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Although selected configuration interaction (SCI) algorithms can tackle much larger Hilbert spaces than
the conventional full CI (FCI) method, the scaling of their computational cost with respect to the system
size remains inherently exponential. Additionally, inaccuracies in describing the correlation hole at small
interelectronic distances lead to the slow convergence of the electronic energy relative to the size of the one-
electron basis set. To alleviate these effects, we show that the non-Hermitian, transcorrelated (TC) version
of SCI significantly compactifies the determinant space, allowing to reach a given accuracy with a much
smaller number of determinants. Furthermore, we note a significant acceleration in the convergence of the
TC-SCI energy as the basis set size increases. The extent of this compression and the energy convergence
rate are closely linked to the accuracy of the correlation factor used for the similarity transformation of the
Coulombic Hamiltonian. Our systematic investigation of small molecular systems in increasingly large basis
sets illustrates the magnitude of these effects.

I. INTRODUCTION

Obtaining an accurate description of the electronic
structure of molecular systems remains one of the main
challenges of theoretical chemistry. The primary chal-
lenge stems from electronic correlation effects driven by
the Coulomb repulsion among electrons. To address this
issue, wave function theory appears as a promising tool
as it allows for a systematically improvable solution of the
Schrödinger equation following two complementary direc-
tions: i) an improvement of the wave function method to
get as close as possible to the full configuration inter-
action (FCI) solution, and ii) an increase in the size of
the one-electron basis set towards the complete basis set
(CBS) limit. These two aspects are usually considered
separately and addressed by different approaches.

Regarding the basis set expansion, it was acknowledged
long ago1 that the slow convergence of properties with
respect to the size of the one-particle basis set, computed
within wave function methods, arises from correlation
effects when two electrons are close to each other, that is,
near the derivative discontinuity (the so-called electron-
electron cusp) that originates from the divergence of the
Coulomb repulsion as the interelectronic distance r12 →
0.2–6

To mitigate this issue, it was proposed to comple-
ment the wave function with a two-electron function (or
geminal) explicitly depending on r12, leading to the so-
called “R12” and the more modern “F12” methods.7–13

In the latter method, a correlation factor is included
to introduce short-range correlation effects, hence im-
proving the shape of the correlation hole at small r12.
This leads to faster basis set convergence of ground-state
properties.14–17 Nevertheless, F12 methods do not use
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the full correlation factor per se but only its orthogonal
complement with respect to the space spanned by the
one-electron basis, leading to an operator that, by de-
sign, only describes correlation effects that are absent of
the one-electron basis set. Therefore, F12 methods do
not alter the expansion and potential complexity of the
wave function within the basis set.
Considering now the approximations of the FCI

wave function and energy, there exists a wide variety
of systematically-improvable approaches starting from
the mean-field Hartree-Fock (HF) solution: perturba-
tion theory (PT), CI expansions, coupled-cluster (CC)
theory,18–23 or matrix product states (MPS).24,25 Within
this zoo of wave function formalisms, one can classify
them into two categories: methods for which the wave
function ansatz is fixed by design (e.g., CC with single
and double excitations), and adaptive methods where the
wave function automatically adapts until reaching a given
accuracy. The former has a clear advantage as their com-
putational cost scales polynomially with the system size,
with the potential drawback that the ansatz might not
always be adapted to the specific problem under study.
Among the adaptive methods, one can mention

the vast family of selected configuration interaction
(SCI)26–40 approaches whose early stages originate in
the late 60’s, the MPS approaches41,42 which started in
the late 90’s24 or the more recent FCI quantum Monte
Carlo (FCIQMC),43,44 many-body expanded FCI (MBE-
FCI),45,46 full CC reduction (FCCR),47,48 and moment
expansion CC [CC(P,Q)].49–51 Although formulated in
distinct ways, these adaptive methods are characterized
by the idea of selecting the most important components
of the wave function among a very large Hilbert space.
One of the particularities of FCIQMC and SCI is that

they both rely on a linear parametrization of the elec-
tronic wave function. The advantage of such linear ex-
pansions is certainly the ability to rapidly and easily
compute the Hamiltonian matrix elements between the
numerous Slater determinants involved in the SCI or
FCIQMC calculations. At the SCI level, this is fur-
ther exploited for the computation of a second-order PT
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(PT2) correction, which can be then used to extrapolate
the variational energy to the FCI limit, as originally pro-
posed by Holmes et al.52 and lately rationalized by Bur-
ton and Loos.53 The resulting SCI+PT2 approach is now
regarded as a powerful machinery to generate FCI-quality
energies for both ground and excited states.38,52,54–62

However, due to the intrinsic exponential nature of the
exact wave function, both SCI and FCIQMC rapidly run
out of steam as the size of systems and/or basis sets in-
creases. Therefore, being able to compactify the CI ex-
pansion within a given basis set can substantially expand
the range of applicability, in terms of system size, of these
state-of-the-art approaches.

A potential solution allowing for simultaneous com-
pactification of the CI expansion and reduction of the
basis set error is to supplement the wave function by
a correlation factor without projection schemes.15,63–67

The two main families of projection-free methods deal-
ing with correlation factors are the transcorrelation (TC)
method of Boys and Handy,68 which is related to earlier
work by Hirschfelder,69 and the variational Monte Carlo
(VMC) approach.70 Importantly, while VMC treats the
correlation factor in a Hermitian framework, TC involves
a similarity transformation of the Hamiltonian by the
same correlation factor, leading to a non-Hermitian ef-
fective Hamiltonian.

The main consequences are four-fold: i) the VMC
framework being Hermitian, it necessarily provides vari-
ational energies unlike the TC formalism; ii) the Baker-
Campbell-Hausdorff (BCH) expansion of the TC Hamil-
tonian naturally truncates at second order with at most
three-body terms, while the BCH expansion of the ef-
fective VMC Hamiltonian does not truncate and there-
fore generates up to N -body terms; iii) because TC in-
volves at most three-body terms, the corresponding ma-
trix elements between two Slater determinants can be
computed in a deterministic way, in contrast to VMC
where one must rely on stochastic integration techniques
to compute the N -body integrals and avoid the curse of
dimensionality; iv) the similarity transformation of the
TC Hamiltonian maintains the original overlap metric
of the Slater determinant basis while VMC necessarily
introduces nonorthogonality.

Despite these differences, for a given correlation factor
and in the limit of a complete basis, the right eigenvec-
tor of the TC Hamiltonian and the Slater part of the
VMC trial wave function coincide, resulting in identical
TC and VMC energies.71–74 Because the TC Hamiltonian
can be written in second-quantized form, it can then be
employed in any post-HF methods, which, nevertheless,
have to be adapted to the non-Hermitian TC formalism.
Transcorrelated versions of most wave function ansätze
have been reported, starting from the single-determinant
formalism,68,75–100, to PT,101–103 CI and SCI,66,104–109

CC,74,110–114 FCIQMC,65,115–119 and MPS.120–122

As mentioned in previous studies,15,63–67 the inclusion
of a correlation factor, either within the TC or VMC
framework, allows to compactify the determinantal part

of the wave function. This key feature could potentially
expand the applicability of SCI while decreasing the fi-
nite basis set error. Moreover, the superior quality of TC
energy differences has been previously reported in several
studies.107,109,113,114,117,122 The aim of the present work
is to focus on the improved convergence properties of TC-
SCI with respect to the standard SCI implementation for
both absolute and relative energies. More precisely, we
aim to study the impact of the correlation factor on three
key aspects of the SCI algorithm: i) the convergence of
the TC-SCI energy, ii) the selection of the Slater deter-
minants, and iii) the choice of the orbital set.

The paper is organized as follows. In Sec. II, we re-
call the theoretical background of the various methods
employed here. The general theory of TC is summarized
in Sec. II A. Then, the biorthogonal basis set representa-
tion of the TC Hamiltonian is presented in Sec. II B and
its application to the orbital optimization in Sec. II C.
The working equations for the normal-ordering approx-
imation of the three-body interaction are gathered in
Sec. IID, the general TC-SCI algorithm is presented
in Sec. II E, and the correlation factor is described in
Sec. II F. In Sec. IIG, we discuss the computation of
the various additional integrals required within the TC
formalism, while Sec. IIH analyses the main computa-
tional bottleneck associated with TC calculations. Then,
Sec. III presents the main numerical results for atomic
and molecular systems. Sec. III A gathers the computa-
tional details. Considering the water molecule as an ex-
ample, we carry out a detailed investigation of i) the role
of the correlation factor and orbital optimization on the
distribution of the determinant weights in the TC-SCI
expansion (Sec. III B), ii) the convergence of the non-
variational TC-SCI energy and its extrapolation towards
the FCI limit (Sec. III C), and iii) the compactification of
the determinant expansion provided by the TC formalism
(Sec. IIID). We also study, in Sec. III E and Sec. III F,
the convergence of total energies and ionization poten-
tials (IPs) obtained within the TC-SCI approach. Com-
parison with the best estimates from the literature and
CBS values are reported. Finally, our conclusions are
drawn in Sec. IV. Unless otherwise stated, atomic units
are used throughout.

II. THEORETICAL FRAMEWORK

From hereon, the indices p, q, r, s, . . . denote arbitrary
spin-orbitals, while i, j, k, . . . and a, b, c, . . . designate oc-
cupied and virtual spin-orbitals, respectively. Moreover,
the indices µ, ν, λ, σ, . . . represent basis functions, i.e.,
atomic orbitals.
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A. Transcorrelated Approach

The central concept of the TC theory is to apply a
similarity transformation

ĤTC ≡ e−τ̂ Ĥeτ̂ (1)

to the bare Coulombic Hamiltonian

Ĥ = −
∑
i

∇2
i

2
−
∑
i

∑
A

ZA

riA
+
∑
i<j

1

rij
, (2)

where ri represents the position of electron i, the in-
dex A runs over the nuclei of charge ZA, riA is the dis-
tance between the ith electron and the Ath nucleus, and
rij = |ri − rj |. The similarity transformation defined in
Eq. (1) involves a correlation (or Jastrow) factor

τ̂ ≡
∑
i<j

uij , (3)

where the two-electron function uij ≡ u(ri, rj) is sym-
metric with respect to the exchange of two electrons, i.e.,
uji = uij .

The two Hamiltonians, Ĥ and ĤTC, defined in Eqs. (2)
and (1) respectively, share the same spectrum of eigen-
values in a complete basis. The similarity transformation
allows the transfer of physical effects from the correlation
factor to the TC Hamiltonian. Therefore, by incorporat-
ing correlation effects and exact conditions in τ̂ , such
as the electron-electron cusp, one would anticipate the
eigenvalues and eigenvectors of ĤTC to converge faster
toward the CBS limit when employing finite basis sets.

Using the BCH expansion, which here truncates natu-
rally at second order, one can show that the TC Hamil-
tonian reads

ĤTC = Ĥ −
∑
i<j

K̂ij −
∑

i<j<k

L̂ijk, (4)

where the two-electron operator K̂ij and the three-

electron operator L̂ijk are explicitly given by

K̂12 ≡ (∇1u12) ·∇1 + (∇2u21) ·∇2

+
1

2
∇2

1u12 +
1

2
∇2

2u21

+
1

2
(∇1u12)

2
+

1

2
(∇2u21)

2
,

(5)

and

L̂123 ≡ (∇1u12) · (∇1u13)

+ (∇2u21) · (∇2u23)

+ (∇3u32) · (∇3u31).

(6)

Clearly, ĤTC is non-Hermitian and includes three-
electron operators. These notable features will be thor-
oughly examined and addressed in the subsequent sec-
tions.

B. Biorthogonal Representation

Given that the eigenvectors of a non-Hermitian Hamil-
tonian are generally not orthogonal, the biorthogonal
framework123,124 emerges as the most natural approach
to handle ĤTC.

97–100,102–104,109 By introducing two sets
of one-electron functions, {ϕ̃p} and {ϕp}, satisfying the
biorthogonality condition

⟨ϕ̃p|ϕq⟩ = δpq, (7)

one can define direct and dual creation and annihilation
operators by their actions on the true vacuum |0⟩, as
follows:123

a†p |0⟩ = |ϕp⟩ , ã†p |0⟩ = |ϕ̃p⟩ . (8)

The biorthogonal condition (7) ensures that the creation
and annihilation operators satisfy the anticommutation
relations within the context of biorthogonality, that is,

{ãp, a†q} = δpq, {a†p, a†q} = 0, {ãp, ãq} = 0. (9)

Hence, in the second-quantization formalism, ĤTC can
be decomposed as a sum of one-, two-, and three-body
terms, with explicit forms

ĤTC =
∑
pq

hp
qa

†
pãq

+
1

2!

∑
pqrs

V pq
rs a

†
pa

†
qãsãr

+
1

3!

∑
pqrstu

Lpqr
stu a†pa

†
qa

†
rãuãtãs,

(10)

where

hp
q = ⟨ϕ̃p|ĥ|ϕq⟩ , (11a)

V pq
rs = ⟨ϕ̃pϕ̃q|r−1

12 − K̂12|ϕrϕs⟩ , (11b)

Lpqr
stu = ⟨ϕ̃pϕ̃qϕ̃r|−L̂123|ϕsϕtϕu⟩ . (11c)

C. Self-Consistent Field Procedure

Unless one aims to perform a FCI calculation, the
choice of the underlying orbitals considered to build the
multideterminant expansion for a given approximated
correlated treatment may have a significant impact on
the overall accuracy and convergence properties. In the
case of standard ground-state SCI calculations, one usu-
ally relies on mean-field HF orbitals as a starting point
which guarantees the fulfilment of Brillouin’s theorem.
Regarding now TC-SCI calculations, as ĤTC differs from
the bare Coulomb Hamiltonian, the usual HF orbitals are
not optimal with respect to the TC effective potential.
Relying on non-optimal orbitals may impact the compu-
tation of energy differences when enforcing the versatile
frozen-core approximations,109 and can also deteriorate
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the convergence of TC-SCI calculations as we shall dis-
cuss in Sec. III C.

To address these challenges, the Brillouin theorem
is generalized to the non-Hermitian case,97–100,102–104

which implies two distinct left and right conditions. In
the case of a closed-shell system, Brillouin’s theorem
translates into finding a pair of Slater determinants, Φ̃0

and Φ0, built with the occupied orbitals of the sets {ϕ̃p}
and {ϕp}, respectively, fulfilling the following conditions:

⟨Φ̃0|a†i ãaĤTC|Φ0⟩ = 0, (12a)

⟨Φ̃0|ĤTCa
†
aãi|Φ0⟩ = 0. (12b)

The sets of orbitals {ϕ̃p} and {ϕp} are necessarily
biorthogonal and can be obtained through the TC self-
consistent field (SCF) procedure as detailed in Ref. 100.

This non-linear optimization process is carried out it-
eratively by diagonalizing the non-symmetric TC Fock
matrix, which reads

F p
q ≡ hp

q +
∑
i

V̄ ip
iq +

1

2

∑
ij

L̄ijp
ijq , (13)

where we have introduced the antisymmetrized set of in-
tegrals

V̄ pq
rs ≡ V pq

rs − V pq
sr , (14a)

L̄pqr
stu ≡ Lpqr

stu − Lpqr
sut + Lpqr

tus − Lpqr
tsu + Lpqr

ust − Lpqr
uts . (14b)

At convergence of the TC-SCF procedure, the left and
right TC-SCF orbitals are the left and right eigenvectors
of the non-Hermitian TC Fock matrix defined in Eq. (13).

D. Normal-Ordering with Biorthogonal Orbitals

Storing three-electron integrals poses a significant com-
putational burden, demanding extensive memory re-
sources in practice. To handle the three-electron interac-
tion term in ĤTC (see Sec. IIA), we apply the normal-
ordering technique to the three-body operator

L̂ =
1

3!

∑
pqrstu

Lpqr
stua

†
pa

†
qa

†
rãuãtãs, (15)

written in a biorthogonal basis, thus generalizing recent
work performed in the context of an orthogonal basis.125

In our case, the Slater determinants Φ̃0 and Φ0 ob-
tained through the previous TC-SCF procedure are de-
fined as the Fermi vacua. More specifically, we have

a†pãq = N
[
a†pãq

]
+ a†pãq (16)

where

a†pãq ≡ ⟨Φ̃0|a†pãq|Φ0⟩ = γp
q , (17)

and the normal-ordered term is defined such that

N [a†pa
†
q · · · ãrãs · · · ] ≡ 0. (18)

In Eq. (17), one can recognize the transition density ma-
trix γp

q which is the equivalent of the usual density matrix
in Hermitian calculations.

By applying the following identity

a†pa
†
qa

†
rãuãtãs = N

[
a†pa

†
qa

†
rãuãtãs

]
+N

[
a†pa

†
qa

†
rãuãtãs

]
+ · · ·

+N

[
a†pa

†
qa

†
rãuãtãs

]
+ · · ·

+N

[
a†pa

†
qa

†
rãuãtãs

]
+ · · · ,

(19)

considering all possible single, double, and triple contrac-
tions, along with the following relationships

N
[
a†pãq

]
= a†pãq − γp

q , (20a)

N
[
a†pa

†
qãsãr

]
= a†pa

†
qãsãr

− γp
ra

†
qãs + γq

ra
†
pãs − γq

sa
†
pãr + γp

sa
†
qãr

− γq
rγ

p
s + γq

sγ
p
r .

(20b)

one ends up with the following form for the three-body
operator:

L̂ = L̂(0) + L̂(1) + L̂(2) + L̂(3), (21)

with

L̂(0) =
1

6

∑
ijk

(
Lijk
ijk + 2Lijk

kij − 3Lijk
kji

)
, (22a)

L̂(1) =
∑
pq

L̃p
qa

†
pãq, (22b)

L̂(2) =
1

2

∑
pqrs

L̃pq
rsa

†
pa

†
qãsãr, (22c)

L̂(3) =
1

6

∑
pqrstu

Lpqr
stuN

[
a†pa

†
qa

†
rãuãtãs

]
, (22d)

and

L̃p
q = −1

2

∑
ij

(
Lpij
qij − Lpij

qji + 2Lpij
ijq − 2Lpij

jiq

)
, (23a)

L̃pq
rs =

∑
i

(
Lipq
irs − Lipq

ris − Lipq
sri

)
, (23b)

where we have used the fact that, in the case of single-
determinant Fermi vacua, the only non-zero elements of
the transition density matrix are γi

i = 1. Therefore, the
three-body operator can be written as a sum of a scalar
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quantity, L̂(0) = ⟨Φ̃0|L̂|Φ0⟩, one- and two-body opera-

tors, L̂(1) and L̂(2), together with a three-body operator
involving normal-ordered annihilation and creation oper-
ators. Since, by definition, ⟨Φ̃0|L̂(3)|Φ0⟩ = 0, a reason-
able assumption is that the effect of the pure three-body
normal-ordered operator L̂(3) is negligible. Therefore,
the normal-ordered approximation,

L̂ ≈ L̂(0) + L̂(1) + L̂(2), (24)

typically results in small errors and effectively reduces
the TC Hamiltonian to a two-body operator

ĤTC = L̂(0) +
∑
pq

h̃p
qa

†
pãq +

1

2!

∑
pqrs

Ṽ pq
rs a

†
pa

†
qãsãr, (25)

with new effective one- and two-body integrals defined as

h̃p
q = hp

q + L̃p
q , Ṽ pq

rs = V pq
rs + L̃pq

rs , (26)

where L̃p
q and L̃pq

rs are given by Eqs. (23a) and (23b),
respectively.

E. Selected Configuration Interaction Algorithm

In the TC framework, the optimal ground-state coeffi-
cients for a selected space of Slater determinants, referred
to as the SCI wave function, are simply the ground-state
left and right eigenvectors of the matrix representation of
ĤTC within this space. This approach offers several ad-
vantages over other optimization schemes, such as those
based on the expensive and noisy VMC method, mak-
ing the TC theory highly appealing. Furthermore, an
intriguing possibility is to go a step further and directly
tailor the space of determinants to adapt to the correla-
tion factor. This can be achieved through TC-SCI algo-
rithms, which extend standard SCI versions.

The “Configuration Interaction using a Perturbative
Selection made Iteratively” (CIPSI) algorithm27 is highly
efficient for constructing the space of determinants and
providing accurate estimates of the FCI energy with com-
pact wave functions. Recently, we extended the CIPSI
method to accommodate the TC Hamiltonian.107,109 In
this section, we outline the TC-CIPSI algorithm, sum-
marizing its key steps as follows:

1. Begin with a zeroth-order wave function |Ψ(0)⟩ =∑
I∈I cI |DI⟩ within a selected space of determi-

nants I, along with its dual ⟨Ψ̃(0)| =
∑

I∈I c̃I ⟨D̃I |,
satisfying the following conditions:

HTC |Ψ(0)⟩ = E
(0)
TC |Ψ

(0)⟩ , (27a)

H†
TC |Ψ̃

(0)⟩ = E
(0)
TC |Ψ̃

(0)⟩ , (27b)

⟨Ψ̃(0)|Ψ(0)⟩ = 1, (27c)

where HTC is the matrix representation of ĤTC in
the biorthogonal basis of selected determinants.

2. Compute the energetic contributions of all deter-
minants outside I

e(2)α =
⟨Ψ̃(0)|ĤTC|Dα⟩ ⟨D̃α|ĤTC|Ψ(0)⟩

E
(0)
TC − ⟨D̃α|ĤTC|Dα⟩

, (28)

which all together form the PT2 energy

E
(2)
TC =

∑
α/∈I

e(2)α . (29)

This second-order perturbative energy is computed
using an efficient stochastic implementation, as
proposed in Ref. 126. Because we rely on the
normal-ordering approximation of Eq. (24), ĤTC

remains a two-body operator, and therefore, in
practice, the determinants |Dα⟩ and |D̃α⟩ for

which e
(2)
α ̸= 0 correspond to the singly- and

doubly-excited determinants with respect to any
selected determinant, as in usual SCI calculations.

3. Choose a new ensemble of determinants A, identi-
fied by the largest energy contributions |e(2)α | . Fur-
thermore, when opting for a particular determi-
nant, all other determinants within the correspond-
ing configuration state function are automatically
incorporated, ensuring pure spin states.127

4. Update the zeroth-order space I ← I ∪A, and ap-
ply a nonsymmetric Davidson algorithm128 to up-

date Ψ̃(0), Ψ(0), and E
(0)
TC.

5. Repeat steps 2-4 until convergence is achieved.

We would like to highlight some of the subtleties of the
TC-SCI algorithm, that arise from the non-Hermitian
character of ĤTC. First, regarding the set of deter-
minants {DI} and {D̃I}, it is important to note that
both are constructed from determinants with identical
orbital occupancies. As a consequence, when working
with a unique set of orthogonal orbitals, {DI} and {D̃I}
are strictly identical, whereas, when using a couple of
biorthogonal orbital sets, they differ as each set of de-
terminants is built with a different set of orbitals. Nev-
ertheless, the biorthogonality relation between orbitals
implies a biorthogonality relation between the determi-
nants (see Ref. 109 for a more detailed discussion). Sec-

ond, as shown in Ref. 107, the use of e
(2)
α [see Eq. (28)]

corresponds to a balanced selection criterion for both the
left and right eigenvectors as it involves both the left and
right zeroth-order wave functions Ψ̃(0) and Ψ(0). Third,

the use of the absolute value of e
(2)
α as a selection cri-

terion is mandatory as the expression of Eq. (28) is not
necessarily negative, contrary to the Hermitian case.
To conclude this section, we briefly present the extrap-

olation scheme used in the context of TC-SCI, allowing
us to estimate the TC-FCI energy.109 The procedure is
the direct application of the scheme initially proposed in
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Ref. 52 for the Hermitian case. For small enough E
(2)
TC

values, one can approximate the TC-FCI energy by

ETC-FCI ≈ E
(0)
TC + E

(2)
TC, (30)

the TC-FCI limit being effectively and rigorously reached

when E
(2)
TC = 0. This implies that, as E

(2)
TC → 0, the

zeroth-order energy E
(0)
TC becomes a linear function of the

second-order energetic correction E
(2)
TC. At each TC-SCI

iteration, we compute both E
(0)
TC and E

(2)
TC, and when the

linear regime is reached ETC-FCI is estimated by linearly
fitting the former as a function of the latter.

The main difference with the usual SCI extrapolation is
the presence of both positive and negative contributions

in E
(2)
TC, which implies that the latter is not necessarily

negative. Therefore, E
(0)
TC is not necessarily a monotonic

function of E
(2)
TC. In some cases, these two aspects can

lead to situations where it is difficult to estimate faith-
fully the TC-FCI energy, as shall be exemplified below.

F. Correlation Factor

Various forms of correlation factors have been pro-
posed in the literature, from the simplest universal
two-body correlation factor based on Gaussian gemi-
nals129–131 to more elaborate forms including electron-
electron-nucleus terms.63,68,100,132 In the present inves-
tigation, we consider the correlation factor proposed by
Boys and Handy,68 which we re-express as follows:

uij =
∑
A

PA∑
pA=1

C
npA
mpA

cpA
[fαA

(rij)]
ℓpA g

mpA
npA

βA
(riA, rjA)

(31)
with

fα(x) =
αx

1 + αx
, (32a)

gmn
α (x, y) = [fα(x)]

m
[fα(y)]

n
+ [fα(y)]

m
[fα(x)]

n
.
(32b)

For each nucleus, we employ a total of PA terms, each
term pA being characterized by three positive integers
(ℓpA

,mpA
, npA

) and a coefficient cpA
.

Following the work of Schmidt and Moskowitz,133 we
set αA = βA = 1 for all nuclei. Additionally, we have

Cn
m =

{
1/2, if m = n,

1, otherwise.
(33)

Furthermore, we enforce the electron-electron cusp by
systematically including in the parametrization, the term
characterized by m1 = n1 = 0 and ℓ1 = 1, with the
corresponding coefficient c1 = 1/2 (see Ref. 133 for more
details).

It is important to highlight the three complementary
effects introduced by the parametrization of Eq. (31).

First, the terms characterized by ℓ > 0 and m = n = 0
correspond to pure electron-electron terms, which explic-
itly depend on the interelectronic distances. Their main
purpose is to model the correlation hole, that is, the low-
ering of the probability of finding two electrons close to-
gether due to electron correlation effects. Second, for
ℓ = m = 0 and n > 0 (or ℓ = n = 0 and m > 0), one in-
troduces pure electron-nucleus terms which provide flex-
ibility to the one-electron density for its adjustment to
accommodate the presence of the correlation hole. Third,
components associated with ℓ > 0, m > 0, and n ≥ 0 (or
ℓ > 0, m ≥ 0, and n > 0) include electron-electron-
nucleus terms, effectively coupling the electron-electron
and electron-nucleus terms previously mentioned. These
three-body terms facilitate an even more accurate repre-
sentation of the correlation hole.
In the present study, we rely on the parametriza-

tion of the correlation factor, optimized within a VMC
framework at the single-determinant level, as reported in
Refs. 133 and 134.

G. Integral Evaluation

In this section, we focus on the computation of inte-
grals necessary for TC calculations. Besides the standard
one- and two-electron integrals, one must also compute
the following additional set of two-electron integrals:

Kpq
rs ≡ −⟨ϕ̃pϕ̃q|K̂12|ϕrϕs⟩ , (34)

where K̂12 is defined in Eq. (5). Additionally, three-
electron integrals, as defined in Eq. (11c), must be com-
puted.
The two-electron integrals are computed in the atomic

orbital basis {χµ}, as follows:

Kµν
ηζ ≡ −⟨χµ χν |K̂12|χη χζ⟩ . (35)

These integrals are subsequently transformed into the or-
bital bases to obtain Eq. (34).

By exploiting the symmetry of the operator K̂12 with
respect to electron exchange (K̂12 = K̂21) and employing
integration by parts, we obtain

Kµν
λσ = Kµν

λσ +Kνµ
σλ (36)

where we introduce

Kµν
λσ =

1

2

∫
dr

[
χµ(r)∇χλ(r)−∇χµ(r)χλ(r)

]
·Gν

σ(r)

+
1

2

∫
drχµ(r)χλ(r)J

ν
σ (r).

(37)

The three-dimensional integrals Gν
σ and the scalar inte-

grals Jν
σ are defined by

Gν
σ(r1) ≡

∫
dr2χν(r2)χσ(r2)∇1u12, (38a)

Jν
σ (r1) ≡

∫
dr2χν(r2)χσ(r2)[∇1u12]

2
. (38b)
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The three-electron integrals (11c) are computed di-
rectly in the orbital basis and are given by

Lpqr
stu =

∫
dr

[
ϕ̃p(r)ϕs(r)G

q
t (r) ·G

r
u(r)

+ϕ̃q(r)ϕt(r)G
p
s(r) ·G

r
u(r)

+ϕ̃r(r)ϕu(r)G
p
s(r) ·G

q
t (r)

]
.

(39)

Note that Gp
q(r) corresponds to the potential (38a) in

the orbital basis.
As the integrals previously defined cannot be obtained

in closed form, except for specific forms of correlation
factors,66,135 we compute numerically these integrals us-
ing Becke’s quadrature grid.136,137 Nevertheless, as the
integrands in Eqs. (37) and (39) are much smoother
than those appearing in the definition of the potentials
in Eqs. (38a) and (38b), we employ two distinct grids:
one for evaluating integrals over r2 [as in Eqs. (38a)
and (38b)] which is denser than the one used for eval-
uating integrals over r [as in Eqs. (37) and (39)]. This
approach allows for an efficient computation of two- and
three-electron integrals via dense matrix-matrix multipli-
cations using BLAS routines.

H. Computational cost

Here, we discuss some considerations regarding the
computational overhead associated with a TC-SCI cal-
culation compared to its Hermitian version.

Regarding strictly the SCI part, the dominant compu-
tational costs stem from the evaluation of the PT2 correc-
tion and the Davidson diagonalization. These steps are
limited by two operations: i) applying the Slater-Condon
rules between determinants (i.e. finding the particle-
hole excitation operators together with the fermionic
phase factor) and ii) accessing and combining the in-
tegrals needed for the computation of matrix elements.
Thanks to the normal-ordering approximation presented
in Sec. IID, ĤTC remains a two-body operator. There-
fore, the Slater-Condon rules are unchanged and can be
very efficiently computed.138 In the present implementa-
tion, the left and right eigenvectors are computed sepa-
rately, leading to an overall increase of the computational
time by a factor of 2.

Except for the nonsymmetric Davidson diagonalization
for large determinant spaces, the computation of the two-
and three-electron integrals is the main computational
bottleneck of the TC-CIPSI approach. To avoid stor-
ing these integrals, which would require O(N6) storage
(where N is the number of basis functions), they are com-
puted on the fly and contracted to form the operators
defined in Eqs. (22a), (22b), and (22c). L̂(0), L̂(1), and

L̂(2) require O3, O2N2, and ON4 integrals, respectively,
while the construction of the TC Fock operator involves
O2N2 integrals [see Eq. (13)], where O the number of
occupied orbitals. To compute Lpqr

stu , one first evaluates

the potentials Gq
p(r) on each grid point for each pair of

orbitals, which necessitates KN2 storage (where K is the
number of grid points). Then, these values are employed
in Eqs. (22a), (22b), and (22c) to compute the required
integral batches.

III. RESULTS AND DISCUSSION

A. Computational details

The calculations reported in this manuscript are per-
formed with quantum package.39 In the subsequent
calculations, we employ either the 6-31G split-valence
basis sets139–141 or Dunning’s cc-pVXZ and cc-pCVXZ
basis sets, where X denotes D, T, Q, and 5.142,143 The
molecular geometries were extracted from the quest
database60,144,145 or experimental data,146 and are pro-
vided in the Supporting Information. Unless otherwise
stated, calculations are performed in the frozen-core ap-
proximation.
The Jastrow parameters were obtained from two

sources: Ref. 133 and Ref. 134. Specifically, for atoms, we
utilized the parameters outlined in Table VI of Ref. 133,
whereas for molecules, the Jastrow parameters were
sourced from Table 2 of Ref. 134. Mean-field calcula-
tions on closed-shell systems are performed in the re-
stricted formalism while the restricted open-shell formal-
ism is employed for open-shell systems.100 For the latter
case, an average of integrals corresponding to spin-up and
spin-down densities is employed in the normal-ordering
procedure. In the calculations presented herein, we use a
grid with 30 radial and 50 angular points for each atom
over r, and 70 radial and 266 angular points over r2.
These grid configurations ensure the stability of energy
calculations to within at least 0.1mEh. All calculations
were carried out on a single dual-socket node equipped
with 36 Intel Skylake 6140 cores, each running at 2.3
GHz.

B. Weights of the Slater determinants

We begin this study by comparing the weight c2I of a
given Slater determinant I (built with HF orbitals) in the
ground-state FCI wave function, and the pseudo-weight
|c̃IcI | of the same determinant in the ground-state TC-
FCI wave function. As a first example, we consider the
H2O molecule in the 6-31G basis set as this relatively
small basis set enables the calculation of both the FCI
and TC-FCI wave functions.
We report in the left panel of Fig. 1 the FCI weights

c2I associated with the 500 most important Slater deter-
minants sorted by decreasing weights, as well as the cor-
responding TC-FCI pseudo-weights |c̃IcI |. Additionally,
the level of excitation with respect to the reference de-
terminant is indicated by different colors. An impor-
tant observation is that the pseudo-weights do not de-
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crease monotonically, unlike the weights. This indicates
that when using the TC Hamiltonian, the determinants
are not selected in the same order as with the standard
Hamiltonian when using the CIPSI algorithm. Also, the
pseudo-weights are globally smaller than the FCI weights,
except for the single excitations which are typically much
larger in the TC wave function. The latter observation
can be explained by the fact that while HF orbitals fulfill
the Brillouin theorem for the standard Hamiltonian, it is
no longer the case for the TC Hamiltonian as the effective
interaction is no longer the bare Coulomb repulsion.

We report, in the right panel of Fig. 1, the weight dis-
tribution of the TC wave function using now TC-SCF
orbitals, which therefore fulfills both the left and right
Brillouin conditions [see Eqs. (12a) and (12b)]. Conse-
quently, the pseudo-weights of the single excitations are
significantly reduced. For the sake of completeness, we
should mention that in the latter case, as the orbitals
are different, the determinants in the FCI and TC-FCI
wave functions are no longer the same but here we simply
match a given determinant from the two wave functions
with its orbital occupation, assuming that the physical
meaning of the orbitals weakly changes with the TC-SCF
optimization (which is clearly the case here).

More quantitatively, there are 2590 determinants with
a weight larger than 10−7 in the FCI wave function, while
there are only 1998 and 1704 determinants with a pseudo-
weight larger than 10−7 in the TC wave function using
the HF and TC-SCF orbitals, respectively. This shows
that the correlation factor has the effect of lowering the
number of determinants that significantly contribute to
the energy. This is the first evidence of the compactifi-
cation of the determinant expansion brought by the TC
approach.

Figure 2 shows similar quantities but in a larger ba-
sis set (cc-pVTZ) and computed at the CIPSI and TC-
CIPSI levels employing HF and TC-SCF orbitals, respec-
tively. In this case, the determinants are sorted with
respect to their corresponding (pseudo) weights in their
corresponding wave functions. The same color code is
used to indicate the excitation degree of the determi-
nants. Additionally, to study the impact of the form
of the correlation factor, we performed calculations us-
ing the simple correlation factor introduced previously
by some of the authors.108 The latter form consists of
a universal two-body correlation factor designed for va-
lence electrons multiplied by atom-centered Gaussian en-
velopes suppressing the effect of the correlation factor in
the core regions. The nuclear parameters for the Gaus-
sian envelopes used for these calculations were taken from
Ref. 109. These complementary results are reported in
the Supporting Information.

Three key observations can be made: i) as above, the
pseudo weights are systematically lower than the weights,
ii) triple and higher excitations enter much earlier in
the TC-CIPSI expansion, which demonstrates that the
correlation factor allows for a significant reduction of
the weights of doubly-excited determinants, and iii) the

above effects are considerably less pronounced with the
simpler correlation factor, highlighting the importance of
flexible functional forms.

C. Convergence of the zeroth-order energy and its
extrapolation

A critical aspect of the TC-SCI scheme is the conver-

gence of the zeroth-order energy E
(0)
TC based on the crite-

rion employed to select Slater determinants, a smooth
convergence facilitating its extrapolation towards the
TC-FCI limit. Here, we would like to investigate two
distinct selection procedures that evidence the impact of
the correlation factor: i) selecting determinants via the
second-order contribution computed with the TC Hamil-
tonian using both left and right eigenvectors [see Eq. (28)]
(TC-CIPSI selection), or ii) performing a standard selec-
tion based on the bare Hamiltonian (CIPSI selection).
To illustrate this point, we rely on the same repre-

sentative example, the H2O molecule in the cc-pVTZ

basis set. We report the convergence of E
(0)
TC with re-

spect to the number of Slater determinants in Fig. 3 with
the CIPSI and TC-CIPSI selection procedures discussed
above. We observe that, starting from the HF reference
determinant, the CIPSI selection leads rapidly (approxi-
mately 3000 determinants) to an energy that is below the
estimated TC-FCI energy, while, for expansions larger

than 600 000 determinants, E
(0)
TC rises to eventually reach

this limiting value. If one selects the determinants using
the TC-CIPSI algorithm instead, we observe that, from
about 20 determinants, the zeroth-order energy mono-
tonically decays and remains above the TC-FCI energy.
This clearly highlights the impact of the correlation fac-
tor on the selection of the determinants. Additionally,

Fig. 3 illustrates the convergence of E
(0)
TCusing TC-SCF

orbitals, as opposed to HF orbitals, highlighting the im-
pact of orbital optimization in the TC framework. One
can see that although the TC-SCF reference determinant

is higher in energy, E
(0)
TC rapidly and monotonically decay

towards the TC-FCI energy.

In Fig. 3, we also report the evolution of E
(0)
TC as a

function of the second-order energy correction E
(2)
TC [see

Eq. (29)] for the various cases investigated here. This

helps us to appreciate the different behaviors of E
(0)
TC from

the perspective of its extrapolation. On the one hand, we

observe that the erratic behavior of E
(0)
TC obtained from

the CIPSI selection makes it hard to extrapolate E
(0)
TC

to the TC-FCI energy, due to the presence of a “turn-
ing” point stemming from the interplay between the pos-

itive and negative contributions of E
(2)
TC, as mentioned in

Sec. II E. On the other hand, using the TC-CIPSI selec-
tion leads to a globally linear curve. However, when one
employs HF orbitals, we observe a sudden change of slope

as E
(2)
TC → 0, leading also to a possible untrustworthy ex-

trapolation. However, using TC-SCF orbitals, E
(0)
TC has a
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FIG. 1. Weights (c2I) of the FCI wave function (solid black line) and pseudo-weights (|c̃IcI |) of the TC-FCI wave function
(colored markers) for H2O in the 6-31G basis set. The excitation degree of each determinant with respect to the mean-field
reference determinant is indicated by the following color code: red, blue, green, and purple for single, double, triple, and
quadruple excitations, respectively. The left panel displays the weight distribution of the determinants sorted by c2I , using
HF orbitals to construct the determinants. The right panel reports similar quantities but TC-SCF orbitals are employed for
constructing the TC-FCI wave function.
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FIG. 2. Weights (c2I) or pseudo-weights (|c̃IcI |) of the first
5000 determinants composing the CIPSI (left) and TC-CIPSI
(right) wave functions, sorted with respect to their corre-
sponding (pseudo) weights, for H2O in the cc-pVTZ basis set.
For the sake of readability, one point out of 10 is represented.
The excitation degree of each determinant with respect to the
mean-field reference determinant is indicated by the follow-
ing color code: red, blue, green, and purple for single, double,
triple, and quadruple excitations, respectively.

consistent linear behavior on a larger range of E
(2)
TC allow-

ing us to estimate the TC-FCI energy more safely. It is
worth mentioning the small difference (roughly 0.4mEh)
in the TC-FCI limiting values obtained with HF and TC-
SCF orbitals, which is due to the normal-ordering ap-
proximation that necessarily creates a weak dependence
on the orbitals.
We can then conclude that the best strategy to per-

form a TC-SCI calculation is to rely on TC-SCF or-
bitals in combination with the TC-CIPSI algorithm for
the determinant selection. In such a way, one obtains
rapidly and monotonically convergent zeroth-order ener-
gies that permit a reliable extrapolation to the TC-FCI
limit. From hereon, TC-CIPSI calculations are system-
atically performed with TC-SCF orbitals.

D. Compactification of the CI expansion

To demonstrate the disparity in convergence rate be-
tween energies computed via the CIPSI and TC-CIPSI
methods, we conduct calculations on the water molecule
using increasingly large Dunning basis sets (cc-pVDZ,
cc-pVTZ, and cc-pVQZ). In order to quantify the accel-
eration brought by the TC approach, we primarily fo-
cus on two indicators of convergence. The first crite-
rion corresponds to the number of determinants required
to reach a specified value of the second-order energies,

E(2) for CIPSI and E
(2)
TC for TC-CIPSI. The second cri-

terion involves achieving stable extrapolations towards
the FCI and TC-FCI limits, respectively, through fitting
functions represented as

E(0)
(
E(2)

)
= aE(2) + b, (40a)

E
(0)
TC

(
E

(2)
TC

)
= aTCE

(2)
TC + bTC. (40b)



10

-76.44

-76.42

-76.40

-76.38

-76.36

-76.34

-76.32

-76.30

-76.28

 1  10  100  1000  10000  100000  1x106

Ze
ro

-o
rd

er
 e

ne
rg

y 
(𝐸

h)

Number of determinants

 

CIPSI selec.
TC-CIPSI selec. (HF orb.)

TC-CIPSI select. (TC-SCF orb.)

-76.440
-76.435
-76.430
-76.425
-76.420
-76.415
-76.410
-76.405
-76.400
-76.395

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005  0  0.005  0.01  0.015

Ze
ro

-o
rd

er
 e

ne
rg

y 
(𝐸

h)

Second-order energy (𝐸h)

 

CIPSI selec.
TC-CIPSI selec. (HF orb.)

TC-CIPSI select. (TC-SCF orb.)

-76.424
-76.423
-76.422
-76.421
-76.420
-76.419
-76.418
-76.417
-76.416

-0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001  0

Ze
ro

-o
rd

er
 e

ne
rg

y 
(𝐸

h)

Second-order energy (𝐸h)

 

TC-CIPSI selec. (HF orb.)
TC-CIPSI select. (TC-SCF orb.)

FIG. 3. Convergence of E
(0)
TC as a function of the number

of selected determinants (top) or E
(2)
TC (center and bottom)

for H2O computed in the cc-pVTZ basis and obtained via
the CIPSI and TC-CIPSI selection procedures. In the case
of TC-CIPSI, HF or TC-SCF orbitals are employed. The
bottom panel corresponds to a zoom of the central panel near
the origin.

The data associated with the following analysis can be
found in the Supporting Information.

The convergence behavior of the zeroth-order energies,

E(0) and E
(0)
TC, are depicted in Fig. 4. The correspond-

ing extrapolated FCI and TC-FCI energies, EFCI and
ETC-FCI, are presented by shaded lines. These plots
illustrate that, as the number of selected determinants

increases, E
(0)
TC converges towards ETC-FCI at a notably
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FIG. 4. Zeroth-order energies, E(0) (red) and E
(0)
TC (blue), as

functions of the number of selected determinants for H2O in
the cc-pVDZ (top), cc-pVTZ (center), and cc-pVQZ (bottom)
basis. The shaded horizontal lines represent the extrapolated
FCI (red) and TC-FCI (blue) energies.

faster rate compared to the convergence of E(0) towards
EFCI. A similar trend is observed for the second-order
perturbative energies, as shown in Fig. 5, where we re-

port the evolution of E(2) and E
(2)
TC as functions of the

number of determinants.

More quantitatively, achieving chemical accuracy,
which corresponds to values of EPT2 below 1.5mEh, re-
quires approximately 96 883, 3 105 054, and 23 609 437 de-
terminants in the cc-pVDZ, cc-pVTZ, and cc-pVQZ ba-
sis sets, respectively. Conversely, in the TC case, reach-
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FIG. 5. Second-order perturbative energies, E(2) (red) and

E
(2)
TC (blue), as functions of the number of selected determi-

nants for H2O in the cc-pVDZ (top), cc-pVTZ (center), and
cc-pVQZ (bottom) basis. The shaded yellow region corre-
sponds to 1.5mEh accuracy.

ing ETC
PT2 ≈ 1.5mEh occurs much earlier, with approxi-

mately 12 195, 148 821, and 781 281 determinants in these
bases, indicating a compactification of the CI expansion
by factors of approximately 8, 21, and 30, respectively.

In Fig. 6, we depict the evolution of E(0) as a func-

tion of E(2), as well as E
(0)
TC as a function of E

(2)
TC. We

perform a linear fit of these data using Eqs. (40a) and
(40b) to target the FCI and the TC-FCI energies, re-
spectively. Across all three basis sets, both CIPSI and
TC-CIPSI demonstrate stable and smooth linear extrap-
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the cc-pVDZ (top), cc-pVTZ (center), and cc-pVQZ (bottom)
basis.

olations. However, upon closer examination, we observe
that the TC-CIPSI extrapolation converges significantly
faster.

In Fig. 7, we assess the error on the extrapolated en-
ergies as additional iterations are performed (or, equiva-
lently, more determinants are added) with each extrapo-
lation conducted using five consecutive iterations of the
CIPSI or TC-CIPSI algorithm. The comparison is car-
ried out for cc-pVDZ, cc-pVTZ, and cc-pVQZ. We es-
tablish convergence over extrapolation when performing
an additional CIPSI (TC-CIPSI) iteration no longer al-
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FIG. 7. Error in extrapolated energies as additional itera-
tions (or selected determinants) are performed. The shaded
yellow region corresponds to 1.5mEh accuracy.

ters the estimated FCI (TC-FCI) energy by more than
1.5mEh. Under this criterion, the conventional CIPSI
extrapolation necessitates approximately 2834, 9821, and
22 248 determinants to achieve convergence, while TC-
CIPSI requires only 729, 3085, and 3063 in the cc-pVDZ,
cc-pVTZ, and cc-pVQZ bases, respectively.

Next, we compare the computational costs of CIPSI
and TC-CIPSI calculations. Figure 8 illustrates the con-
vergence rates of the second-order energies as a function
of the elapsed wall time (in seconds) for the same col-
lection of basis sets (cc-pVDZ, cc-pVTZ, and cc-pVQZ).
In the smallest cc-pVDZ basis set, TC-CIPSI initially
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FIG. 8. Second-order perturbative energies, E(2) (red) and

E
(2)
TC (blue), as functions of the elapsed wall time (in seconds)

for H2O in the cc-pVDZ (top), cc-pVTZ (center), and cc-
pVQZ (bottom) basis. The shaded yellow region corresponds
to 1.5mEh accuracy.

appears slower than CIPSI due to the time required
for preparing the normal-ordered intermediates, as de-
fined in Eqs. (22a), (22b), and (22c). However, across
all basis sets, TC-CISPI demonstrates a faster conver-
gence to chemical accuracy compared to CIPSI. Specifi-
cally, CIPSI takes 15 seconds, 22 minutes, and 14.6 hours
to reach a chemically-accurate energy in cc-pVDZ, cc-
pVTZ, and cc-pVQZ, respectively. These times are re-
duced in the case of TC-CIPSI, requiring only 11 seconds,
3 minutes, and 49 minutes, respectively. Consequently,
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the overall gain in wall time for chemically-accurate en-
ergies using TC-CIPSI compared to CIPSI is 1.4, 8, and
18, respectively.

Similar calculations were conducted for Li2, Be2, NH3,
CH4, and H2COmolecules (the corresponding figures and
tables are provided as Supporting Information), yielding
comparable findings. The convergence behavior across
different basis sets and the comparative analysis of the
zeroth-order, second-order, and extrapolated energies be-
tween the CIPSI and TC-CIPSI methods consistently
yielded similar results for these molecules.

E. Total Energies

Estimating the total nonrelativistic electronic energy
of atomic and molecular systems presents significant chal-
lenges for standard CI techniques due to the need for very
large basis sets to achieve chemical accuracy. However, at
the TC-CI level, it is possible to reduce considerably the
basis set error. We perform TC-CIPSI calculations with-
out the frozen-core approximation using the cc-pVDZ,
cc-pVTZ, and cc-pVQZ basis sets for the neutral atoms
from Z = 2 to Z = 10 (Table I) and for the following
molecules reported in Table II: Li2, Be2, H2O, NH3, CH4,
and H2CO. The TC-FCI energies are obtained through
extrapolation of the TC-CIPSI energies, ensuring a con-
vergence of at least four digits (0.1mEh). It is worth
noting that we opted for calculations in cc-pVXZ rather
than cc-pCVXZ basis sets, as we observed that with suf-
ficiently large basis sets (typically when X > 3), the
TC-FCI energies obtained in cc-pVXZ and cc-pCVXZ
are very close thanks to the effect of the correlation fac-
tor. For instance, the energy difference between cc-pVQZ
and cc-pCVQZ for systems like Be, Ne, and H2O is only
0.1mEh, 0.6mEh, and 0.2mEh, respectively. Such dif-
ferences are significantly smaller than those observed at
the standard FCI level, often by two or three orders of
magnitude.

The exact total energies for atomic systems, as esti-
mated in Ref. 147, are also presented in Table I. A re-
markable agreement between the TC-FCI and reference
energies is observed, particularly with the cc-pVQZ basis
set. The mean absolute errors are 32.5mEh, 9.2mEh,
and 0.9mEh in cc-pVDZ, cc-pVTZ, and cc-pVQZ, re-
spectively. It is noteworthy that our results closely
align with those obtained in Ref. 117 using the TC-
FCIQMC algorithm, where three-electron integrals are
treated exactly, that is, without normal-ordering. This
suggests that the normal-ordering approximation out-
lined in Sec. IID introduces minimal bias, even in the
case of open-shell systems.

Finding exact estimates of nonrelativistic total ener-
gies for molecular systems in the literature is significantly
more challenging, with very few exceptions. All-electron
fixed-node diffusion Monte Carlo (FN-DMC) calculations
for the nonrelativistic ground-state energy of H2O has
been reported in Ref. 56 using the cc-pCVXZ basis set
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family. Consequently, we conducted additional calcula-
tions on the water molecule using these basis sets. The
comparison between FCI,148 TC-FCI, and FN-DMC56

calculations is presented in Table III and visualized in
Fig. 9, with the reference exact energy considered as
−76.4389Eh.

149 It is evident that while the standard FCI
energy converges very slowly, the TC-FCI energy is found
to be very close to the FN-DMC energy in cc-pVTZ and
nearly identical in cc-pVQZ.

F. Ionization Potentials

In this section, we address the convergence of IPs (de-
fined as the difference between the cation and neutral
ground-state energies) as the one-electron basis set is en-
larged. Concerning the computation of IPs within the TC
formalism, the optimal approach would be to optimize
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TABLE I. Total energies (in Eh) obtained from TC-FCI calculations (without frozen-core approximation) in the cc-pVDZ,
cc-pVTZ, and cc-pVQZ basis sets for the neutral atoms from Z = 2 to Z = 10. For the sake of comparison, estimated exact
energies are also provided.

Atom He Li Be B C N O F Ne
cc-pVDZ −2.897 5 −7.477 1 −14.668 1 −24.645 1 −37.827 5 −54.556 9 −75.016 3 −99.658 6 −128.837 5
cc-pVTZ −2.903 3 −7.478 1 −14.668 1 −24.649 9 −37.839 0 −54.579 5 −75.052 7 −99.713 9 −128.909 9
cc-pVQZ −2.903 7 −7.478 5 −14.667 6 −24.652 7 −37.844 3 −54.588 0 −75.065 8 −99.732 9 −128.936 0
Exacta −2.903 7 −7.478 1 −14.667 4 −24.653 9 −37.845 0 −54.589 2 −75.067 3 −99.733 9 −128.937 6

a Values extracted from Ref. 147.

TABLE II. Total energies (in Eh) obtained from TC-FCI calculations (without frozen-core approximation) in the cc-pVDZ,
cc-pVTZ, and cc-pVQZ basis sets for Li2, Be2, H2O, NH3, CH4, and H2CO.

Molecule Li2 Be2 H2O NH3 CH4 H2CO
cc-pVDZ −14.977 6 −29.324 5 −76.377 5 −56.516 2 −40.503 1 −114.401 2
cc-pVTZ −14.988 8 −29.326 8 −76.423 4 −56.556 6 −40.521 1 −114.483 5
cc-pVQZ −14.991 8 −29.339 5 −76.436 7 −56.565 5 −40.520 7 −114.509 7

TABLE III. Total energies (in Eh) computed at the FCI,
TC-FCI, and FN-DMC levels of theory for the water molecule
in the cc-pCVXZ family of basis sets. The estimated exact
energy is −76.4389Eh.

149

FCIa TC-FCIb FN-DMCc

cc-pCVDZ −76.282 9 −76.388 4 −76.415 71(20)
cc-pCVTZ −76.390 2 −76.428 6 −76.431 82(19)
cc-pCVQZ −76.421 2 −76.436 5 −76.436 22(14)
cc-pCV5Z −76.431 1 −76.437 44(18)

a Values extracted from Ref. 148.
b This work.
c Values extracted from Ref. 56.

the Jastrow parameters in a state-specific way. While not
ideal, we have employed an alternative, cheaper strategy
where the same Jastrow parameters are used for both
the neutral and cationic systems. (Here, we rely on the
optimized parameters of the neutral system.)

We have computed the TC-FCI energies of the same
set of atoms as in Sec. III E, both with and without the
frozen-core approximation, using the cc-pVXZ basis sets
(where X = D, T, and Q). The total energies are pro-
vided in Supporting Information while the resulting IPs,
expressed in eV, are depicted in Table IV. The absolute
deviation caused by the frozen-core approximation is ap-
proximately 1meV on average. This suggests that the
frozen-core approximation can be effectively employed
in TC-CI calculations to reduce the size of the Hilbert
space without deteriorating the precision. Furthermore,
upon comparison with the exact IP estimates reported
in Ref. 147, we observe mean absolute errors of 0.22 eV,
0.02 eV, and 0.03 eV for the cc-pVDZ, cc-pVTZ, and cc-
pVQZ basis sets, respectively. A slight increase of the er-
ror is observed between cc-pVTZ and cc-pVQZ, which we
attribute to the imbalance in accuracy between the neu-
tral and cation species. Indeed, in the cc-pVQZ basis, the

total energy of the neutral systems is nearly exact while
the energy of the cations is comparatively less precise.
Additionally, we report in Table IV the IPs computed at
the FCI level for the same family of basis sets. The mean
absolute errors are 0.37 eV, 0.14 eV, 0.06 eV, and 0.03 eV
for the cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z basis
sets, respectively. In conclusion, while cc-pVTZ is suffi-
cient to achieve chemical accuracy at the TC-FCI level,
one must employ cc-pV5Z at the FCI level.

In Table V, we have conducted FCI and TC-FCI
calculations, with or without the frozen-core approxi-
mation, to estimate the IP of the following molecules:
Li2, Be2, H2O, NH3, CH4, and H2CO. Similar to
the case of atoms, the mean absolute deviation induced
by the frozen-core approximation is negligible (3meV).
To produce CBS estimates, we have extrapolated the
IPs obtained at the FCI level using an inverse cubic
parametrization, across the cc-pVXZ basis sets (where
X = T, Q, and 5). Considering the CBS estimates as
references, the mean absolute errors are 0.40 eV, 0.15 eV,
0.06 eV, and 0.03 eV at the FCI level for the cc-pVDZ,
cc-pVTZ, cc-pVQZ, and cc-pV5Z basis sets, respectively.
These errors are reduced to 0.17 eV, 0.05 eV, and 0.02 eV
at the TC-FCI level for cc-pVDZ, cc-pVTZ, and cc-
pVQZ, respectively. Therefore, similar conclusions hold
for the case of molecules. To further illustrate this, we
present, in Fig. 10, the difference between the CBS esti-
mate (12.80 eV) and the IP values obtained at the FCI
and TC-FCI levels across the cc-pVXZ basis sets in the
case of the water molecule. While chemical accuracy is
nearly attained at the TC-FCI/cc-pVTZ level, the error
is three times larger at the FCI/cc-pVTZ level.



15

TABLE IV. IPs (in eV) computed at the FCI and TC-FCI levels with or without frozen-core (FC) approximation for the
neutral atoms from Z = 2 to Z = 10. For the sake of comparison, estimated exact IPs are also provided.

He Li Be
FCI TC-FCI FCI TC-FCI FCI TC-FCI

cc-pVDZ 24.33 24.60 5.35 5.13 9.29 9.29
cc-pVTZ 24.53 24.61 5.35 5.40 9.29 9.32
cc-pVQZ 24.56 24.59 5.37 5.40 9.30 9.33
cc-pV5Z 24.58 5.38 9.31
Exacta 24.59 5.39 9.32

B C N
FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI

cc-pVDZ 8.07 8.15 8.15 10.98 11.08 11.08 14.19 14.33 14.33
cc-pVTZ 8.22 8.31 8.31 11.17 11.27 11.28 14.43 14.56 14.56
cc-pVQZ 8.24 8.30 8.30 11.21 11.27 11.27 14.49 14.56 14.56
cc-pV5Z 8.25 11.22 14.51
Exacta 8.30 11.26 14.53

O F Ne
FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI

cc-pVDZ 12.85 13.13 13.13 16.71 17.09 17.08 20.89 21.22 21.22
cc-pVTZ 13.32 13.58 13.58 17.13 17.45 17.45 21.30 21.62 21.62
cc-pVQZ 13.48 13.63 13.62 17.30 17.49 17.48 21.47 21.67 21.67
cc-pV5Z 13.55 17.37 21.54
Exacta 13.62 17.42 21.56

a Values extracted from Ref. 147.

TABLE V. IPs (in eV) computed at the FCI and TC-FCI levels with or without frozen-core (FC) approximation for Li2, Be2,
H2O, NH3, CH4, and H2CO. The CBS estimates are obtained by extrapolation based on the FCI data.

Li2 Be2 H2O
FCI TC-FCI FCI TC-FCI FCI (FC) TC-FCI (FC) TC-FCI

cc-pVDZ 5.19 5.18 7.44 7.47 11.96 12.44 12.43
cc-pVTZ 5.22 5.26 7.45 7.50 12.49 12.72 12.71
cc-pVQZ 5.24 5.27 7.47 7.50 12.66 12.76 12.76
cc-pV5Z 5.25 7.48 12.73
CBS 5.25 7.49 12.80

NH3 CH4 H2CO
FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI

cc-pVDZ 10.32 10.68 10.68 14.20 14.42 14.40 10.44 10.76 10.76
cc-pVTZ 10.76 10.92 10.91 14.36 14.47 14.47 10.80 10.95 10.95
cc-pVQZ 10.89 10.96 10.96 14.40 14.44 14.44 10.92 10.98 10.98
cc-pV5Z 10.95 14.41 10.95
CBS 11.00 14.43 11.00

IV. CONCLUSION

In the present study, we investigated how incorporat-
ing a correlation factor in the Hamiltonian within the
TC framework markedly accelerates the convergence of
SCI methods. To illustrate these results, we systemati-
cally studied the total energies and IPs in increasing large
Dunning basis sets using optimized Jastrow factors avail-
able from the literature in the case of neutral atoms with
2 ≤ Z ≤ 10 together with the Li2, Be2, H2O, NH3, CH4,
and H2CO molecules. This acceleration has been demon-
strated quantitatively through both the reduction in the
size of the one-electron basis functions and the decrease
in the number of important determinants in the Hilbert

space.
Although the TC Hamiltonian exhibits certain difficul-

ties related to three-electron terms and non-Hermiticity,
the working equations derived here for TC-SCI demon-
strate a scaling similar to that of SCI methods. Nonethe-
less, as our numerical analysis reveals, TC-SCI effectively
increases the sparsity of the Slater determinant space
when a flexible enough Jastrow factor is employed. This
enhancement enables faster and more stable convergence
towards the FCI limit within a given basis set.
By comparing with the best estimates (when available

for total energies) or CBS values reported here for IPs, we
have shown that achieving near-exact results, i.e. within
chemical accuracy, is possible in TC-SCI using basis sets
significantly smaller than those required in standard SCI
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calculations.
Expanding the applicability of TC-SCI methods to ar-

bitrary systems necessitates the ability to optimize Jas-
trow factors at a reasonable cost. While this challenge
has been considered in prior studies, it is widely acknowl-
edged to be both difficult and expensive. In our upcom-
ing efforts, we will explore how to systematically optimize
Jastrow factors at a reasonable cost.

ACKNOWLEDGMENTS

This work was performed using HPC resources from
GENCI-TGCC (gen1738,gen12363) and from CALMIP
(Toulouse) under allocation 2024-18005, and was also
supported by the European Centre of Excellence in Ex-
ascale Computing TREX — Targeting Real Chemical
Accuracy at the Exascale. This project has received
funding from the European Union’s Horizon 2020 — Re-
search and Innovation program— under grant agreement
no. 952165. A.A., A.S., and P.F.L. also acknowledge
funding from the European Research Council (ERC) un-
der the European Union’s Horizon 2020 research and in-
novation programme (Grant agreement No. 863481).

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are
available within the article and its supplementary mate-
rial.

REFERENCES

1E. A. Hylleraas, Z. Phys. 54, 347 (1929).
2T. Kato, Trans. Am. Math. Soc. 70, 195 (1951).
3T. Kato, Comm. Pure Appl. Math. 10, 151 (1957).
4R. T. Pack and W. Byers-Brown, J. Chem. Phys. 45, 556 (1966).
5C. R. Myers, C. J. Umrigar, J. P. Sethna, and J. D. Morgan
III, Phys. Rev. A 44, 5537 (1991).

6J. D. I. Morgan and W. Kutzelnigg, J. Phys. Chem. 97, 2425
(1993).

7W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985).
8W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94, 1985 (1991).
9J. Noga and W. Kutzelnigg, J. Chem. Phys. 101, 7738 (1994).

10S. Ten-no and J. Noga, WIREs Comput. Mol. Sci. 2, 114 (2012).
11S. Ten-no, Theor. Chem. Acc. 131, 1070 (2012).
12C. Hattig, W. Klopper, A. Kohn, and D. P. Tew, Chem. Rev.
112, 4 (2012).
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19J. Č́ıžek, in Advances in Chemical Physics (John Wiley & Sons,

Ltd, Chichester, England, UK, 1969) pp. 35–89.

20J. Paldus, in Methods in Computational Mol. Phys. (Springer,
Boston, MA, Boston, MA, USA, 1992) pp. 99–194.

21T. D. Crawford and H. F. Schaefer, in Reviews in Computational
Chemistry (John Wiley & Sons, Ltd, 2000) pp. 33–136.

22R. J. Bartlett and M. Musia l, Rev. Mod. Phys. 79, 291 (2007).
23I. Shavitt and R. J. Bartlett, Many-Body Methods in Chem-
istry and Physics: MBPT and Coupled-Cluster Theory, Cam-
bridge Molecular Science (Cambridge University Press, Cam-
bridge, 2009).

24S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
25S. R. White, Phys. Rev. B 48, 10345 (1993).
26C. F. Bender and E. R. Davidson, Phys. Rev. 183, 23 (1969).
27B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58,

5745 (1973).
28R. J. Buenker and S. D. Peyerimholf, Theor. Chim. Acta 35, 33

(1974).
29R. J. Buenker, S. D. Peyerimhoff, and P. J. Bruna, Compu-
tational Theoretical Organic Chemistry (Springer, Dordrecht,
The Netherlands, 1981) pp. 55–76.

30S. Evangelisti, J.-P. Daudey, and J.-P. Malrieu, Chem. Phys.
75, 91 (1983).

31R. J. Harrison, J. Chem. Phys. 94, 5021 (1991).
32E. Giner, A. Scemama, and M. Caffarel, Can. J. Chem. 91, 879

(2013).
33E. Giner, A. Scemama, and M. Caffarel, J. Chem. Phys. 142,

044115 (2015).
34A. A. Holmes, N. M. Tubman, and C. J. Umrigar, J. Chem.

Theory Comput. 12, 3674 (2016).
35J. B. Schriber and F. A. Evangelista, J. Chem. Theory Comput.
13, 5354 (2017).

36E. Giner, D. P. Tew, Y. Garniron, and A. Alavi, J. Chem.
Theory Comput. 14, 6240 (2018).

37P.-F. Loos, A. Scemama, A. Blondel, Y. Garniron, M. Caffarel,
and D. Jacquemin, J. Chem. Theory Comput. 14, 4360 (2018).

38P. F. Loos, M. Boggio-Pasqua, A. Scemama, M. Caffarel, and
D. Jacquemin, J. Chem. Theory Comput. 15, 1939 (2019).

39Y. Garniron, K. Gasperich, T. Applencourt, A. Benali, A. Ferté,
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