1

B(v) = 0, u, v ∈ Y. (16)

Take an arbitrary element h of the group Y . Substituting u+h for u in equation (16) and subtracting
equation (16) from the obtaining equation we get

∆h∆2h2
∆(I+α̃)h1

A(u) = 0, u ∈ Y. (17)

It follows from properties of adjoint homomorphisms that if a topological automorphism α satisfies
condition (1), then the subgroup (I + α̃)(Y ) is dense in Y . Taking into account that h, h1, h2 are
arbitrary elements of the group Y , it follows from (17) that the function A(y) satisfies the equation

∆2k∆
2
hA(y) = 0, y, k, h ∈ Y. (18)

By Lemma 2.4, (18) implies that the function A(y) is represented in the form (7), where the function
ϕ(y), as is easily seen, is nonnegative. Denote by µ the distribution of the random variable P1 =
(I + α)ξ1 + 2αξ2. It is obvious that

µ = (I + α)(µ1) ∗ (2α)(µ2).

Put ν = µ ∗ µ̄. Then

ν = (I + α)(µ1) ∗ (2α)(µ2) ∗ (I + α)(µ̄1) ∗ (2α)(µ̄2). (19)
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It follows from (14) and (19) that the characteristic function ν̂(y) is of the form

ν̂(y) = e−A(y), y ∈ Y. (20)

Denote by γ the Gaussian distribution on the group X with the characteristic function

γ̂(y) = exp{−ϕ(y)}, y ∈ Y. (21)

Taking into account (6) and (7), define on the group Y the function g(y) by the formula

g(y) = exp{−rι}, y ∈ yι + Y (2). (22)

Since g(y) = ν̂(y)/γ̂(y), the function g(y) is continuous. Moreover, (22) implies that the function g(y)

is invariant with respect to the subgroup Y (2). Check that g(y) is a positive definite function. Note
that

A(X,Y (2)) = G. (23)

Consider decomposition (6) and take a finite set of elements yιj , j = 1, 2, . . . , n. Let H be a subgroup

of Y generated all cosets yιj + Y (2). Obviously, it suffices to verify that the restriction of the function

g(y) to H is a positive definite function. The subgroup H consists of a finite number of cosets yι+Y (2).
Put K = A(X,H). Then H∗ ∼= X/K and obviously, K ⊂ G. Consider the restriction of the function

g(y) to H. This restriction is invariant with respect to the subgroup Y (2) and hence defines a function

on the factor-group H/Y (2). We note that H/Y (2) is a finite group and all its nonzero elements are

of the order 2. It follows from this that any real-valued function on the factor-group H/Y (2) is the
characteristic function of a signed measure. In particular, the restriction of the function g(y) to the

subgroup H is the characteristic function of a signed measure ̟. Since (H/Y (2))∗ ∼= A(X/K,Y (2)),

we can consider the signed measure ̟ as a signed measure on the finite subgroup F = A(X/K,Y (2)).
It follows from (7) and (20)–(22) that the restriction of the characteristic function ν̂(y) to H is the
characteristic function of the convolution of a Gaussian distribution λ on X/K and the signed measure
̟ on F . We verify that the signed measure ̟ is actually a distribution and this proves that g(y) is a
positive definite function.

Since K ⊂ G, by Lemma 2.6, the factor-group X/K contains no subgroups topologically isomorphic
to the circle group T. Then by Lemma 2.7, applying to the group X/K, there exists a continuous
monomorphism p : E → X/K, where either E = R

n for some n or E = R
ℵ0 , such that λ = p(M),

where M is a symmetric Gaussian distribution on E. Hence the Gaussian distribution λ is concentrated
on the Borel subgroup p(E) of the group X/K. Note that all nonzero elements of the group F are of
the order 2 and hence

p(E) ∩ F = {0}. (24)

Since the convolution λ ∗̟ is a distribution, in view of (24), ̟ is also a distribution. Thus, we proved
that g(y) is a continuous positive definite function such that g(0) = 0. By the Bochner theorem, there

exists a distribution ω ∈ M1(X) such that ω̂(y) = g(y), y ∈ Y . Since g(y) = 1 for y ∈ Y (2), in view of
(23), we have an inclusion

σ(ω) ⊂ A (X, {y ∈ Y : g(y) = 1}) ⊂ A(X,Y (2)) = G.

It follows from ν̂(y) = γ̂(y)g(y) for all y ∈ Y , that ν = γ ∗ ω ∈ Γ(X) ∗M1(G). By Lemma 2.8, (19)
implies that (I+α)(µ1) ∈ Γ(X)∗M1(G). Taking into account that I+α is a continuous monomorphism,
we get µ1 ∈ Γ(X) ∗M1(G).
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To complete the proof of the theorem, it remains to prove that µ2 ∈ Γ(X) ∗ M1(G). Take an
arbitrary element k of the group Y and substitute v+ k for u in (16). Subtracting equation (16) from
the resulting equation, we obtain

∆k∆−(I+α̃)h2
∆−2α̃h1

B(v) = 0, v ∈ Y.

Consider the distribution of the random variable P2 = 2ξ1+(I+α)ξ2. Arguing in the same way as in the
case when we considered the distribution of the random variable P1, we prove that µ2 ∈ Γ(X)∗M1(G).

�

Evidently, if the connected component of zero of a second countable locally compact Abelian group
X has dimension 1, then X contains no subgroups topologically isomorphic to the 2-dimensional torus
T
2. For this reason Theorem A follows from Theorem 2.1.

We note that the statement of Theorem 2.1 in the case if a topological automorphism α of the
group X satisfies the conditions

I ± α ∈ Aut(X) (25)

follows from [7, Theorem 1].
It is obvious that if a locally compact Abelian group X contains no elements of order 2, then X

contains no subgroups topologically isomorphic to the 2-dimensional torus T
2. Hence Theorem 2.1

implies the following characterization of the Gaussian distribution proved earlier in [10, Theorem 3],
see also [14, Theorem 9.9].

Corollary 2.9 Let X be a second countable locally compact Abelian group containing no elements

of order 2. Let α be a topological automorphism of the group X satisfying condition (1). Let ξ1
and ξ2 be independent random variables with values in the group X and distributions µ1 and µ2 with

nonvanishing characteristic functions. Then the symmetry of the conditional distribution of the linear

form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 implies that µj ∈ Γ(X), j = 1, 2.

Let X be a second countable locally compact Abelian group, let G be the subgroup of X generated
by all elements of X of order 2, and let α be a topological automorphism of the group X. Suppose
that K = Ker(I + α) 6= {0}. Let ξ1 and ξ2 be independent identically distributed random variables
with values in the subgroup K and distribution µ. It is obvious that αx = −x for all x ∈ K. It is easy
to see that the conditional distribution of the linear form P2 = ξ1− ξ2 given P1 = ξ1+ ξ2 is symmetric.
Hence if we consider independent random variables ξ1 and ξ2 as independent random variables taking
values in X, then the conditional distribution of the linear form L2 = ξ1+αξ2 given L1 = ξ1+ξ2 is also
symmetric. Since µ is an arbitrary distribution, from what has been said it follows that a necessary
condition for a topological automorphism α for Theorem 2.1 to be true is an inclusion

Ker(I + α) ⊂ G. (26)

However, generally speaking, this condition is not sufficient. The corresponding example can be con-
structed in the case, when the group X is an a-adic solenoid.

Recall the definition of an a-adic solenoid. Let a = (a0, a1, . . . , an, . . . , ), where all aj ∈ Z and
aj > 1. Let ∆a be the group of a-adic integers and let B be the subgroup of the group R × ∆a of
the form B = {(n, nu)}∞n=−∞, where u = (1, 0, . . . , 0, . . . ). The factor-group Σa = (R × ∆a)/B is
called an a-adic solenoid (see e.g. [17, §10]). The group Σa is compact, connected, has dimension 1,
and contains no subgroups topologically isomorphic to the circle group T. Moreover, Σa can contain
at most one element of order 2. Assume that the group Σa contains an element of order 2 and denote
by G the subgroup of Σa generated by this element. It follows from the results proved in [12], see
also [14, Proposition 11.19, Theorem 11.20 and Remark 11.22]) that the following statement holds.
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Proposition 2.10 Let Σa be an a-adic solenoid containing an element of order 2. Let α be a

topological automorphism of the group Σa such that

Ker(I + α) = G (27)

and hence condition (26) holds. Then there exist independent random variables ξ1 and ξ2 with values

in the group Σa and distributions µ1 and µ2 with nonvanishing characteristic functions such that the

conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric, whereas

µj /∈ Γ(Σa) ∗M
1(G), j = 1, 2.

An example of an a-adic solenoid Σa and a topological automorphism α ∈ Aut(Σa) such that (27)
holds is Σa, where a = (3, 3, . . . , 3, . . . ), and α is the multiplication by −3.

3 Theorem A is false for the 2-dimensional torus T
2

We prove in this section that Theorem A is false for the 2-dimensional torus T2. Let X = T
2. Denote by

x = (z, w), z, w ∈ T, elements of the group X. The character group Y of the group X is topologically
isomorphic to the group Z

2. Denote by y = (m,n), m,n ∈ Z, elements of the group Y . Every

automorphism α ∈ Aut(X) is defined by an integer-valued matrix

(
a b
c d

)
, where |ad− bc| = 1 and α

acts on X as follows
α(z, w) = (zawc, zbwd), (z, w) ∈ X.

The adjoint automorphism α̃ ∈ Aut(Y ) is of the form

α̃(m,n) = (am+ bn, cm+ dn), (m,n) ∈ Y.

We identify α with the matrix

(
a b
c d

)
and α̃ with the matrix

(
a c
b d

)
.

It follows from the definition of the Gaussian distribution on a locally compact Abelian group that
the characteristic function of a symmetric Gaussian distribution on the group X is of the form

γ̂(m,n) = exp{−〈A(m,n), (m,n)〉}, (m,n) ∈ Y,

where 〈·, ·〉 is the standard scalar product in R
2, A = (aij)

2
i,j=1 is a symmetric positive semidefinite

matrix.

Theorem 3.1 Let X = T
2 and let G be the subgroup of X generated by all elements of X of

order 2. Then there exist a topological automorphism α of the group X satisfying condition (1) and

independent random variables ξ1 and ξ2 with values in X and distributions µ1 and µ2 with nonvanishing

characteristic functions such that the conditional distribution of the linear form L2 = ξ1 + αξ2 given

L1 = ξ1 + ξ2 is symmetric, whereas µj /∈ Γ(X) ∗M1(G), j = 1, 2.

For the proof of Theorem 3.1 we need the following lemmas.

Lemma 3.2 ([23], see also [6, Lemma 11.2]) Consider the 2-dimensional torus T2. Let α =

(
a b
c d

)
be

a topological automorphism of the group T
2. If ad− bc = 1 and a+ d < −2, then there exist symmetric

positive semidefinite 2× 2 matrices A1 and A2 such that

detA1 = detA2 > 0 (28)

and

A1 +A2α̃ = 0. (29)
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Lemma 3.3 ( [6, Lemma 16.1]) Let X be a second countable locally compact Abelian group with

character group Y . Let α be a topological automorphism of X. Let ξ1 and ξ2 be independent random

variables with values in the group X and distributions µ1 and µ2. The conditional distribution of the

linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric if and only if the characteristic functions

µ̂j(y) satisfy the equation

µ̂1(u+ v)µ̂2(u+ α̃v) = µ̂1(u− v)µ̂2(u− α̃v), u, v ∈ Y. (30)

Proof of Theorem 3.1 Consider a topological automorphism α =

(
a b
c d

)
of the group X such that

detα = 1 and a + d = −3. It follows from this that det(I + α) = −1 and hence I + α ∈ Aut(X).
For this reason condition (1) holds. By Lemma 3.2, there exist symmetric positive semidefinite 2× 2
matrices A1 and A2 such that (28) and (29) are valid.

Note that det(I − α) = det(I − α̃) = 5. Hence I − α̃ /∈ Aut(X) and it follows from this that
H = (I − α̃)(Y ) is a proper subgroup of Y . This implies that K = A(X,H) 6= {0}.

Let us check that Y (2) \ H 6= ∅. Suppose the contrary is true, i.e., Y (2) ⊂ H. Then, on the one
hand, for H we have the following possibilities:

H = {(2m, 2n) : m,n ∈ Z}, H = {(2m,n) : m,n ∈ Z}, (31)

H = {(m, 2n) : m,n ∈ Z}, H = {(2m, 2n), (2m − 1, 2n − 1) : m,n ∈ Z}. (32)

On the other hand, H = {((1− a)m− bn,−cm+ (1− d)n) : m,n ∈ Z} and this implies that

(−b, 1− d), (1 − a,−c) ∈ H. (33)

Since a+d = −3, this implies that a and d have different parity. In view of ad− bc = 1, we have either
a is even and b, c, d are odd or d is even and a, b, c are odd. Anyway (33) contradicts (31) and (32).
Hence Y (2) \H 6= ∅.

Take 0 < κ < 1 and consider on the group X the distribution

π1 = κE(1,1) + (1− κ)mK

and the signed measure

π2 =
1

κ
E(1,1) +

κ− 1

κ
mK .

Since H = A(Y,K), it follows from (4) that

m̂K(y) =

{
1, if y ∈ H,

0, if y 6∈ H,

and the characteristic functions π̂j(y) are of the form

π̂1(y) =

{
1, if y ∈ H,

κ, if y 6∈ H,
π̂2(y) =




1, if y ∈ H,
1

κ
, if y 6∈ H.

(34)

Let us check that the characteristic functions π̂j(y) satisfy equation (30). To see this we verify that for
any u, v ∈ Y both sides of equation (30) are equal to 1. Suppose that there exist u, v ∈ Y such that
π̂1(u+ v)π̂2(u+ α̃v) 6= 1. In view of (34) then either u+ v ∈ H,u+ α̃v 6∈ H or u+ v 6∈ H,u+ α̃v ∈ H.
In both cases we obtain that (I − α̃)v 6∈ H. This is impossible because H = (I − α̃)(Y ). Thus, the left
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hand-side of equation (30) for any u, v ∈ Y is equal to 1. Reasoning similarly we check that the right
hand-side of equation (30) for any u, v ∈ Y is also equal 1. Hence the characteristic functions π̂j(y)
satisfy equation (30).

It is easy to see that since (29) is valid, the functions

hj(m,n) = exp{−〈Aj(m,n), (m,n)〉}, j = 1, 2,

satisfy equation (30). Hence the functions

gj(m,n) = hkj (m,n)π̂j(m,n), (m,n) ∈ Y, j = 1, 2, (35)

for any natural k also satisfy equation (30).
It follows from (28) that there is ε > 0 such that

〈Aj(m,n), (m,n)〉 ≥ ε(m2 + n2), j = 1, 2. (36)

Since gj(0, 0) = 1, inequalities (36) imply that for a big enough k the inequalities

∑

(m,n)∈Y

gj(m,n) < 2, j = 1, 2, (37)

hold true. Put
ρj(z, w) =

∑

(m,n)∈Y

gj(m,n)z̄
mw̄n, (z, w) ∈ X, j = 1, 2.

Since gj(−y) = gj(y) for all y ∈ Y , it follows from (37) that then ρj(z, w) > 0 for all (z, w) ∈ X,
j = 1, 2. It is also obvious that

∫

X

ρj(z, w)dmX (z, w) = 1, j = 1, 2.

Thus, the functions ρj(z, w) are densities with respect to mX of some distributions µj on the group
X. In so doing, µ̂j(y) = gj(y), j = 1, 2. Let ξ1 and ξ2 are independent random variables with values
in the group X and distributions µ1 and µ2. Since the characteristic functions µ̂j(y) satisfy equation
(30), by Lemma 3.3, the conditional distribution of the linear form L2 = ξ1+αξ2 given L1 = ξ1+ ξ2 is
symmetric. Note now that Y (2) = A(Y,G). For this reason if µ ∈ M1(X) and µ ∈ Γ(X) ∗M1(G), then
the restriction of the characteristic function µ̂(y) to the subgroup Y (2) is the characteristic function of
a Gaussian distribution. Since Y (2) \H 6= ∅, it follows from (34) and (35) that µj /∈ Γ(X) ∗ M1(G),
j = 1, 2. �

In view of Theorem 3.1, it is interesting to note that Theorem A holds true for the group T
2 if

we substitute condition (1) for (25) ([4], see also [6, Theorem 16.8]). Namely, the following statement
holds.

Theorem B Consider the 2-dimensional torus T
2 and let G be the subgroup of T2 generated by all

elements of T2 of order 2. Assume that a topological automorphism α of the group T
2 satisfies conditions

(25). Let ξ1 and ξ2 be independent random variables with values in the group T
2 and distributions µ1

and µ2 with nonvanishing characteristic functions. If the conditional distribution of the linear form

L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric, then µj = γj ∗ ωj, where γj ∈ Γ(T2), ωj ∈ M1(G),
j = 1, 2. In so doing the Gaussian distributions γj are concentrated on cosets of the same dense

one-parameter subgroup in T
2.
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In conclusion, taking into account Theorems 2.1 and 3.1, we formulate the following conjecture.

Conjecture 3.4 Let X be a second countable locally compact Abelian group, let G be the subgroup

of X generated by all elements of X of order 2, and let α be a topological automorphism of the group

X satisfying condition (1). Let ξ1 and ξ2 be independent random variables with values in X and

distributions µ1 and µ2 with nonvanishing characteristic functions. The symmetry of the conditional

distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 implies that µj ∈ Γ(X) ∗ M1(G),
j = 1, 2, if and only if the group X contains no subgroups topologically isomorphic to the 2-dimensional

torus T
2.

The sufficiency in this assertion follows from Theorem 2.1.
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