
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Region-aware Color Smudging
Ying Jiang, Pengfei Xu, Congyi Zhang, Hongbo Fu, Henry Lau, Wenping Wang

Abstract—Color smudge operations from digital painting software enable users to create natural shading effects in high-fidelity
paintings by interactively mixing colors. To precisely control results in traditional painting software, users tend to organize flat-filled color
regions in multiple layers and smudge them to generate different color gradients. However, the requirement to carefully deal with
regions makes the smudging process time-consuming and laborious, especially for non-professional users. This motivates us to
investigate how to infer user-desired smudging effects when users smudge over regions in a single layer. To investigate improving color
smudge performance, we first conduct a formative study. Following the findings of this study, we design SmartSmudge, a novel smudge
tool that offers users dynamical smudge brushes and real-time region selection for easily generating natural and efficient shading
effects. We demonstrate the efficiency and effectiveness of the proposed tool via a user study and quantitative analysis.

Index Terms—Smudge, Digital Painting, Shading Effects, Sketch Colorization

✦

1 INTRODUCTION

D IGITAL painting is extensively used in graphic design
and industrial fields, such as digital games, movie, and

anime industries. While many ordinary users are interested
in painting, creating high-fidelity paintings is often difficult
for novices or amateur users and time-consuming for pro-
fessional artists. Typically, a digital painting is created from
scratch in three steps (Fig. 1): first, make a sketch outlining
a desired shape; second, choose a proper color scheme and
create a flat-filled painting; third, create the final painting by
blending the colors in the flat-filled painting with smudge
or blur tools. Among these three steps, the last one is the
most challenging one [1]. While various drawing assistant
tools [2], [3], [4], [5] have been proposed to help even
novice users make desired sketches in the first step, how
to facilitate the creation of gradient-like shading effects is
lack of concern. Existing sketch colorization techniques are
able to automatically colorize sketches given user-specified
color strokes, color dots, text descriptions [6], [7], [8], [9], [10]
or reference images [11]. However, they are more suitable
for creating paintings with flat filling or cartoon/manga
shading styles that lack soft blending and detailed control
of complex shading effects.

In a digital painting process, users often repeatedly [12]
by using the smudge or blur tool [13], [14], [15]. Different
from the blur tool, which only blurs edges between different
color regions, the smudge tool not only blurs edges but also
liquefies colors along with the directions of smudge strokes,
as illustrated in Fig. 2. Although the smudge tool could be
exploited for arbitrary images, during painting, users use it
most on color regions to iteratively create desired shading
effects. With the smudge tool, users may draw strokes with
manually adjusted radii to cover parts of a painting for
smudging. However, this traditional tool is not color region-

• Y. Jiang (yingjiang@connect.hku.hk),H. Lau (henryyklau@gmail.com) are
with the University of Hong Kong. W. Wang (wenping@cs.hku.hk) is
with the University of Hong Kong and Texas A&M University.

• C. Zhang (zhcongyi@gmail.com) is with the University of British
Columbia.

• P. Xu (xupengfei.cg@gmail.com) is with Shenzhen University.
• H. Fu (hongbofu@cityu.edu.hk) is with the City University of Hong Kong.

Fig. 1. Left: a sketch drawn by a user. Middle: a flat-filled painting created
by filling colors in the sketch. Right: the final painting created by blurring
and smudging the flat-filled painting.

aware or shape boundary-aware during smudging. All areas
covered by the strokes are smudged evenly, thus often
leading to undesired artifacts. For example, intended sharp
edges might be smoothed out, or unwanted colors covered
by the strokes might mix into the blending result and thus
disturb the creation of expected shading effects (Fig. 4).

To avoid such artifacts, professionals often manually
create masks with the selection tool or decompose a painting
into multiple layers with the layer creation tool, so that
the target areas for smudging can be separated from the
other areas of the painting. Although such practice is a
conventional procedure for professionals to achieve desired
blending results, it is challenging and time-consuming for
novices. As confirmed by our formative study, frequent
switching between layers in a multi-layer mode is laborious
for users. Users found that smudging in a single layer made
it hard to fulfill natural and complex shading effects without
the help of multiple layers. Last, novice users found it hard
to select an appropriate size of a smudge brush during color
smudging.

To relieve the learning and interaction burden for users
and enable them to create complex and natural shading
effects, we propose a novel smudge tool, SmartSmudge,
which recognizes users’ intentions based on smudge paths
with respect to the regions being covered and dynamically
adjusts the brush radius to preserve color boundaries or
soft blend color regions (Fig. 8). SmartSmudge is designed
based on the following key observations. First, users tend

ar
X

iv
:2

40
5.

02
75

9v
1

 [
cs

.G
R

]
 4

 M
ay

 2
02

4

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 2. Left: the original painting and smudge strokes. Middle and Right:
the respective shading effects after a blur operation and a smudge
operation with the same strokes and the brush size is in 50 pixels.

Fig. 3. Left: hard shading effects. Right: smooth shading effects.

to smudge colors either around edges or into color regions.
Thus, the smudge paths generated by users tend to resemble
either regions or boundaries. Second, users take advantage
of masks generated from multi-layer paintings to preserve
boundaries during color smudging, while frequent switch-
ing between layers is tedious. How to keep sharp edges
and create natural shading effects at the same time without
using additional layers and masks is valuable to explore.
Our proposed tool enables users to smudge color more
accurately to create both hard shading effects and smooth
shading effects simultaneously in a single layer (Fig. 3), thus
empowering users to make creative work more efficiently
and intuitively.

We conducted a user study with 12 users (7 novice
users, 5 professional users) in two independent tasks to
validate the effectiveness and intuitiveness of our system,
which integrated the SmartSmudge tool and other auxil-
iary functions for painting, e.g., traditional smudge tool,
scaling, changing brush size, undoing, etc. In addition, we
invited 3 professional users to create showcases by using
SmartSmudge to show its creativity and expressiveness.

In sum, we make the following contributions in this
work: We conducted a formative study to investigate chal-
lenges and explore interaction technology of color smudg-
ing. Based on the findings in the formative study, we pro-
pose a color smudging algorithm, supporting dynamic size-
adaptive brushes and real-time region selection for easily
creating natural shading effects in a single layer. Then, we
implemented a prototype system based on the proposed
algorithm and evaluated its effectiveness, efficiency, and
expressiveness via a user study. We will release the code
of our tool upon acceptance of the paper.

2 RELATED WORK

2.1 Drawing Assistance Tools
Several systems assisted users in drawing a shape more
accurately by offering visual guidance [3], [5], [16], [17]
and even beautifying strokes [18], [19], [20], [21], [22], [23],
[24]. For example, ShipShape [19] and Interactive Beauti-
fication [20] recognized geometric relations of strokes first

Fig. 4. Left: natural shading effects by our proposed tool SmartSmudge.
Right: undesired shading effects caused by the traditional smudge tool.

and then beautified strokes based on these relationships.
DrawFromDrawings [24] and Real-time Draw Assistance
[21] beautified strokes by stroke interpolation and correction
vector fields, respectively. EZ-sketching [18] took advantage
of a single reference image to correct strokes locally, semi-
globally, and globally. Those works corrected shapes or
beautified strokes, while our paper focuses on how to assist
users in painting efficiently and creatively without changing
any user inputs. The Drawing Assistant [16], DrawMyPhoto
[5], and iCanDraw [3] provided users with visual tutorials
generated from a source image to guide users. However,
they still concentrated on drawing shapes rather than the
painting process. Instead of assisting humans in drawing,
several works focus on enabling robots to create paintings.
For example, Adamic et al. [25] proposed a novel general
robotic system for creating realistic pencil drawings based
on image evolution, and Karimov et al. [26] introduced a
data-driven mathematical model for artistic paint mixing.
Compared with these works, our goal is to design a novel
tool for easily adding shading effects by inferring users’
intentions from the interaction of smudge strokes and the
covered regions.

2.2 Image and Sketch Colorization

Early work in colorization transferred color from a source
image into a grey-scale image [27], [28]. Levin et al. [29]
colorized images by propagating a few user-specified color
scribbles spatially and temporally. With the advance of
artificial intelligence, an increasing number of data-driven
methods were adopted to colorize images with reference
color images [30], [31], color strokes [8], color dots [7], or
text descriptions [6], [32]. In contrast, our paper focuses on
sketch colorization by smudging instead of image coloriza-
tion.

Compared with image colorization, it is more challeng-
ing to colorize sketches lacking greyscale features. (or line
artwork) [10]. Qu et al. [9] and LazyBrush [33] propa-
gated constant colors over regions of sketches with pattern
continuity and drawing styles. Recently, machine learning
methods were applied to sketch colorization by reference
sketches [11], color strokes [34], text descriptions [35] or
color dots [10]. However, those sketch colorization ap-
proaches generate flat filling colorization by using color
information offered by users in the first step, which limited
the creativity of artwork and lacked detailed control for
creating complex shading effects. Our work concentrates
on assisting users in painting from the beginning efficiently
and intuitively, empowering users to make more creative
artwork.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

2.3 Shading, Smoothing, and Smudging
PlayfulPalette [12] and nonlinear color triads [36] allowed
users to create hard shading effects with nonlinear color
palettes. Sochorová et al. [37] integrated the Kubelka-Munk
model into the RGB color representation to more realistically
depict blended pigments in digital painting. In contrast to
these works, our work focuses on how to create smooth
shading effects. Bi et al. introduced an image flattening
method [38] based on the L1 norm to generate edge-
preserving smoothing effects. Similarly, L0 gradient mini-
mization [39], bilateral grid [40], EAP [41], and truncated
total variation [42] were adopted to smooth images. Instead
of generating smooth shading effects on an image or a
sketch, we focus on how to create smooth shading effects
on a painting.

For relatively simple shading effects, shading curves
[43], [44] might be used to cast shading effects into line
drawings directly at once. For more complex shading ef-
fects, users might create and revise them step by step by
exploiting different types of brushes, such as a smudge
brush, a blur brush, or a gradient-domain brush [45]. Since
the blur tool, in general, softens the edges between color
regions to smooth painting results, it is not suitable for
creating complex shading effects inside color regions, as
shown in Fig. 2. In contrast, the smudge tool generates
natural shading effects not only along edges of color regions
but also inside color regions [46].

Generally, the smudge tool from commercial software
has complicated parameter settings to create well-controlled
shading effects. The parameter tuning is time-consuming
and not friendly for novice users. In addition, smudg-
ing with the smudge tool without any limit easily causes
blurred color region boundaries (Fig. 4). Such effects might
sometimes be against users’ intentions. Therefore, to per-
form color smudging in desired color regions, users tend to
smudge color regions under a mask created with a selection
tool in multiple layers [13]. This overwhelming, complex
process is challenging, especially for novice users. Jr et al.
[47] proposed an edge-respecting brush spreading painting
effects according to the edges and texture of images. Lazy
Selection [48] presented a quick selection system by match-
ing user inputs with geometry rules, thus enabling users
to quickly select elements corresponding to their intention.
The Bubble Cursor [49] dynamically adjusted its selection
range based on the proximity of nearby targets, facilitating
easier area selection. Inspired by these works, we propose a
smudge tool SmartSmudge in order to allow users to create
desired natural shading effects in a single layer based on
geometry rules extracted from the edge information. Our
paper introduces a new region selection algorithm and of-
fers a dynamic size-adaptive brush, thus empowering users
to create region-aware shading effects in their desired color
regions more efficiently and intuitively.

3 FORMATIVE STUDY

We conducted a formative study to investigate users’ behav-
iors when they were using a traditional smudge tool. The
study included two tasks. The first task was to reproduce
paintings from scratch, and the second task was to repro-
duce paintings from given flat-filled paintings. The obser-

vations and feedback motivated us to devise the proposed
SmartSmudge tool.

3.1 User Study

Participants and Apparatus. We recruited 6 participants (P1
to P6) for Task 1 and 12 participants (P7 to P18) for Task
2. In Task 1: P1 to P3 were professionals or amateurs with
experiences in digital painting (P1: a professional, P2 and
P3: two amateurs); P4 to P6 were novices who were not
familiar with digital painting. P1 to P4 were familiar with
traditional painting. In Task 2: P7 to P11 were professionals,
while P12 to P18 were novices, who were not familiar with
digital painting. We provided three stylus input devices to
the participants: a Wacom digital tablet, an iPad Pro with an
Apple pencil, and a Microsoft Surface Book 3 with a Surface
Slim pen. Photoshop, Clip Studio Paint, and Procreate were
adopted to create paintings. In both tasks, the participants
could freely choose any input device. In Task 1, we offered
Clip Studio Paint, a mainstream commercial painting appli-
cation with over 30 million users, as our painting software.
In Task 2, they could freely select software for the study.

Tasks. The first task was to reproduce two target digital
paintings with rich shading effects, i.e., the cube and the jelly
cake (Fig. 5 (Left)), with a fingertip tool (for blurring and
dragging colors along the moving directions of the cursor,
like the traditional smudge tool), and multi-layer functions
provided by Clip Studio Paint. It had two configurations,
i.e., multi-layer and single-layer configurations. In the multi-
layer configuration, the participants were allowed to use the
multi-layer function provided by the software to decom-
pose a painting being edited into different parts and place
individual parts on different layers. Professional artists
have widely adopted this configuration in digital painting
creation. In the single-layer configuration, the participants
were required to reproduce the target paintings using a
single layer. In both configurations, the participants were
instructed to freely paint to reproduce each target drawing
within one hour. To facilitate the participants in creating
desired shading effects, we allowed them to pick up colors
from the target paintings directly. Before the task, we offered
each participant a warm-up session, including a 60-minute
session with a tutorial on the fingertip tool and free practice
with technical support. All the participants felt confident
in using the fingertip tool after this session. In addition,
we allowed the participants to take breaks after finishing
each drawing to avoid fatigue. Excluding the breaks and
the tutorial session, the task lasted around 2.5 hours on
average for each participant. After the task, we conducted
a 30-minute semi-structured interview with the participants
to collect their feedback on color smudging and painting.

In Task 2, we offered flat-filled paintings as the source
and reference paintings as the target. We required the partic-
ipants to paint and smudge based on the flat-filled paintings
with the traditional smudge tools, i.e., the smudge tool
in Photoshop and Procreate, and the fingertip tool in Clip
Studio Paint. The participants were allowed to choose two
of four paintings (shown in Fig. 6) and reproduce them from
the corresponding reference paintings. In addition, they
were allowed to change the brush size via shortcuts from
a keyboard and the pressure sensitivity of the brush. Like

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

P1 P3 P2 P4

Fig. 5. The top and bottom rows show the paintings created by the
same participants in the multi-layer mode and the single-layer mode,
respectively. The first and fourth (from left to right) columns give the
corresponding reference images.

Fig. 6. The top and bottom rows show the target paintings and source
paintings in Task 2.

the first task, we offered each participant a warm-up session
and allowed them to take breaks. It took about 1 hour for
each participant to finish this task. After the task, the study
participants answered a questionnaire and attended a 15-
minute semi-structured interview. In both tasks, the order
of the target drawings and the configurations were coun-
terbalanced by a Latin square design to minimize possible
learning effects.

3.2 Observations
All the participants completed the tasks. We observed the
processes of reproducing the target paintings, collected their
feedback after the task, and obtained the following inter-
esting findings about using the smudge tool. In Task 1, on
average, they used 6.17 layers (std = 2.48) for the cube and
7.67 layers (std = 4.64) for the jelly cake in the multi-layer
configuration. The multi-layer configuration was preferred
by P1, i.e., the professional participant. In this configuration,
she could easily and efficiently create desired and complex
shading effects, such as reserving sharp boundaries and cre-
ating smooth shading effects, as shown in Fig. 5. In contrast,
the novice participants preferred the single-layer configura-
tion since painting with layers required professional skills.
According to a paired t-test (p < .05) conducted on the time
for completing each task in the single-layer configuration
(short for SC) and the multi-layer configuration (short for
MC), we observed that the participants spent significantly
less time in SC (SC: 35.5 mins vs MC: 39.75 mins on average,
p = .0352). Although the professional participant preferred
a multi-layer configuration, she agreed that painting in a
single-layer configuration was more convenient.

In Task 2, the participants used both long and short
smudge strokes. When they drew a long stroke, their in-
teraction purposes might be updated or switched dynami-
cally. For instance, P12 commented that although he used a
long smudge stroke, he only focused on the current partial

smudge strokes. The direction of smudge strokes varied a
lot, depending on the users’ intentions. They might draw
multiple short strokes parallelly or draw a long stroke back
and forth. P8 said that smudging back and forth generated
zigzag shading effects, and it was harder for him to con-
trol, so he preferred to exploit parallel smudge strokes. In
contrast, P11 thought that dense short strokes in a zigzag
direction created more natural shading effects. In addition,
during color smudging, the participants smudged both
inside regions and around edges based on their intention
as shown in Fig. 7. Smudging around edges offers evener
shading effects between two colors from the two sides of
the edges while smudging into regions tends to create the
effect that one color invades another color. P8 commented
that she might smudge into regions when creating more
abrupt shading effects and smudge around edges to gen-
erate smooth color gradients. P14 commented, “It is better
to implicitly change the brush size instead of explicitly
using shortcuts from the keyboard.” On the other hand, for
implicit brush size selection via pressure sensitivity, some
users, especially the novices, felt it challenging to change
the brush size accurately via pressure sensitivity because
it required precise pressure control. Last, we found that the
users tended to use a larger brush size first on a target region
to reduce the drawing efforts and exploited a small size later
to refine shading effects.

3.3 Challenges

We summarized several challenges for achieving natural
shading effects by grouping and analyzing the participants’
behaviors and answers.

Improper Brush Size. Many participants, especially
novices, mentioned that choosing the appropriate brush size
was challenging. During color smudging, the participants
frequently created undesired artifacts because of choosing
an improper brush size and then had to undo or redo
the operation. For example, some necessary sharp edges
might be smoothed out, such as the bottom of the jelly cake
(Fig. 5), or unwanted colors might be covered by smudge
strokes, resulting in undesired shading effects. What’s more,
they complained about frequent switches between different
brush sizes. Therefore, how to generate an appropriate
dynamic brush size automatically and implicitly without
frequent adjustment of the brush size is valuable to explore.

Frequent Switches and Selection between Layers. Dur-
ing color smudging, users tended to smudge different parts
in the corresponding layers or select smudging regions with
masks to get different shading results in different regions.
For instance, the participants (P2 and P3) created two differ-
ent layers for smudging the cherry and the white surface of
the jelly cake to keep the edges between those two parts.
To create natural shading effects, the participants had to
switch layers, exploit the selection function, and use masks
frequently. It is vital to explore how to create natural shading
effects without additional layer creation and selection.

Over-Smoothing. Over half of the participants found it
hard to create natural shading effects and preserve sharp
boundaries. For example, P16 commented that he could rec-
ognize the approximate color gradients and know where to
smudge, but it was still challenging for him to create smooth

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 7. From left to right, columns 1 and 2 illustrate smudge strokes
and the corresponding shading effects. Here, a gray arrow indicates a
smudge stroke into regions, while two sequences of black arrows show
zigzag and parallel smudge strokes around edges. Columns 3 and 4
indicate over-smooth artifacts.

shading effects, not to mention keeping sharp boundaries
at the same time. In most cases, it is common for users to
smooth out too much. As a result, all the sharp boundaries
disappeared, including some that needed to be preserved,
such as the boundary between the banana’s top and side
(Fig. 7).

4 METHODOLOGY

4.1 Solutions
To tackle the aforementioned challenges in the formative
study, we put forward several solutions based on users’
behaviors and intentions. Then we devise SmartSmudge, a
novel smudge tool that automatically predicts users’ inten-
tions according to their drawn smudge strokes based on the
solutions. With this tool, users can efficiently create desired
blending effects in the single-layer configuration without
performing delicate operations.

Solution to Improper Brush Size. Improper brush sizes
impede users from creating natural shading effects effi-
ciently. Our tool generates a size-adaptive dynamic brush
based on current smudge strokes, which empowers users
to create shading effects more efficiently, thus reducing the
drawing effort.

Solution to Frequent Switches and Selections between
Layers. Smudge strokes reveal users’ intentions. As men-
tioned before, users smudge around edges or into regions.
Selecting the target smudging regions with simple criteria,
e.g., whether a smudge stroke covers a region or its cen-
terline crosses a region, may lead to undesired results, since
these criteria are sensitive to users’ precise operations. Thus,
to select the target smudging regions according to users’
intentions and provide users easy control, our algorithm
compares the similarity between the smudging color regions
with smudge strokes in edges and regions, defined as region
resemblance and edge resemblance. In this selected target
smudging color region, users can simultaneously smudge
color and preserve edges without additional layer creation
and selection operations. We do not consider the color infor-
mation for region selection, since users may blend regions
in similar or distinct colors, depending on specific painting
tasks. Exploiting such information may introduce additional
variations when users perform smudge operations in differ-
ent painting tasks.

Solution to Over-Smoothing. It is common for users to
create over-smoothing artifacts during color smudging with
the traditional tools (Fig. 5 and Fig. 7). To solve this issue, by
relying on a dynamic mask generated on selected smudging
regions and a real-time region-splitting algorithm, our tool

𝑡

A clustered sketch

Partial Stroke Partial Stroke
𝑡 − 1

𝑟3

𝑟1 𝑟2

𝑒. 𝑔. 𝑟3

𝑟1 𝑟2 𝑟1 𝑟2

𝑟3

𝒜 𝑠𝑡 ∩ 𝒜 ෠𝒯𝑡
∗

𝒜 𝑠𝑡
+

𝒜 𝑠𝑡 ∩ 𝒜 ෠𝒯𝑡
∗

𝒜(෠𝒯𝑡
∗)

𝑟3

𝑟2𝑟1

𝑟3

𝑟2𝑟1

𝑟3

Region
resemblance

Boundary
resemblance

ℬ 𝑠𝑡 ∩ ℬ 𝒯𝑡
∗

ℬ 𝑠𝑡
+

ℬ 𝑠𝑡 ∩ ℬ ෠𝒯𝑡
∗

ℬ(𝒯𝑡
∗)

𝑟1 𝑟2

𝑟3

𝑟1 𝑟2

𝑟3

Region Selection Algorithm at 𝑡:
Loop among unselected regions: from 𝑟1 to 𝑟3

Fig. 8. The pipeline of the proposed system using region resemblance
and boundary resemblance. Aiming at the flat-filled color regions or
clustered color regions, we extract a partial stroke (represented in
yellow) from a smudge stroke (represented in blue) and then conduct
a region selection algorithm on the current color regions, covered by the
partial stroke. The red dashed lines or scribbles show the denominators
of Equation (1) and (2), and the purple regions show the numerators.

enables users to preserve the edges of color regions, leading
to a balance where smoothing effects are achieved without
sacrificing the sharpness of edges. This ensures that there
is no over-smoothing, maintaining sharp edges of color
regions.

4.2 Algorithm
Problem Formulation. According to the formative study,
predicting users’ smudging intentions is equivalent to rec-
ognizing the target regions to be smudged from a stroke.
We observe that colors differentiate target regions and un-
wanted regions. Therefore, instead of directly recognizing
the target regions, we adopt a two-step strategy, i.e., extract-
ing a set of color regions and then selecting these regions.
These color regions can be obtained directly for a painting
created by flat filling. For a general painting without well-
defined color regions, we split the painting and extract
color regions using the MeanShift method based on RGBXY
information [50]. We then select the target regions from
them according to the drawn stroke. According to the ob-
servations from the formative study, users’ intentions may
update during the stroke drawing, therefore the target color
regions are dynamically selected with partial strokes.

Dynamic Region Selection with Partial Strokes. Given
a painting composed of a set of color regions, we denote
it as R and r ∈ R is one of its color regions. When
users draw a stroke, at each timestamp t, we consider the
partial stroke st that is most recently drawn and with a
fixed length l and width w for the region selection (see
Fig. 8). This length l and width w are device-dependent;
we will discuss them later. At the beginning of the stroke
drawing, i.e., t = 0, s0 contains only one stroke point.
During the drawing, the partial stroke st covers a subset
of R, which we term the covered regions and denote as
Ct ⊆ R. However, some of the covered regions are not the
target ones. The observations concluded in the formative
study suggest that the partial stroke should resemble the
target regions or their boundaries, as illustrated in Fig.
8. A straightforward method would be enumerating the
combinations of the covered regions and finding the one
that best resembles the partial stroke st. However, this will

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Shortest distance

Threshold

Fig. 9. Gray circles show how a brush size changes during color smudg-
ing. Yellow and orange arrows indicate the shortest distance and the
threshold, respectively.

lead to a combinatorial explosion, which might prevent a
real-time smudge experience. In addition, as the timestamp
changes, the target regions estimated by different partial
strokes, e.g., st−1 and st, may change abruptly. This will
result in unstable target regions.

Instead of independently estimating the target regions
with the partial stroke st at each timestamp t, we devise an
algorithm to update the estimated target regions by adding
and removing color regions. At timestamp t, we suppose the
target region set Tt−1 ⊆ Ct−1 at the previous timestamp t−1
is already estimated. This assumption is reasonable since
T0 is an empty set at the initial timestamp, and the target
region sets at the following timestamps can be estimated
progressively. With this assumption, we need to estimate
the new target region set at timestamp t. Since the partial
stroke changes from st−1 to st, the covered region set also
changes. Recall that the covered region set is composed of
the color regions covered by the partial stroke, as explained
in the previous paragraph. We first update the target region
set by removing the uncovered regions, i.e., T̂t = Tt−1 ∩ Ct.
T̂t is the base target region set, which is a subset of the
final target region set Tt. That is, once a color region is
selected, it remains a target region until it is not covered by
the partial stroke. This guarantees the stability of the target
regions. After obtaining T̂t, we further update it by adding
the covered but not selected regions. To guarantee a smooth
transition between target regions at adjacent timestamps, we
allow at most one region to be added at each timestamp.
That is, Tt could be T̂t or T̂ i

t = T̂t
⋃
{ri}, where ri ∈ Ct \ T̂t.

We consider T̂t and {T̂ i
t = T̂t

⋃
{ri} : ri ∈ Ct \ T̂t} as the

candidate target region sets.
Among all these candidate target region sets, we need

to find the one that best resembles the partial stroke st.
According to the observations from Task 2 in the formative
study, users smudge either around edges to create smooth
shading effects or into regions to create more invaded shad-
ing effects. These two intentions are revealed by the region
resemblance and the boundary resemblance respectively.
Since users’ intentions cannot be determined beforehand,
we combine the region resemblance and boundary resem-
blance to define a resemblance score between the partial
stroke st and a candidate target region set (Fig. 8).

The region resemblance is measured with two terms,
i.e., the region coverage and the stroke inclusion in the region.
Given a candidate target region set T̂ i

t , the region coverage
is defined as the percentage of this candidate that is covered
by the partial stroke. A high region coverage indicates a

high possibility of this candidate being the target. The stroke
inclusion in the region is defined as the percentage of the
partial stroke that is included in this candidate. A high
stroke inclusion implies that users’ effort is respected and
thus this candidate is likely to be their intention. Based on
this discussion, we define the region resemblance score Rr

as:

Rr(st, T̂ ∗
t) =

A(st) ∩ A(T̂ ∗
t)

A(T̂ ∗
t)

+
A(st) ∩ A(T̂ ∗

t)

A(st)
, (1)

where A(·) means the area point set, i.e., the set of pixel
points covered by the partial stroke or contained by the
candidate target region set; T̂ ∗

t is a candidate target region
set; the index ∗ is empty or i, corresponding to T̂t or T̂ i

t .
The boundary resemblance is measured by another two

terms, i.e., the boundary coverage and the stroke inclusion on
boundary. These two terms are defined similarly to the region
coverage and the stroke inclusion in region. Therefore, we
define the boundary resemblance score Rb as:

Rb(st, T̂ ∗
t) =

B(st) ∩ B(T̂ ∗
t)

B(T̂ ∗
t)

+
B(st) ∩ B(T̂ ∗

t)

B(st)
, (2)

where the definition of B(·) depends on the parameter in
the brackets. For instance, B(st) represents the expansion of
boundary point set, i.e., the expanded (10 pixels) set of pixel
points from the boundary of the candidate target region set,
and B(T̂ ∗

t) indicates the expansion of bone point set, i.e., the
expanded (5 pixels) set of pixel points from the bone of the
partial stroke. Note that B(T̂ ∗

t) is the union of the extended
boundary points of the regions in T̂ ∗

t (see Fig. 8).
Then the resemblance score between a candidate target

region set T̂ ∗
t and the partial stroke st is defined as:

R(st, T̂ ∗
t) = αRr(st, T̂ ∗

t) + βRb(st, T̂ ∗
t), (3)

where α and β are weights controlling the effects of the
region and boundary resemblance. We set α = 0.3 and
β = 0.7 in our experiments. Then the final target region
set Tt at timestamp t is the candidate with the largest
resemblance score. Our algorithm is effective in avoiding
selecting unwanted regions. On the other hand, it requires
users to pay more effort when they want to include a new
region in the target, since the base target region set T̂t
tends to remain the best candidate. To achieve a balance
between deselecting undesired regions and selecting desired
regions, we treat the base target region set in a different
way. Specifically, we first find the best candidate T̂ k

t from
{T̂ i

t = T̂t
⋃
{ri} : ri ∈ Ct \ T̂t}, and then compare its

resemblance score with γR(st, T̂t), where γ = 0.7 is a
balance weight. That is, the final target region set is T̂ k

t if
R(st, T̂ k

t) > γR(st, T̂t), and T̂t otherwise.
Smudging with a Dynamic Mask. After estimating the

target region set at each timestamp, we allow the smudging
occurs only in these selected regions. They thus serve as
a dynamic smudging mask. When smudging the colors in
these regions, we adopt an existing algorithm [13] to achieve
the blending effects.

Correction of Delayed Region Selection. The partial
stroke st with a fixed length l and width w extracted from
the smudge stroke decides real-time region selection. How-
ever, to some degree, this design causes selection latency. In

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

BS TS SS BS smudging TS smudging SS smudging

Fig. 10. Columns 1, 2, and 3 (from left to right) show results of region selection by using the BS, TS, and SS, respectively, and columns 4, 5, and
6 indicate the subsequent smudging results based on each region selection algorithm. Yellow dots or red dots in each figure indicate the smudge
path.

addition, when confronted with a new target color region,
the algorithm succeeds in selecting the region and smudging
colors only after the partial stroke enters a part of the region.
As a result, it generates a time latency as well. To alleviate
the issue, we perform a linear interpolation between the last
color smudging position and the current one.

Dynamic Brush Width. To offer natural shading effects
among flat-filled color regions with different sizes, the
proposed system provides a dynamic size-adaptive brush
during color smudging. After getting the selected color
regions, the size of the brush λ is automatically decided
by the shortest Euclidean distance σ (Fig. 9) between the
current position of the smudge stroke and boundaries of
color regions. σ varies a lot according to different shapes
of the selected color regions. For example (Fig. 9), σ might

be extremely little when facing a narrow and long region,
causing almost no shading effects here. To avoid this cir-
cumstance, we set the brush size λ with a maximum value
between a fixed experience value θ and σ: λ = Max(θ, σ).

Partial Stroke Length l and Width w. Our algorithm
starts from uniform point sampling of a sequence of 2D in-
put points returned from input devices as a smudge path. To
alleviate a potentially inaccurate input issue from hardware
or user input errors, we expand the sampled smudge stroke
with a width w. In our device (141dpi), we exploit 110 pixels
as w, which is equal to 2cm adopted by most of users in
reality. As for the stroke length l, we use 110 pixels equal to
2cm in reality as the length to capture regions.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

TABLE 1
Performance of the proposed tool on CPU.

Size Region Selection Smudging
FPS Milliseconds FPS Milliseconds

512 × 512 720 1.39 48 20.83
1024 × 1024 240 4.17 15 66.67

5 EVALUATION

To assess the usability and effectiveness of the proposed
prototype system, we compared how different brush sizes
and region selection algorithms affect shading effect gener-
ation and conducted a user study to compare the painting
performance between the basic traditional smudge tool and
our SmartSmudge in terms of painting time, operation times,
and SUS scores [51].

5.1 Results and Discussion

Regions Selection Results. To evaluate the performance of
region selection with our proposed algorithm, we compared
region selection results generated by: 1). the basic region
selection algorithm in commercial software’s smudge tool
[13] (BS for short); 2). getting most similar candidates re-
sembling the smudge path from all covered coloring regions
Ci (we get top 85% candidates for region selection in our
experiments, TS for short); 3). the proposed SmartSmudge al-
gorithm, (SS for short). As Fig. 10 indicates, the TS algorithm
failed to select continuous regions, thus giving rise to dis-
crete smudging results. As for the edge preservation, the
BS and TS algorithms could not select regions according to
users’ intentions stably. In contrast, our algorithm offered
accurate continuous region selection results and helped
users not to blend colors out of edges. In addition, our
region selection results enabled users to recover edges from
blending regions, as shown in Fig. 13. Last, to evaluate the
robustness of the region selection algorithm, we tested the
algorithm on 40 paintings. As illustrated in Fig. 12, our
algorithm selected the target flat-filled regions accurately
with different smudge paths.

Dynamic Brush Results. To assess the effectiveness of
the size-adaptive dynamic brush, under the same adaptive
mask generated by region selection, we compared smudg-
ing results by smudge brushes of fixed sizes with those by
our dynamic size-adaptive brush. As shown in Fig. 11, the
smudge results created by the fixed small brush lack natural
shading effects in a large range. The fixed large brush fails
to preserve fine details and tends to blend colors outside
blending regions against our expectations. While the fixed
middle size cannot preserve fine details or create large-scale
natural shading effects. As for the proposed dynamic brush,
as shown in Fig. 11, it naturally creates not only highlight
and shadow parts but also fine color gradient changes at all
scales.

Parameter Setting and Performance. We adopt α, β
∈ (0, 1) as resemblance weights and γ∈ (0, 1) as a balance
weight in the proposed region selection algorithm (Sec 4).
As Fig. 14 indicates, we find that the greater the value of
γ is, the fewer possible regions are selected, especially after
a long smudging path. For instance, if γ is equal to 1.0,

users have to make more efforts to select a new region,
since this region needs to increase the resemblance score.
This becomes difficult when users draw a stroke crossing
large regions. However, the results of setting a low value
to γ, such as 0.5 in Fig. 15, are against users’ intentions
as well because the algorithm selects almost all covered
regions and does not keep sharp edges anymore. Thus, we
set γ = 0.7 in our algorithms. As for α and β, Fig. 14
shows the effects of controlling resemblance weights. We
find that when α is much greater than β, region selection
fits boundary resemblance well. However, it is easy to
blur boundaries, which is against users’ intentions. When
α is much less than β, it is hard to choose color regions
continuously. To gain a balance of both two resemblances,
we set α = 0.3 and β = 0.7 after testing them in our
experiments in our proposed tool. In addition, we evaluate
our tool under different sketch sizes. As shown in Table 1,
our proposed region selection algorithm, along with the pro-
posed smudge tool, demonstrate impressive performance in
terms of frame rates. Specifically, when operating on images
of size 512× 512, our region selection algorithm achieves a
remarkable frame rate of 720 frames per second (fps), while
the corresponding tool achieves a rate of 48 fps. Similarly,
when working with larger images of size 1024 × 1024, our
algorithm maintains a high frame rate of 240 fps, while the
corresponding tool operates at 15 fps.

5.2 User Study

To further investigate the effectiveness, expressiveness, and
usability of the proposed algorithm and the proposed sys-
tem, we conducted a user study on 12 participants. Our user
study included two studies (Study 1 and Study 2). In Study
1, we compared the proposed SmartSmudge tool with the
basic traditional tool. In Study 2, we allowed participants
to paint with our system freely. The order of paintings in
both studies was counterbalanced by a Latin square design
to minimize possible learning effects. A 20-minute tutorial
session was offered for each study.

5.2.1 Study 1: Reproducing Paintings
Participants and Apparatus. We recruited 12 participants (7
novices and 5 professionals) in Study 1. Our prototype was
implemented in Python and successively tested on a Surface
Book 3 (supporting multi-touch gestures) with an Intel i7-
1065G7 CPU and an NVIDIA GeForce GTX 1060 GPU. The
input devices for painting were a Wacom digital tablet with
the corresponding pen and a Microsoft Surface Book 3 with
a Surface Slim pen. Since our tool supports different types
of input devices, we allowed users to exploit their preferred
input devices.

Task. We provided users with two smudge tools from
the proposed system: the SmartSmudge tool (SS for short)
owning a dynamic brush with the same parameter setting
as Sec. 4 and the basic traditional smudge tool (BS for short)
whose brush size (ranging from 0 to 200 in both tools) was
decided by users. Given a reference painting and a flat-
filled painting obtained by decomposing the corresponding
reference painting, users were required to smudge colors in
the flat-filled regions according to the reference paintings as
much as they can with the two smudge tools. We provided

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Smudge Path Small-size Brush Middle-size Brush Large-size Brush Dynamic Brush

Fig. 11. Comparisons of results by blending color regions with only a single smudge path but different smudge brush sizes. Column 1 (from left to
right) shows the paintings with flat-filled regions and the smudge strokes. Columns 2-4 show results by applying a fixed small-size brush (radius: 10
pixels), middle-size (radius: 25 pixels), and large-size (radius: 40 pixels) for color smudging, respectively. Column 5 indicates the results by using
our dynamic brush without setting up the brush size additionally. All of them are under the same region-based adaptive mask.

two reference paintings with different levels of painting
difficulty: an apple and an avocado (Fig. 16). The latter was
harder since it included more colors and thus required more
color-smudging operations.

Performance Measures. Our system recorded the fol-
lowing information for quantitative analysis: the completion
time of each painting work, the number of color smudge
operations, the number of undo operations, the number of
all operations except changing brush sizes, and SUS scores.
The SUS questionnaire is included in the supplemental
material. In addition, a semi-structured interview was con-
ducted to collect our study participants’ subjective feelings
and comments for qualitative analysis.

Results and Discussion. Fig. 16 shows the paintings

created by our study participants using the two compared
smudge tools in Study 1. We adopted a paired t-test
(p < .05) to analyze the statistical significance of the above-
mentioned metrics in Study 1 for pairwise comparisons.

As shown in Table 2, we observed that our proposed
SmartSmudgetool led to significantly less completion time.
(BS: 9.42 mins vs SS: 7.34 mins, p = .0005). This was at-
tributed to the dynamic brush of our proposed algorithm,
which helped the study participants to save time for select-
ing brush sizes. On average, there were significantly fewer
color smudge operations using SS than BS (SS: 79.00 times
vs BS: 263.83 times, p = .0006). This result was confirmed by
the participant feedback as well as from the semi-structured
interview. For example, P2 commented: “Dynamic size-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Target Regions Different Smudge Paths

Fig. 12. Given target regions (Column 1), our algorithm works robustly with different smudge paths (Columns 2-5).

Fig. 13. After users created artifacts beyond their intention, they could
recover edges by smudging color regions again with our region-aware
SmartSmudge tool. Columns 1 to 3 (from left to right) illustrate the arti-
fact, the color smudge operation, and the recovered edge, respectively.

𝛼 = 0.1, 𝛽 = 0.9 𝛼 = 0.5, 𝛽 = 0.5 𝛼 = 0.9, 𝛽 = 0.1𝛼 = 0.7, 𝛽 = 0.3𝛼 = 0.3, 𝛽 = 0.7

Fig. 14. Our experiments showed the results of region selection under
different parameter values of region and boundary resemblance.

adaptive brushes blended more color regions in larger re-
gions and less in smaller regions automatically. It reduced
time cost and brought about more natural shading effects.”
This followed our observation since it is challenging for
non-professional participants to select appropriate brush
parameters, causing high time cost and human labor. In
addition, in terms of the number of all types of operations

𝛾 = 0.1 𝛾 = 0.5 𝛾 = 0.9𝛾 = 0.7𝛾 = 0.3

Fig. 15. Adopting different γ values influences the results of region
selection.

TABLE 2
Subjective results in Study 1.

Metrics BS SS Paired T-test
Time (min) 9.42 7.34 p = .0005
Smudge (count) 263.83 79.00 p = .0006
Undo (count) 17.33 11.33 p = .1772
All operations (count) 287.54 94.16 p = .0004

apart from adjusting brush size operations (only in BS),
SS required significantly fewer operations than BS when
painting (SS: 94.16 times vs BS: 287.54 times, p = .0004).
This was somewhat expected since dynamic size-adaptive
brushes from the SmartSmudgetool set the sizes automati-
cally and generated more natural shading effects. This was
more efficient than the process where users set brush sizes
first and then used different brushes in color smudging.

As shown in Fig. 16, the fixed small or large brush
failed to generate smooth and natural shading effects, and
the large brush also blurred boundaries against our study
participants’ intentions. It can be seen from this figure that
the painted apples with SS had a smoother transition from
highlights to shadows and fewer artifacts in the boundaries
of regions than the apples created with BS. As for the
usability factors SS was judged as easier to use (SS: 3.70

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

P8 P9 P7 P9P3P12

Fig. 16. Representative results in Study 1: the results in the top and bottom rows were created by using the basic traditional smudge tool and
SmartSmudge tool, respectively. The 1st and 5th columns (from left to right) give the corresponding reference paintings.

vs BS: 2.66, p = .0081), less complex (SS: 2.16 BS: 3.50, p =
.0154), and less inconsistent (SS: 2.08 vs BS: 3.16, p = .0352)
than BS. The study participants would like to exploit SS
more frequently (SS: 3.91 vs BS: 2.66, p = .0171).

5.2.2 Study 2: Freely Painting
Participants, Apparatus, and Task. In Study 2, we recruited
another 3 participants (P1 to P3; P1 is a professional and
P2-P3 are amateurs) in this study. The apparatus in this
study was the same as that in Study 1. The task was the
free creation of paintings with our prototype system, which
integrated drawing, color selection, our SmartSmudge tool,
basic traditional smudge tool, and auxiliary functions like
undoing, moving canvas, rescaling, etc. We provided both
two smudge tools, i.e., our SmartSmudge tool and basic
traditional smudge tool, for users to select freely during
painting to collect their preferences on them. After complet-
ing the paintings, we provided a 30-minute semi-structured
interview to collect users’ feedback.

Results and Discussion. Lastly, Fig. 17 gives a gallery
of digital paintings created by the novices and profession-
als by exploiting the proposed prototype system in Study
2. The study participants spoke highly of expressiveness,
intuitiveness, robustness, and efficiency of our proposed
tool. P1 commented: “The SmartSmudge tool is awesome.
It offered edge reservation and helped to recover edges (Fig.
13) during color smudging. It saved lots of time and reduced
smudging errors, so I could concentrate on painting all the
time.” Over 90% of smudge operations were completed via
the proposed SmartSmudge tool. We observed that the users
preferred to use the basic traditional smudge tool for messy
color regions with multiple color patches, possibly because
the clustered color regions from the painting after smudging
more and more times became increasingly complex and
messy. In such cases, the region selection results might
be slightly different from users’ intentions. P2 commented,
“I would like to exploit the SmartSmudge tool to smudge
in most smudge operations and then use the traditional
smudge tool to refine the details of some extremely tiny
parts, especially a tiny part of thin and long regions.” For
step-by-step results, please see the attached demo video.

6 CONCLUSION AND FUTURE WORK

In this paper, we first proposed the region-aware smudge
algorithm for shading effects in digital painting and imple-
mented the prototype system based on the algorithm. We
tackled the challenges related to edge reservation and nat-
ural shading effects generation. Our evaluation confirmed

Fig. 17. A gallery of paintings created by the participants in Study 2.
Users conducted over 90% of the color smudge operations with the
proposed SmartSmudge tool.

Fig. 18. Our proposed algorithm selects the regions in green but fails
to select the region pointed by a green arrow given the smudge path
indicated by yellow circles.

that the proposed algorithm allowed the study participants
to create paintings with shading effects more efficiently
and intuitively in a single-layer canvas than a traditional
color smudge tool. In addition, the generalized system of
digital painting empowered users to paint creatively and
efficiently. Last, our algorithm might not only inspire digital
painting but also empower region-aware robotic painting.
For example, painting robots could utilize our region-aware
information in conjunction with varying controller pres-
sures to simulate the effect of realistic brush pressure or
decompose paintings into distinct areas for parallel painting
tasks.

Although all the study participants appreciated the effi-
ciency and effectiveness of our proposed color-smudge tool,
it remains to be improved. First, our algorithm sometimes
might not cover desired regions when smudging in thin and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

long flat-filled regions (Fig. 18). Under such circumstances,
the traditional smudge tool might be better to smudge those
flat-filled regions. As Fig. 18 shows, our tool failed to select
the region pointed by a green arrow, since, considering the
region resemblance and boundary resemblance put forward
in our algorithm, the region only covered a little of region
and edge with the partial stroke. However, from a global
perspective, it might be better to select it. It is valuable to
explore how to integrate global factors with the proposed
algorithm in further research. Second, it is better to adjust
the size of the partial stroke to select color regions according
to their shapes and sizes. Though the width w is set to a
fixed value in our current implementation, it could be a vari-
able decided by users. A broader smudge stroke indicates a
user’s desire to select more regions, and the second term in
Equation 1 A(st)∩A(T̂ ∗

t)
A(st)

in our algorithm is designed to ac-
commodate this by selecting more regions. Third, although
our tool supports a dynamic size-adaptive brush to offer
smooth shading effects on flat-filled paintings, the generated
shading effects might be impacted by the shapes of flat-filled
color regions. It is valuable to explore how to offer real-time
shape-adaptive brushes based on different shapes of flat-
filled color regions. In addition, adopting shape-adaptive
brushes will be more efficient, which saves the time cost of
selecting brush shapes. Last, our region selection is based
on heuristic rules and exploited fixed parameters to control
resemblance weights, and sometimes might not capture the
user’s intentions accurately. To gain a deeper understanding
of users’ intentions, we hope to integrate machine learning
techniques based on color patterns or users’ habits with the
proposed algorithm to further investigate more on classify-
ing and recognizing their intentions when they are painting.

7 ACKNOWLEDGMENTS

We thank the anonymous reviews for their valuable com-
ments. The research is partially supported by the Research
Postgraduate Studentship funded by the Research Grant
Council of the Hong Kong SAR Governmentand. Pengfei Xu
was also supported by NSFC (62072316), NSF of Guangdong
Province (2023A1515011297).

REFERENCES

[1] G. Annum, “Digital painting evolution: A multimedia technolog-
ical platform for expressivity in fine art painting,” Journal of Fine
and Studio Art, vol. 4, no. 1, pp. 1–8, 2014.

[2] Y. J. Lee, C. L. Zitnick, and M. F. Cohen, “Shadowdraw: real-
time user guidance for freehand drawing,” ACM Transactions on
Graphics (TOG), vol. 30, no. 4, pp. 1–10, 2011.

[3] D. Dixon, M. Prasad, and T. Hammond, “icandraw: Using sketch
recognition and corrective feedback to assist a user in drawing
human faces,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2010, pp. 897–906.

[4] J. Lu, C. Barnes, S. DiVerdi, and A. Finkelstein, “Realbrush:
Painting with examples of physical media,” ACM Transactions on
Graphics (TOG), vol. 32, no. 4, pp. 1–12, 2013.

[5] B. Williford, A. Doke, M. Pahud, K. Hinckley, and T. Hammond,
“Drawmyphoto: assisting novices in drawing from photographs,”
in Proceedings of the 2019 on Creativity and Cognition, 2019, pp. 198–
209.

[6] C. Zou, H. Mo, C. Gao, R. Du, and H. Fu, “Language-based col-
orization of scene sketches,” ACM Transactions on Graphics (TOG),
vol. 38, no. 6, pp. 1–16, 2019.

[7] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and A. A.
Efros, “Real-time user-guided image colorization with learned
deep priors,” arXiv preprint arXiv:1705.02999, 2017.

[8] Y. Xiao, P. Zhou, Y. Zheng, and C.-S. Leung, “Interactive deep col-
orization using simultaneous global and local inputs,” in ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2019, pp. 1887–1891.

[9] Y. Qu, T.-T. Wong, and P.-A. Heng, “Manga colorization,” ACM
Transactions on Graphics (TOG), vol. 25, no. 3, pp. 1214–1220, 2006.

[10] L. Zhang, C. Li, T.-T. Wong, Y. Ji, and C. Liu, “Two-stage sketch
colorization,” ACM Transactions on Graphics (TOG), vol. 37, no. 6,
pp. 1–14, 2018.

[11] K. Akita, Y. Morimoto, and R. Tsuruno, “Colorization of line
drawings with empty pupils,” in Computer Graphics Forum, vol. 39,
no. 7. Wiley Online Library, 2020, pp. 601–610.

[12] M. Shugrina, J. Lu, and S. Diverdi, “Playful palette: an interactive
parametric color mixer for artists,” ACM Transactions on Graphics
(TOG), vol. 36, no. 4, pp. 1–10, 2017.

[13] Adobe. (1990) Photoshop. [Online]. Available: https://www.
adobe.com/products/photoshop

[14] Celsys. (2001) Clipstudio. [Online]. Available: https://www.
clipstudio.net

[15] S. Interactive. (2011) Procreate. [Online]. Available: https:https:
//procreate.art

[16] E. Iarussi, A. Bousseau, and T. Tsandilas, “The drawing assistant:
Automated drawing guidance and feedback from photographs,”
in ACM Symposium on User Interface Software and Technology (UIST).
ACM, 2013.

[17] J. Lee, “Transcript of question and answer session,” in History
of programming languages I (incoll), R. L. Wexelblat, Ed. New
York, NY, USA: ACM, 1981, pp. 68–71. [Online]. Available:
http://doi.acm.org/10.1145/800025.1198348

[18] Q. Su, W. H. A. Li, J. Wang, and H. Fu, “Ez-sketching: three-level
optimization for error-tolerant image tracing.” ACM Trans. Graph.,
vol. 33, no. 4, pp. 54–1, 2014.

[19] J. Fišer, P. Asente, and D. Sỳkora, “Shipshape: a drawing beau-
tification assistant,” in Proceedings of the workshop on Sketch-Based
Interfaces and Modeling, 2015, pp. 49–57.

[20] T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka, “Interac-
tive beautification: A technique for rapid geometric design,” in
ACM SIGGRAPH 2007 courses, 2007, pp. 18–es.

[21] A. Limpaecher, N. Feltman, A. Treuille, and M. Cohen, “Real-time
drawing assistance through crowdsourcing,” ACM Transactions on
Graphics (TOG), vol. 32, no. 4, pp. 1–8, 2013.

[22] J. Xie, A. Hertzmann, W. Li, and H. Winnemöller, “Portraitsketch:
Face sketching assistance for novices,” in Proceedings of the 27th
annual ACM symposium on User interface software and technology,
2014, pp. 407–417.

[23] J. Xing, H.-T. Chen, and L.-Y. Wei, “Autocomplete painting rep-
etitions,” ACM Transactions on Graphics (TOG), vol. 33, no. 6, pp.
1–11, 2014.

[24] Y. Matsui, T. Shiratori, and K. Aizawa, “Drawfromdrawings:
2d drawing assistance via stroke interpolation with a sketch
database,” IEEE transactions on visualization and computer graphics,
vol. 23, no. 7, pp. 1852–1862, 2016.

[25] M. Adamik, J. Goga, J. Pavlovicova, A. Babinec, and I. Sekaj, “Fast
robotic pencil drawing based on image evolution by means of
genetic algorithm,” Robotics and Autonomous Systems, vol. 148, p.
103912, 2022.

[26] A. Karimov, E. Kopets, S. Leonov, L. Scalera, and D. Butusov, “A
robot for artistic painting in authentic colors,” Journal of Intelligent
& Robotic Systems, vol. 107, no. 3, p. 34, 2023.

[27] T. Welsh, M. Ashikhmin, and K. Mueller, “Transferring color to
greyscale images,” in Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, 2002, pp. 277–280.

[28] R. Ironi, D. Cohen-Or, and D. Lischinski, “Colorization by exam-
ple.” Rendering techniques, vol. 29, pp. 201–210, 2005.

[29] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using opti-
mization,” in ACM SIGGRAPH 2004 Papers, 2004, pp. 689–694.

[30] P. Lu, J. Yu, X. Peng, Z. Zhao, and X. Wang, “Gray2colornet:
Transfer more colors from reference image,” in Proceedings of the
28th ACM International Conference on Multimedia, 2020, pp. 3210–
3218.

[31] M. He, D. Chen, J. Liao, P. V. Sander, and L. Yuan, “Deep exemplar-
based colorization,” ACM Transactions on Graphics (TOG), vol. 37,
no. 4, pp. 1–16, 2018.

https://www.adobe.com/products/photoshop
https://www.adobe.com/products/photoshop
https://www.clipstudio.net
https://www.clipstudio.net
https:https://procreate.art
https:https://procreate.art
http://doi.acm.org/10.1145/800025.1198348

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

[32] S. Weng, H. Wu, Z. Chang, J. Tang, S. Li, and B. Shi, “L-code:
Language-based colorization using color-object decoupled condi-
tions,” ECCV, 2022.

[33] D. Sỳkora, J. Dingliana, and S. Collins, “Lazybrush: Flexible paint-
ing tool for hand-drawn cartoons,” in Computer Graphics Forum,
vol. 28, no. 2. Wiley Online Library, 2009, pp. 599–608.

[34] L. Zhang, C. Li, E. Simo-Serra, Y. Ji, T.-T. Wong, and C. Liu,
“User-guided line art flat filling with split filling mechanism,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 9889–9898.

[35] H. Kim, H. Y. Jhoo, E. Park, and S. Yoo, “Tag2pix: Line art coloriza-
tion using text tag with secat and changing loss,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
9056–9065.

[36] M. Shugrina, A. Kar, S. Fidler, and K. Singh, “Nonlinear color
triads for approximation, learning and direct manipulation of
color distributions,” ACM Transactions on Graphics (TOG), vol. 39,
no. 4, pp. 97–1, 2020.

[37] Š. Sochorová and O. Jamriška, “Practical pigment mixing for
digital painting,” ACM Transactions on Graphics (TOG), vol. 40,
no. 6, pp. 1–11, 2021.

[38] S. Bi, X. Han, and Y. Yu, “An l 1 image transform for edge-
preserving smoothing and scene-level intrinsic decomposition,”
ACM Transactions on Graphics (TOG), vol. 34, no. 4, pp. 1–12, 2015.

[39] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via l 0 gradient
minimization,” in Proceedings of the 2011 SIGGRAPH Asia confer-
ence, 2011, pp. 1–12.

[40] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image
processing with the bilateral grid,” ACM Transactions on Graphics
(TOG), vol. 26, no. 3, pp. 103–es, 2007.

[41] L. Zhang, C. Li, Y. Ji, C. Liu, and T.-t. Wong, “Erasing appear-
ance preservation in optimization-based smoothing,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part VI 16. Springer, 2020, pp. 55–70.

[42] Z. Dou, M. Song, K. Gao, and Z. Jiang, “Image smoothing via
truncated total variation,” IEEE Access, vol. 5, pp. 27 337–27 344,
2017.

[43] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: a vector representation for smooth-
shaded images,” ACM Transactions on Graphics (TOG), vol. 27,
no. 3, pp. 1–8, 2008.

[44] H. Lieng, F. Tasse, J. Kosinka, and N. A. Dodgson, “Shading
curves: Vector-based drawing with explicit gradient control,” in
Computer Graphics Forum, vol. 34, no. 6. Wiley Online Library,
2015, pp. 228–239.

[45] J. McCann and N. S. Pollard, “Real-time gradient-domain paint-
ing,” ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp. 1–7,
2008.

[46] N. Kwak and E. Ahn, “Adaptive skinny smudge tool,” in IT
Convergence and Security 2012. Springer, 2013, pp. 853–860.

[47] D. R. Olsen Jr and M. K. Harris, “Edge-respecting brushes,” in
Proceedings of the 21st annual ACM symposium on User interface
software and technology, 2008, pp. 171–180.

[48] P. Xu, H. Fu, O. K.-C. Au, and C.-L. Tai, “Lazy selection: a scribble-
based tool for smart shape elements selection,” ACM Transactions
on Graphics (TOG), vol. 31, no. 6, pp. 1–9, 2012.

[49] T. Grossman and R. Balakrishnan, “The bubble cursor: enhancing
target acquisition by dynamic resizing of the cursor’s activation
area,” in Proceedings of the SIGCHI conference on Human factors in
computing systems, 2005, pp. 281–290.

[50] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.

[51] A. Bangor, P. Kortum, and J. Miller, “Determining what individual
sus scores mean: Adding an adjective rating scale,” Journal of
usability studies, vol. 4, no. 3, pp. 114–123, 2009.

Ying Jiang is a Ph.D Candidate at the University
of Hong Kong. Her main research interests and
previous research experience include Computer
Graphics (2D & 3D sketching, modeling) and
Human-Computer Interaction.

Pengfei Xu is an Associate Professor of the
College of Computer Science and Software En-
gineering at Shenzhen University. He received
his Bachelor’s degree in Math from Zhejiang
University, China, in 2009 and his Ph.D. degree
in Computer Science from the Hong Kong Uni-
versity of Science and Technology in 2015. His
primary research lies in Human-Computer Inter-
action and Computer Graphics.

Congyi Zhang is a postdoctoral fellow at the
University of British Columbia. He received his
B.Sc. degree from the School of Mathemati-
cal Science, Fudan University, in 2012, and his
Ph.D. degree from the School of Electronics En-
gineering and Computer Science, Peking Uni-
versity, in 2019. His research interests include
3D reconstruction and modeling, augmented re-
ality and virtual reality, and human-computer in-
teraction.

Hongbo Fu received a BS degree in information
sciences from Peking University, China, in 2002
and a PhD degree in computer science from the
Hong Kong University of Science and Technol-
ogy in 2007. He is a Full Professor at the School
of Creative Media, City University of Hong Kong.
His primary research interests fall in the fields
of computer graphics and human-computer in-
teraction. He has served as an Associate Editor
of The Visual Computer, Computers & Graphics,
and Computer Graphics Forum.

Henry Lau graduated with bachelor’s degree in
Engineering Science and DPhil in Robotics from
the University of Oxford. He was the Associate
Dean of Engineering and is currently an Hon-
orary Associate Professor at the University of
Hong Kong. His research interest includes vir-
tual and augmented reality technology, robotics
and artificial intelligence, particularly artificial im-
mune systems (AIS).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

Wenping Wang got his Ph.D. in computer sci-
ence in 1992 at the University of Alberta. His
research interests include computer graphics,
computer vision, geometric modeling, robotics,
and medical image processing. He has been
with the University of Hong Kong from 1993 to
2020 and is now with Texas A&M University. He
is an IEEE Fellow and ACM Fellow.

	Introduction
	Related Work
	Drawing Assistance Tools
	Image and Sketch Colorization
	Shading, Smoothing, and Smudging

	Formative Study
	User Study
	Observations
	Challenges

	Methodology
	Solutions
	Algorithm

	Evaluation
	Results and Discussion
	User Study
	Study 1: Reproducing Paintings
	Study 2: Freely Painting

	Conclusion and Future Work
	Acknowledgments
	References
	Biographies
	Ying Jiang
	Pengfei Xu
	Congyi Zhang
	Hongbo Fu
	Henry Lau
	Wenping Wang

