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NORMED MODULES AND THE CATEGORIZATION OF LEBESGUE

INTEGRATION

YU-ZHE LIU, SHENGDA LIU, ZHAOYONG HUANG∗, AND PANYUE ZHOU

Abstract. We explore the assignment of norms to Λ-modules over a finite-dimensional
algebra Λ, resulting in the establishment of normed Λ-modules. Our primary contri-
bution lies in constructing a new category Nor

p related to normed modules along
with its full subcategory A p. By examining the objects and morphisms in these cat-
egories, we establish a framework for understanding the categorization of Lebesgue
integration.
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1. Introduction

Lebesgue integration, introduced by Henri Lebesgue [15], is fundamentally pivotal in
the field of mathematical analysis. The process of understanding the Lebesgue’s integra-
bility and its application to the real number line typically involves a series of methodical
and incremental steps. This journey begins with defining measurable sets and null sets,
followed by an exploration of convergence in measure. It then advances through the
concepts of step functions and simple functions, along with their convergence sequences,
culminating in the meticulous construction of spaces for integrable functions and the
validation of consistent integration methods. While this path is comprehensive, it serves
as an elaborate gateway to fully grasp the essence of Lebesgue integration, see [7,12] and
so on. Indeed, building upon the foundational methods for defining integrals previously
mentioned, our exploration extends well beyond traditional boundaries. The versatility
and adaptability of these principles lay the groundwork for deriving more specialized
forms of integration, designed to address the complex requirements of various fields.
This notably includes the development of the Bochner integral [6], which is particularly
effective in handling vector-valued functions and proves invaluable in the realm of func-
tional analysis. In a similar vein, this framework also leads to the emergence of the Ito
integral [14], a fundamental element in stochastic calculus that provides deep insights
into the complex behavior of stochastic processes. These advancements are not merely
extensions; they are crucial in bridging the theoretical concepts of integration with their
practical applications across diverse domains, reflecting the dynamic interplay between
theoretical constructs and their real-world implications.
As the landscape of integration theory expands, so too does the exploration into

its algebraic facets, marking a significant evolution in the approach to integration.
Algebraic approaches to integration can be traced back at least to Segal’s work [20].
Building upon the foundational works of Escardó-Simpson [10] and Freyd [11], Leinster
[16] constructed a special category A p, where p is a real number at least 1. In this
category, objects are triples consisting of a Banach space V , an element v in V with
|v| ≤ 1, and a k-linear map δ : V ⊕pV → V that satisfies δ(v, v) = v. Here, the notation
“V1 ⊕p V2” represents the direct sum of two normed spaces V1 and V2, where the norm

is defined as |(v1, v2)| =
(
1
2
(|v1|

p + |v2|
p)
)1/p

. Furthermore, Leinster established three
significant results as follows:

(1) (Lp([0, 1]), 1, γ) is the initial object in A p, where γ is a special k-linear map from
Lp([0, 1]) ⊕p Lp([0, 1]) to Lp([0, 1]) (indeed, γ is the map γ 1

2
given in Corollary

8.1);
(2) (R, 1, m) is an object in A 1, where m : R⊕1 R→ R sends (x, y) to 1

2
(x+ y);

(3) there exists a unique morphism

H : (L1([0, 1]), 1, γ)→ (R, 1, m)

in A
1,

see [16, Theorem 2.1 and Proposition 2.2]. The map H is a k-linear map from L1([0, 1])
to k that adheres to specific criteria enabling its interpretation as a morphism in the
category A 1. Significantly, H establishes a fundamental link between Lebesgue inte-
gration on R and the aforementioned category A p. Explicitly, for any function f in
L1([0, 1]), the map is defined as

H(f) =

∫ 1

0

f dµ,

0
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where µ denotes the Lebesgue measure on R. This profound relationship illustrates
Lebesgue integrability and integration are not merely abstract constructs; rather, they
naturally emerge from the foundational principles of Banach spaces. Consequently, it
can be logically inferred that the categorization of Lebesgue integration is inherently
connected to, and can be derived from, the categorization of Banach spaces.
Some authors have been trying to characterize calculus by using the category theory,

including differential algebras/categories [1,4,5,13,17,18] and integral algebras/categories
[8, 9]. In this paper, we depart from the conventional trajectory and propose a novel
approach. We extend the domain of Lebesgue integration beyond the real numbers to
the broader framework of normed modules over normed finite-dimensional k-algebras.
At the core of our approach lies the aim to provide a categorical interpretation of tra-
ditional analytical methods, thus paving a novel categorical route to the underlying
principles of Lebesgue integration. To establish this extended framework, we revisit
pivotal results in the category theory and representation theory. These foundational
elements enable us to elegantly circumvent traditional methodologies, offering a more
direct and algebraically inclined understanding of integrable function spaces and the
integration operator. Our exploration requires a foundational grasp of key concepts
and conclusions in the category theory, representation theory, and the groundbreaking
work of Leinster [16].
Firstly, we introduce functions defined on a finite-dimensional algebra Λ, along with

the norm defined on Λ and any Λ-module M . It is pertinent to note that all Λ-
modules considered in this paper are left Λ-modules. The specifics of these structures
are elaborated in Subsections 3.1 and 4.1, respectively. A pivotal motivation for us to
introduce normed modules is the pursuit of an integration definition that transcends the
conventional reliance on Lp spaces. This approach is rooted in the understanding that an
equivalent definition of Lp spaces can emerge through the integration itself. However, as
highlighted by Leinster, the notion of Lebesgue integrals is intrinsically linked to Banach
spaces. Consequently, our investigation also necessitates considering the completions of
normed finite-dimensional algebras and normed modules, see Subsections 3.2 and 4.2.
Secondly, for a special subset, denoted IΛ, of Λ, we construct the category Norp in

Subsection 5.1. Its object has the form (N, v, δ), where N is a normed Λ-module, v
is an element in V satisfying |v| ≤ µ(IΛ), and δ : V ⊕p2n → V is a Λ-homomorphism
sending (v, . . . , v) to v. The morphism h : (N, v, δ)→ (N ′, v′, δ′) is induced by a special
Λ-homomorphism V → V ′ satisfying hδ = δ′(h⊕p2n). Furthermore, we consider the full
subcategory A p of Norp where each object (N, v, δ) consists of a Banach Λ-module N ,
an element v ∈ N , and a Λ-homomorphism δ : N⊕p2n → N .
Thirdly, we investigate the set Sτ (IΛ) of elementary simple functions (a special step

function defined on Λ), where τ is a homomorphism between two k-algebras. We
demonstrate its structure as a Λ-module (Lemma 4.8). Consequently, we obtain an

object (Sτ (IΛ), 1, γξ) (Lemma 5.5) in Norp and an object (Ŝτ (IΛ), 1, γ̂ξ) in A p, where

Ŝτ(IΛ) is the completion of Sτ (IΛ) and γ̂ξ is induced by γξ.
Fourthly, we prove our main result in Section 6.

Theorem 1.1. (Theorem 6.3 and Remark 6.4) The triple (Sτ (IΛ), 1, γξ) is an object in
Norp. For any object (N, v, δ) in A

p, there exists a unique morphism

h ∈ HomNorp((Sτ (IΛ), 1, γξ), (N, v, δ))
0
3



Yu-Zhe LIU, Shengda LIU, Zhaoyong HUANG, & Panyue ZHOU

such that the diagram

(Sτ (IΛ), 1, γξ)
h //

⊆
��

(N, v, δ)

(Ŝτ (IΛ), 1, γ̂ξ)
ĥ

55❦❦❦❦❦❦❦❦❦❦❦❦❦

commutes, where ĥ is given by the completion of Sτ (IΛ).

Furthermore, we construct an object (k, µ(IΛ), m) in A p, where m : k⊕p2n → k is a
Λ-homomorphism whose definition is given in Section 7. Take (N, v, δ) = (k, µ(IΛ), m)
in Theorem 1.1, we obtain the following result.

Theorem 1.2. (Theorem 7.6) If k = (k, | · |,�) is an extension of R, then there exists
a unique Λ-homomorphism T : Sτ (IΛ)→ k such that

T : (Sτ (IΛ), 1, γξ)→ (k, µ(IΛ), m)

is a morphism in HomNorp((Sτ (IΛ), 1, γξ), (k, µ(IΛ), m)) and the diagram

(Sτ (IΛ), 1, γξ)
T //

⊆
��

(k, µ(IΛ), m)

(Ŝτ (IΛ), 1, γ̂ξ)
T̂

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥

commutes, where T̂ is the unique morphism lying in HomA p((Ŝτ (IΛ), 1, γ̂ξ), (k, µ(IΛ), m)).

Furthermore, we have the following three properties of T̂ by the direct limits lim−→Ti : T̂ =

lim−→Ei → k (The definitions of Ei and Ti are given in Notation 5.3 and Section 7,

respectively):

(1) (The formula (7.1)) T̂ (1) = µ(IΛ);
(2) (Lemma 7.1) T̂ : Sτ (IΛ)→ k is a homomorphism of Λ-modules;

(3) (Proposition 7.5) T̂ (|f |) ≤ |T̂ (f)|.

The morphism T̂ provides the categorization for integration, that is,
∫

IΛ

fdµ := T̂ (f). (1.1)

The above (1), (2) and (3) show that
∫

IΛ

1dµ = µ(IΛ),

∫

IΛ

(λ1 · f1 + λ2 · f2)µ = λ1 ·

∫

IΛ

f1µ+ λ2 ·

∫

IΛ

f2µ (λ1, λ2 ∈ Λ), (1.2)

and ∣∣∣∣
∫

IΛ

fdµ

∣∣∣∣ ≤
∫

IΛ

|f |dµ,

respectively.
Finally, we provide two applications for our main results in Section 8. In Subsection

8.1, we assume k = R, (Λ,≺, ‖ · ‖Λ) = (R,≤, | · |), BR = {1}, n : BR → {1} ⊆ R≥0,
0
4
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IR = [0, 1], ξ = 1
2
, κ0(x) = x

2
, κ1(x) = x+1

2
and τ = idR : R → R, and let µ be the

Lebesgue measure. Then (1.1) is a Lebesgue integration

∫

IR=[0,1]

fdµ =

∫ 1

0

fdµ,

and (1.2) shows that Lebesgue integration is R-linear. This result provides a catego-

rization of Lebesgue integration. In Subsection 8.2, we show that the functor T̂ satisfies
the Cauchy-Schwarz inequality.

2. Preliminaries

In this section we recall some concepts in the category theory and representation
theory of algebras. These concepts are familiar to algebraists, but may not be as
familiar to those in the field of analysts.

2.1. Categories and limits. Recall that a category C consists of three ingredients: a
class of objects, a set HomC(X, Y ) of morphisms for any objects X and Y in C, and the
composition HomC(X, Y )×HomC(Y, Z)→ HomC(X,Z), denoted by

(f : X → Y, g : Y → Z) 7→ gf : X → Z,

for any objects X , Y and Z in C. These ingredients are subject to the following axioms:

(1) the Hom sets are pairwise disjoint;
(2) for any object X , the identity morphism 1X : X → X in HomC(X,X) exists;

(3) the composition is associative: given morphisms U
f // V

g // W
h // X,

we have

h(gf) = (hg)f.

Next, we review the limits in the category theory.

Definition 2.1 (c.f. [19, Chapter 5, Section 5.2]). Let I = (I,�) be a partially or-
dered set, and let C be a category. A direct system in C over I is an ordered pair
((Mi)i∈I, (ϕij)i≺j), where (Mi)i∈I is an indexed family of objects in C and (ϕij : Mi →
Mj)i≺j is an indexed family of morphisms for which ϕii = 1Mi

for all i, such that the
following diagram

Mi

ϕij !!❇
❇❇

❇❇
❇❇

❇

ϕik // Mk

Mj

ϕjk

==④④④④④④④④

commutes whenever i ≺ j ≺ k. Furthermore, for the above direct system ((Mi)i∈I, (ϕij)i≺j),
the direct limit (also called inductive limit or colimit) is an object, say lim−→Mi, and in-

sertion morphisms (αi :Mi → lim−→Mi)i∈I such that

(1) αjϕij = αi whenever i � j;
(2) for any objectX in C such that there are given morphisms fi :Mi → X satisfying

fjϕij = fi for all i � j, there exists a unique morphism θ : lim−→Mi → X making
0
5
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the following diagram

lim−→Mi
θ

(∃!)
//❴❴❴❴❴❴❴❴ X

Mi

αi

bb❋❋❋❋❋❋❋❋ fi

??⑦⑦⑦⑦⑦⑦⑦⑦

ϕij(i�j)

��
Mj

αj

SS

fj

NN

commutes.

Example 2.2. Let {xn}n∈N+ be a monotonically increasing sequence of real numbers,
and let R be the partially ordered category (R,≤), in which the elements are real
numbers and the morphisms are of the form ≤r2r1 : r1 → r2 (r2 ≤ r1). If {xn}n∈N+ has
the limit x in analysis, i.e., for any ǫ > 0, there exists N ∈ N+ such that |xn − x| < ǫ
holds for all n > N , then x = lim−→xn. Indeed, for any x′ ∈ R such that the morphisms

(αi =≤xix′ : xi → x′)i∈N+ exist, there is a morphism θ =≤xx′: x → x′ such that the
following diagram

x
θ=≤xx′ //❴❴❴❴❴❴❴❴❴❴ x′

xi
≤xix

__❅❅❅❅❅❅❅❅❅❅❅❅ ≤xix
′

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

≤xixj

��
xj

≤xjx

OO

≤xjx
′

NN

commutes. It is clear that the morphism θ is unique in this example. Furthermore,
x ≤ x′ holds because if x′ < x then we can find some xt such that xt > x′, i.e.,
αt ∈ Hom(R,≤)(x

′, xt) = ∅, this is a contradiction.

Definition 2.3 (c.f. [19, Chapter 5, Section 5.2]). Let I = (I,�) be a partially ordered
set, and let C be a category in this subsection. An inverse system in C over I is an
ordered pair ((Mi)i∈I, (ψij)j≺i), where (Mi)i∈I is an indexed family of objects in C and
(ψij : Mj → Mi)j≺i is an indexed family of morphisms for which ψii = 1Mi

for all i,
such that the following diagram

Mi aa

ψij ❇❇
❇❇

❇❇
❇❇
oo ψik

Mk

Mj

}} ψjk

④④④④④④④④

commutes whenever i ≺ j ≺ k. Furthermore, for the above direct system ((Mi)i∈I, (ψij)j≺i),
the inverse limit (also called projective limit or limit) is an object, say lim←−Mi, and

projects morphisms (αi : lim←−Mi →Mi)i∈I such that

(1) ψjiαj = αi whenever i � j;
(2) for any objectX in C such that there are given morphisms fi : X →Mi satisfying

ψjifj = fi for all i � j, there exists a unique morphism ϑ : X → lim−→Mi making
0
6
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the following diagram

lim←−Mi
oo ϑ

(∃!)
❴❴❴❴❴❴❴❴ X

Mi

""
αi

❋❋❋❋❋❋❋❋ �� fi

⑦⑦⑦⑦⑦⑦⑦⑦

OO
ψij(i�j)

Mj

##

αj

}}

fj

commutes.

Example 2.4. Let {xn}n∈N+ be a monotonically decreasing sequence of real numbers,
and let R be the partially ordered category (R,≤). If {xn}n∈N+ has the limit x in
analysis, then we have x = lim←−xn by a way similar to that in Example 2.3.

2.2. k-algebras and their completions. Let k be a field. In this subsection we
recall the definitions of k-algebras and the completions of k-algebras. All concepts in
this subsection are parallel to those in [3, Chapter 10, Section 10.1] which extracts some
important results about the completions of Abelian groups.

2.2.1. k-algebras.

Definition 2.5. A k-algebra A defined over k is both a ring and a k-linear space such
that

k(aa′) = (ka)a′ = a(ka′).

Let e1, . . ., et be the complete set of primitive orthogonal idempotents, i.e., any ei is
a primitive idempotent and eiej = 0 holds for all i 6= j. Then A has a decomposition

A =
⊕t

i=1Aei, where each direct summand Aei is an indecomposable left A-module.
We say A is basic if Aei 6∼= Aej for all 1 ≤ i 6= j ≤ t.

Example 2.6. The set Mn(k) of all n × n matrices over k, the polynomial ring
k[x1, · · · , xn], and the field k itself are k-algebras. Aa k-algebra Λ is called finite-
dimensional if its k-dimension dimk Λ, i.e., the dimension of Λ as a k-linear space, is
finite.

Recall that a quiver is a quadruple Q = (Q0,Q1, s, t) where Q0 is the set of vertices,
Q1 is the set of arrows, and s, t : Q1 → Q0 are functions respectively sending each
arrow to its starting point and ending point. Then any vertex v ∈ Q0 can be seen as
a path on Q whose length is zero, and any arrow α ∈ Q1 can be seen as a path on Q
whose length is one. A path ℘ of length l, denoted ℓ(℘), is the composition αl · · ·α2α1

of arrows α1, . . ., αl, where t(αi) = s(αi+1) for all 1 ≤ i < l. Then, naturally, we define
the composition of two paths ℘1 = αl · · ·α1 and ℘2 = βℓ · · ·β1 as:

℘2℘1 = βℓ · · ·β1αl · · ·α1

provided that the ending point t(℘1) of ℘1 coincides with the starting point s(℘2) of ℘2,
otherwise (i.e., t(℘1) 6= s(℘2)), then the composition is defined to be zero. Consequently,
let Ql be the set of all paths of length l. Then kQ := spank(

⋃
l≥0Ql), known as the

path algebra of Q, is a k-algebra whose multiplication defined as follows:

kQ× kQ → kQ via (k1℘1, k2℘2) 7→

{
k1k2 · ℘2℘1, if t(℘1) = s(℘2);

0, otherwise.

The following result shows that we can describe all finite-dimensional k-algebras using
quivers.

0
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Theorem 2.7 (Gabriel). For any finite-dimensional k-algebra A, there is a finite quiver
Q, i.e., the vertex set and arrow set are finite sets, and an admissible ideal1 I of kQ
such that the module category of A is equivalent to that of kQ/I. Furthermore, if A is
basic, we have A ∼= kQ/I.

Remark 2.8. We provide a remark for the isomorphism A ∼= kQ/I given in Theorem
2.7 here: the existence of the quiver Q is unique if A is basic and I is admissible; the
definition of admissible can be found in [2, Chapter I, Section I.6].

2.2.2. Topologies on k-algebras. Now we recall the topologies of k-algebras A (not nec-
essarily basic or finite-dimensional). Let i(A) be the set of all ideals of A, which forms
a partially ordered set i(A) = (i(A),�) with the partial order defined by the inclusion.
That is, for any A1, A2 ∈ i(A), we have

A1 � A2 if and only if A1 ⊆ A2.

Naturally, we have at least one descending chain, denoted by J , of ideals

A0 = A � A1 � A2 � · · ·

We say a subset U of A satisfies the N-condition, if it meets the following criteria:

(N1) U contains the zero of A;
(N2) there exists some j ∈ N such that U ⊇ Aj .

Furthermore, we denote by UA(0) the set of all subsets satisfying the N -condition, which
forms a partially ordered set with the partial order “�” given by “⊆”.

Lemma 2.9. The set UA(0) is a topology defined on A, in other words, it satisfies the
following four conditions.

(1) For any U ∈ UA(0), we have 0 ∈ U .
(2) UA(0) is closed under finite intersection, that is, for any U1, . . . , Ut ∈ UA(0), we

have
⋂

1≤j≤tUj ∈ UA(0).

(3) If U ∈ UA(0) and U ⊆ V ⊆ A, then V ∈ UA(0).
(4) If U ∈ UA(0), then there is a set V ∈ UA(0) such that V ⊆ U and U − y :=
{u− y | u ∈ U} ∈ UA(0) for all y ∈ V .

Proof. First, (1) is trivial by the condition (N1).
Second, for arbitrary two subset U1 and U2, there are Aj1 and Aj2 such that U1 ⊇ Aj1

and U2 ⊃ Aj2. Then U1 ∩U2 ⊇ Aj1 ∩Aj2. By the definition of Aj, we have Aj1 ∩Aj2 =
Amin{j1,j2}, that is,

U1 ∩ U2 ⊇ Amin{j1,j2}.

Since 0 ∈ U1 ∩ U2 trivially, we have U1 ∩ U2 ∈ UA(0). By induction, we obtain (2).
Third, assume U ∈ UA(0) and U ⊆ V ⊆ A. By the definition of UA(0), we have

0 ∈ U and U ⊇ Aj for some j. Thus, 0 ∈ V and V ⊇ Aj, so we obtain (3).
Finally, for each U ∈ UA(0), we can find V in the following way. There exists an

index  such that U 6⊇ A−1 and U ⊇ A ⊇ A+1 ⊇ · · · . Take V =
⋂
j≤Aj (= A ⊆ U).

For any y ∈ V , we have (N1), that is, 0 = y − y ∈ U − y = {u − y | u ∈ U} by
y ∈ V ⊆ U ; and have (N2) since a = (a + y)− y holds for any a ∈ V and a + y ∈ V .
Then we obtain U − y ∈ UA(0), that is, (4) holds. �

Definition 2.10. The set UA(0) is called the J -topology of A. Furthermore, we can
define open sets on A.

1An admissible ideal I of kQ is an ideal such that R
m
Q ⊆ I ⊆ R

2

Q holds for some m ≥ 2, see [2,

Chapter II, Section II.1, page 53], where R
t
Q is the ideal of kQ generated by all paths of length ≥ t.

0
8



Normed modules over algebras: the categorization of Lebesgue integration

(1) The subset in UA(0) is called a neighborhood of 0. For any U ∈ UA(0), the union⋃
V V of all subsets V given in Lemma 2.9 (4) is called the interior of U and

denote
⋃
V V by U◦.

(2) A neighborhood U is called open if U = U◦. An open set O defined on A is one
of the following cases:
(a) O equals either A or ∅;
(b) O is the intersection of a finite number of open neighborhoods;
(c) O is the union of any number of open neighborhoods.

It induces the definitions of continuous homomorphisms of k-algebras.

Definition 2.11. Let A1 andA2 be two k-algebras, and let J1 and J2 be two descending
chains of ideals in A1 and A2, respectively. Let UA1(0) and UA2(0) be the J1-topology
J2-topology given by J1 and J2, respectively. A homomorphism h : A1 → A2 of k-
algebras is called continuous if the preimage of arbitrary open set on A2 is an open set
on A1.

Lemma 2.12. Let A be a k-algebra with a J -topology. Then the addition + : A×A→
A and each k-linear transformation hλ : A → A defined by a 7→ λa (λ ∈ A) are
continuous.

Proof. It is obvious that idA = h1 : A→ A via a 7→ a is continuous. The continuity of
hλ can be given by idA.
Let J =

A = A0 � A1 � A2 � · · · .

For any open neighborhood U of 0, its preimage is

+−1(U) = {(x1, x2) | x1 + x2 ∈ U} =: Ũ .

We need show that Ũ ∈ UA×A((0, 0)) and Ũ◦ = Ũ in the case for A × A being a
k-algebra, where the descending chain, say JA×A, of A×A is induced by J as follows.

A× A = A0 ×A0 � A1 ×A1 � A2 × A2 � · · · .

First of all, the zero element of A× A is (0, 0) which satisfies that 0 ∈ U and 0 + 0 =

0 ∈ U , then (0, 0) ∈ Ũ .
Secondly, since U is a neighborhood of 0, there exists an ideal Aj of J such that

U ⊇ Aj . Then for any x1, x2 ∈ Aj, we have x1 + x2 ∈ Aj ⊆ U , that is, (x1, x2) ∈ Ũ . It

follows that Aj × Aj ⊆ Ũ . We obtain Ũ ∈ UA×A((0, 0)).

Thirdly, for any (y1, y2) ∈ Ũ , we have y1 + y2 ∈ U by the definition of Ũ , then,

(0, 0) = (y1 − y1, y2 − y2) ∈ Ũ − (y1, y2) = {(x1 − y1, x2 − y2) | x1 + x2 ∈ U},

that is, (N1) holds. On the other hand, for any (z1, z2) ∈ Aj × Aj, we have

(z1, z2) = ((z1 + y1)− y1, (z2 + y2)− y2).

Note that z1 + y1 + z2 + y2 = (y1 + y2) + (z1 + z2) is an element lying in U + (z1 + z2).
Since U is open, we have

U + (z1 + z2) = U◦ − (−(z1 + z2)) = {u+ (z1 + z2) | u ∈ U} ∈ UA(0)

by Lemma 2.9 (4) and Definition 2.10, that is, U + (z1 + z2) is a set satisfying Lemma
2.9 (4). Then

U◦ =
⋃

V ⊆U, V satisfies
Lemma 2.9 (4)

V ⊇ U + (z1 + z2),

0
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and so, we obtain (y1+y2)+(z1+z2) ∈ U+(z1+z2) ⊆ U◦, that is, (y1+y2)+(z1+z2) ∈ U .

Thus, (z1, z2) ∈ Ũ . It follows that Aj×Aj ⊆ Ũ−(y1, y2), and thus (N2) holds. Therefore,

Ũ − (y1, y2) ∈ UA×A((0, 0)). In summary, we have that Ũ satisfies Lemma 2.9 (4), and

so, by Definition 2.10, it is clear that Ũ◦ = Ũ . �

Definition 2.13 (c.f. [3, Chapter 10, page 101]). A topology k-algebra is a k-algebra
equipped with a topology such that the addition + : A × A → A and each k-linear
transformation −h1 : A→ A via a 7→ −a are continuous.

The following result is a consequence of Lemma 2.12.

Proposition 2.14. Given an arbitrary k-algebra A and its descending chain J of
ideals. Then A becomes a topology k-algebra with the J -topology UA(0).

In this paper, we refer to A as a J -topological k-algebra.

2.2.3. Completions induced by J -topologies. Assume that | · | : k → R≥0 be a norm
defined on the field k in this subsection, that is, | · | is the map satisfying

(1) |k| = 0 if and only if k = 0;
(2) |k1k2| = |k1||k2| holds for all k1, k2 ∈ k;
(3) and the triangle inequality |k1 + k2| ≤ |k1|+ |k2| holds for all k1, k2 ∈ k.

Then {Br = {a ∈ A | |a| < r} | r ∈ R+} induces a standard topology Uk(0) on k whose
element is called the neighborhood of 0 ∈ k.
Let A be a J -topological k-algebra whose dimension is finite and letBA = {b1, . . . , bn}

be a basis of A. Then, naturally, we can define the Cauchy sequence by the J -topology.
More precisely, a sequence {xi}i∈N in A is called a J -Cauchy sequence if for any U , lying
in UA(0), containing some subset

∑n
i=1 uibi of A with ui ∈ Uk(0) (1 ≤ i ≤ n), there is

n ∈ N such that xs − xt ∈ U holds for all s, t ≥ n. Two J -Cauchy sequences {xi}i∈N
and {yi}i∈N are called equivalent, denoted by {xi}i∈N ∼ {yi}i∈N, if for any U ∈ UA(0),
there is an integer n ∈ N such that xi − yi ∈ U holds for all i ≥ N . It is easy to
see that “∼” is an equivalence relation. We use [{xi}i∈N] to denote the equivalence
class containing {xi}i∈N, and use CJ (A) to denote the set of all equivalence classes of
J -Cauchy sequences. Then we have three families of A-homomorphisms:

(1) (ϕji : A/Aj → A/Ai)j≥i, where all ϕji are naturally induced by Ai ⊇ Aj;
(2) (pi : CJ (A)→ A/Ai)i∈N, where pi(x0, . . . , xi−1, xi, xi+1, . . .) = xi (pi is called the

i-th projection);

(3) (ui : A/Ai → CJ (A))i∈N, where ui(a+ Ai) = (0, . . . ,
i−1

0 , a,
i+1

0 , 0 . . .).

Let X be the category whose object set is {A/Ai | i ∈ N} ∪ {CJ (A)} and morphism
set is the collection of all A-homomorphisms as above. Then we obtain the following
commutative diagram

CJ (A) oo uh

(∃!)
❴❴❴❴❴❴❴❴❴ A/Ah

A/Ai
$$pi

■■■■■■■■■ zz ϕhi

✈✈✈✈✈✈✈✈✈

OO
ϕji(i≤j)

A/Aj.
##

pj

{{

ϕhj

It follows from the above construction that the following proposition holds.
0
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Proposition 2.15 (c.f. [3, Chapter 10, page 103]). Using the notations as above, we
have

lim←−A/Ai
∼= CJ (A).

We write Â := CJ (A) and call it the completion of A. In particular, if A = k, then
the descending chain J :

A0 = k � A1 = 0

induces a J -topology

UA(0) = {the neighborhood of 0}

of A. In this case, the J -Cauchy sequence coincides with the usual Cauchy sequence.

Proposition 2.16. Let A be a basic finite-dimensional k-algebra and let J be the
descending chain

A0 = A = rad0A � A1 = radA � A2 = rad2A � · · ·

Then A is complete (in the sense of J -topology) if and only if k is complete.

Proof. Let A be a basic finite-dimensional k-algebra. Then, by Theorem 2.7, there is a
finite quiver Q and an ideal I of kQ such that

A ∼= kQ/I =
⊕

l∈N

kQl.

Thus, up to isomorphism, each element a ∈ A can be written as
∑n

j=1 kj℘j, where n is
the dimension of A, ku ∈ k and ℘u is a path on Q.
Assume that k is complete. Since A is finite-dimensional, we have radlA = spank{Qi |

i ≥ l}. Thus, radL+1A = 0, where L = max℘∈Q≥0
ℓ(℘), that is,

J = A � radA � rad2A � · · · radLA � 0 � 0 � · · · .

Let {xi =
∑n

j=1 kij℘j}i∈N be a J -Cauchy sequence in A. Take

U =

{∑
ℓ(℘)=L

k℘℘ | k℘ lie in some neighborhood in Uk(0)

}
() radL+1A = 0).

Then, there is N(U) ∈ N such that

xs − xt =
n∑

j=1

(ksj − ktj)℘j ∈ radLA holds for all s, t ≥ N(U).

Thus, ksj−ktj lies in some neighborhood in Uk(0), and so, for all i, {kij}i∈N is a Cauchy
sequence in k. Then it is clear that A is complete.

Conversely, if A is complete, we assume that k is not complete, and k̂ be the com-

pletion of k. Then we have a natural k-linear embedding e : k → k̂ sending k ∈ k to

{ki}i∈N, where k1 = k2 = · · · = k. Then there is a Cauchy sequence {xi}i∈N ∈ k̂\e(k).
Consider the sequence {xi · ℘}i∈N in A, where ℘ ∈ radLA is a path of length L. Then

{xi · ℘}i∈N is a J -Cauchy sequence in A. However, we have {xi · ℘}i∈N ∈ Â\A in this
case, which contradicts that A is complete. �

0
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2.3. The total order of k-algebras. Recall that a field k equipped with a total order
“�” is a ordered field if it satisfies the following four conditions:

(1) for any a, b ∈ k, either a � b, b � a or a = b holds;
(2) if a � b, b � c, then a � c;
(3) if a � b, then a+ c � b+ c for all c ∈ k;
(4) if a � b and 0 � c, then ac � bc.

In order to give the definition of integration defined on finite-dimensional k-algebra Λ,
we need to assume that k is a field with the total order “�”. However, it is well-known
that k might not always be an ordered field, as the case for k being the complex field C.
Interestingly, for our purposes, the existence of such a total order is not a prerequisite.
We only require that the finite-dimensional k-algebra involved in our study, encompasses
certain partially ordered subsets. Specifically, the subset IΛ outlined in Subsection 3.3
is sufficient. For the sake of simplicity, we assume that k is fully ordered, although this
assumption does not sacrifice generality. This simplification aids in our definition of
integration within the context of category theory.

Remark 2.17. We provide a remark to show that if k is total ordered, then any finite-
dimensional k-algebra Λ can be endowed with a total order. Let BΛ = {bi | 1 ≤ i ≤ n}
be a k-basis of Λ. If BΛ is totally ordered (assuming bi � bj if and only if i ≤ j), then
we can define a total order for Λ as follows.
Step 1. For any two arbitrary elements a, a′ ∈ Λ, we define a ≺p a

′ if and only
if ϕ(a) ≺p ϕ(a

′), where ϕ is a map from Λ to R≥0 (for example, ϕ is the norm ‖ · ‖p
defined in Section 3).
Step 2. Assume a =

∑m
i=1 kibi and a

′ =
∑m

i=1 k
′
ibi (0 ≤ m ≤ n) such that ki = k′i

holds for all i < m. If ϕ(a) = ϕ(a′), then we define a �p a
′ if and only if km � k′m.

3. Normed k-algebras

In the sequel, let Λ be a finite-dimensional k-algebra with a k-basis BΛ = {bi | 1 ≤
i ≤ n}. Then any element a ∈ Λ is of the form a =

∑n
i=1 kibi. In this section, we define

some algebraic structure for Λ.

3.1. Norms of k-algebras. Take n : BΛ → R+ a map from Λ to R+ and, for any
p > 1, || · ||p : Λ→ R≥0 is the function defined by

‖a‖p =
∥∥∥

n∑

i=1

kibi

∥∥∥
p
:=

(
(|k1|n(b1))

p + · · ·+ (|kn|n(bn))
p
) 1

p . (3.1)

Proposition 3.1. Any triple (Λ, n, ‖ · ‖p) (=Λ for short) is a normed k-linear space.

Proof. First of all, for any a =
∑n

i=1 kibi ∈ Λ, we have ‖a‖p ≥ 0 because n(bi) > 0 and
|ki| ≥ 0 (1 ≤ i ≤ n). In particular, if ‖a‖p = 0, then

(|k1|n(b1))
p + · · ·+ (|kn|n(bn))

p = 0.

Since |ki|n(bi) ≥ 0 and n(bi) > 0 hold for all 1 ≤ i ≤ n, we obtain |ki|n(bi) = 0, and
so ki = 0. Thus, a =

∑n
i=1 0bi = 0. Then it is easy to see that ‖a‖p = 0 if and only if

a = 0.
Next, for any k ∈ k and a =

∑n
i=1 kibi ∈ Λ, we have

‖ka‖p = ‖k(k1b1 + · · ·+ knbn)‖p

=
( n∑

i=1

(|kki|n(bi))
p
) 1

p

=
( n∑

i=1

|k|p(|ki|n(bi))
p
) 1

p

0
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= |k|
( n∑

i=1

(|ki|n(bi))
p
) 1

p

= |k| · ‖a‖p.

Finally, we prove the triangle inequality ‖a + a′‖p ≤ ‖a‖p + ‖a
′‖p for arbitrary two

elements a =
∑n

i=1 kibi and a
′ =

∑n
i=1 k

′
ibi. It can be induced by the discrete Minkowski

inequality (
∑n

i=1 x
p
i )

1
p + (

∑n
i=1 y

p
i )

1
p ≥ (

∑n
i=1(xi + yi)

p)
1
p as follows:

‖a‖p + ‖a
′‖p =

( n∑

i=1

(|ki|n(bi))
p
) 1

p

+
( n∑

i=1

(|k′i|n(bi))
p
) 1

p

≥
( n∑

i=1

(|ki|n(bi) + k′in(bi))
p
) 1

p

=
( n∑

i=1

(|ki + k′i|n(bi))
p
) 1

p

= ‖a + a′‖p.

Therefore, (Λ, n, ‖ · ‖p) is a normed space. �

Definition 3.2. A normed k-algebra is a triple (Λ, n, ‖ · ‖p), where n : BΛ → R+ and
‖ · ‖p : Λ→ R≥0 are called the normed basis function and norm of Λ, respectively.

3.2. Completions of normed k-algebras. We can define open neighborhoods B(0, r)
of 0 for any normed k-algebra (Λ, n, ‖ · ‖p) by

B(0, r) := {a ∈ Λ | ‖a‖p < r}.

Let UB
Λ
(0) be the class of all subsets U of Λ satisfying the following conditions.

(1) U is the intersection of a finite number of B(0, r);
(2) U is the union of any number of B(0, r).

Then UB
Λ
(0) is a topology, say ‖ · ‖p-topology, defined on Λ, and we can define the

Cauchy sequence, say ‖ · ‖p-Cauchy sequence, by the above topology.
Recall that Λ has a J -topology UΛ(0) given by the descending chain

Λ = rad0Λ � rad1Λ � rad2Λ � · · · .

Thus, we obtain two completions Λ̂B and Λ̂ by ‖ · ‖p-topology and J -topology, respec-

tively. The following lemma establishes the relation between Λ̂B and Λ̂.

Proposition 3.3. Let Λ = (Λ, n, ‖ · ‖p) be an n-dimensional normed k-algebra with the
J -topology UΛ(0) given by Λ = rad0Λ � rad1Λ � rad2Λ � · · · (‖ · ‖p is a norm defined

on Λ given in Proposition 3.1). Then Λ̂B = Λ̂.

Proof. Similar to Proposition 2.16 we can show that Λ̂B = Λ (i.e., Λ is complete) if

and only if k̂ = k. By using Proposition 2.16 again, we have that Λ̂ = Λ if and only if

k̂ = k. Then k̂ = k if and only if Λ̂B = Λ = Λ̂, Equivalently,

Λ̂B =

( n̂∑

i=1

kbi

)B

=

n∑

i=1

k̂bi =

n̂∑

i=1

kbi = Λ̂.

�

Remark 3.4. (1) Note that the norms defined on A is not unique. In Section 4, we
will introduce normed Λ-modules N over any finite-dimensional normed k-algebra Λ.
In this case, we need a homomorphism τ : Λ → Λ′ between two finite-dimensional
normed k-algebras Λ and Λ′, and the norms ‖ · ‖ and ‖ · ‖′ respectively defined on Λ
and Λ′ may not necessarily be the form of ‖ · ‖p.

0
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(2) If A = k and n(1) = 1, then the norm ‖ · ‖p given in Proposition 3.1 is the norm

| · |, i.e, ‖a‖p = (|a|p)
1
p = |a|.

3.3. Elementary simple functions. Denote IΛ by the subset
{ n∑

i=1

kibi | ki ∈ I

}
1−1
←→

n∏

i=1

(I× {bi})

of Λ. A function defined on IΛ is a map f : IΛ → k from IΛ to k. Since (Λ, n, ‖ · ‖p) is
a normed space, Λ is also a topological space induced by the norm ‖ · ‖p, and so is IΛ.
Thus, we can define the open set for every subset of Λ, including IΛ. The function f is
called continuous if the preimage of any open subset of k is an open set of IΛ.
An elementary simple function on IΛ is a finite sum

t∑

i=1

ki1Ii,

where

(1) for any 1 ≤ i ≤ t, ki ∈ k;
(2) Ii = Ii1 × · · · × Iin, and, for any 1 ≤ j ≤ n, Iij is a subset of I which is one of

the following forms
(a) (cij, dij)k := {k ∈ k | cij ≺ k ≺ dij},
(b) [cij , dij)k := {k ∈ k | cij � k ≺ dij},
(c) (cij, dij]k := {k ∈ k | cij ≺ k � dij},
(d) [cij , dij]k := {k ∈ k | cij � k � dij},
where a � cij ≺ dij � b;

(3) and 1Ii is the function Ii → {1} such that Ii∩Ij = ∅ holds for all 1 ≤ i 6= j ≤ t.

We denote S(IΛ) by the set of all elementary simple functions. Then S(IΛ) is a k-linear
space, and S(IΛ) induces the direct sum S(IΛ)⊕2n whose element can be seen as the
sequence {

f(δ1,...,δn)

( n∑

i=1

kibi

)}

(δ1,...,δn)∈{a,b}×···×{a,b}

=: fff(k1, . . . , kn),

∑n
i=1 kibi is written as (k1, . . . , kn) since {b1 | 1 ≤ i ≤ n} = BΛ is the k-basis of Λ.

Then we can characterize S(IΛ) together with two further pieces of data: the function
1IΛ : IΛ → {1} (1 is the identity element of k), and the map

γξ : S(IΛ)
⊕2n → S(IΛ), (3.2)

say juxtaposition map, sending fff to the function

γξ(fff)(k1, . . . , kn) =
∑

(δ1,...,δn)

1κδ1 (I)×···×κδn (I) · f(δ1,...,δn)(κ
−1
δ1
(k1), . . . , κ

−1
δn
(kn)),

(k1 6= ξ, . . ., kn 6= ξ),

where ξ is an element with a ≺ ξ ≺ b such that the order preserving bijections

κa : I→ [a, ξ]k and κb : I→ [ξ, b]k

exist.

Example 3.5. (1) Take Λ is the k-algebra whose dimension is 2, and assume that basis
of Λ is {b1, b2}. Then IΛ ∼=k [a, b]kb1 × [a, b]kb2.
For any element

fff = (f(a,a), f(b,a), f(a,b), f(b,b)) ∈ S(IΛ)
⊕4,

0
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where f(δ1,δ2) : IΛ → k is a function in S(IΛ) sending each k1b1 + k2b2 to the element
f(δ1,δ2)(k1, k2) in k, (δ1, δ2) ∈ {a, b} × {a, b} = {(a, a), (b, a), (a, b), (b, b)}, γξ juxtapose
f(a,a), f(b,a), f(a,b) and f(b,b) into a new function

γξ(f(a,a), f(b,a), f(a,b), f(b,b))(k1, k2) = f̃(a,a)(k1, k2)+f̃(b,a)(k1, k2)+f̃(a,b)(k1, k2)+f̃(b,b)(k1, k2)

as shown in Figure 3.1, where

f̃(a,a)(k1, k2) = 1[a,ξ)×[a,ξ) · f(a,a)(κ
−1
a (k1), κ

−1
a (k2)),

f̃(b,a)(k1, k2) = 1(ξ,b]×[a,ξ) · f(b,a)(κ
−1
b (k1), κ

−1
a (k2)),

f̃(a,b)(k1, k2) = 1[a,ξ)×(ξ,b] · f(a,b)(κ
−1
a (k1), κ

−1
b (k2)),

f̃(b,b)(k1, k2) = 1(ξ,b]×(ξ,b] · f(b,b)(κ
−1
b (k1), κ

−1
b (k2)).

S(IΛ)⊕4S(IΛ)⊕4S(IΛ)⊕4S(IΛ)⊕4

S(IA)S(IA)S(IA)S(IA)
a
a b

b

a
a b

b

a
a b

b

a
a b

b

a
a b

b

⊕

⊕

⊕ ⊕

•
ξ

•ξ

κa

κa

f(a,a)

f̃(a,a)

κb

κa

f(b,a)

f̃(b,a)

κb

κb

f(b,b)

f̃(b,b)

κa

κb

f(b,a)

f̃(b,a)

Figure 3.1. Juxtaposition map

(2) This example is used to establish the relation between Banach space and Lebesgue
intersections in [16]. Take k = R, I = [0, 1], ξ = 1

2
, Λ = R and the order preserving

bijections κ0 : I = [0, 1] → k = R and κ1 : I = [0, 1] → k = R are given by x 7→ x
2
and

1+x
2
, respectively. Then S(IR) = S([0, 1]) is a normed space together with two further

pieces of data: the function 1[0,1] : [0, 1]→ {1} and the juxtaposition map

γ 1
2
: S([0, 1])⊕ S([0, 1])→ S([0, 1])

sending (f1, f2) to the following function

γ 1
2
(f1, f2)(x) = 1κ0([0,1)) · f1(κ

−1
0 (x)) + 1κ1((0,1]) · f1(κ

−1
1 (x))

0
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=

{
f1(2x) x ∈ κ0([0, 1)) = [0, 1

2
);

f2(2x− 1) x ∈ κ1((0, 1]) = (1
2
, 1].

Lemma 3.6. The map γξ is a k-linear map.

Proof. Take a, b ∈ k, f, g ∈ S(IΛ) and let (ki)i, 1 and (δi)i be the element (k1, . . . , kn)
in S(IΛ)⊕2n , the identity function 1κδ1 (I)×···×κδn (I)

and the n-multiple (δ1 × · · · × δn),
respectively. Then

γξ(af + bg)((ki)i) =
∑

(δi)i

1 · (af + bg)(δi)i((κ
−1
δi
(ki))i)

=
∑

(δi)i

(
1 · af(δi)i((κ

−1
δi
(ki))i) + 1 · bg(δi)i((κ

−1
δi
(ki))i)

)

= a
∑

(δi)i

1 · f(δi)i((κ
−1
δi
(ki))i) + b

∑

(δi)i

1 · g(δi)i((κ
−1
δi
(ki))i)

= aγξ(f)((ki)i) + bγξ(g)((ki)i).

Thus, γξ is a k-linear map. �

Example 3.7. Take k = R, I = [0, 1], ξ = 1
2
, Λ = R and the order preserving bijections

κ0 : I = [0, 1] → k = R and κ1 : I = [0, 1] → k = R are given by x 7→ x
2
and x+1

2
,

respectively. Then S(IR) = S([0, 1]) is a normed space together with two further pieces
of data: the function 1[0,1] : [0, 1]→ {1} and the juxtaposition map

γ 1
2
: S([0, 1])⊕ S([0, 1])→ S([0, 1])

sending (f1, f2) to the following function

γ 1
2
(f1, f2)(x) = 1κ0([0,1]) · f1(κ

−1
0 (x)) + 1κ1([0,1]) · f1(κ

−1
1 (x))

=

{
f1(2x) x ∈ κ0([0, 1]) = [0, 1

2
);

f2(2x− 1) x ∈ κ1([0, 1]) = (1
2
, 1].

4. Normed modules over k-algebras

Let I be a subset of the field k = (k,�) with the totally ordered “�”. Then I is also
a total ordered set. For simplicity, we denote by [x, y]k the set of all elements k ∈ k

with x � k � y in our paper, that is,

[x, y]k := {k ∈ k | x � k � y}.

In particular, if x = y then [x, y]k = {x} = {y} is a set containing only one element.
In our paper, assume that k and [a, b]k are infinite sets and consider only the case for

I = [a, b]k with a ≺ b such that there exists an element ξ with a ≺ ξ ≺ b such that the
order preserving bijections κa : I → [a, ξ]k and κb : I → [ξ, b]k exist (for example, the
case of the cardinal number of I to be either ℵ0 or ℵ1). In this section, we introduce
the category Norp, which is used to explore the categorization of integration.

4.1. Norms of Λ-modules. Recall that a left A-module (=A-module for short) over
a k-algebra A is a k-linear space V with a k-linear map h : A → EndkV sending a to
ha. Thus, h provides a right action A × V → V , (a, v) 7→ va := ha(v) which satisfies
the following properties:

(1) a(v + v′) = av + av′ for any v, v′ ∈ V and a ∈ A;
(2) (a + a′)v = av + a′v for any v ∈ V and a, a′ ∈ A;
(3) a′(av) = (a′a)v for any v ∈ V and a, a′ ∈ A;

0
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(4) 1v = v for any v ∈ V ;
(5) (ka)v = k(av) = a(kv) for any v ∈ V , a ∈ A and k ∈ k.

Take A = Λ is the normed space with whose norm ‖ · ‖p : Λ→ R+ given by (3.1), where
the k-basis of Λ is BΛ = {bi | 1 ≤ i ≤ n = dimk Λ}.

Definition 4.1. Let τ : Λ → k be a homomorphism between two normed k-algebras
(Λ, ‖ · ‖p) and (k, | · |). A τ -normed Λ-module is a Λ-module M with a norm ‖ · ‖ :M →
R≥0 such that

‖am‖ = |τ(a)| · ‖m‖ holds for all a ∈ k and m ∈M. (4.1)

Thus, each normed Λ-module can be seen as a triple (M,h, ‖ · ‖) of the k-linear space
M , the k-linear map h :M → EndkM and ‖ · ‖ :M → R≥0 a norm.

The norms of Λ-modules yield that the following fact.

Fact 4.2.

(1) Note that ‖ · ‖p defined by (3.1) is the norm of Λ as a k-linear space. It is
easy to see that Λ is also a left Λ-module, say regular module, where the scalar
multiplication is given by the multiplication Λ × Λ → Λ, (a, x) 7→ ax of Λ as a
finite-dimensional k-algebra. Thus, it is natural to ask whether ‖ · ‖p is a norm
of Λ as a Λ-module. Indeed, the norm of Λ as a finite-dimensional k-algebra
may not be equal to the norm ‖ · ‖ of Λ as a regular module. However, if Λ as
the left Λ-module defined by

Λ× Λ→ Λ, (a, x) 7→ a ⋆ x := τ(a)x, (4.2)

where τ(a)x is defined by the scalar multiplication of Λ as the k-linear space

kΛ, then, for any x =
∑n

i=1 kibi ∈ Λ, we obtain

‖a ⋆ x‖p =

∥∥∥∥τ(a)
n∑

i=1

kibi

∥∥∥∥
p

=

( n∑

i=1

|τ(a)ki|
pn(bi)

p

) 1
p

= |τ(a)|

( n∑

i=1

|ki|
pn(bi)

p

) 1
p

= |τ(a)|‖x‖p.

To be more precise, Λ is a (Λ,Λ)-bimodule with two norms, and Λ is a normed
module satisfying Definition 4.1 when it is considered as a module defined in
(4.2).

(2) For any Λ-homomorphism f :M → N of two Λ-modules M and N , ifM and N
are normed Λ-modules, that is, M = (M,hM , ‖ · ‖M) and N = (N, hN , ‖ · ‖N),
then we have

‖f(am)‖N = ‖af(m)‖N = |τ(a)| · ‖f(m)‖N

Example 4.3. Let

Λ =

(
k 0
k k

)
.

Then a k-basis of Λ is BΛ = {EEE11,EEE21,EEE22}, where EEE11 =
(
1
0

0
0

)
, EEE21 =

(
0
1

0
0

)
, EEE22 =(

0
0

0
1

)
. Take n be the map BΛ → R+ defined by n(EEE11) = n(EEE21) = n(EEE22) = 1, then

for any element x =
(
k11
k21

0
k22

)
in Λ, we have ‖x‖p = (|k11|

p + |k21|
p + |k22|

p)
1
p .

There are three indecomposable Λ-modules up to Λ-isomorphism:

P (1) = ( k 0
k 0 )
∼= ( 0 k

0 k ) , P (2) = ( 0 0
0 k ) , and the cokernel coker (P (2)→ P (1) · ( 0 1

1 0 )) .

Then each Λ-moduleM is isomorphic to the direct sum P (1)⊕t1⊕P (2)⊕t2⊕(P (1)/P (2))⊕t3

for some t1, t2, t3 ∈ N. Assume that M = (M,hM , ‖ · ‖M) and N = (N, hN , ‖ · ‖N) are
0
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two normed Λ-modules. Then, naturally, M ⊕ N is also a Λ-module, where the left
Λ-action is the map

hM ⊕ hN :=
(
hM 0
0 hN

)
: Λ×M ⊕N →M ⊕N

which sends (a, (mn )) to (
hM 0
0 hN

)
(mn ) =

(
(hM )a(m)
(hN )a(n)

)
= (aman ).

Furthermore, we can use the τ -norms of M and N , that is, ‖ · ‖M and ‖ · ‖N , to define
a τ -norm ‖ · ‖M⊕N of M ⊕N by

‖(m,n)‖M⊕N := (|k|(‖m‖pM + ‖n‖pN))
1
p for given k ∈ k\{0}.

Then we have

‖a(m,n)‖M⊕N = (|k|(‖am‖pM + ‖an‖pN))
1
p = (|k|(|τ(a)|p‖m‖pM + |τ(a)|p‖n‖pN))

1
p

= |τ(a)| (|k|(‖m‖pM + ‖n‖pN ))
1
p = |τ(a)|‖(m,n)‖M⊕N

for any a ∈ Λ.

Example 4.4. The quiver of the k-algebra Λ given in Example 4.3 is Q = 1
α

−−−−→ 2.

By the representation theory all Λ-modules M can be represented by M1

ϕa

−−−−→M2,
whereM1 andM2 are two k-linear spaces and ϕa is a k-linear map. Indeed, the identity
element of Λ is EEE = EEE11 + EEE22, where EEE11,EEE22 are the complete set of primitive
orthogonal idempotents. Thus, M , as a k-linear space, has a decomposition M =
EEE11M ⊕EEE22M (because EEE11EEE22 = 0 yields EEE11M ∩EEE22M = 0). For any a = k11EEE11 +
k22EEE22 + k21EEE21 and m ∈M , we have

am = (k11EEE11 + k22EEE22 + k21EEE21)(EEE11m+EEE22m)

= k11EEE11(EEE11m) + k22EEE22(EEE22m) + k21EEE21(EEE11m)

= k11(hM)EEE11(EEE11m) + k22(hM)EEE22(EEE22m) + k21(hM)EEE21(EEE11m)

= (hM)EEE11(k11EEE11m) + (hM)k22EEE22(EEE22m) + (hM )EEE21(k21EEE11m), (4.3)

where

(a) hM : Λ→ EndkM is a homomorphism of k-algebras sending a to (hM)a, which
satisfies 1M = (hM)EEE = (hM)EEE11 + (hM)EEE22 ;

(b) (hM)EEEii
= 1EEEiiM (i = 1, 2);

(c) (hM)EEE12 is a k-linear map from EEE11M to EEE22M (this is equivalent to (4.3)).

Therefore, we obtain that the representation corresponding to M = EEE11M ⊕EEE22M is

EEE11M
EEE21

−−−−→EEE22M.

Generally, M1

ϕa

−−−−→M2 corresponds to the module M1 ⊕ M2, where the Λ-action
Λ×M1 ⊕M2 →M1 ⊕M2 is defined by

EEE11(m1, m2) = (m1, 0), EEE22(m1, m2) = (0, m2) and EEE12(m1, m2) = (0, ϕα(m1)).

Without loss of generality, for any representation M1

ϕa

−−−−→M2 of Q, assume that
M1 = k

⊕t1 , M2 = k
⊕t2 and ϕa ∈ Matt2×t1(k) (up to Λ-isomorphism), and for any

i = 1, 2, Mi is a normed space equipping with the norm ‖ · ‖Mi
: Mi = k

⊕ti → R+

sending mi = (mij)1≤j≤ti to
(∑ti

j=1 |mij |
p
) 1

p

. Then we can define a norm ‖ · ‖M1⊕M2 by

‖(m1, m2)‖M1⊕M2 = (|k|(‖m1‖
p
M1

+ ‖m2‖
p
M2

))
1
p ,

where k is a given element in k\{0}. The direct sum “⊕” of k-linear spaces is the
p powers of the norm preserving in the case for k = 1, that is, ‖(m1, m2)‖

p
M1⊕M2

=
0
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‖m1‖
p
M1

+ ‖m2‖
p
M2

. Furthermore, if ‖ · ‖M1 and ‖ · ‖M2 are τ -norms of M1 and M2,
respectively, then, for any a ∈ Λ, we have

‖a(m1, m2)‖M1⊕M2 =
(
|k|(‖am1‖

p
M1

+ ‖am2‖
p
M2

)
) 1

p

=
(
|k|(|τ(a)|p‖m1‖

p
M1

+ |τ(a)|p‖m2‖
p
M2

)
) 1

p

= |τ(a)|
(
|k|(‖m1‖

p
M1

+ ‖m2‖
p
M2

)
) 1

p

= |τ(a)|‖a(m1, m2)‖M1⊕M2.

4.2. Completions of normed Λ-modules. Let N = (N, h, ‖ · ‖) be a normed Λ-
module. In this part we construct its completion. For us, we need the completion of
the finite-dimensional k-algebra Λ. Otherwise, there is at least one Λ-module which is
not complete, for instance, Λ is a non-complete Λ-module. Therefore, we assume that
k is complete in this subsection by Propositions 2.16 and 3.3.
Similar to finite-dimensional k-algebras, we can define open neighborhoods B(0, r)

of 0 for any normed Λ-module N = (N, h, ‖ · ‖) by

B(0, r) := {x ∈ N | ‖x‖ < r}.

Let UBN(0) be the class of all subsets U of N satisfying the following conditions.

(1) U is the intersection of a finite number of B(0, r);
(2) U is the union of any number of B(0, r).

Then UBN (0) is a topology defined on Λ, and we can define the Cauchy sequence by the
above topology.

Lemma 4.5. Let C∗(N) be the set of all Cauchy sequences in the normed Λ-module
N = (N, h, ‖ · ‖). Then C∗(N) is a Λ-module.

Proof. First of all, C∗(N) is a k-linear space whose addition and k-action are given by

{xi}i∈N + {yi}i∈N = {xi + yi}i∈N (∀{xi}i∈N, {yi}i∈N ∈ C∗(N))

and k{xi}i∈N = {kxi}i∈N (∀k ∈ k),

respectively. Furthermore, define

Λ× C∗(N)→ C∗(N), (a, {xi}i∈N) 7→ a · {xi}i∈N := {a · xi}i∈N,

where a · xi = ha(xi). Then C∗(N) is a Λ-module. �

Two Cauchy sequences {xi}i∈N and {yi}i∈N in N are called equivalent, denoted by
{xi}i∈N ∼ {yi}i∈N, if for any U ∈ UBN(0), there is r ∈ N such that xs − xt ∈ U holds for
all s, t ≥ r. It is easy to see that “∼” is an equivalence relation. Let [{xi}i∈N] be the
equivalent class of Cauchy sequences containing {xi}i∈N and let C(N) be the set of all
equivalent classes. We naturally obtain a map

h : C∗(N)→ C(N), {xi}i∈N 7→ [{xi}i∈N].

We can show that C(N) is a Λ-module by using an argument similar to that in the
proof of Lemma 4.5, and further obtain Ker(h : C∗(N) → C(N)) = [{0}i∈N]. Thus we
have

C(N) ∼= C∗(N)/[{0}i∈N].

Then C(N) is complete, and we call it is the completion of N . We use N̂ to denote

the completion C(N) of N . The Λ-module N̂ is a normed Λ-module, where the norm

defined on N̂ is induced by the norm ‖ · ‖ : N → R≥0 defined on N .

Definition 4.6. Assume that Λ is complete. A normed Λ-module N is called a Banach

Λ-module if N̂ = N (i.e. N is complete).
0
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4.3. σ-algebras and the elementary simple function set Sτ (IΛ). Take τ to be
a homomorphism of k-algebras τ : Λ → k. Then the elementary simple function set
S(IΛ) with the above homomorphism τ , denoted by Sτ (IΛ), is a Λ-module, where the
Λ-action Λ× S(IΛ)→ S(IΛ) is given by

(a, f =
∑t

i=1 ki1Ii) 7→ af :=
∑t

i=1 τ(a)ki1Ii
because, for all a ∈ Λ, a′ ∈ Λ, k ∈ k, f =

∑
i ki1Ii ∈ S(IΛ) and f ′ =

∑
j k

′
j1I′j ∈ S(IΛ),

the following conditions are satisfied:

(1) a(f + f ′) = af + af ′ (trivial);
(2) (a + a′)f = af + a′f (trivial);
(3) (aa′)f = a(a′f) because

(aa′)f = (aa′)
∑

i
ki1Ii =

∑
i
τ(aa′)ki1Ii =

∑
i
τ(a)τ(a′)ki1Ii

= a
∑

i
τ(a′)ki1Ii = a(a′

∑
i
ki1Ii) = a(a′f)

(4) 1f = f (trivial);
(5) We have

– (ka)f = (ka)
∑

i ki1Ii =
∑

i τ(ka)(ki1Ii),
– k(af) = k(a

∑
i ki1Ii) = k

∑
i τ(a)ki1Ii =

∑
i k(τ(a)(ki1Ii)),

– and a(kf) = a
∑

i k(ki1Ii) =
∑

i τ(a)(k(ki1Ii)).
Since τ is a homomorphism of k-algebras, we have

τ(ka)(ki1Ii) = k(τ(a)(ki1Ii)) =
∑

i
τ(a)(k(ki1Ii)) =

∑
i
kkiτ(a)1Ii,

for all i. Then (ka)f = k(af) = a(kf).

Now, we introduce a norm for Sτ (IΛ) such that it is a normed Λ-module. To do this,
we firstly recall the definition of σ-algebras.

Definition 4.7. Let S be a set and P (S) the power set of S, that is, P (S) is the set of
all subsets of S. A σ-algebra is a subset A of P (S) satisfying the following conditions:

(1) ∅ and S lie in A;
(2) for any X ∈ A, the complement set Xc := S\X of X lies in A;
(3) for any X1, . . . , Xn . . . ∈ A, the union

⋃∞
i=1Xi is an element in A.

For a class C of some sets lying in P (S), we call A is a σ-algebra generated by C if A is
the minimal σ-algebra containing C.

Let Σk be the σ-algebra generated by {(a, b)k, [a, b)k, (a, b]k, [a, b]k | a � b}, and let
µ : Σk → R≥0 be a measure such that µ({k}) = 0 holds for any k ∈ k, that is, µ is a
function satisfying the following conditions:

(1) µ(∅) = 0;
(2) µ(

⋃
i∈NXi) =

∑
i∈N µ(Xi) holds for all sets X1, X2, . . . satisfying Xi ∩ Xj = ∅

(i 6= j).

Any two functions f and g in S(IΛ) are called equivalent if

µ({kkk = (k1, . . . , kn) ∈ k
⊕n | f(kkk) 6= g(kkk)}) = 0.

The equivalent class containing f is written as [f ]. Then we obtain an epimorphism

S(IΛ)→ S(IΛ) := {[f ] | f ∈ S(IΛ)}

sending each function to its equivalent classes. It is easy to see that the kernel of the
above epimorphism is [0], then we have

S(IΛ) ∼= S(IΛ)/[0].
0
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For simplification, we do not differentiate between two equivalent functions under the
above isomorphism. Therefore, we treat S(IΛ) and the quotient S(IΛ) equivalently.

Lemma 4.8. Let τ : Λ → k be a homomorphism between two k-algebras. Then the
Λ-module Sτ (IΛ) with the map

‖ · ‖p : Sτ (IΛ)→ R≥0, f =

t∑

i=1

ki1Ii 7→

( t∑

i=1

(|ki|µ(Ii))
p

) 1
p

is normed.

Proof. Let f be an arbitrary function lying in S(IΛ). It is trivial that ‖f‖p is non-

negative. Let a be an arbitrary element in Λ and assume f =
∑t

i=1 ki1Ii. We have

‖af‖p =
∥∥∥

t∑

i=1

τ(a)ki1Ii

∥∥∥
p
=

( t∑

i=1

|τ(a)ki|
pµ(1Ii)

p
) 1

p

= |τ(a)| ·
( t∑

i=1

|ki|
pµ(1Ii)

p
) 1

p

= |τ(a)| · ‖f‖p

which satisfies the formula (4.1) for the case (Λ′, ‖ · ‖2) = (k, | · |). In particular,
if ‖f‖p = 0, then so is (|ki|µ(Ii))

p = 0 for all i, and we have |ki| = 0 in the case
for µ(Ii) 6= 0. If µ(Ij) = 0 holds for some j ∈ J (⊆ {1, 2, . . . , t}), then we have
f =

∑
j∈J kj1Ij . Clearly,

µ({x ∈ IΛ | f(x) 6= 0}) =
∑

j∈J

µ(Ij) = 0,

that is, f = 0 in treating S(IΛ) and the quotient S(IΛ) equivalently. Thus, ‖f‖p = 0 if
and only if f = 0.
Next, we prove the the triangle inequality. For two arbitrary functions f =

∑
i ki1Ii

and g =
∑

j lj1I′j , we have

f + g =
∑

i
ki1Ii\

⋃
j I

′
j
+
∑

j
lj1I′

j
\
⋃

i Ii
+

∑

Ii∩I′j 6=∅

(ki1Ii∩I′j + lj1Ii∩I′j ) (4.4)

by Ii ∩ Iı = ∅ (∀i 6= ı) and I ′j ∩ I
′
 = ∅ (∀j 6= ). Then we can compute the norm of

f + g by (4.4) as the following formula:

‖f + g‖p = (R +G+B)
1
p ,

where

R =
∑

i
|ki|

pµ
(
Ii
∖⋃

j
I ′j
)p
;

G =
∑

j
|lj|

pµ
(
I ′j
∖⋃

i
Ii
)p
;

B =
∑

Ii∩I′j 6=∅

(|ki|
p + |lj|

p)µ(Ii ∩ I
′
j)
p.

On the other hand, we have the following inequality by the discrete Minkowski inequal-
ity:

‖f‖p + ‖g‖p =

(∑
i
|ki|

pµ(Ii)
p

) 1
p

+

(∑
j
|li|

pµ(I ′i)
p

) 1
p

≥

(∑
i
|ki|

pµ(Ii)
p +

∑
j
|li|

pµ(I ′i)
p

) 1
p

=: S. (4.5)

0
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Since, by the definition of measure, µ(X ∪ Y ) = µ(X) + µ(Y ) holds for any X, Y with
X ∩ Y = ∅, we obtain

µ(X ∪ Y )p ≥ µ(X)p + µ(Y )p, (4.6)

then
µ(Ii)

p ≥ µ
(
Ii\

⋃
j
I ′j
)p

+ µ
(
Ii ∩

⋃
j
I ′j
)p
.

Thus,
∑

i
|ki|

pµ(Ii)
p ≥

∑
i
|ki|

pµ
(
Ii\

⋃
j
I ′j
)p

+
∑

i
|ki|

pµ
(
Ii ∩

⋃
j
I ′j
)p

= R +
∑

i
|ki|

p

( ∑
j

Ii∩I′j 6=∅

µ(Ii ∩ I
′
j)

)p

(4.6)
≥ R +

∑

Ii∩I′j 6=∅

|ki|
pµ(Ii ∩ I

′
j)
p. (4.7)

Similarly,
∑

j
|lj|

pµ(I ′j)
p ≥ G+

∑

I′j∩Ii 6=∅

|lj |
pµ(I ′j ∩ Ii)

p. (4.8)

Notice that∑

Ii∩I′j 6=∅

|ki|
pµ(Ii ∩ I

′
j)
p +

∑

I′j∩Ii 6=∅

|lj|
pµ(I ′j ∩ Ii)

p =
∑

Ii∩I′j 6=∅

(|ki|
p + |lj|

p)µ(Ii ∩ I
′
j)
p = B,

then (4.7)+(4.8) induces Sp ≥ R +G+B. Thus, the triangle inequality ‖f‖p+‖g‖p ≥
‖f + g‖p holds. �

5. Two categories

Let dimk Λ = n, and letN be a normed Λ-module equipped with two additional pieces
of data: an element v ∈ N such that ‖v‖ ≤ µ(IΛ), and a continuous Λ-homomorphism
δ : N⊕p2n → N . Here, ⊕p denotes the direct sum of 2n Λ-modules X1, . . . , X2n with the
norm defined as follows:

‖ · ‖p :
2n⊕

i=1

p Xi → R≥0, (x1, x2, . . . , x2n) 7→

((
µ(I)

µ(IΛ)

)n 2n∑

i=1

‖xi‖
p

)1
p

.

5.1. The categories Norp and A p. Let Norp be a class of triples which are of the
form (N, v, δ), where N is a normed Λ-module, v ∈ N is an element with ‖v‖p ≤ µ(IΛ)
and δ : N⊕p2n → N is a Λ-homomorphism satisfying δ(v, v, . . . , v) = v such that for

any Cauchy sequence {xi}i∈N ∈ N̂⊕p2n ∼= N̂⊕p2n , the commutativity

lim←−δ(xi) = δ(lim←−xi) (5.1)

of the inverse limit and the Λ-homomorphism holds. For any two triples (N, v, δ)
and (N ′, v′, δ′) in Norp, we define the morphism (N, v, δ) → (N ′, v′, δ′) to be the Λ-
homomorphism θ : N → N ′ with θ(v) = v′ such that the following diagram

N⊕p2n δ //

θ⊕2n=




θ
. . .

θ





2n×2n
��

N

θ

��
N ′⊕p2n

δ′
// N ′

0
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commutes, that is, for any (v1, . . . , v2n) ∈ N
⊕p2n , θ(δ(v1, . . . , v2n)) = δ′(θ(v1), . . . , θ(v2n)).

Then it is easy to check that Norp is a category.

Lemma 5.1. Let

(1) ξ be an element in I = [a, b]k with a ≺ ξ ≺ b such that there exists an element
ξ with a ≺ ξ ≺ b such that the order preserving linear bijections κa : I→ [a, ξ]k
and κb : I→ [ξ, b]k exist,

(2) 1 be the identity function 1IΛ : IΛ → {1},
(3) γξ be the map given in (3.2),
(4) τ : Λ→ k be the homomorphism of k-algebras given in Lemma 4.8.

Then the following statements hold.

(a) γξ(1, 1, · · · , 1) = 1;
(b) γξ is a Λ-homomorphism.

First, we provide a remark for the above lemma.

Remark 5.2. Indeed, (Sτ (IΛ), 1, γξ) is an object in the category Norp. However,
Lemma 5.1 points out that γξ(1, 1, · · · , 1) = 1 and γξ is a Λ-homomorphism. Thus, we
need to show that the commutativity of the inverse limit and γξ holds. We will prove
this result in the following content, as shown in Lemma 5.5.

Next, we prove Lemma 5.1.

Proof. (a) We have that Sτ (IΛ) is a normed Λ-module by Lemma 4.8, and γξ is a k-
linear map by Lemma 3.6. The formula γξ(1, . . . , 1) = 1 can be directly induced by
the definition of γξ.
(b) Take λ ∈ Λ, f ∈ S(IΛ) and let (ki)i, 1 and (δi)i be an arbitrary element (k1, . . . , kn)

in S(IΛ)⊕2n , the identity function 1κδ1 (I)×···×κδn (I) and the n-multiple (δ1 × · · · × δn),
respectively. Then we have

γξ(λ · f)((ki)i)

=
∑

(δi)i

1 · (τ(λ)f)(δi)i((κ
−1
δi
(ki))i)

= τ(λ)γξ(f)((ki)i) (similar to Lemma 3.6)

= λ · γξ(f)((ki)i).

Thus γξ is a Λ-homomorphism. �

Let A p denote a class of triples which are of the form (N̂, v, δ̂), where N̂ is a Banach Λ-

module (see Definition 4.6), v ∈ N̂ is an element with ‖v‖p ≤ µ(IΛ) and δ : N̂⊕p2n → N̂

is a Λ-homomorphism satisfying δ̂(v, v, . . . , v) = v. Obviously, A
p is a full subcategory

of Norp.

5.2. The triple (Sτ (IΛ), 1, γξ). Let (N, v, δ) be an object in Norp and N̂ the comple-

tion of the Λ-module N . Then N̂ , as a k-linear space, is a Banach space which is a
Banach Λ-module. And, naturally, we obtain the Λ-homomorphism

δ̂ : N̂⊕p2n → N̂

induced by the Λ-homomorphism δ. Furthermore, we have that (N̂ , v, δ̂) is also an
object in Norp, and there is a naturally embedding morphism

emb : (N, v, δ) →֒ (N̂, v, δ̂)

which is induced by N ⊆ N̂ .
0
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Notation 5.3. Keep the notations ξ =: ξ11, κa, κb, 1, γξ and τ as in Lemma 5.1. Then
ξ11 divides I =: I(01) to two subsets [a, ξ11]k =: I(11) and [ξ11, b]k =: I(12). Next, let
ξ22 = ξ11 (= ξ), and denote by ξ21 and ξ23 the two elements in IΛ such that

• a ≺ ξ21 = κaκa(b) = κaκb(a) = κbκa(a) = κa(ξ11) ≺ ξ22;
• ξ22 ≺ ξ23 = κbκb(a) = κbκa(b) = κbκa(b) = κbξ11 ≺ b.

Then IΛ is divided to four subsets which are of the form I(2t) = [ξ2t, ξ2 t+1]k (0 ≤ t ≤ 3)
by a = ξ20 ≺ ξ21 ≺ ξ22 ≺ ξ23 ≺ ξ24 = b. Repeating the above step t times, we obtain a
sequence of 2t − 1 elements lying in IΛ

a = ξt0 ≺ ξt1 ≺ ξt2 ≺ · · · ≺ ξt2t = b,

all 2t subsets which are of the form I(t s+1) = [ξts, ξt s+1]k, and 2t order preserving
bijections κξts from I(t s+1) to I(01).
For any family of subsets (I(uivi))1≤i≤n (1 ≤ vi ≤ 2ui), we denote by 1(uivi)i the

function

1(uivi)i := 1IΛ

∣∣∣∏n
i=1 I

(uivi) : IΛ → {0, 1}, x 7→

{
1, x ∈

∏n
i=1 I

(uivi);

0, otherwise,

where I(uivi) ∼= I(uivi)×{bi} ⊆ IΛ holds for all i and BΛ = {bi | 1 ≤ i ≤ n} is the k-basis
of Λ.
Let Eu be the set of all step functions constant on each of

∏n
i=1 I

(uivi) (1 ≤ vi ≤ 2ui

for all i), that is, every step function in Eu is of the form
∑

(uivi)i

k(uivi)i1(uivi)i ,

where each k(uivi)i lies in k, the number of summands is (2u)n = 2un, and each (uivi)i
corresponds to the Cartesian product

∏n
i=1 I

(uivi). Then it is easy to check that each En
is a normed submodule of S(IΛ), and Eu ⊆ Eu+1 because each step function constant
on each of I(uv) is equivalent to a step function constant on each of I(u+1 v). Thus,

k ∼= E0 ⊆ E1 ⊆ . . . ⊆ Et ⊆ . . . ⊆ S(IΛ) ⊆ Ŝ(IΛ).

Moreover, for any I(uv) = [ξu v−1, ξuv]k, we have two cases (i) ξuv � ξ and (ii) ξ � ξu v−1

by the definition of Eu. Therefore, we obtain a map

p : {I(uv) | u ∈ N} → {a, b}, I(uv) 7→

{
a, I(uv) lies in case (i);

b, I(uv) lies in case (ii).

Now we use the above map to prove the following lemma.

Lemma 5.4. The map γξ : S(IΛ)⊕p2n → S(IΛ) induces the following k-linear map

γξ : E
⊕p2n

u

∼=
−→Eu+1

which is an isomorphism of Λ-modules.

Proof. The k-linear space Eu is a Λ-module, where Λ× Eu → Eu is defined by

(a, f =
∑

i 1 · 1Ii) 7→ a · f =
∑

i τ(a) · 1Ii.

Then it is easy to see that γξ is a Λ-homomorphism. Since Ker(γξ) = 0, we have γξ is
injective. Next, we prove that it is surjective.
Any step function f : k⊕n → k lying in Eu+1 can be written as

f(k1, . . . , kn) =
∑

(uivi)i

fi =
∑

(ω1,...,ωn)∈{a,b}×···×{a,b}

f(ω1,...,ωn)

0
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where

• fi = k(uivi)i1(uivi)i ;
•

f(ω1,...,ωn)(k1, . . . , kn) =
∑

Πn
i=1p(I

(uivi))=(ω1,...,ωn)

fi,

thus, the number of all summands of it is (2u)n = 2un;
• the number of all summands of

∑
(ω1,...,ωn)∈{a,b}×···×{a,b} is 2n (thus the number

of all summands of
∑

(uivi)i
fi is 2

un · 2n = 2(u+1)n).

Then

f̃(ω1,...,ωn)(k1, . . . , kn) = f(ω1,...,ωn)(κ
−1
ω1
(k1), . . . , κ

−1
ωn
(kn)) ∈ Eu,

and γξ sends {f(ω1,...,ωn)}(ω1,...,ωn)∈{a,b}×···×{a,b} to f by the definition of γξ, see (3.2). We
obtain that γξ is surjective. Therefore, γξ is a Λ-isomorphism. �

By Lemma 5.4, the following result holds.

Lemma 5.5. The commutativity of the inverse limit and the map γ̂ξ : Ŝτ (IΛ)⊕p2n →

Ŝτ (IΛ) induced by the completion of Sτ (IΛ) holds, that is, for any sequence {fff i}i∈N+ in

Ŝτ (IΛ)⊕p2n, if its inverse limit exists, then we have

γ̂ξ(lim←−f
ff i) = lim←−γ̂ξ(f

ff i).

Furthermore, (Sτ (IΛ), 1, γξ) is an object in Norp.

Proof. Since γξ is a Λ-isomorphism, it is clear that γ̂ξ is also a Λ-isomorphism. Then,
the commutativity of the inverse limit and the map γ̂ξ holds. Thus, for any sequence
{fff i}i∈N+ in Sτ (IΛ)⊕p2n , if its inverse limit exists, then this inverse limit is also an element

in Ŝτ (IΛ)⊕p2n , and so

γξ(lim←−f
ff i) = γ̂ξ(lim←−f

ff i)
♠
= lim←−γ̂ξ(f

ff i) = lim←−γξ(f
ff i),

where ♠ holds since γ̂ξ is a Λ-isomorphism (see Lemma 5.4). Therefore, by Lemma 5.1,
(Sτ (IΛ), 1, γξ) is an object in Norp. �

5.3. Ŝτ (IΛ) is a direct limit. Let norΛ be the category of normed Λ-modules and
Λ-homomorphisms between them. Then it is easy to check that all Eu are objects in
norΛ. Furthermore, for any u ≤ v, we have a Λ-homomorphism ϕuv : Eu → Ev which is
induced by Eu ⊆ Ev. Thus we obtain a direct system ((Ei)i∈N, (ϕuv)u≤v) in norΛ over
N. Let BanΛ be the category of Banach Λ-modules and continuous Λ-homomorphisms
between them. Then BanΛ is a full subcategory of norΛ, and so, naturally, we obtain a
direct system ((Ei)i∈N, (ϕuv)u≤v) in BanΛ if Λ is a complete k-algebra.
The following lemma establishes the relation between En and S(IΛ).

Lemma 5.6. Let Λ be a complete k-algebra. Consider the category BanΛ and take

(αi : Ei → Ŝτ (IΛ))i∈N, where every αi is the embedding given by Ei ⊆ Ŝτ (IΛ). Then

lim−→Ei
∼= Ŝτ (IΛ).

(Note that we assume that all morphisms in Ban(Λ) are continuous, which ensures
the commutativity lim←−ϑ(xi) = ϑ(lim←−xi) between the inverse limit and any morphism

starting from Ŝτ (IΛ).)
0
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Proof. Let X be an arbitrary object in norΛ such that there is (fi : Ei → X)i∈N

satisfying fiϕij = fj for all i ≤ j. Then we can find the Λ-homomorphism θ : Ŝτ (IΛ)→
X in the following way.

For any x ∈ Ŝτ (IΛ), there exists a sequence {xt}t∈N in
⋃
iEi such that {‖xt−x‖p}t is

a monotonically decreasing sequence of positive real numbers. Then we have lim←−{‖xt−

x‖p}t = 0 by Example 2.4 which induces lim←−xt = x. Since αi, αj and ϕij (∀i ≤ j) are

Λ-homomorphisms induced by “⊆” (thus they are k-linear maps induced by “⊆”) and
every xt has a preimage in some Eu(t), then Λ-homomorphisms (fi)i∈N send {xt}t∈N to a
sequence {fu(t)(xt)}t∈N in X . By the completeness of X , lim←−fu(t)(xt) ∈ X holds. Define

θ(x) = lim←−fu(t)(xt) = lim←−f |Eu(t)
(xt) = lim←−f(xt),

where f is the map lim←−Eu → X induced by the direct limit of ((Ei)i∈N, (ϕuv)u≤v). Then

one can check that θ is well-defined and is a Λ-homomorphism making the following
diagram commute.

Ŝτ (IΛ)
θ //❴❴❴❴❴❴❴ X

Ei

αi

bb❊❊❊❊❊❊❊❊❊ fi

??���������

ϕij(i�j)

��
Ej

αj

RR

fj

NN

Next, we show that the existence of θ is unique. Assume that θ′ is also a Λ-

homomorphism with θ′αi = fi for all i. Then for any x ∈ Ŝτ (IΛ), taking the sequence
{xt}t∈N in

⋃
iEi satisfying lim←−xt = x, we have

θ′(x) = θ′
(
lim←−αi(xt)

)
= lim←−θ

′(αi(xt)) = lim←−fi(xt) = lim←−θ(αi(xt)) = θ
(
lim←−αi(xt)

)
= θ(x),

that is, θ = θ′. Therefore, by the definition of direct limits, we have lim−→Ei
∼= Ŝτ (IΛ). �

6. The A p-initial object in Norp

Let C be a category. Recall that an object O in C is an initial object if for any object
Y we have HomC(O, Y ) contains only one morphism. Obviously, if C has initial objects,
then the initial object is unique up to isomorphism. Let D be a full subcategory of C.
An object C ∈ C is called a D-initial object if it is a subobject of the initial object in
D, that is, there is an object C ′ in D such that the following conditions hold:

• there is a monomorphism from C to C ′;
• for any D ∈ D, HomD(C

′, D) contains a unique morphism.

It is trivial that an initial object in C is a C-initial object.

Let Λ is a complete k-algebra. In this section, we show that (Ŝτ (IΛ), 1, γ̂ξ) is an
A p-initial object in Norp. The proof is divided to two parts: (1) there is at least one

morphism from (Ŝτ (IΛ), 1, γ̂ξ) to any object in A p; (2) the above morphism is unique.

6.1. The existence of morphism from (Ŝτ (IΛ), 1, γ̂ξ). In this subsection we show

that HomA p((Ŝτ (IΛ), 1, γ̂ξ), (V, v, δ)) is not empty for every object (V, v, δ) in A
p.

Lemma 6.1. For any object (V, v, δ) ∈ A p, we have

HomA p((Ŝτ (IΛ), 1, γ̂ξ), (V, v, δ)) 6= ∅.
0
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Proof. For each u ∈ N, consider the map θn : En → V as follows:

(i) θ0 : E0 → V is a map induced by the k-linear map k→ V sending 1 to v (note
that E0

∼= k). Then one can check that θ is a Λ-homomorphism.
(ii) θu+1 is induced by θu through the composition

θu+1 :=

(
Eu+1

γ−1
ξ

−−−−→E⊕p2n

u

θ⊕2n
u

−−−−→V ⊕p2n
δ

−−−−→V

)
,

where the inverse γ−1
ξ of the map γξ is given in Lemma 5.4.

Notice that γ−1
ξ (f) ∈ Eu−1 for any f ∈ Eu ⊆ Eu+1, then for the case u = 0, we have

that f = k1E0 is a constant defined on E0, and

θ1(f) = δ(θ⊕2n

0 (γ−1
ξ (f))) = δ(θ0(k1E0), θ0(k1E0), . . . , θ0(k1E0)) = kv,

that is, θ1 is an extension of θ0. It yields θ1(1E1) = v by θ0(1E0) = v (see (i)). Further-
more, we can check that θu+1 is an extension of θu and

θu(1Eu
) = v (∀u ∈ N) (6.1)

by induction, that is, the following diagram

lim−→Ei V

Eu
Q1

αu

cc●●●●●●●● θu

==⑤⑤⑤⑤⑤⑤⑤⑤⑤

� _

αu u+1

��
Eu+1
Q1

αu+1

SS

θu+1

MM

commutes, where αi : Ei → lim−→Ei and αij : Ei → Ej (i ≤ j) are the embeddings

induced by Ei ⊆ lim−→Ei and Ei ⊆ Ej , respectively. Then, for any i ≤ j, there is a

unique Λ-homomorphism θ such that the following diagram

lim−→Ei
θ //❴❴❴❴❴❴❴ V

Ei
P0

αi

bb❉❉❉❉❉❉❉❉ θi

??��������

� _

αij

��
Ej
Q1

αj

RR

θj

NN

commutes. By Lemma 5.6, we have that θ : lim−→Ei
∼= Ŝτ (IΛ)→ V is a Λ-homomorphism

in HomΛ(Ŝτ (IΛ), V ).
Next, we prove that θ is a morphism in Norp. First of all, we have

θ(1) = lim←−θ|Ei
(1Ei

) = lim←−θ(αi(1Ei
)) = lim←−θi(1Ei

)
(6.1)
=== lim←−v = v.

In the following, we show that the following diagram

Ŝτ (IΛ)⊕p2n
γξ //

θ⊕2n

��

Ŝτ (IΛ)

θ

��
V ⊕p2n

δ
// V

(6.2)

0
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is commutative. Notice that each fff = (f1, . . . , f2n) ∈ Ŝτ (IΛ)⊕p2n can be seen as the

inverse limit lim←−f
ff i of some sequence {fff i = (f1i, . . . , f2ni)i∈N} in

⋃
u∈NE

⊕p2n

u , where

fji ∈ Eui (1 ≤ j ≤ 2n), ui ∈ N, such that for any i ≤ j, we have ui ≤ uj. Thus,

naturally, we need consider the following diagram (eui : Eui → Ŝτ (IΛ) is the embedding

induced by Eui ⊆ Ŝτ (IΛ)):

E
⊕p2n

ui

γξ

∣∣
E
⊕p2n

ui

∼=
//

� _

e⊕2n
ui ��

θ⊕2n
ui

%%

Eui+1� _

eui+1

��

θui

ww

Ŝτ (IΛ)⊕p2n
γξ //

θ⊕2n

��

Ŝτ (IΛ)

θ

��
V ⊕p2n

δ
// V.

Since

θ(γξ(fff)) = lim←− θ(γξ(e
⊕2n

ui
(fff i)))

= lim←− θ(eui+1(γξ
∣∣
E⊕p2n (fff i))) (γξe

⊕2n

ui
= eui+1γξ

∣∣
E⊕p2n )

= lim←− θui(γξ
∣∣
E⊕p2n (fff i)) (θe = θui)

= lim←− δ(θ⊕2n

ui
(fff i)) (θuiγξ

∣∣
E⊕p2n = δθ⊕2n

ui
)

= lim←− δ(θ⊕2n(e⊕2n

ui
(fff i))) (θ⊕2n

u = θ⊕2ne⊕2n

ui
)

= δ(θ⊕2n(lim←− e⊕2n

ui+1(fff i))) = δ(θ⊕2n(fff)), (by (5.1))

the assertion follows. �

6.2. The uniqueness of morphism from (Ŝτ (IΛ), 1, γ̂ξ). Now, we show that, for any

object (V, v, δ) in A p, if the morphism in the category A p from (Ŝτ (IΛ), 1, γ̂ξ) exists,
then it is unique.

Lemma 6.2. Let (V, v, δ) ∈ A p be an object in A p. If

HomA p((Ŝτ (IΛ), 1, γ̂ξ), (V, v, δ)) 6= ∅,

then HomA p((Ŝτ (IΛ), 1, γ̂ξ), (V, v, δ)) contains a unique morphism.

Proof. Let θ and θ′ be two Λ-homomorphisms from (Sτ (IΛ), 1, γξ) to (V, v, δ) in A p.
Then θ(1) = v = θ′(1). Since θ and θ′ are maps in A

p, the square

E
⊕p2n

u

γξ|
E
⊕2n
u

∼=
//

(θ|Eu−θ
′|Eu )

⊕2n

��

Eu+1

θ|Eu+1
−θ′|Eu+1

��
V ⊕p2n

δ
// V

commutes. Then for any f ∈ Eu+1, we have

(θ|Eu+1 − θ
′|Eu+1)(f) = (δ ◦ (θ|Eu

− θ′|Eu
)⊕2n ◦ (γξ|E⊕2n

u
)−1)(f),

that is, θ|Eu+1− θ
′|Eu+1 is determined by θ|Eu

− θ′|Eu
. Consider the case for u = 0, since

θ|E0 and θ′|E0 : E0 → V are defined by θ0(1E0) = v, we have

(θ|E0 − θ
′|E0)(k1E0) = k(θ|E0(1E0)− θ

′|E0(1E0)) = k(v − v) = 0.
0
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Therefore θ|Eu
− θ′|Eu

= 0 for all u ∈ N by induction.

On the other hand, consider the embeddings eu : Eu → Ŝτ (IΛ) and euv : Eu → Ev
(u ≤ v) induced by “⊆” and the direct system

(
E⊕p2n

u , (e⊕2n

u : E⊕p2n

u → Ŝτ (IΛ)
⊕p2n)u∈N

)
,

we have the following commutative diagram

Ŝτ (IΛ)⊕p2n V

E
⊕p2n

i

S3

e⊕2n

i

ee❑❑❑❑❑❑❑❑❑❑

>>⑤⑤⑤⑤⑤⑤⑤⑤⑤θ|E
i

−
θ
′ |E i

(=
0)

� _

e⊕2n

ij
��

E
⊕p2n

ij

Q1

e⊕2n

j

UU

θ|Ej
−θ′|Ej

=0.

MM

Since

lim−→E
⊕p2n

i
∼= (lim−→Ei)

⊕p2n ∼= Ŝτ (IΛ)
⊕p2n ,

there is a unique Λ-homomorphism φ : Ŝτ (IΛ)⊕p2n → V such that the following diagram

Ŝτ (IΛ)⊕p2n
φ //❴❴❴❴❴❴❴❴❴ V

E
⊕p2n

i

S3

e⊕2n

i

ee❑❑❑❑❑❑❑❑❑❑

>>⑤⑤⑤⑤⑤⑤⑤⑤⑤θ|E
i

−
θ
′ |E i

(=
0)

� _

e⊕2n

ij
��

E
⊕p2n

ij

Q1

e⊕2n

j

UU

θ|Ej
−θ′|Ej

=0

MM

commutes. Since (θ−θ′)e⊕2n

u = θ|Ei
−θ′|Ej

, we know that the case for φ = θ−θ′ making
the above diagram commute. On the other hand, the case for φ = 0 making the above
diagram commute. Thus θ − θ′ = 0 and θ = θ′. �

6.3. The A p-initial object in Norp. Now, we can prove the following result of this
paper.

Theorem 6.3. The triple (Sτ (IΛ), 1, γξ) is an A p-initial object in Norp.

Proof. For any object (V, v, δ) in A p, the existence of morphisms in HomA p((Ŝτ (IΛ), 1, γ̂ξ),
(V, v, δ)) is proved in Lemma 6.1, and its uniqueness is proved in Lemma 6.2. Thus,

the triple (Ŝτ (IΛ), 1, γ̂ξ), as an object in A p, is an initial object in A p. It follows that
(Sτ (IΛ), 1, γ̂ξ) is an A p-initial object in Norp. �

We give a remark for Theorem 6.3.

Remark 6.4. For any object (V, v, δ) in A p, there is a unique morphism

h : (Sτ (IΛ), 1, γξ)→ (V, v, δ)
0
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in Norp, which can be extended to ĥ : (Ŝτ (IΛ), 1, γ̂ξ) → (V, v, δ), In other words, if
there exists a morphism h making the diagram

(Sτ (IΛ), 1, γξ)
h //

⊆
��

(V, v, δ)

(Ŝτ (IΛ), 1, γ̂ξ)
ĥ

55❦❦❦❦❦❦❦❦❦❦❦❦❦

commute, then the existence of h is guaranteed to be unique.

7. The categorization of Lebesgue integration

Take k = (k, | · |,�) to be an extension of R. Recall the symbols given in Notation
5.3, any step function f in Eu can be written as

f =
∑

(uivi)i

k(uivi)i1(uivi)i .

We define the map Tu : Eu → k by

Tu(f) =
∑

(uivi)i

k(uivi)µ

(∏
i
I(uivi)

)
(7.1)

(note that if all coefficients k(uivi) equal to 1, then Tu(f) = µ(Eu)).

Then the Λ-isomorphism γξ shown in Lemma 5.4 points out the following fact: there is
a map mu : k

⊕p2n → k such that the following diagram

E
⊕p2n

u

γξ //

T⊕2n
u

��

Eu+1

Tu+1

��
k
⊕p2n

mu

// k

(7.2)

commutes. Indeed, for the function fk =
k

µ(IΛ)
1IΛ with k ∈ k, we have

Tu(fk) = Tu(
k

µ(IΛ)
1IΛ) =

k
µ(IΛ)

Tu(1IΛ) = k

by (7.1). Then for any kkk = (k1, . . . , k2n) ∈ k
⊕p2n, fffkkk = (fk1 , . . . , fk2n ) ∈ E

⊕p2n

u is a
preimage of kkk under the k-linear map T⊕2n

u . We define

mu(kkk) = Tu+1(γξ(fffkkk)).

It is easy to see that mu is a k-linear map. In particular, for the constant function 1IΛ

given by the measure µ(IΛ) of IΛ, we obtain that fµ(Eu) is a preimage of µ(IΛ) ∈ k, and
then

mu(µ(IΛ), . . . , µ(IΛ)) = Tu+1γξ(1IΛ, . . . , 1IΛ) =
∑

(uivi)i

1 · µ

(∏
i
I(uivi)

)
= µ(IΛ).

Lemma 7.1. Let k = (k, | · |,�) be an extension of R. Then Tu : Eu → k is a
Λ-homomorphism.

Proof. Note that k is a Λ-module given by

Λ× k→ k, (λ, k) 7→ λ · k := τ(λ)k
0
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For arbitrary two elements λ1, λ2 ∈ Λ and arbitrary two functions f =
∑

i ki1Ii, g =∑
j k

′
j1I′j ∈ Eu, we have

Tu(λ1 · f + λ2 · g) = Tu

(∑
i
τ(λ1)ki1Ii +

∑
j
τ(λ2)k

′
j1I′j

)

= τ(λ1)Tu

(∑
i
ki1Ii

)
+ τ(λ2)Tu

(∑
j
k′j1I′j

)

= τ(λ1)Tu(f) + τ(λ2)Tu(g)

= λ1 · Tu(f) + λ2 · Tu(g).

�

Lemma 7.2. Let k = (k, | · |,�) be an extension of R and let mu be the k-linear map
given in the diagram (7.2). Then mu is a Λ-homomorphism.

Proof. We can prove that mu is a Λ-homomorphism by using an argument similar
to proving that mu is a k-linear mapping (note that this proof needs to use Lemma
7.1). �

Remark 7.3. Since E0 ⊆ E1 ⊆ · · · ⊆ Eu ⊆ · · · ⊆ Sτ (IΛ) ⊆ Ŝτ (IΛ) = lim−→Ei, we have

that µ is independent on u. Thus, we can use m to present all maps mi (i ∈ N) because
m0 = m1 = m2 = . . ..

Proposition 7.4. Let k = (k, |·|,�) be an extension of R. Then the triple (k, µ(IΛ), m)
is an object in Norp. Furthermore, since Λ is complete, so is k. Then k⊕p2n is a Banach
Λ-module, and so (k, µ(IΛ), m) is an object in A p.

Proof. It follows from Lemmas 7.1 and 7.2 and Remark 7.3. �

The following proposition shows that Tu satisfies the triangle inequality.

Proposition 7.5. If k = (k, | · |,�) is an extension of R, then for any f ∈ Eu, the
following inequality holds for all u ∈ N.

|Tu(f)| ≤ Tu(|f |). (7.3)

Proof. Assume that f =
∑

i ki1Ii ∈ Eu, where Ii ∩ Ij = ∅ for all i 6= j. Then
|f | = |

∑
i ki1Ii| is also a step function in Eu, and we have

Tu(|f |) = Tu

(∣∣∣
∑

i
ki1Ii

∣∣∣
)

(⋆)
== Tu

(∑
i
|ki|1Ii

)

=
∑

i
|ki|µ

(∏
i
I(uivi)i

)

≥
∣∣∣
∑

i
kiµ

(∏
i
I(uivi)i

)∣∣∣ = |Tu(f)|,
where (⋆) is given by Ii ∩ Ij = ∅. �

Theorem 7.6. If k = (k, | · |,�) is an extension of R, then there exists a unique
morphism

T : (Sτ (IΛ), 1, γξ)→ (k, µ(IΛ), m)

in HomNorp((Sτ (IΛ), 1, γξ), (k, µ(IΛ), m)) such that the diagram

(Sτ (IΛ), 1, γξ)
T //

⊆
��

(k, µ(IΛ), m)

(Ŝτ (IΛ), 1, γ̂ξ)
T̂
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commutes, where T̂ is the morphism in HomA p((Ŝτ (IΛ), 1, γ̂ξ), (k, µ(IΛ), m)) whose ex-

istence is unique. Furthermore, T̂ is given by the direct limit lim−→Ti : lim−→Ei → k.

Proof. Denote by αij : Ei → Ej (i ≤ j) and αi : Ei → lim−→Ei the monomorphism

induced by Ei ⊆ Ej ⊆ lim−→Ei. Then there is a unique morphism lim−→Ti : lim−→Ei → k such

that the following diagram

lim−→Ei
lim
−→

Ti
//❴❴❴❴❴❴❴ k

Ei
P0

αi

bb❉❉❉❉❉❉❉❉ Ti

@@��������

� _

αij

��
Ej
Q1

αj

RR

Tj

NN

commutes. By Lemma 5.6, we have lim−→Ei
∼= Ŝτ (IΛ), then lim−→Ti induces a morphism

in A
p from (Sτ (IΛ), 1, γξ) to (k, µ(IΛ), m). Theorem 6.3 and its remark show that

lim−→Ti = T̂ and T = T̂ |Sτ (IΛ). �

Definition 7.7. Let k be a field with the norm | · | : k → R≥0 and the total ordered
“�”, and let f : Λ→ k be a function in Sτ (IΛ). If k is an extension of R = (R, | · |,≤),
then we call that f is a integrable function on IΛ and whose integration, denoted by∫
IΛ
fdµ, is defined by ∫

IΛ

fdµ := T̂ (f).

By using the limit lim−→Ti : lim−→Ei → k given in Theorem 7.6, the formula (7.1), Lemma

7.1 and Proposition 7.5 show that ∫

IΛ

1dµ = µ(IΛ),

∫

IΛ

(λ1 · f1 + λ2 · f2)µ = λ1 ·

∫

IΛ

f1µ+ λ2 ·

∫

IΛ

f2µ (λ1, λ2 ∈ Λ)

and ∣∣∣∣
∫

IΛ

fdµ

∣∣∣∣ ≤
∫

IΛ

|f |dµ,

respectively.
In the subsection 8.1 of Section 8, we point out that Theorem 7.6 and Definition 7.7

provide a categorization of Lebesgue integration.

8. Applications

8.1. Lebesgue integration. Take k = R, (Λ,≺, ‖ · ‖Λ) = (R,≤, ‖ · ‖R), BR = {1}
and n : BR → {1} ⊆ R≥0. Then dimR = 1, R is a normed R-algebra with the norm
‖ · ‖R = | · | : R → R≥0 sending each real number r to its absolute value |r|, and any
normed R-module is a normed k-linear space. Take IR = [0, 1], ξ = 1

2
, κ0(x) = x

2
,

κ1(x) =
x+1
2

and τ = idR : R→ R in this subsection. Then any object (N, v, δ) in Norp

is a triple of a normed k-module N = (N, hN , ‖ · ‖), an element v ∈ N with ‖v‖1 and
the k-linear map δ : N ⊕1 N → N , where the norm ‖ · ‖ satisfies

‖rx‖ = |τ(r)| · ‖x‖ = |r| · ‖x‖

for any r ∈ Λ = R and x ∈ N . In this case, we have the following properties for Norp.
0
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(L1) The normed k-module Sτ (IΛ) = S1R
([0, 1]) (= S for short) is a k-linear space of

all elementary simple functions which are of the form

f =
t∑

x=i

ki1[xi,yi],

where [xi, yi] ∩ [xj , yj] = ∅ for any i 6= j, and for any f(r), g(r) ∈ S, it holds
that

γ 1
2
(f, g) =

{
f(2r), 1 ≤ r < 1

2
,

g(2r − 1), 1
2
< r ≤ 1,

by the definition of γξ, see (3.2).
(L2) A p is a full subcategory, (S, 1[0,1], γ 1

2
) is an object in Norp, but is not an object

in A p because S is not complete.

(L3) Let Ŝ be the completion of S, and let γ̂ 1
2
be the map Ŝ ⊕1 Ŝ → Ŝ induced by

γ 1
2
. Then (Ŝ, 1[0,1], γ̂ 1

2
) is an object in A p.

By Theorem 6.3, we obtain the following result directly.

Corollary 8.1. The triple (S, 1[0,1], γ 1
2
) is an A p-initial object in Norp.

Remark 8.2. It follows from Theorem 6.3 that (Ŝ, 1[0, 1], γ̂ 1
2
) is an initial object in

A p, and then Corollary 8.1 holds. In [16], Leinster showed that the initial object in

A p is (Lp([0, 1]), 1[0,1], γ 1
2
). Then we obtain Lp([0, 1]) ∼= Ŝ since the uniqueness (up to

isomorphism) of initial objects in arbitrary categories.

Consider the triple (R, 1, m) of the normed R-module R, the constant function and
the map

m : R⊕p R→ R

sending (x, y) to 1
2
(x+ y). Then (R, 1, m) is an object in A p, and there are a family of

R-linear maps (Li : Ei → k)i∈N such that the diagram

Ei ⊕p Ei
γ 1
2 //

(
Li 0
0 Li

)

��

Ei+1

Li+1

��
k⊕p k mi

// k

commutes, where Ei is the set of all step function constants on each ( t−1
2i
, t
2i
), Li sends

f =
∑

i ki1[ai,bi] to
∑

i ki|bi − ai|, and m = lim−→mi. Furthermore, we have the following

result.

Corollary 8.3. There exists a unique morphism

L : (S, 1[0,1], γ 1
2
)→ (R, 1, m)

in HomNor1((S, 1[0,1], γ 1
2
), (R, 1, m)) such that the diagram

(S, 1[0,1], γ 1
2
)

L //

⊆
��

(R, 1, m)

(Ŝ, 1[0,1], γ̂ 1
2
)

L̂

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

commutes, where L̂ is the morphism in HomA p((Ŝ, 1[0,1], γ̂ 1
2
), (R, 1, m)) whose existence

is unique. Furthermore, L̂ is given by the direct limit lim−→Li : lim−→Ei → k.
0
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Proof. It is an immediate consequence of Theorem 7.6. �

Remark 8.4. The morphism L̂ induces a k-linear map sending f to L̂(f). Indeed,

L̂(f) is Lebesgue integration of f , that is,

L̂(f) =

∫ 1

0

fdµ,

where µ is the Lebesgue measure in this case, see [16, Proposition 2.2].

8.2. Cauchy-Schwarz inequality. Take k = R. In this subsection we will establish

the Cauchy-Schwarz inequality for the morphism T̂ in Norp. We need the following
lemma.

Lemma 8.5. If f ∈ Ŝτ (IΛ) is non-negative, then so is T̂ (f). That is, f ≥ 0 yields
∫

IΛ

fdµ ≥ 0.

Proof. By Ŝτ (IΛ) = lim−→Eu, there is a monotonically increasing sequence {ft}t∈N+ of

non-negative functions with ft =
∑2ut

i=1 kti1Iti ∈ Eut , such that Iti ∩ Itj = ∅ for any
i 6= j; t1 < t2 yields ut1 < ut2 and ft1 ≤ ft2 ; and f = lim−→ft. Thus, for any 1 ≤ i ≤ 2ut

and t ∈ N+, we have kti≥0, and then the following inequality

T̂ (ft) = Tut(ft) =

2ut∑

i=1

ktiµ(Iti) ≥ 0

holds. Furthermore, we obtain

T̂ (f) = lim−→Tut(ft) = lim−→T |Eut
(ft) = lim−→T (ft) ≥ 0

as required, where lim−→T (ft) = lim
t→+∞

T (ft) is the usual limit in R in analysis. �

Theorem 8.6 (Cauchy-Schwarz inequality). Let f and g be two functions lying in

Ŝτ (IΛ). Then (∫

IΛ

fg

)2

≤

(∫

IΛ

f 2dµ

)(∫

IΛ

g2dµ

)
.

Proof. Take the quadratic function

ϕ(t) = T̂ (f 2) · t2 + 2T̂ (fg) · t + T̂ (g2) (t ∈ R).

Notice that T̂ is a Λ-homomorphism, thus it is also an R-linear map. Then

ϕ(t) = T̂ (f 2 · (t1R)
2 + 2fg · (t1R) + g2)

= T̂ ((f · (t1R) + g)2).

Notice that (f · (t1R)+g)
2, written as h, is also a function defined on IΛ lying in Sτ (IΛ),

thus for any x ∈ IΛ, we have h(x) = (tf(x) + g(x))2 ≥ 0. Then ϕ(t) ≥ 0 by Lemma

8.5. It follows that the discriminant (2T̂ (fg))2 − 4T̂ (f 2)T̂ (g2) of ϕ(x) is at most zero,
that is, (∫

IΛ

fgdµ

)2

≤

(∫

IΛ

f 2dµ

)(∫

IΛ

g2dµ

)
.

�
0
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The above inequality yields the Cauchy-Schwarz inequality
(∫ 1

0

fgdµ

)2

≤

(∫ 1

0

f 2dµ

)(∫ 1

0

g2dµ

)

for Lebesgue integration if Norp satisfies the conditions (L1)–(L3) given in Subsection
8.1.
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