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Abstract 

New generation networks, based on Cognitive Radio technology, allow dynamic allocation of 

the spectrum, alleviating spectrum scarcity. These networks also have a resilient potential for 

dynamic operation for energy saving. In this paper, we present a novel wireless network 

optimization algorithm for cognitive radio networks based on a cloud sharing-decision 

mechanism. Three Key Performance Indicators (KPIs) were optimized: spectrum usage, 

power consumption, and exposure of human beings. For a realistic suburban scenario in 

Ghent city, Belgium, we determine the optimality among the KPIs. Compared to a traditional 

Cognitive Radio network design, our optimization algorithm for the cloud-based architecture 

reduced the network power consumption by 27.5%, the average global exposure by 34.3%, 

and spectrum usage by 34.5% at the same time. Even for the worst optimization case, our 

solution performs better than the traditional architecture by 4.8% in terms of network power 

consumption, 7.3% in terms of spectrum usage and 4.3% in terms of global exposure. 

1. Introduction 

The lack of spectrum availability for satisfying the exponential increase in wireless traffic 

demand has become a major concern in the wireless communication community. 

Paradoxically, several extensive spectrum usage measurement campaigns have demonstrated 

that most of the radiofrequency spectrum is not in use or is sub-utilized. According to these 

spectrum surveys, performed in cities worldwide, the average use of the sub-3-GHz spectrum 

regarding both space and time is rarely higher than 20% [1, 2, 3, 4]. 

In this context, Cognitive Radio has become a flexible solution to overcome spectrum 

unavailability by opportunistically exploiting underutilized or unutilized spectrum [5, 6]. 

Research efforts on cognitive radio technologies have been undertaken to make use of the 

television broadcast white spaces. The TV white spaces (TVWS) are spectrum channels that 

are not in use by a primary licensed service (generally TV broadcasting) at a certain location 

during a certain period [7]. IEEE 802.11af [8], IEEE 802.22 [9] and IEEE 802.22b [10] 

standardize the secondary devices’ cognitive radio features and technological requirements 

for dynamically accessing these TVWSs. These devices are not granted the licensed use of 

the spectrum, but regulatory authorities allow opportunistic spectrum access provided that 
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they admit any interference (from primary licensed services) and do not cause harmful 

interference to the primary services themselves [11]. As such, interference minimization 

among these devices is a performance indicator for targeting when deploying cognitive radio 

networks. 

Also for Long-Term Evolution (LTE) technologies, cognitive radio has been proposed as a 

solution towards more efficient use of the radioelectric spectrum. For instance,  

LTE-U allows the shared use of frequencies in the unlicensed ISM band as a way to 

overcome congestion issues in the 4G mobile networks and the lack of available 

spectrum [12]. The European Telecommunications Standard Institute (ETSI) technical report 

TR 103 067/2013 [13] analyzes the feasibility of LTE Cognitive Radio Systems operating in 

UHF band TVWS. Coexistence between LTE and TV broadcast systems is investigated as a 

typical use case of LTE with the cognitive ability for opportunistically using the UHF TV 

band [13]. 

Because of “spectrum scarcity”, the bandwidth requirements for next-generation radio and 

5G networks are only fully satisfied at the highest spectrum bands. As a consequence, several 

applications for 5G networks are limited in rural scenarios, small suburban cities, and in 

general in areas with low population density. The feasibility of 5G networks based on 

Cognitive Radio technology and carrier aggregation, enabling wideband access in rural areas 

has also been investigated. Hence, Cognitive Radio is a key enabling technology for new 

generation radio [14].  

A major concern with Cognitive Radio is that interference management has been a challenge 

for scenarios with dense spectrum occupancy or high user density [15, 11, 7]. The currently 

implemented standards have some limitations for assessing the trade-off between interference 

and spectrum efficiency. For instance, IEEE 802.11f does not specify any spectrum sensing 

requirements to be met by user devices and base stations (BSs) for further spectrum 

allocation [8]. Although geolocation databases allow minimizing interference to the primary 

licensed services (generally digital television broadcasting), spectrum sensing, and spectrum 

allocation management have to be implemented to avoid interference to or from other 

Cognitive Radio devices in the same network or other Cognitive Radio networks. These 

databases are based on measurement campaigns and spectrum usage surveys. Hence, the 

spectrum usage information is not updated dynamically, reducing the potential spectrum 

sharing efficiency of cognitive radio networks. IEEE 802.22b provides some guidelines and 

mandatory channel sensing requirements. For instance, it defines the minimum requirements 

for the scheduling of sensing windows and quiet periods, mandatory users’ device reports of 

detected interference and maximum interference thresholds for different signal types [10]. 

However, mandatory sensing techniques are not stipulated [16]. 

Several advances on spectrum sensing techniques for avoiding interference have been 

reported in recent years.  However, no major advances have been reported on architecture 

and dynamic network optimization, being a limitation for a better trade-off among 

interference management and spectrum usage efficiency. Spectrum sensing techniques for 

cognitive radio applications are usually classified in blind (i.e., not taking into consideration 

the signal characteristics) and signal-specific sensing techniques [16]. The most basic 

spectrum sensing technique for cognitive radio is Energy Detection. However, the energy 

detection accuracy depends on prior knowledge of the noise level. The noise level at the 
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detector is affected by several factors, i.e., temperature variation, calibration error, and low-

noise amplifier gain variations [17]. Signal-specific sensing techniques are generally based 

on the correlation of the received baseband signal with a reference pattern [16]. This means 

that partial demodulation of the signal is required. Hence the hardware complexity and 

required sensing time increase. 

In [18], the authors presented a cooperative scheme for spectrum sharing based on the 

information provided by secondary Wi-Fi nodes. Different improvements for increasing 

detection efficiency, reducing interference and exploration time are presented in [19, 20, 21]. 

A learning algorithm to improve spectrum exploration and to reduce the interference caused 

by cognitive radio devices is presented in [22]. [23] proposes a learning algorithm to 

maximize the network throughput by allowing varying sensing time and considering the 

historical behavior of the user’s devices. 

Few advances have been made on architecture and network medium access and connectivity 

efficiency to optimize the network’s Key Performance Indicators (KPIs). In [24], authors 

present a novel cooperative system for the efficient usage of TVWS based on an Internet of 

Things (IoT) architecture. The proposed multilayer architecture improves coexistence issues 

and the protection of the primary services by combining spectrum sensing and a QoS 

feedback procedure implemented through a control logic in the IoT social platform (where all 

devices share performance information) [24]. This collaborative approach between the 

primary and secondary service could be an interesting solution to improve spectrum usage 

efficiency and coexistence among different services sharing the same spectrum bands (e.g., 

VHF/UHF bands). 

Besides spectrum usage efficiency, power consumption and exposure of human beings to 

radiofrequency radiation are important network KPIs. These indicators are closely related to 

the environmental footprint of Information and Communication Technologies (ICT) [25, 26]. 

Hence, to achieve environment-friendly wireless networks, it is also required to optimize 

power consumption and exposure. However, these parameters require the assessment of a 

trade-off [27]. [28] presents a method for the efficient identification of multi-objective 

optimal settings on a wireless experimentation facility. 

The novelty of this paper is the multi-objective optimization of new generation Cognitive 

Radio networks. Instead of a traditional distributed architecture for the spectrum management 

we consider a cloud-based architecture, allowing sharing the sensed information by all 

network devices. Based on the global knowledge of all devices it is possible to dynamically 

optimize the network, achieving a higher network efficiency in terms of power consumption, 

spectrum usage, and global exposure. The dynamic optimization of the network is required 

for improving its KPIs and reducing harmful interference from/to the primary licensed 

service. No research has been done yet, according to the authors’ knowledge, on networking 

optimization to account for the trade-off among power consumption, spectrum usage 

efficiency and exposure for Cognitive Radio.  

The outline of this paper is as follows. In Section 2 we describe the proposed cloud-based 

architecture for managing Cognitive Radio networks, briefly introduce Pareto Optimality, 

define metrics, details of rationale, describe the multi-objective optimization algorithm and a 

description of a realistic scenario and initial wireless network setup considerations. In 

Section 3, we present the network optimization results based on the proposed architecture and 
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algorithm and benchmark the result against a traditional Cognitive Radio network. 

Conclusions are presented in Section 4.  

2. Method 

2.1 Cloud-based architecture for Cognitive Radio network management 

Fig. 1 shows the proposed cloud-based architecture for the Cognitive Radio network that will 

allow achieving a higher multi-objective optimization level (Fig.1b) compared to the 

traditional architecture (Fig.1a). 
 

 
Fig. 1. Cognitive Radio network architecture a) Traditional b) Cloud-based management. 

 

The traditional Cognitive Radio network architecture (in Fig.1a) comprises at the user side 

the Consumer Premise Equipment (CPE) including an ethernet transceiver and the Cognitive 

Radio unit. The architecture also includes the BSs including the BS management or system 

processing unit for handling the users’ data registration, tracking, and application of spectrum 

management policies defined in the standard. Finally, a connection to ethernet or optical fiber 

provides access to the internet and (if applicable) to a geolocation database. In this topology 

(Fig. 1a), each BS oversees users’ connections, registration, and tracking and the application 

of spectrum management policies. Each BS takes independent decisions about spectrum 

allocation based on the sensed data provided by users in their range and self-sensing. The 

provision of a geolocation database restricts the degrees of freedom of the BS, forbidding 

access to certain channels, footprint limitations, and other regulatory policies. This database 

is based on static data from spectrum surveys and does not provide real-time updates. The 

variations on the propagation conditions produce a variation on perceived network 

interference and spectrum usage efficiency. 

Our architecture modification proposal for new generation Cognitive Radio networks consists 

of moving most management functions (mainly those related to spectrum management) to a 

central Access Controller (Fig.1b). In this way, it is possible to collect the information sensed 

by all network devices. By knowing and processing the network performance parameters 

from the whole network, it is possible to make better decisions (optimization) for serving the 

users’ traffic with higher efficiency regarding the network power consumption, global 

exposure, and spectrum usage [29]. This information is sent by all BSs to the central Access 

Controller by the BS data backbone to the cloud. We assume the signalization data related to 
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the Cognitive Radio functionalities is negligible compared to the backbone data capacity. The 

collected information is the same provided by the geolocation databases to the BSs. Hence, 

an adaptation of the headers and interfaces defined by the standards is not required. 

Although a distributed network topology is generally efficient, if the devices taking decisions 

are affected by devices outside their control the system becomes unstable.  This is similar to 

the concept of automated vehicular driving in 5G networks.  When the network topology is 

based on a Vehicular-to-Vehicular (V2V) communication, each vehicle only has information 

about the vehicles in its range and the system quickly becomes unstable (cars start a crashing 

chain). This is because each car’s control decision is based on the individual knowledge of 

the environment [29]. The same happens in the traditional Cognitive Radio network, where a 

crash corresponds to interference, and the same happens in any open-loop control system. 

2.2 Pareto Efficiency 

Pareto optimality is a concept of efficacy initially applied in social science and economic 

problems. The Pareto optimal state is defined as a state where it is not possible to make a 

single objective (parameter) better without making at least another one worse [30]. In 

engineering, usually more than one parameter needs to be maximized (multi-objective 

optimization problems). For a set of choices and a metric to value them, it is possible to find 

a set that is Pareto efficient. This set is named the Pareto Front [28]. Hence, it is possible to 

find a set of optimal trade-offs among all parameters depending on the design constraints, 

scenario, and application. 

Wireless networks have several opposing performance indicators, e.g., throughput, energy, 

latency, electromagnetic radiation and spectrum usage [28]. The maximization of a certain 

parameter leads to the minimization of at least one other. This is generally a condition that is 

not optimal in many wireless applications. By using Pareto optimality, it is possible to 

evaluate several combinations of performance indicators, each one with a certain weight 

(Pareto coefficient) in the optimization algorithm (see Section 2.5). In this way, the general 

Pareto equation P can be defined as a set of n independent metrics g multiplied by a certain 

weight w. 
 

 1 2 1 1 2 2( ; ;...; ) ; ; ;n n nP w w w w g w g w g=        (1) 

 

where for any combination of 1 2; ;...; nw w w  the following condition must be satisfied: 
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For having a continuous Pareto front and because Pareto coefficients can take an infinite 

number of values, we interpolate the solution set using Delaunay Triangulation. We 

investigate the tradeoff among three Key Performance Indicators (KPIs) in a cognitive radio 

network based on the IEEE 802.22 standard by means of Pareto Optimality, being the 

network power consumption, human exposure, and spectrum usage.  



 6 

2.3 Rationale 

In a cognitive network, each device has to sense the spectrum and provide to nearby BSs 

information related to perceived interference. This information is sent over a wireless link 

using BPSK modulation in a self-sensed empty channel to the nearby BSs. The first BS 

processing the user connection request and allocating the spectrum resources will register the 

user. In our proposal, this information is assumed to be collected by the BSs but the 

allocation of spectrum resources and interference management will be handled by a central 

access controller. Fig. 2 describes the process of connecting a single user to a Cognitive 

Radio BS. 

 
Fig. 2. Flow chart of the steps for connecting a user to a BS in the cloud-based Cognitive Radio architecture. 

First, the user devices ui will sense the spectrum and will provide the perceived interference 

from other BSs, other users and broadcasting stations to a central access controller (i.e., I1, I2, 

I3,…, In in Fig. 2). In addition, the user provides information about the radiated signal, 

geolocation information and other parameters required by the standard [9] or by regulatory 

authorities. Notice that the initial link is settled with a nearby BS by using any frequency 

perceived by ui as free and BPSK modulation for minimum interference [9]. Further, the 

algorithm must assess the information received from all users and BSs, to compare the 

perceived interference with the maximum interference signal level allowed (ISL [dBm]) and 

settle the best connection for ui taking into account the network KPIs. The ISL is the 

maximum signal level for which the algorithm will allow reusing the same frequencies (i.e., 

f1, f2, f3,…, fn, in Fig. 2) by different BSs. One ISL constraint is defined for sharing 

frequencies used by television broadcasting (e.g., TV in Fig. 2) and another value for sharing 

frequencies in use by Cognitive Radio BSs (e.g., BS1 and BS2 in Fig. 2). Notice that the 

spectrum allocation is settled for each user. A certain BS can use different frequencies for 

communicating with different users at the same time, depending on the ISL constraint. For 

instance, if the interference is higher than the maximum allowable BS2 and ui (see Fig. 2) 

must communicate in a frequency not in use by BS1 or TV (i.e., f3). Otherwise, it can reuse the 

same frequency (i.e., f1 or f2). 

For the greenfield network planning, a reduction in the number of BSs has a major impact on 

the minimization of the network power consumption and cost. This is because the Cognitive 

Radio BSs have an idle or fixed power consumption that is not directly related to the radiated 

power or with the traffic load. For instance, for peak traffic and maximum radiated signal 
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level, the Cognitive Radio BS power consumption is 64W versus 38W without data traffic 

(idle power consumption is approximately 59%) [31]. Additionally, the architecture with a 

centralized access control allows dynamically switching a group of BSs from active to sleep 

mode. The Cognitive Radio BS has a power consumption of only 9 W in sleep mode. 

However, by reducing the number of BSs, the radiated power per BS increases to cover the 

most distant users. As a consequence, the exposure in that cell increases [27]. In this way, the 

optimization algorithm should follow different optimization strategies depending on the 

parameters to be optimized. More details of the optimization algorithm are provided in 

Section 2.5). 

2.4 Metrics 

First, we defined the following metrics for accounting in the algorithm for the KPIs intended 

to be optimized, i.e., network power consumption, global exposure and spectrum usage). 

The power consumption PC for a network configuration is accounted for following the power 

consumption model presented in [31] for a Cognitive Radio BS. Here, when accounting for 

the network power consumption, we consider that the centralized access controller (see 

Fig. 1) can switch the BSs that are not in use at a certain instant of time to sleep mode. In 

sleep mode, the Cognitive Radio BS has a power consumption as low as 9 W, including the 

radio unit, optical backhaul, and electrical transceiver. Notice that without a centralized 

controlling, not all power consuming components can be switched to sleep mode. 

The global exposure EG is defined as a weighted average of the mean electric field E50 and 

the 95-percentile of the field strength E95 over the covered area [27], in order to optimize 

median and maximal exposure values. As in [25], we consider an equally weighted E50 and 

E95.  Hence, the EG can be described by the following equation: 
 

2
9550 EE

EG

+
=      (3) 

 

For calculating the electric field strength over the covered area, a grid of “test points” 

separated 50 m from each other is generated covering the entire map. At each grid point, the 

contribution of each transmitter Txj to the electric field strength is calculated. The electric 

field ETx [V/m] due to transmitter Txj can be calculated based on Txj’s Equivalent 

Isotropically Radiated Power EIRP [dBm], frequency f [MHz] and the path loss PL [dB] from 

the Txj to the grid point [27], as described by Equation 4. 
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The contribution of all transmitters to the electric field strength at each grid point (x,y) is 

calculated by accounting the root sum of the squares of the electric field strengths due to each 

Txj [27]. 
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where n is the total number of transmitters. The field vectors caused by each source are thus 

assumed to have no phase correlation [27]. 

We define the spectrum usage SU as the number of channels that are required by the network 

for settling all simultaneous connections in the deployment scenario. 
 

1

( , ) ( , )
Smax

U i j ch i j

ch

S u BS k u BS
=

=      (6) 

 

where kch is 1 if the channel ch has been assigned to a communication link between at least 

one user ui and a BSj, else kch = 0. Smax is the maximum number of channels allowed to be 

used according to the regulatory domain. The spectrum optimization is performed by reusing 

channels in the communication between each user and the BS. The metric SU is a measure of 

the spectrum occupation at the BS and user locations. Each user device dynamically accesses 

the spectrum at the most suitable frequency. A single BS can communicate with its connected 

users by means of different frequencies. The frequency channels are reused when the 

interference constraints (ISL) defined in the standard [9] are accomplished.  

For a fair comparison among different solutions, we also define the white space availability 

in the whole area. 

 

( )( , ) ,max U TxWa x y S S x y= −      (7) 

 

The white space availability Wa represents the number of channels available at each grid 

point (x,y) after the access controller assigned the spectrum for all links among the BSs and 

the users and also accounting for television stations. For calculating this value the whole area 

is divided into grid points with coordinates x,y (considering a resolution of 50m). Wa is the 

difference between the total number of channels Smax and the number of channels in use by 

the Cognitive Radio network devices and the channels in use by the television broadcasting 

service SUTx at each grid point. Notice that SU accounts only for the Cognitive Radio network 

spectrum usage and SUTx also includes the television broadcasting spectrum usage. Hence, Wa 

represents the remaining channel availability in the area. The mean white space availability 

can be calculated accounting for Wa in all grid points. 

2.5 Multi-objective Optimization Algorithm 

Algorithm 1 describes the network optimization algorithm that will be used for minimizing 

the network power consumption, spectrum usage and exposure (i.e., goal KPIs). The 

algorithm is heuristic and capacity-based [25]. Hence, we cannot a guaranteed absolute 

optimal network solution but a solution that is good enough for solving the optimization 

problem. The solution convergence is defined by a maximum 2% standard deviation of the 

progressive average for each optimized network KPIs (spectrum, power consumption, and 

exposure). Notice that interference and spectrum management is not included in the base 

algorithm described in [25]. Hence, modifications were performed for the multi-objective 

optimization goals for this work. 

The users and traffic requirements are input parameters. The algorithm first generates a 

uniform and pseudo-random distribution of the users in the area and assign a traffic load per 
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user (see Phase 1 line 2 in Algorithm 1, the initial values for the input parameters are 

described in Section 2.6). Notice that the whole algorithm is repeated for a maximum number 

of simulations (Max_Sim). For the greenfield planning, an initial set of BSs (see initial values 

of input parameters in Section 2.6) is optimized to find the minimum required number of BSs 

(NBS) [31] and the best BS locations (in terms of average path loss to users). A histogram with 

the number of connections settled by each BS during a group of simulations (Max_Sim) is 

performed, and the optimal BS locations are chosen based on the probability of having the 

lowest path loss to users (Phase 1 line 5 to 13, in Algorithm 1). The number of simulations 

Max_Sim is empirically chosen to guarantee that the progressive average of the KPIs has a 

standard deviation lower than 2%. The output of the first phase is a new set with a number 

NBS of optimal BS locations (see Phase 1 line 15 in Algorithm 1). 
 

 
Algorithm 1. Multi-objective optimization algorithm. 
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The second phase receives as input the set of BSs (Best_BS_locations). The users and traffic 

densities are the same as Phase 1. In this phase, a dynamic optimization of the network is 

performed. For the total number of simulations Max_Sim and for each user (ui), the algorithm 

calculates a fitness value for each possible connection BSj. For each possible connection, the 

algorithm calculates the Power Consumption, Exposure, and after evaluating a certain 

Interference Signal Level constraint (ISL), it finds the best spectrum allocation for each link 

to be settled (Phase 2 lines 5 to 8 in Algorithm 1). For the network modeling and 

optimization, the interference levels are calculated based on the radiated power and path loss 

calculations. We start by evaluating (and further assigning) the lowest available frequency 

(for a better signal propagation). First, the algorithm will verify the interference level at the 

user and BS sites generated by all users, all BSs and television broadcasting towers in the 

surroundings.  This is possible because we consider a centralized access architecture 

retrieving information from all devices. Hence, the decision on frequency assignment is 

based on the information provided by all BSs from all users. Notice that in the traditional 

Cognitive Radio network architecture, the BSs are in charge of the frequency allocations 

taking into consideration static information from a geolocation database and the interference 

level information provided only by users in their range. 

The fitness function fit (Phase 2 line 9 in Algorithm 1) accounts for the network power 

consumption PC [W], global exposure EG [V/m] [25] and spectrum usage SU if the user ui is 

connected to a certain BSj (see metrics definition in Section 2.4). 
 

1 2 3( ; ) 1 1 1C G U
i j

max max max

P E S
fit u BS w w w

P E S

     
=  − +  − +  −     

     

    (8) 

 

where Pmax [W] is the maximum power consumed by the network (i.e., all BSs active with a 

maximum radiated power); Emax [V/m] is the maximal exposure over the considered area for 

the same network conditions. In this way, all performance indicators are normalized, and no 

parameter is overrated. Hence, for the worst-case PC = Pmax, EG = Emax, and SU = Smax the 

fitness function equals 0. The weight factors are defined as w1, w2, and w3. These weight 

factors corresponding to the Pareto coefficients and range from 0 to 1. For the Pareto 

optimality, several combinations of weights must be evaluated. Hence, several simulations 

are performed depending on the resolution considered for the weight factors. We consider a 

resolution of 0.25 for the Pareto coefficients, yielding 15 possible fitness functions for each 

(ui;BSj) possible connection. Notice that in any coefficient combination the sum of w1, w2, 

and w3 must be equal to 1. 

Each user is connected to the BS with the highest fitness value (lowest power consumption, 

spectrum usage, and exposure), if this BS is already active and still can support the user’s 

demanded bitrate (Phase 2 lines 9 to 13 in Algorithm 1). If no active BS can support the 

user’s demanded bitrate, a new BS with the best fitness value is switched active. For 

balancing the network load, already connected users can be switched to this new active BS, if 

their fitness value to this BS is higher than before (Phase 2 lines 14 to 18 in Algorithm 1). 

Once all users have been evaluated, the first network solution is optimized by decreasing the 

BS radiated power (Phase 2 lines 21 to 25 in Algorithm 1). The stop condition is reached 

when the path loss experienced by a user is higher than the maximum allowable path loss 

[25]. The decrease of the radiated power will decrease the power consumption, exposure and 

will allow a better re-usage of the spectrum. 



 11 

Finally the algorithm will calculate the network solutions white space availability (Wa) and 

will generate the network solutions (Phase 2 lines 26 and 27 in Algorithm 1. Notice that the 

density of users per area must be large enough to guarantee that the progressive average of 

the network KPIs converges after a reliable number of simulations with a low standard 

deviation (<2%). 

2.6 Evaluation scenario and initial setup 

To validate the proposed architecture and optimization algorithm, we modeled and optimized 

a Cognitive Radio network, in a real suburban wireless scenario. We consider the city of 

Ghent, Belgium (68 km2) for the green field planning and later dynamic optimization of the 

network. Fig. 3b shows a map of Ghent City and the BS possible locations denoted with red 

squares. Fig. 3a shows a map of the Region of Flanders, Belgium covering an area of 

approximately 13,522 km2 with the location of the television broadcast transmitters. 

 
Fig. 3. a) Broadcast transmitters in the region of Flanders, Belgium and b) area to be covered in Ghent, City, 45 

possible BS locations identified with red squares. 

A traditional Cognitive Radio network design is also modeled for a comparison reference. 

For this network, it is not possible to implement the sleep mode. This is because in sleep 

mode the spectrum management and user tracking in the BS are switched off. Without a 

centralized access controller capable of assuming spectrum management and tracking 

functions the Cognitive Radio BS can only be switched to idle.  In idle mode, the BSs 

implement most sensing functions, signaling and tracking, but no user data payload traffic is 

handled.  

A set of 45 possible locations is considered for the Cognitive Radio BSs (represented by 

squares in Fig. 3b). After the first optimization step, the algorithm retrieves a histogram of 

the optimal BSs locations and determines the minimum number required to satisfy the 

intended coverage (NBS, see Section 2.5). The network is designed to guarantee a 95% 

coverage at the cell-edge during 99% of the time. We consider the link budget presented in 

[31] for the IEEE 802.22 standard. 
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We consider 224 simultaneous user connections at the peak traffic time and a bit rate of 

1 Mbps per user [31]. Three scenarios are modeled, and the networks are dynamically 

optimized for three densities of BS infrastructure availability, i.e., the minimum number of 

BSs that satisfies the coverage constraint (NBS), 25%, and 50% higher BS density. In all 

cases, for the green field network planning the BSs are chosen according to the user’s 

connections histogram. 

The algorithm will realize two network solutions for each BS infrastructure availability 

considering an interference threshold of -116 dBm and -93 dBm for the Cognitive Radio 

sensed signals. The threshold of -116 dBm is considered if channel occupancy is based on 

sensing the IEEE 802.22.1 Beacon and sensing mode 0. The threshold of -93 dBm is defined 

in the standard for sensing mode zero and signal type IEEE 802.22 WRAN [9]. There is no 

recommended interference threshold value for DVB-T/T2 digital television signals in the 

IEEE 802.22 standard [9, 10]. For evaluating the re-usability of frequencies in use by nearby 

television broadcasting stations, an interference constraint of -95 dBm is considered. This 

value is based on the recommended protection contour of the broadcast transmitter [3]. The 

chosen interference constraint guarantees the minimum carrier-to-interference-ratio 

recommended in [11] for the protection of the primary service from harmful interference. 

All the broadcast transmitters around Ghent are included in the model to account for the 

interference levels (Fig. 3a). For the path loss calculations for TV Towers in Flanders, we 

consider their actual transmitter configurations [32, 33] and the ITU path loss model ITU-R 

P.1546-5/2013 [34]. For the path loss calculations in Ghent, we consider an experimental 

one-slope path loss model based on extensive measurement campaign in the UHF band as 

described in [35]. This model has a higher precision for Ghent city than the ITU-R  

P.1546-5/2013 model. 

3. Results and Discussion 

The minimum number of BSs to satisfy the coverage (spatial and temporal) of the Cognitive 

Radio network is NBS = 22. The second optimization step is realized for the chosen 22 BSs 

based on the computed histogram (see Section 2.5). The dynamic network optimization from 

Phase 2 (in Section 2.5) is also realized for a 25% (28 BSs) and 50% (33 BSs) higher BS 

infrastructure (BS selection based on the histogram). 

3.1 Pareto Optimality 

Fig. 4 shows the generated objective optimization results for a) 22 BS (minimum to guarantee 

coverage requirements, NBS), b) 28 BS (increase of BS locations by 25%) and c) 33 BS 

(increase of BS locations by 50%) with an Interference Signal Level constraint  

ISL = -93 dBm. 

The best performance in terms of spectrum and global exposure is denoted by markers 2 and 

3, respectively. The difference for a given BS density between both markers is maximally 

5.3%. This is because a major impact in both spectrum usage and exposure is achieved for a 

larger density of active BSs with a low radiated power. For the same reason, by increasing 

the infrastructure availability (more BSs to be switched from sleep to active) by 25%, the 

spectrum usage is reduced by 3.7% (see marker 2 in Fig. 4a vs Fig. 4b) and the global 

exposure reduces by 16.3% (see marker 3 in Fig. 4a vs Fig. 4b). An increase of 50% of BS 
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density (Fig. 4c) reduces the spectrum usage by 5.6% (see marker 2) and exposure by 15.8% 

(see marker 3) compared with 22 BS density (Fig. 4a). Notice that here the exposure is 

similar for 28 BS and 33 BS, in this case the reduction of radiated power per BS does not 

compensate for the increase of radiating sources. The improvements in spectrum usage and 

exposure have a drawback on the network power consumption. The power consumption 

increases by 13.3% to 15% for a 25% higher BS density (Fig. 4b marker 2 and 3) and 17.7% 

to 20.6% for a 50% higher BS density (Fig. 4c). This is a direct consequence of a higher 

density of active BSs for the network solutions in Fig. 4b and Fig. 4c.  

 

 
Fig. 4 Optimization results for a) 22 BS b) 28 BS and c) 33 BS locations @ ISL = -93 dBm (2D projection 

view). The dashed line represents (part) of the Pareto front. Marker 1 denotes the best power consumption 

results, marker 2 best spectrum usage result, marker 3 best exposure result and marker 4 optimal trade-off. 

 

For the best network solution in terms of power consumption (see Fig. 4 marker 1) there is no 

significant variation on this KPI as the density of available BS locations increases. The 

network power consumption varies from 0.91 kW to 0.92 kW (the difference is lower than 

the standard deviation). This is because the algorithm switches most of the BSs to sleep mode 

and increases the radiated power to reach the farthest users. The lower density of active BS 

(serving user traffic) leads to a lower power consumption even when the radiated power 

increases. As the density of active BSs decreases, the power consumption is reduced from 

30% to 35% compared with the maximum network power consumption, but the spectrum 

increases around 20% and the exposure from 20% to 37% (see marker 1 in Fig. 4).   
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The most balanced trade-off among the KPIs is denoted by marker 4. Increasing the number 

of BS locations do not allow a significant improvement of the mean point in the Pareto 

frontier (marker 4). Notice that for a 25% higher BS density (see Fig. 4b marker 4) the mean 

spectrum usage only improves by 3.3% and the global exposure by 8.6% while the network 

power consumption remains almost equal (the difference is lower than the standard 

deviation). For a 50% higher BS density (see Fig. 4c marker 4) the mean spectrum usage 

improves by 10% but the global exposure only improves by 3.7% with almost the same 

network power consumption.  

In general, with the increase in the number of active BSs, spectrum and network exposure 

improve for different points in the Pareto front (surface inside the dashed line), but with the 

drawback of a higher power consumption. In fact, the optimization strategies for power 

consumption and exposure are contradicting. For reducing global exposure, the algorithm 

leads to a higher number of active BSs with low radiated power. For reducing power 

consumption, the algorithm leads to a lower number of active BS. This is because the sleep 

mode of the BS consumes only 9W (14% of the maximum power consumption). Hence, a 

higher optimization, in terms of power consumption, is achieved when BSs are switched to 

sleep mode. In addition, for improving spectrum reusability, a lower radiated signal level will 

lead to lower spectrum usage but with a more balanced rate than in the case of the network 

exposure optimization. This is because the ISL constraint has an additional impact on the 

connection decisions and spectrum allocation. 

3.2 Cloud-based vs traditional network architecture 

Fig. 5 shows the difference (in percentages) for each pareto point in the cloud-based 

architecture and the traditional distributed architecture for 22 BS. 
 

 
Fig. 5 Differential Optimization comparison between the traditional Cognitive Radio network and the results for 

the cloud-based Cognitive Radio architecture for 22 BS @ ISL = -93 dBm (2D projection view). Marker 1 

denotes the best power consumption result, marker 2 the best spectrum usage result, marker 3 the best exposure 

result, marker 4 the worst-case power consumption result, marker 5 the worst-case spectrum usage result, and 

marker 6 the worst-case exposure result. 

The network modeling for the traditional Cognitive Radio network and 22 BS, yielded a 

power consumption of 1.3 kW, a network global exposure of 2.9 mV/m and mean spectrum 

usage of 18.4 channels. In Fig. 5 we represent how high these values are compared with each 

Pareto point in the optimized cloud-based Cognitive Radio network. For maximum network 

power consumption saving, the cloud-based architecture reduces power consumption by 
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30.6% (see marker 1 in Fig. 5). For this condition the spectrum usage is 28.1% lower and the 

mean global exposure is 30.1% lower, compared to the traditional Cognitive Radio network 

architecture. The best trade-off among spectrum usage and mean global exposure (see marker 

2 Fig. 5) achieves a higher performance by 41.6% (for both KPIs), and lower power 

consumption by 19.9%. The most balanced network solution among all KPIs (marker 3 in 

Fig. 5) achieves a lower spectrum usage by 34.5%, lower global exposure by 34.3% and 

lower network power consumption by 27.5%. In addition, notice that for the worst-case 

network solution for each KPI the proposed architecture performs better than the traditional 

Cognitive Radio network at least by 4.8% in terms of network power consumption (marker 4 

in Fig. 5), 7.3% in terms of spectrum usage (marker 5 in Fig. 5), and 4.3 % in terms of global 

exposure (marker 6 in Fig. 5). These results are due to the fact that a better connection 

decision is made by a centralized access controller when assessing the data collected by all 

devices, rather than a local decision based only on information from devices in the BSs 

service area. 

3.3 Effect of ISL constraint 

Fig. 6 shows the Pareto multi-objective optimization results for 22 BS (minimum to 

guarantee coverage requirements) with an interference signal level constraint of -116 dBm 

(23 dB lower than before at -93dBm). 
 

 
Fig. 6 Pareto optimization results for 22 BS @ ISL = -116 dBm 

The optimization results achieved for the network power consumption and global network 

exposure are similar in comparison to the results for an interference constraint of -93 dBm 

(see results for ISL = -93 dBm in Fig. 4a). However, the spectrum usage is considerably 

higher. For the best network solution in terms of spectrum usage the SU is equal to 19.0. This 

value is 43.7% worse than the best spectrum usage results for 22 BSs and ISL = -93 dBm, 

and 10% worse compared to the worst case in terms of spectrum for 22 BS and  

ISL = -93 dBm. This is because an increase in the number of active BSs and a decrease in the 

radiated signal level per BS, is not enough to allow a high reuse of the spectrum, due to the 

23 dB stricter ISL constraint. 

3.4 White Space Availability  

Fig. 7 shows the white space distribution map (white space availability at each grid point in 

the area, see metric on Section 2.4) for the traditional Cognitive Radio network with non-
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coordinated spectrum management and 22 BS (Fig. 7a), the cloud-based centralized spectrum 

management with 22 BS (Fig. 7b) and the same network architecture with 33 BS (Fig. 7c).  

 

 
Fig. 7 White space availability distribution for a) the traditional Cognitive Radio architecture with 22 BSs,  

b) the proposed cloud architecture with 22 BSs and c) 33 BSs. 
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The white space distribution maps in Fig. 7b and Fig. 7c correspond with the best results in 

terms of spectrum usage (denoted with marker 2 in Fig. 4a and 4c, respectively). The mean 

white space availability (accounting for the mean in the whole area) is 26.3% higher for the 

optimized proposed architecture than in the traditional Cognitive Radio network (Fig. 7b and 

8a respectively). Nevertheless, for the balanced optimality, the improvement is slightly lower 

(22.8%). Notice that in the city center the difference of white space availability can be higher. 

This is because the interference level is higher in the city center due to the BS locations 

distribution and the confluence of the radiation from more BSs. 

Although the mean white space availability does not increase significantly with the number 

of BS infrastructure availability (approximately 2% for a 50% increase in BS availability), 

the gradient (speed) of white space availability is higher for 33 BS than for 22 BS (Fig. 7b 

and 7c, respectively). This means more channels will be available in a region closer to Ghent 

if 33 BS locations are used for the green field network planning instead of 22 BS. This is 

because, although there are more radiating sources (active BSs), the radiation level per BS is 

lower, hence the radiation is concentrated in a smaller area due to the environment path loss. 

4. Conclusions 

By means of a novel multi-objective optimization algorithm for Cognitive Radio networks, 

we quantified the advantages of cloud-based network management for Cognitive Radio 

technologies in comparison with a traditional distributed architecture. A Pareto efficiency 

modeling is performed for quantifying the trade-off among three KPIs: Power Consumption, 

Spectrum Usage, and Exposure. 

Compared to a traditional Cognitive Radio network, our proposed architecture and 

optimization algorithm reduces the network power consumption by 27.5%, the average global 

exposure by 34.3% and spectrum usage by 34.5% for the best balance among the three KPIs. 

Important is to notice that even for the worst pareto point, our solution performs better than 

the traditional architecture by 4.8% in terms of network power consumption, 7.3% in terms of 

spectrum usage and 4.3% in terms of global exposure. 

For the cloud-based architecture a higher BS infrastructure density (beyond the minimum that 

guarantees the intended spatial and temporal coverage) improves spectrum usage up to 5.6% 

and global exposure up to 16.3% but with a drawback in terms of network power 

consumption from 13.3% to 20.6%.  

Future research will consist of the experimental characterization of the data rate as a function 

of the interference for a dynamic interference constraint assessment for Cognitive Radio 

networks. 
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