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ABSTRACT

The adaptive cubic regularization algorithm employing the inexact gradient and
Hessian is proposed on general Riemannian manifolds, together with the iteration
complexity to get an approximate second-order optimality under certain assump-
tions on accuracies about the inexact gradient and Hessian. The algorithm extends
the inexact adaptive cubic regularization algorithm under true gradient in [Math.
Program., 184(1-2): 35-70, 2020] to more general cases even in Euclidean settings.
As an application, the algorithm is applied to solve the joint diagonalization prob-
lem on the Stiefel manifold. Numerical experiments illustrate that the algorithm
performs better than the inexact trust-region algorithm in [Advances of the neural
information processing systems, 31, 2018].
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1. Introduction

We consider the large-scale separable unconstrained optimization problem on general
Riemannian manifolds:

min
x∈M

f(x) =
1

n

n
∑

i=1

fi(x), (1)

where M is a Riemannian manifold, n ≫ 1, and each fi : M → R is continuously
differentiable (i := 1, 2, . . . n). Such problems frequently appear in machine learning
and scientific computing, where each fi is a loss (or misfit) function corresponding
to i−th observation (or measurement); see, e.g., [1–3]. In such “large-scale” settings,
since the evaluations of the gradient or the Hessian of f can be computationally ex-
pensive, some inexact techniques are used for approximating the first and the second
derivatives, which particularly includes the random sampling technique. As a result,
many popular first-order and second-order stochastic algorithms are proposed to solve
problem (1). The stochastic gradient descent (SGD) algorithm is one of the first-order
stochastic/inexact algorithms, which uses only the gradient information. The idea of
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the SGD comes from [4] and one can find some variants in [5, 6, 10, 11, 27] and the
references therein (the Riemannian versions of the SGD can be found in [10, 11]). The
second-order stochastic/inexact algorithms always use the inexact Hessian informa-
tion, which includes the popular sub-sampling Newton method, sub-sampling/inexact
trust region algorithm, and the sub-sampling/inexact cubic regularization algorithm;
see e.g, [17, 28–32] (the Riemannian version of the inexact trust region algorithm is in
[17]). Particularly, we note the inexact trust-region algorithm and the inexact adaptive
cubic regularization algorithms introduced in [32] for solving problem (1). Both algo-
rithms employ the true gradient and the inexact Hessian (by sub-sampling) of f and
solve the corresponding sub-problems approximately every iteration. These two algo-
rithms are respectively shown to own iteration complexity O(max{ε−2

g ε−1
H , ε−3

H }) and
O(max{ε−2

g , ε−3
H }) of achieving the (εg, εH)-optimality (see definition of the (εg, εH)-

optimality in Definition 2.2).
It is known that the Riemannian geometry framework has some advantages in many

applications, such as translating some nonconvex (constrained) optimization problems
in Euclidean space into convex (unconstrained) ones over a Riemannian manifold; see,
e.g., [12, 34–36]. As a result, some classical numerical methods for solving optimization
problems on the Euclidean space, such as Newton’s method, BFGS algorithm, trust
region method, gradient algorithm, subgradient algorithm, etc., have been extended
to the Riemannian manifold setting; see, e.g., [12–16, 33–36]. As we have noted above,
for solving large-scale problem (1), the stochastic gradient descent algorithm and its
variants have been extended from Euclidean spaces to Riemannian manifolds in the
literature; see, e.g., [10, 11]. Recently, the Riemannian inexact trust region algorithm is
studied in [17], which uses the inexact gradient and the inexact Hessian every iteration,
and in addition the inexact solution of the trust region sub-problem. Noting that the
algorithm employs the inexact gradient instead of the true gradient, it extends the
corresponding one in [32] to more general cases even in Euclidean settings. Similarly,
for achieving the (εg, εH)-optimality, the iteration complexity of the algorithm is also
proven to be O(max{ε−2

g ε−1
H , ε−3

H }). At the same time, some numerical results are
provided which illustrate the algorithm performs significantly better than state-of-
the-art deterministic and stochastic algorithms in some applications.

Inspired by the prior works (in particular, the works in [32] and [17]), we propose
the Riemannian inexact adaptive cubic regularization algorithm for solving problem
(1) on general Riemannian manifolds, which employs the inexact gradient and the
inexact Hessian every iteration. The algorithm is proven to own the similar iteration
complexity O(max{ε−2

g , ε−3
H }) for obtaining the (εg, εH)-optimality under certain con-

ditions on accuracies about the inexact gradient and the inexact Hessian. Particularly,
iteration complexities of the Riemannian (deterministic) adaptive cubic regularization
algorithm and the Riemannian inexact adaptive cubic regularization algorithm un-
der the true gradient are established. As an application, the proposed algorithms are
applied to solve the joint diagonalization problem on the Stiefel manifold. Numeri-
cal results indicate that inexact algorithms are more efficient than the deterministic
algorithm at the same accuracy. Meanwhile, the inexact Riemannian adaptive cubic
regularization algorithm outperforms the inexact Riemannian trust-region algorithm
(in [17, Algorithm 1]).

The paper is organized as follows. As usual, some basic notions and notation on Rie-
mannian manifolds, together with some related properties about the sub-sampling, are
introduced in the next section. The Riemannian inexact adaptive cubic regularization
algorithm and its iteration complexity are presented in section 3, and the application
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to joint diagonalization on the Stiefel manifold is shown in the last section.

2. Notation and Preliminaries

Notation and terminologies used in the present paper are standard; the readers are
referred to some textbooks for more details; see, e.g., [12, 18, 19, 22].

Let M be a connected and complete n-dimensional Riemannian manifold. Let x ∈
M, and let TxM stand for the tangent space at x to M. TM := ∪x∈MTxM is called
the tangent bundle on M. We denote by 〈, 〉x the scalar product on TxM with the
associated norm ‖ · ‖x, where the subscript x is sometimes omitted. For y ∈ M, let
γ : [0, 1] → M be a piecewise smooth curve joining x to y. Then, the arc-length of γ is

defined by l(γ) :=
∫ 1
0 ‖γ′(t)‖dt, while the Riemannian distance from x to y is defined

by d(x, y) := infγ l(γ), where the infimum is taken over all piecewise smooth curves
γ : [0, 1] → M joining x to y.

We use ∇ to denote the Levi-Civita connection on M. A vector field V is said to be
parallel along γ if ∇γ′V = 0. In particular, for a smooth curve γ, if γ′ is parallel along
itself, then γ is called a geodesic; thus, a smooth curve γ is a geodesic if and only if
∇γ′γ′ = 0. A geodesic γ : [0, 1] → M joining x to y is minimal if its arc-length equals
its Riemannian distance between x and y. By the Hopf-Rinow theorem [18], (M,d) is
a complete metric space, and there is at least one minimal geodesic joining x to y for
any points x and y.

Let f : M → R be a twice continuously differentiable real-valued function defined
on M. The Remannian gradient and Hessian of f at x ∈ M are denoted by gradf(x)
and Hessf(x), which are respectively defined as

〈gradf(x), ξ〉 = ξ(f) and Hessf(x)(ξ, η) = 〈∇ξgradf(x), η〉 ∀ξ ∈ TxM.

On manifolds M, we use the retraction defined as below to move in the direction of
a tangent vector, which can be found in [12, Definition 4.1.1 and Proposition 5.5.5].

Definition 2.1 (retraction and seconder-order retraction). A retraction on a manifold
M is a smooth mapping R : TM → M with the following properties, where Rx is the
restriction of R on TxM:

(1) Rx(0x) = x, where 0x denotes the zero element of TxM.
(2) DRx(0x) = IdTxM, where IdTxM is the identity mapping on TxM with the

canonical identification T0x
TxM ≃ TxM.

Moreover, R is said to be a seconder-order retraction if it further satisfies

D2

dt2
Rx(tη) |t=0= 0 ∀x ∈ M and ∀η ∈ TxM,

where D2

dt2
γ denotes acceleration of the curve γ.

Remark 1. (i) M admits a seconder-order retraction defined by the exponential
mapping, and one can find more general retractions on matrix manifolds in [12].

(ii) In general, the Euclidean Hessian ∇2f ◦Rx(0x) differs from the Riemannian Hes-
sian Hessf(x), while they are identical under second-order retractions (see[21, Lemma
3.9]).
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Let J := {1, 2, · · · , n}. We consider the large-scale minimization (1):

min
x∈M

f(x) =
1

n

n
∑

i=1

fi(x),

where n ≫ 1, and for each i ∈ J , fi : M → R is a twice continuously differentiable
real-valued function. Note that f may be non-convex, some authors refer to find a
proximate (εg, εH)-optimality in practice, which is defined by [32, Definition 1] (see
also [17, Definition 2.1]). As usual, λmin(A) stands the minimum eigenvalue of matrix
A.

Definition 2.2 ((εg, εH)-optimality). Let εg, εH ∈ (0, 1). A point x∗ ∈ M is said to
be an (εg, εH)-optimality of (1) if

‖gradf(x∗)‖ ≤ εg and λmin(Hessf(x
∗)) ≥ −εH .

In practice, we adopt the sub-sampled inexact gradient and Hessian. To proceed,
let Sg, SH ⊂ J be the sample collections with or without replacement from J , and
their cardinalities are denoted as |Sg| and |SH |, respectively. The sub-sampled inexact
gradient and Hessian are defined as

G :=
1

|Sg|
∑

i∈Sg

gradfi and H :=
1

|SH |
∑

i∈SH

Hessfi, (2)

respectively. The following lemma provides sufficient sample sizes of Sg and SH to
guarantee that the inexact G and H approximate gradf and Hessf in a probabilistic
way, which is taken form [17, Theorem 4.1]. Here we set

Kmax
g := max

i∈J
sup
x∈M

‖gradfi(x)‖ and Kmax
H := max

i∈J
sup
x∈M

‖Hessfi(x)‖.

Lemma 2.3. Let δ, δg , δH ∈ (0, 1) and let R be a seconder-order retraction. Assume
that the sampling is done uniformly at random to generate Sg and SH , and let G and
H be defined by (2). If the sample sizes |Sg| and |SH | satisfy

|Sg| ≥
32(Kmax

g )2(log 1
δ
) + 1

4

δ2g
and |SH | ≥ 32(Kmax

H )2(log 1
δ
) + 1

4

δ2H
,

then the following estimates hold for any x ∈ M and any η ∈ TxM:

Pr(‖G(x) − gradf(x)‖ ≤ δg) ≥ 1− δ,

Pr(‖(H(x) −∇2f ◦Rx(0x))[η]‖ ≤ δH‖η‖) ≥ 1− δ.

3. Inexact Riemannian adaptive cubic regularization algorithm

In this section, we propose the following inexact Riemannian adaptive cubic regu-
larization algorithm for solving problem (1), which employs the inexact Hessian and
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gradient at each iteration.

Algorithm 3.1. (Inexact Riemannian adaptive cubic regularization)
Step 0. Choose εg, εH , ρTH ∈ (0, 1), and γ ∈ (1,+∞).
Step 1. Choose x0 ∈ M and σ0 ∈ (0,+∞), and set k := 0.
Step 2. Construct inexact gradient Gk and approximate Hessian Hk of f at xk, re-
spectively.
Step 3. If ‖Gk‖ ≤ εg and λmin(Hk) ≥ −εH , then return xk.
Step 4. Solve the following sub-problem approximately:

ηk ≈ argminmk(η)
η∈Txk

M
:= 〈Gk, η〉 +

1

2
〈Hk[η], η〉 +

1

3
σk‖η‖3. (3)

Step 5. Set ρk :=
f(xk)−f◦Rxk

(ηk)
−mk(ηk)

.

Step 6. If ρk ≥ ρTH , then set xk+1 = Rxk
(ηk) and σk+1 =

σk

γ
; otherwise set xk+1 = xk

and σk+1 = γσk.
Step 7. Set k := k + 1 and go to Step 2.

Remark 2. Algorithm 3.1 is an extension version of the adaptive cubic regularization
algorithm in Euclidean spaces. As we known, in Euclidean settings, the algorithm was
proposed and extensively studied by Cartis et al. in [23, 24]. Recently, for solving the
“large-scale” separable problem (1), Wu et al. proposed the adaptive cubic regulariza-
tion algorithm with inexact Hessian (and true gradient) in [32, Algorithm 2] and the
iteration complexity of the algorithm is proven to be O(max{ε−2

g , ε−3
H }).

Let {xk} be a sequence generated by Algorithm 3.1. We make the following blanket
assumptions throughout the paper:
(A1) There exists constant LH > 0 such that for all k ∈ N, f ◦R satisfies

|f ◦Rxk
(ηk)− f(xk)− 〈gradf(xk), ηk〉 −

1

2
〈∇2f ◦Rxk

(0xk
)[ηk], ηk〉| ≤

1

2
LH‖ηk‖3.

(A2) There exists constant KH > 0 such that

‖Hk‖ := sup
η∈Txk

M,‖η‖≤1
〈η,Hk[η]〉 ≤ KH ∀k ∈ N.

(A3) There exist constants δg, δH ∈ (0, 1) such that

(A3)-a ‖Gk − gradf(xk)‖ ≤ δg ∀k ∈ N,

(A3)-b ‖(Hk −∇2f ◦Rxk
(0xk

))[ηk]‖ ≤ δH‖ηk‖ ∀k ∈ N.

Remark 3. (i) As shown in [21, Appendix B], Assumption (A1) is satisfied in the
case when M is compact and R is a second-order retraction.

(ii) In practice, according to Lemma 2.3, we shall construct {Gk} and {Hk} by
sub-sampling to ensure Assumption (A3) in a probabilistic way.

As stated in Step 4, we solve the sub-problem (3) approximately every iteration. The
most popular conditions for the approximate solution in the literature are the Cauchy
and Eigenpoint conditions; see, e.g., [23, 24, 32]. To ensure the convergence of the
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algorithm, we make the following similar assumptions on the approximate solutions
{ηk}:
(A4) −mk(ηk) ≥ −mk(η

C
k ), and −mk(ηk) ≥ −mk(η

E
k ) if λmin(Hk) < 0 ∀k ∈ N,

where ηCk and ηEk are the approximate optimal solutions of (3) along the negative
gradient and the negative curvature directions, respectively, and ηEk satisfies

〈ηEk ,Hk[η
E
k ]〉 ≤ νλmin(Hk)‖ηEk ‖2 < 0, ν ∈ (0, 1);

see more details in ([23, 24]).
Now, let k ∈ N. Noting that the sub-problem (3) of Algorithm 3.1 is actually posed

on Euclidean spaces, the follow properties of ηCk and ηEk are valid (see [32, Lemmas
6,7]).

Lemma 3.1. The following estimates for ηCk and ηEk hold:

−mk(η
C
k ) ≥ max{ 1

12 ||ηCk ||2(
√

K2
H + 4σk||Gk|| −KH), ||Gk||

2
√
3
min{ ||Gk||

KH
,

√

||Gk||
σk

}}, (4)

−mk(η
E
k ) ≥

ν|λmin(Hk)|
6

max{‖ηEk ‖2,
ν2|λmin(Hk)|2

σ2
k

}, (5)

‖ηCk ‖xk
≥ 1

2σk
(
√

K2
H + 4σk‖Gk‖ −KH), (6)

‖ηEk ‖ ≥ ν|λmin(Hk)|
σk

. (7)

Lemma 3.2 below estimates the sufficient decrease in the objective function.

Lemma 3.2. Assume (A1) and (A3). Then we have

f ◦Rxk
(ηk)− f(xk)−mk(ηk) ≤ δg‖ηk‖+

1

2
δH‖ηk‖2 + (

LH

2
− σk

3
)‖ηk‖3. (8)

Proof. In view of (3), we have that

|f ◦Rxk
(ηk)− f(xk)−mk(ηk) +

σk

3
‖ηk‖3|

=|f ◦Rxk
(ηk)− f(xk)− 〈Gk, ηk〉 −

1

2
〈Hk[ηk], ηk〉|

≤|f ◦Rxk
(ηk)− f(xk)− 〈gradf(xk), ηk〉 −

1

2
〈∇2f ◦Rxk

(0xk
)[ηk], ηk〉|

+ |〈Gk − gradff(xk), ηk〉|+
1

2
|〈(∇2f ◦Rxk

(0xk
)−Hk)[ηk], ηk〉|

≤δg‖ηk‖+
δH

2
‖ηk‖2 +

LH

2
‖ηk‖3,

where the second inequality is from Assumptions (A1) and (A3). Then, (8) follows
immediately.
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Lemma 3.3. Assume (A1)-(A4). Assume further that σk ≥ 2LH and δg ≤ 9δ2H
4σk

.
If one of the following conditions is satisfied, then parameter σk decreases, that is,
σk+1 =

σk

γ
(γ > 1):

(a) ‖Gk‖ > εg, δH ≤ min{ 1
18 ,

1−ρTH

9 }(
√

K2
H + 4σkεg −KH).

(b) λmin(Hk) < −εH , δH ≤ min{1
9 ,

2(1−ρTH)
9 }νεH .

Proof. In light of (8) and σk ≥ 2LH , we get that

f ◦Rxk
(ηk)− f(xk)−mk(ηk) ≤ (

LH

2
− σk

3
)‖ηk‖3 +

1

2
δH‖ηk‖2 + δg‖ηk‖

≤ −σk

12
‖ηk‖3 +

1

2
δH‖ηk‖2 + δg‖ηk‖.

(9)

We claim that the following implication holds:

[‖ηk‖ ≥ 9δH
σk

] =⇒ [f ◦Rxk
(ηk)− f(xk)−mk(ηk) ≤ 0]. (10)

In fact, note that

−σkt
2 + 6δH t+ 12δg ≤ 0 for all t ≥ 6δH+

√
36δ2H+48σkδg
2σk

= 3δH
σk

(1 +
√

1 + 4σkδg
3δ2H

).

(11)

In view of δg ≤ 9δ2H
4σk

(by assumption), we see that 4σkδg
3δ2H

≤ 3, and then have

3δH
σk

(1 +

√

1 +
4σkδg
3δ2H

) ≤ 9δH
σk

.

If ‖ηk‖ ≥ 9δH
σk

, we get from (11) that −σk‖ηk‖2 + 6δH‖ηk‖ + 12δg ≤ 0. Therefore,
implication (10) is valid by (9).

Below, we show that the following inequality holds under either condition (a) or
(b):

ρk ≥ ρTH . (12)

Granting this and Step 6 of Algorithm 3.1, we conclude that σk+1 = σk

γ
, completing

the proof
Assume that condition (a) is satisfied. Then, we have

‖ηCk ‖ ≥ 1

2σk
(
√

K2
H + 4σkεg −KH) ≥ 9δH

σk
, (13)

where the first inequality is by (6) and the first item of condition (a), and the last
inequality thanks to the second item of condition (a). We claim that

f ◦Rxk
(ηk)− f(xk)−mk(ηk) ≤

1

2
δH‖ηCk ‖2 + δg‖ηCk ‖. (14)

Indeed, in the case when ‖ηk‖ ≤ ‖ηCk ‖, (14) is evident from (9). Otherwise, ‖ηk‖ >

‖ηCk ‖. This, together with (13) and implication (10), implies that f ◦Rxk
(ηk)−f(xk)−
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mk(ηk) ≤ 0, and so claim (14) is trivial. Using (13), (14) and δg ≤ 9δ2H
4σk

, we estimate
that

f ◦Rxk
(ηk)− f(xk)−mk(ηk) ≤

1

2
δH‖ηCk ‖2 +

δH

4

9δH
σk

‖ηCk ‖ ≤ 3

4
δH‖ηCk ‖2. (15)

Due to assumption (A4) and (4), there holds that

−mk(ηk) ≥ −mk(η
C
k ) ≥

1

12
‖ηCk ‖2(

√

K2
H + 4σkεg −KH).

This together with (15), implies that

1− ρk =
f ◦Rxk

(ηk)− f(xk)−mk(ηk)

−mk(ηk)
≤

3
4δH‖ηCk ‖2

1
12‖ηCk ‖2(

√

K2
H + 4σkεg −KH)

≤ 1− ρTH ,

where the second inequality thanks to the second item of condition (a), which shows
(12).

Assume that condition (b) is satisfied. Then, we get from (7) and condition (b) that

‖ηEk ‖ ≥ ν|λmin(Hk)|
σk

≥ νεH

σk
≥ 9δH

σk
, (16)

Thus, we claim that

f ◦Rxk
(ηk)− f(xk)−mk(ηk) ≤

1

2
δH‖ηEk ‖2 + δg‖ηEk ‖. (17)

Indeed, if ‖ηk‖ ≤ ‖ηEk ‖, claim (17) is clear by (9). Otherwise ‖ηk‖ > ‖ηEk ‖. This,
together with (16) and implication (10), implies that f ◦Rxk

(ηk)−f(xk)−mk(ηk) ≤ 0.

Therefore, claim (17) holds trivially. In view of (16), (17) and δg ≤ 9δ2H
4σk

, we get that

f ◦Rxk
(ηk)− f(xk)−mk(ηk) ≤

1

2
δH‖ηEk ‖2 +

δH

4

9δH
σk

‖ηEk ‖ ≤ 3

4
δH‖ηEk ‖2. (18)

Moreover, in view of λmin(Hk) < 0 by condition (b), we have from assumption (A4)
and (5) that

−mk(ηk) ≥ −mk(η
E
k ) ≥

ν|λmin(Hk)|
6

‖ηEk ‖2(
√

K2
H + 4σkεg −KH).

Combining this and (18), there holds that

1− ρk =
f ◦Rxk

(ηk)− f(xk)−mk(ηk)

−mk(ηk)
≤

3
4δH‖ηEk ‖2

ν|λmin(Hk)|
6 ‖ηEk ‖2

≤ 1− ρTH ,

where the second inequality thanks to the second item of condition (b), and then (12)
is ture. The proof is complete.
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In the following lemma, we estimate the upper bound for the cubic regularization
parameters {σk} before the algorithm terminates. Here all iterations satisfying (12)
are said to be successful and to be unsuccessful otherwise.

Lemma 3.4. Assume (A1)-(A4). Assume further that Algorithm 3.1 does not termi-

nate at N -th iteration, and the parameters satisfy δg ≤ 9δ2H
4σk

and

δH ≤ min{min{ 1

18
,
1− ρTH

9
}(
√

K2
H + 4σkεg −KH),min{1

9
,
2(1 − ρTH)

9
}νεH}, (19)

then

σk ≤ max{σ0, 2γLH} ∀k = 1, 2, · · · , N. (20)

Proof. By contradiction, we assume that the k-th iteration (k ≤ N) is the first
unsuccessful iteration such that

σk+1 = γσk ≥ 2γLH , (21)

which implies that σk ≥ 2LH . Since Algorithm 3.1 does terminate at the k-th iteration,

we have that either ‖Gk‖ > εg or λmin(Hk) < −εH . Recalling that σk ≥ 2LH , δg ≤ 9δ2H
4σk

and (19), Lemma 3.3 is applicable to showing σk+1 =
σk

γ
, which contradicts with (21).

The proof is complete.

Without loss generality, we assume that σ0 ≤ 2γLH . Moreover, from now on, let
Nsucc and Nfail stand the set of all the successful and unseccessful iterations of Algo-
rithm 3.1, respectively. The number of successful (unsuccessful) iterations is denoted
by |Nsucc| (|Nfail|). The lemma below provides estimation of the total number of
successful iterations before the algorithm terminates.

Lemma 3.5. Assume that the assumptions made in Lemma 3.4 are satisfied. Then
the following estimate holds:

|Nsucc| ≤
f(x0)− fmin

ρTHκσ
max{ε−2

g , ε−3
H }+ 1, (22)

where fmin is the minimum of f over M and

κσ := { ν3

24γ2L2
H

,
1

2
√
3
min{ 1

KH
,

1√
2γLH

}}. (23)

Proof. Noting that {f(xk)} is monotonically decreasing, we have that

f(x0)− fmin ≥ ∑

k∈Nsucc
(f(xk)− f(xk+1))

≥ ∑

k∈Nsucc
ρTH(−mk(ηk)),

(24)

where the second inequality is by Steps 4-5. Assume that k ∈ Nsucc and Algorithm
3.1 does not terminate at the k-th iteration. Then we have either ‖Gk‖ > εg or
λmin(Hk) < −εH , and

σk ≤ 2γLH . (25)

9



by lemma 3.4(20) (noting σ0 ≤ 2γLH). In the case when ‖Gk‖ > εg, we get from (4)
that

−mk(ηk) ≥ ‖Gk‖
2
√
3
min{‖Gk‖

KH
,

√

‖Gk‖
σk

} >
εg

2
√
3
min{ εg

KH
,
√

εg
σk
}

>
ε2g

2
√
3
min{ 1

KH
,
√

1
σk
} >

ε2g

2
√
3
min{ 1

KH
,
√

1
2γLH

},
(26)

where the third inequality is by εg ∈ (0, 1), and the fourth inequality is because of
(25). Similarly, for the case when λmin(Hk) < −εH , we have from (5) that

−mk(ηk) ≥
ν3|λmin(Hk)|3

6σ2
k

≥ ν3ε3H
24γ2L2

H

.

This, together with (26), yields

−mk(ηk) ≥ min{
ε2g

2
√
3
min{ 1

KH
,

1√
2γLH

}, ν3ε3H
24γ2L2

H

} ≥ κσ min{ε2g, ε3H}, (27)

where the last inequality thanks to (23). Combing (24) and (27), we get that

f(x0)− fmin ≥ (|Nsucc| − 1)ρTHκσ min{ε2g, ε3H}. (28)

Thus, (22) holds, completing the proof.

We can now prove the main theorem, which indicates the iteration complexity of
Algorithm 3.1.

Theorem 3.6 (complexity of Algorithm 3.1). Assume that the assumptions
made in Lemma 3.4 are satisfied. Then, Algorithm 3.1 terminates after at most
O(max{ε−2

g , ε−3
H }) iterations.

Proof. Noting that the total number of iteration of Algorithm 3.1 N = |Nsucc| +
|Nfail|, we have by definition of Algorithm 3.1 that

σN = σ0γ
|Nfail|−|Nsucc|.

Noting σk ≤ 2γLH for each k = 1, 2, · · ·N by Lemma 3.4(20), it follows that

|Nfail| ≤ |Nsucc|+ logγ
2γLH

σ0
. (29)

This, together with Lemma 3.5(22), implies that

N = |Nsucc|+ |Nfail| ≤ 2|Nsucc|+ logγ
2γLH

σ0

≤ 2(f(x0)− fmin)

ρTHκσ
max{ε−2

g , ε−3
H }+ 1 + logγ

2γLH

σ0
,

completing the proof.
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As corollaries of Theorem 3.6, we consider the (deterministic) Riemannian adaptive
cubic regularization algorithm and the inexact Riemannian adaptive cubic regular-
ization algorithm under the true gradient. The following corollary shows the iteration
complexity of the (deterministic) Riemannian adaptive cubic regularization algorithm,
which is immediate from Theorem 3.6 (noting that assumption (A3) is satisfied natu-
rally).

Corollary 3.7. Assume (A1)-(A2) and (A4). If Algorithm 3.1 employs

Gk := gradf(x) and Hk := Hessf(x) ∀k ∈ N,

then it terminates after at most O(max{ε−2
g , ε−3

H }) iterations.

Following the same line of proof of Theorem 3.6, we have the following corollary
about the iteration complexity of the inexact Riemannian adaptive cubic regularization
algorithm under the true gradient.

Corollary 3.8. Assume (A1)-(A2), (A3)-b and (A4). Assume further that Algorithm
3.1 employs

Gk := gradf(x) ∀k ∈ N

and the parameter δH satisfies

δH ≤ min{min{ 1

12
,
1− ρTH

6
}(
√

K2
H + 4σkεg −KH),min{1

6
,
1− ρTH

3
}νεH}.

Then, the algorithm terminates after at most O(max{ε−2
g , ε−3

H }) iterations.

4. Application and numerical experiments

In this section, we shall apply Algorithm 3.1 to solve the joint diagonalization (JD
for short) problems on Stiefel manifolds, and provide some numerical experiments to
compare their performances. All numerical comparisons are implemented in MATLAB
on a 3.20 GHz Intel Core machine with 8 GB RAM.

We first introduce some notation and results about the Stiefel manifold and the
JD. The following notation and results about the Stiefel manifold can be found in
[12]. Let r, d ∈ N, and let A = (aij) ∈ R

d×r (we always assume that r ≤ d). The

symmetric matrix of A is denoted by sym(A), which is defined by sym(A) := AT+A
2 .

The Frobenius norm for A is defined as

‖A‖2F :=

d
∑

i=1

r
∑

j=1

a2ij.

We use diag(A) to denote the matrix formed by the diagonal elements of A, and then
have ‖diag(A)‖2F =

∑r
j=1 a

2
jj . The Stiefel manifold St(r, d) is the set of all r × d

orthogonal matrices, i.e.,

St(r, d) := {X ∈ R
d×r : XTX = I},

11



where I ∈ R
r×r is the identity matrix. Let U ∈ St(r, d). The tangent space of St(r, d)

at U is defined by

TUSt(r, d) := {ξ : ξTU + UT ξ = 0}.

The Riemannian inner product on TUSt(r, d) is given by

〈η, ξ〉U := trace(ηT ξ) ∀η, ξ ∈ TUSt(r, d).

In our practice, we adopt the following retraction defined by

RU (ξ) := qf(U + ξ) ∀U ∈ St(r, d),

where qf(U+ξ) means the orthogonal factor based on the QR decomposition of U+ξ.
The following introduction about the blind source separation (BSS for short) and

the JD can be found in the works in [9, 17, 25, 26] and references there in. Let x(t) be
a given d-dimensional stochastic process and t the time index such that

x(t) = As(t)

where A = (aij) ∈ R
d×r is a mixing matrix and s(t) is the r-dimensional source vector,

both of A and s(t) are unknown. The BSS problem tries to recover the mixing matrix
A and the source vectors(t). If we pose additional constraints on s(t) (see, e.g., [9]),
the BSS problem can be transformed into the JD problem on the Stiefel manifold,
which is stated as follows:

min
U∈St(r,d)

fica(U) := − 1

n

n
∑

i=1

‖diag(UTCiU)‖2F , (30)

where {Ci ∈ R
d×d : i = 1, 2, · · · , n} are matrices estimated from the dada under

some source conditions (see [9, 26] for more details). The following expressions of the
(Riemannian) gradient and Hessian of f ica are taken form [17]. Let U ∈ St(r, d). The
Riemannian gradient of f ica(U) at U is given by

gradf ica(U) = PUegradf ica(U) = PU(−
1

n

n
∑

i=1

4CiUdiag(UTCiU)),

where egradf ica(U) is the Euclidean gradient of f ica(U) and the orthogonal projection
PU is

PU (W ) := W − Usym(UTW ) ∀W ∈ R
d×r.

The Riemannian Hessian of f ica(U) is defined by

Hessf ica(U)[ξ] =PU (Degradfica(U)[ξ]− ξsym(UT egradf ica(U))

− Usym(ξT egradfica(U))− Usym(UTDegradfica(U)[ξ]) ∀ξ ∈ TUSt(r, d),

12



Table 1. Number of iterations and time for RACR, SRACR, SSRACR, and SSRTR.

RACR SRACR SSRACR SSRTR

(n, d, r) i T i T i T i T

(2015,5,5) 317 7.524 788 9.349 220 2.259 398 4.042
(2015,10,10) 1073 48.144 1247 29.432 718 14.048 1936 39.174
(2015,20,20) 2209 108.753 2114 87.839 2570 83.804 5140 172.033
(2015,30,30) 2693 395.710 2398 177.815 2603 202.081 12739 836.978
(2015,43,43) 2913 1280.422 3169 736.996 3563 691.293 12777 2622.408
(7200,43,43) 2873 5526.860 3019 2485.531 2909 2005.734 12837 8501.568
(60000,43,43) 298 4448.468 298 2395.300 303 2118.032 861 4579.865

where

Degradfica(U)[ξ] = − 1

n

n
∑

i=1

4Ci(ξdiag(U
TCiU) + Udiag(ξTCiU) + Udiag(UTCiξ)).

For simplicity, Algorithm 3.1 with true gradient and true Hessain, with true gradient
and inexact Hessain, and with inexact gradient and inexact Hessain are denoted by
RACR, SRACR and SSRACR, respectively; and the inexact Riemannian trust-region
algorithm in [17, Algorithm 1] is denoted by SSRTR. We shall apply RACR, SRACR,
SSRACR, and SSRTR to solve the JD problem (30), and provide some numerical
comparisons with different (n, d, r). In all numerical experiments, we generate {Ci :
i = 1, 2, · · · , n} randomly, and all related inexact gradients and inexact Hessains are
constructed by sampling with sizes |Sg| = n

4 and |SH | = n
40 . We set the parameters

as σ0 = 0.001, ρTH = 0.9 and γ = 2 in RACR, SRACR and SSRACR, and set
△0 = 1, ρTH = 0.9 and γ = 2 in SSRTR (see [17, Algorithm 1] for details about the
papmeters). The stopping criterion of all executed algorithms is set as ‖Gk‖2 ≤ 0.001.

The numerical results are listed in Table 1, where i and T denote the number of
iterations and the CPUtime (in seconds), respectively. The observations from Table 1
reveal that SSRACR costs much less CPUtime than SRACR, RACR and SSRTR at
the same accuracy.
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