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Abstract. Helically close-packed states of filaments are common in natural and

engineered material systems, ranging from nanoscopic biomolecules to macroscopic

structural components. While the simplest models of helical close-packing, described

by the ideal rope model, neglect anisotropy perpendicular to the backbone, physical

filaments are often quite far from circular in their cross-section. Here, we consider

an anisotropic generalization of the ideal rope model and show that cross-section

anisotropy has a strongly non-linear impact on the helical close-packing configurations

of helical filaments. We show that the topology and composition of the close-packing

landscape depends on the cross-sectional aspect ratio and is characterized by several

distinct states of self-contact. We characterize the local density of these distinct states

based on the notion of confinement within a ‘virtual’ cylindrical capillary, and show

that states of optimal density vary strongly with the degree of anisotropy. While

isotropic filaments are densest in a straight configuration, any measure of anisotropy

leads to helicity of the maximal density state. We show the maximally dense states

exhibit a sequence of transitions in helical geometry and cross-sectional tilt with

increasing anisotropy, from spiral tape to spiral screw packings. Furthermore, we show

that maximal capillary density saturates in a lower bound for volume fraction of π/4 in

the large-anisotropy, spiral-screw limit. While cross-sectional anisotropy is well-known

to impact the mechanical properties of filaments, our study shows its strong effects to

shape the configuration space and packing efficiency of this elementary material motif.
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1. Introduction

Filamentous or fibrous structures are an essential building block of material systems,

ranging from the molecular to human scale. At the microscopic end, natural

biomolecules [1–3] and synthetic polymers [4–6] form the building blocks of life and

of many engineered consumer products, respectively. At macroscopic scale, fibers,

wires and ropes form structural materials [7–9] with diverse applications ranging from

textiles [10–12] to tension bearing components in marine mooring lines [13, 14] and in

architecture (e.g. cables in suspension bridges) [15, 16].
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Figure 1. Dense helical coils across length scales. (A.) α-helix protein shown using

the “ribbon” representation; backbone and sidechain atoms rendered in yellow and

gray, respectivley (PDB structure from [22] rendered using VMD [23]). (B.) Self-

assembled ferrocene-dipeptide “screw” nanostructure (scale bar = 1µm). Adapted

with permission from [24]. Copyright 2015 American Chemical Society. (C.) Nested

mesoscale polymer ribbon with tunable photocrease-mediated configuration (scale bar

= 50µm). Adapted from [25]. (D.) Twisted helical nanofiber yarn (scale bar =

500µm). Adapted from [26]. (E.) Twisted Graphene Oxide/Alginate hydrogel fiber

(scale bar = 500µm). Adapted with permission from [27]. Copyright 2020 American

Chemical Society. (F.) ’Blue Bouquet’ Passion Flower Passiflora caerulea tendril self-

coiling, photographed at University of Massachusetts Durfee Conservatory. (G.) Coiled

telephone cable. (H.) Oriental Bittersweet (Celastrus orbiculatus) vine, photographed

in Northampton, Massachusetts.

A filamentous material’s function, utility, or morphology is inherently intertwined

with its packing, or space filling arrangement. Entanglements [17], knots [18], knits [19]

and inter-filament orientation [20] have been shown to influence the mechanical

properties of filament assemblies. Precisely folded proteins inherit both function and

stability from their ordered arrangement [21]. Braiding string or tying our shoes requires

specific spatio-temporal control of the strand. In each of the above, the packing of the

material is essential.

Indeed, the packing of material components has been a long-standing and broad

interest in mathematics, science, and technology, dating at least as early as Kepler’s 17th

century conjecture on sphere packing [28, 29], though likely beginning many centuries

earlier, especially in the case of mosaics and tilings [30]. Historically studies on packing

have largely focused on arrangements of discrete, rigid components (e.g. tiles, spheres,

polyhedra). Recently, more attention has been given to the packing of continua, i.e. soft,

deformable and extended objects [31], such as flexible sheets [32–34], membranes [35–37]

and filaments [38–42]. However, despite the natural and technological relevance of

filamentous materials, their packing has received considerably less attention, in part

due to the complex and vast configuration space accessible to even a single deformable

high aspect ratio structure. Due to their flexibility, the packing may be constrained

by contact at any location in space and at either local or non-local positions along the
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filament length [43].

Key progress in understanding filament packing geometry is based on what is

known as the Ideal Rope or Ideal Tube model of packing, which considers space filling

configurations based on a filament centerline and a rigid, circular cross-section of uniform

diameter d swept-out normal to the backbone curve. Early applications of this model

have been applied to understand the geometry of closed curves in optimally “tight”

knots and links [44–53] This model has also been applied to model the complex close

contact geometry in multi-filament clasps [54,55], as well as plies and bundles [56–61],

which have formed a basis for comparison to experimental systems [62–67].

A particular focus of the ideal tube model has been on helical close-packing of single

filaments, initially motivated as a generic, physical model of condensed helical motifs

in biomacromolecules, e.g. α-helices, nucleosomes and chromatids [68–77]. In a seminal

work, Przybyl and Pieranski determined the configuration space of helical packing in

ideal tubes, solving for the conditions for self-contact that delineate allowed from self-

overlapping states in terms of helical radius and pitch of the tubular centerline [78].

Notably, they showed that contact is defined by turn-to-turn stacking of consecutive

pitches at large radius, while for small radius contact constraints are local, defined by

a minimal curvature radius of the finite-thickness tube. These two contact conditions

intersect in configuration space at a particular point, which they consider to be a state

of ideal close-packing for helical tubes. This packing geometry is used to rationalize the

stability of similar helical states in models of entropic or osmotically collapsed helical

molecules [75,79,80].

While the ideal tube model is a natural starting point for consideration of

filamentary close-packing, it is important to recognize that most physical realizations of

helical packing present some measure of cross-sectional anisotropy, deviating by some

measure from locally circular shapes. Fig. 1 shows several examples of anisotropic

tightly-packed helical structures, across a range of size scales and materials systems.

Some form of cross-sectional asymmetry is present in flexible, densely-coiled filamentous

structures at the molecular and meso-engineered systems [25, 81], and in a variety of

organism structures, including (but certainly not limited to) bacteria [82, 83], curly

human hair [84], plant tendrils and seed pods [85–88], climbing and swimming snakes

[89, 90], elephant trunks [91], and squid and octopus tentacles [92, 93]. Naturally, such

filament assemblies lead to the basic question, how does cross-section geometry influence

the states of dense packing in helical filaments?

In this article, we study an extension of the (circular) ideal tube model to include

filaments with elliptical cross-section, and consider the states of helical packing. In

addition to the radius R and pitch P of the helical backbone, anisotropic tubes are

described by two additional parameters: the elliptical aspect ratio ϵ; and relative

orientation, or tilt angle α, of the cross-section relative to local bending direction,

as illustrated in Fig. 2. Like the circular ideal tube model, we model the packing

configurations by assuming the filament to be perfectly flexible (i.e. it does not require

any energy to bend the filament) but inextensible and unshearable (that is, the cross-
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section of the tube is everywhere elliptical of specified dimensions). Based on these

assumptions, we fully determine the states of self-contact, which for a given anisotropy ϵ

correspond to a two-dimensional manifold in helical configuration space defined by R, P

and α. We show that for any measure of anisotropy (ϵ ̸= 1) close contact configurations

include a new class of local curvature singularities, corresponding to “outward folding”

cusps on the surface of low-radius packings. Moreover, we find that the nature of the

self-contact singularity that separates allowed from overlapping configurations is highly

sensitive to the degree of anisotropy as well as the orientation of the cross-sectional axis.

A. Tilt AngleB.

AnisotropyC.

Figure 2. Anisotrpic helical tubes with helical radius R = 0.6d0 and helical pitch

P = 1.5d0. (A.) Tube surface with helical pitch P and helical radius R; together,

these parameters define the helical angle, θ = tan−1
(
2πR
P

)
. Everywhere along the

helical backbone, the cross-sectional elements are ellipses. (B.) Tilt angle (α) of the

cross-section, where α measures the rotation of the material short axis away from r̂,

see Appendix B. (C.) cross-section anisotropy. The (shorter) semi-minor elliptical axis

has length a while the (longer) semi-major axis has length b. ϵ defines the aspect ratio,

ϵ = a/b.

To understand conditions for “optimal” helical close-packing, we compute a measure

of local-density that we call capillary density, ϕ, which is simply the occupied volume

fraction within a cylindrical volume enclosing the helical tube (of unlimited length) [94].

Previous studies of ideal tubes have employed a variety of metrics to define “maximally-

dense” helical packing, including minimizing the local radius of gyration [69, 78] and

maximizing excluded volume in a bath of spherical particles [75]. Our use of capillary

density is motivated by the fact that helical packing under cylindrical-like confinement is
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also prominent in a variety of natural and engineered systems, ranging from DNA coiled

within viral phage capsids [95, 96], biopolymers during synthesis [97, 98], translocation

[99, 100], and incorporated within membranes [101], as well as in variety of confined

synthetic systems including colloids [102–108], block copolymers [109–111], and liquid

crystals [112–115]. Moreover, as we show, the states of optimal capillary density

for isotropic versus anisotropic helical tubes are both qualitatively and quantitatively

distinct, and capillary close-packing exhibits a strongly non-linear sensitivity to the

degree of cross-sectional anisotropy.

While the densest configuration of an isotropic tube under capillary confinement is

trivially a straight rod, we show that once cross-sectional isotropy is broken, the densest

configurations within any size capillary are helical, with a geometry that depends on the

level of anisotropy. When the tube is moderately anisotropic, the densest configuration

occurs under high confinement (i.e. in a narrow capillary) while increased anisotropy

prefers a larger capillary. The densest structures within these two regimes exhibit

strikingly different packing motifs both in terms of the helical angle and cross-section

orientation; light anisotropy prefers a “tape-like” motif reminiscent of Fig. 1E while high

anistropy prefers a “screw-like” motif reminiscent of Fig. 1B. We determine that these

packing regimes crossover when the cross-sectional aspect ratio is approximately 4 : 1.

While the densest structure (for a given cross-section) never exhibits scrolled or nested

packing (i.e. intermediate tilt, like Fig. 1C), we find such structures do optimize density

at intermediate levels of confinement, and over a range of confinement that increases

with asymmetry. This analysis reveals that the densest structures for any degree of

anisotropy are bounded, exhibiting a packing fraction bounded between 1 ≥ ϕ ≥ π/4.

The remainder of this article is as follows. In Section 2, we describe the geometric

model used to represent our helical tube, the method for finding the boundary between

expanded and self-contacting helical states and the capillary packing fraction. In Section

3, we describe the self-contacting manifold and the packing motifs that constrain

different regimes of the configuration space. In Section 4, we assess the capillary packing

density of contacting structures, and the dependence on maximally dense structures on

cross-section anisotropy. We discuss the potential implications of these key results in

Section 5 for physical and mechanical properties of filamentary systems.

2. Parameterization and Modes of Contact

2.1. 3D Helical Geometry

We model helical configurations of anisotropic tubes using a centerline (or backbone)

described by a circular helix (i.e. one with constant radius, R and pitch, P ):

x(s) = Rr̂(s)± P

ℓ
sẑ (1)

where r̂(s) = cos(2πs/ℓ)x̂+sin(2πs/ℓ)ŷ, s is an arclength coordinate along the backbone
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and ℓ =
√
4π2R2 + P 2 is the arclength per helical turn ‡. Here, we consider a filament

backbone of unlimited length, or in effect, neglect contributions to packing from the

ends of the structure, appropriate when the total length is much larger than the tube

diameter. The geometry of the helix is independent of backbone position up to screw

motions, so the overall configuration can be described by a single ratio, the helical angle,

θ = tan−1(2πR
P

) bounded between θ = 0 (a straight line) and θ = π/2 (a closed circle).

To describe the material body anisotropically distributed around this backbone

(Fig. 2A), we employ an orthonormal material frame, {T(s), ê1(s), ê2(s)} where T(s) is

the backbone tangent vector, T(s) = x′(s) = sin θϕ̂(s)+cos θẑ and ϕ̂(s) is the azimuthal

unit vector. We constrain the (undeformable) cross-section to lie within the ê1(s), ê2(s)

plane, defined in terms of the Frenet-Serret frame (where {T(s),N(s),B(s)} form an

orthonormal triad, see Appendix A and Ref [116])

ê1(s) = cosαN(s) + sinαB(s), (2a)

ê2(s) = cosαB(s)− sinαN(s) (2b)

Thus, the backbone tangent is normal to the cross-section at all points along the curve.

The parameter α describes the “tilt” (angle) of the material frame, ê1(s) and ê2(s)

relative to the normal (N(s)) and binormal (B(s)) components of the Frenet-Serret

frame. For helices, the normal points toward the pitch axis (i.e. N(s) = −r̂), and

hence, α is easy to visualize as the local orientation of the material frame in the r̂, ẑ

plane, as shown in Fig. 2B.

We model the tubular cross-section as an ellipse with semi-minor axis of length a

oriented in the direction of ê1(s) and semi-major axis of length b oriented in the direction

of ê2(s), see Fig. 2C. The 3D filament surface is then described by

X(s, ψ) = x(s) + a cosψê1(s) + b sinψê2(s) (3)

where ψ parameterizes the boundary of the elliptical cross-section at a backbone position

s. The material body around the helical backbone is then defined by the aspect ratio

of the cross-section,

ϵ ≡ a/b (4)

and the tilt or rotation of the material frame, α (Fig. 2B, C). Intuitively, when α = 0,

the short material axis is oriented in the direction of curvature (i.e. towards the core of

the coil), while α = π/2 corresponds to the long axis oriented in the curvature direction.

Importantly, here we extend the “Ideal Tube” model, and therefore treat the filaments

as inextensible (fixed length), unshearable (rigid cross-section), and perfectly flexible.

‡ Note that in this parameterization, the chirality is controlled by the sign of P , where P > 0

corresponds to right-handed coils while P < 0 refers to left-handed coils. The contact geometry

and packing density are, of course, invariant under changes in chirality. In the current manuscript, all

schematics shown are left-handed; therefore, listed values of P throughout the text can be take to be

negative.
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In the following, we consider filaments with fixed cross-section area, Afil. We define the

effective diameter of filaments as,

d0 =

√
4Afil

π
= 2

√
ab (5)

that is independent of ϵ, and we consider all other length scales relative to this

microscopic dimension.

2.2. Sectional geometry

no contact

self-contact

A. B.

self-contact

C.

Figure 3. 3D and 2D helical configurations for ϵ = 0.64 all with R/d0 = 0.5. (A.)

Non-contacting structure with P > Pmin and α = 5π/16. (B.) Locally contacting

structures obtained from (A.) by increasing tilt (α = 3π/8) and decreasing P until

contact, see also Fig. B1 (C.) Non-locally contacting structures obtained from (A.) by

decreasing tilt (α = π/4) and decreasing P until contact.

Based on the parameterization of anisotropic tubes defined in eqn. 3, we then

determine helical configurations of self-contact by solving for two types of singularities

in the tubular surface. The first correspond to over-curvature resulting in cusps or

creases in the tubular surface, which we denote as local contact. The second correspond

to overlap of the tube at two distinct surface points, which we denote as non-local contact

For the purposes of illustrating and analyzing these singular structures it is

particular useful to consider the geometry of 2D sections perpendicular to the pitch

axis ẑ, as shown in Fig. 3. We refer to these perpendicular cuts as “croiss-sections”

due to their crescent-like shape (see Fig. 3A). These are defined by solutions to fixed-

height equation X(s, ψ)· ẑ = const., which requires a parameteric relation s0(ψ) between

surface coordinates, from which define the 2D curves

X⊥(ψ) = X(s0(ψ), ψ). (6)

For a given helical tube, all croiss-sections are identical up to rigid rotations by screw

symmetry. Fig. 3A shows an example for a non-contacting helical configuration. Fig. 3B
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shows an example of a local contact singularity for higher tilt and minimal pitch, which

appears as an “outward” cusp in X⊥(ψ) for this example. Fig. 3C shows an example of

a non-local contact singularity for lower tilt and minimal pitch, which appears as two

distinct locations on the curve X⊥(ψ) meeting at single point in space.

2.3. Local Contact

Local contact occurs at a single ψ along the tube surface where the surface fails to be

smooth; this discontinuity manifests as either an inward or outward crease in theX(s, ψ)

surface (or a cusp of the same ”direction” in the X⊥(ψ) slice, see Fig. 3B, Fig. B1).

Operationally, these singularities can be selected by locations where the differential

surface element of the tube vanishes. Using the surface metric, g, the magnitude of the

surface normal can be expressed as√
det(g) = |∂sX(s, ψ)× ∂ψX(s, ψ)| (7)

which yields the surface area of a differential tube element as dA =
√
det(g) ds dψ.

The conditions for local contact are defined by the solutions to det(g) = 0 (see

eqns. B.7 – B.9 in Appendix B). Notably, the Ideal Tube case (ϵ = 1) corresponds to

a singular limit of these equations in which local-contact takes the form on an inward

crease, at a minimum pitch derived by Przybyl and Pieranski [78]

Plocal = 2π

√
d0
2
R−R2, for ϵ = 1 (8)

More generally for ϵ ̸= 1 there are two solutions, corresponding to local singularities at

distinct surface locations, given by

Plocal(−) = 2π
√
a cosαR−R2, for ϵ ̸= 1 (9)

Plocal(+) = 2π
√
b sinαR−R2, for ϵ ̸= 1 (10)

which also varies with orientation of the tubular cross-section .

While these local-contact solutions share similarities with the isotropic (Ideal Tube)

case, there are notable differences in which elliptical axis sets the curvature constraint.

The first solution (eqn. 9) is constrained by the cross-section semi-minor axis (a) and is

maximized when this length is oriented in the radial (r̂) direction (i.e. α = 0). On the

other head, the second solution (eqn. 10) is constrained by the cross-section semi-major

axis (b) and is maximized when the cross-section is rotated by α = π/2, such that

this length is oriented in the r̂ direction. These two regimes have distinct geometrical

structure and consequences of constraining close-packed geometries, discussed in Section

3.

2.4. Non-local Contact

The tube surface makes contact non-locally when two distinct elements of the croiss-

section occupy the same point in space (Fig. 3C), which like the local-contact case,
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implies contact along a 1D helical curve where two parts of the same tube meet along

its length.

In searching for non-local contact, we compute the distance of closest approach

between these distinct points along the tube surface. When the cross-section is isotropic,

it is sufficient to calculate the distance between points on the backbone and require that

they be separated by a distance equal to the tube diameter d0 [48, 78]. Because of the

asymmetry in the cross-section, we must instead compute distances between surface

elements. Our approach employs several coupled criteria which determine points of

distance of closest approach along the tube surface (e.g. that the separation is normal

to the tube surface at both points ) then vary the configuration parameters (i.e. R, P

and α) until this closest distance is zero (i.e. the points are in contact, see Appendix

B). In practice, we fixed combinations of R and α, and vary P , numerically solving for

Pnon−local(R,α).

While it is straightforward to see that for sufficiently large P any combination

of R and α will be embeddable (i.e. non-overlapping), in general, it is not a priori

known what type of contact first limits the reduction of pitch at a given R and α

(i.e. local or non-local contact). We determine the pitch at which the tube first

makes contact at a given given R and α, i.e. minimum non-overlapping pitch, as the

largest pitch at which the tube either makes local or non-local contact, Pmin(R,α) =

Max[Plocal(±)(R,α), Pnon−local(R,α)].

2.5. Capillary Confinement

For illustrative purposes, consider a expanded, loosely coiled filament. If this filament

is compressed until self-contact is made, then a confining capillary is constricted around

assembly until the capillary is in contact with the filament surface. In a sense, the

capillary contact constrains the structure from dilating radially, while the filament self-

contact prevents further radial compression; this conceptual paradigm is presented in

Fig 4A.

Operationally, we numerically determine the smallest cylinder (with radius RC)

which could confine the structure, shown in Fig 4B,C. Because each planar section of

the packing is identical up to a rigid rotation about the pitch axis, the occupied volume

fraction in the capillary is identical to the occupied area fraction of the croiss-section

within the circular boundary of the cylinder. Because the filament cross-sections are

unshearable, and by Pappus’s theorem the enclosed volume per unit backbone length

is constant [117], it follows that AcroissP = Afilℓ, where Acroiss is the area enclosed by

the cross-section normal to the pitch axis and Afil is the area of (elliptical) cross-section

normal to the backbone. Using the fact that Acroiss/Afil = sec θ we compute the capillary

packing fraction as

ϕ =
Acroiss

πRC
2 =

d20 sec θ

4R2
C

(11)
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where RC = maxψ|X⊥(ψ)|. Rationale for the use of the minimal size capillary is

discussed in Appendix C.

Β. C.A.

Figure 4. Dense capillary packing. (A.) Hypothetical filament constrained by

capillary- and self-contact. Schematic of uniform filament confined in a (B.) 3D and

(C.) 2D cylindrical pore of radius RC

3. Close-packed configuration landscapes

In this section, we analyze the manifold self-contacting helical geometries, specifically,

analyzing the minimal non-overlapping pitch Pmin(R,α)for for a given helical backbone

radius and cross-sectional tilt α for a sequence of cross-sectional anisotropy ϵ.

3.1. Isotropic tubes

When the cross-section is isotropic (e.g. circular, a = b), the packing landscape is

determined only by helical radius (e.g. it is invariant to tilt). Przybyl and Pieranski

observed that contact is delineated into two regimes [78]; when R is small, the structure

is curvature-limited and makes self-contact locally, or along an inward crease at the

center of helix (analogous to overbending a garden hose) as illustrated in Fig. 5A i.-iii.

Packing at large R is limited by (non-local) contact between successive turns of the tube

(analogous to coil stacking of a garden hose), illustrated in Fig. 5A v.-vi. Here, the single

boundary between local and non-local contact occurs at R/d0 ≃ 0.431 and P/d0 ≃ 1.083

(Fig. 5A iv.); a single local maximum in Pmin/d0 = π/2 occurs at R/d0 = 0.25. Together,

these contact criteria generate the minimum pitch bounding hull, reproduced in the style

of [78] in Fig. 5B, where structures below Pmin(R) are forbidden (due to self-overlap)

and structures above Pmin(R) are said to be “expanded”.
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i. ii. iii. iv. v. vi.

A. B.

i.

ii.
iii.iv. v.

iv.
Forbidden

Local
Non-locali.

ii.

iii.

iv. v. vi.

Figure 5. Packing landscape for isotropic tube, ϵ = 1, originally calculated in ref. [78].

(A.) Maximal pitch structures for increasing values of R/d0. (B.) Minimal pitch contact

hull indicating the limiting mode of contact.

Figure 6. Packing landscape for ϵ = 0.95. (A.) Contact type phase diagram and (B.)

minimal pitch contact hull. (C.) Maximal pitch structures for increasing values of α.

3.2. Slightly anisotropic tubes

With apparently any perturbation to the cross-section shape (or at least with as small

as 0.5% deviation, ϵ = 0.995), we find that the modes of contact change significantly;

notably, now with a vital dependence on cross-section tilt. These large changes for

weak anisotropy illustrate that the isotropic tube case (ϵ → 1) is in fact a singular

limit of the more general variable anisotropy behavior. As shown in Fig. 6B, the large

R behavior is largely unchanged (albeit with a slight tilt-bias which intuitively grants

large α structures the ability to pack at lower pitch). However, when R is small in the

regime corresponding to local contact of the isotropic filament, we observe three distinct

contact regimes, shown in Fig. 6A. Two of these regimes are determined by local contact

corresponding to solutions of vanishing area element of the metric tensor(eqn. 9 and
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10), however these represent distinct types of contact, in particular driven by the long

material axis (b, at high α) and the short material axis (a, at low α). Surprisingly, the

low R - intermediate α behavior exhibits non-local contact; this seemingly stems from

variation in tube-surface curvature (resulting from cross-section anisotropy) thereby

smoothing what was otherwise an inward local kink. This packing paradigm allows for

a slight softening of the previous global maximum in Pmin; in other words, non-local

contact at intermediate tilt allows for a lower pitch configuration. While these changes

are challenging to recognize visually at the 3D scale (structures along the Pmin(R,α)

ridge are shown in Fig. 6C), their modes of contact are distinct when magnified; we

note that the low-α local contact creases “inward” in the structure, manifesting as an

intruding groove (and hence labeled “Local (-)”) while the high-α local contact creases

“outward”, manifesting as a protruding seam (and hence labeled “Local (+)”). It is

also important to note that despite the minuscule differences in contact geometry and

fairly modest shifts in the values of Pmin at a given R, the boundaries between distinct

contact topologies exhibit a large shift in then R-α plane, even when the cross-section

anisotropy is small. These shifts in the contact manifold become even more pronounced

as the tubular cross-section becomes more anisotropic, as we discuss next.

3.3. Highly anisotropic tubes

When the cross-section is symmetric (with respect to tilt), the packing landscapes are

also symmetric (see Fig. 5B). Introducing asymmetry in the cross-section results in

asymmetry in the landscape; the Local (+) regime occupies slightly more area than

the Local (-) regime in Fig. 6A and the corresponding maxima in Fig. 6B is more

pronounced.

As the filament becomes more anisotropic (see Fig. 7A,B for ϵ = 0.8175), the

asymmetry between + and − local contact grows. With decreasing ϵ, the Local (+) and

Non-local regions become more prominent while the Local (-) shrinks, and the differences

in Pmin between large- and small-α become significant. The minimal pitch also exhibits

a stronger tilt-dependence; while two maxima separated by a saddle still dominated the

low-R behavior, the magnitude of the maxima (corresponding to structures Fig. 7C.i

and C.vii now differ by approximately 20 percent (with Pmin ≃ 1.42d0 and 1.73d0,

respectively). At this scale, the 3D structures exhibit some perceptible asymmetry;

structures with intermediate tilt (Fig. 7C.ii-vi) display uneven protrusions in the radial

direction, while structures constrained by Local (+) curvature (Fig. 7C.v-vii) display a

noticeable seam.

When the cross-section is increasingly asymmetric (below ϵ ≃ 4/5), the Local (-

) branch ceases to constrain the packing manifold, at which point, the entire low-tilt

regime is limited by non-local turn-to-turn contact exclusively. When the cross-section

has at least this degree of anisotropy, it is not possible to construct a viable configuration

that is more curved than the short material length scale would allow because when

the structure is in the low-tilt regime, the curvature of the filament is primarily in the
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Figure 7. Packing landscape for ϵ = 0.8175. (A.) Contact type phase diagram and

(B.) minimal pitch contact hull. (C.) Maximal pitch structures for increasing values

of α.

direction of the short material axis. There simply is not enough material in this direction

to curve such that a kink arises, while in the pitch-direction, the cross-section is wide

which obstructs larger regions of turn-to-turn configurations.

An example of the “two-phase” contact topology for highly-anisotropic tubes

(ϵ = 0.25) is shown in Fig. 8. As the filament becomes more anisotriopic, the global

maxima of Pmin(R,α) at α = π/2 become more pronounced (Fig. 8B). The secondary

maxima at low-R for α = 0 persists, despite the change between modes of contact

(from Local (-) to Non-local), though the feature continues to softens relative to the

global maximum (Fig. 8C.i and C.v have Pmin ≃ 2.25d0 and ≃ 3.15d0 at α = 0 and

α = π/2, respectively). In this asymmetry regime, these extrema remain separated by a

saddle which spans intermediate tilt; however, the span is not smooth (i.e. ∂Pmin/∂α is

discontinuous), owing to the boundary between modes of contact. In these significantly

asymmetric cases, the corresponding structures exhibit exotic morphologies; a selection

that spans the Pmin saddle are shown in Fig. 8C. In particular, the global maxima of

Pmin Fig. 8C.v., corresponding to Local (+) contact at small-R, α = π/2 presents a

relatively large Pmin characterized by elaborate outward cusps at the high curvature

edge of the cross-section. This behavior is in stark contrast to the Non-local large-R,

α = π/2 packing, in which Pmin is minimal (i.e. Pmin(R → ∞, α = π/2) → 2a, or

“small-axis stacking”). Intuitively, as the radius of curvature is compressed beyond the

width of cross-section in radial direction, the packing must expand correspondingly into

the ẑ dimension (resulting in larger Pmin).

Przybyl and Pieranki considered the transition point between local and non-local

contact branches to correspond to a state of optimally dense helical packing. In the
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Figure 8. Packing landscape for ϵ = 0.25. (A.) Contact type phase diagram and (B.)

minimal pitch contact hull. (C.) Maximal pitch structures for increasing values of α.

Figure 9. Multiplicity of states within a given capillary of RC shown for ϵ = 0.25..

Traces of (A.) density and (B.) helical angle for fixed tilt angle as a function of confining

radius. (C.) Dense and loose structures within the same capillary RC/d0 = 0.79

(i.), 0.84 (ii, iii), 0.89 (iv, v), 0.94 (vi, vii), 0.99 (viii, ix). (D.) RC evaluated along

the contact hull; the region at low-R low-α corresponds to bifurcated regions, (E.)

Landscape of maximum with variable RC and α. A plot of the maximal density at

fixed RC is overlaid.

next section, we consider the density of these much richer close-packed landscapes,

and in particular, the behavior in proximity to packing motif coexistence branches.

Additionally, a more complete analysis of contacts along the coexistence branch are

provided in Appendix C.
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4. Capillary packing

Having found that helical geometry of filament self-contact is strongly sensitive to the

anisotropy of the cross-section, we now consider its effects on capillary packing fraction,

ϕ.

In this section, we first briefly summarize the approach to computing optimally

dense configurations. We then describe features of the packing density manifold and

the underlying structural motifs as a function of the size of the confining capillary, RC .

Finally, we analyze and compare the overall densest configurations as a function of tube

aspect ratio, ϵ and classify the distinct packing motifs selected for variable filament

asymmetry and confinement.

4.1. Measuring local density by capillary confinement

In the prior sections, it was most convenient to parameterize packing in terms of the

purely geometric parameters that describe the configuration, in particular, the radius

R and pitch P of the tubular “centerline”. This description is sufficient for capillary

confinement of isotropic tubes (ϵ = 1) because the tightest capillary radius for a given

helical radius is simply RC = R + d0/2. For anisotropic tubes (ϵ ̸= 1), the mapping

between helical centerline radius R and capillary radius, is a more complex and non-

linear function RC(R,P, α). In practice, this is computed from the maximal radial

distance of the tubular surface from the pitch axis, i.e. RC = maxψ|X⊥(ψ)| for a given

R,P and α. That is, the capillary radius is the smallest possible to enclose the helical

filament, or other words, the minimal possible value of RC is chosen so as to maximize

the packing fraction for that R,P and α.

For all close-packed (i.e. self-contacting) structures for a given ϵ, that is, all

combinations of R, α, and the resulting minimal pitch Pmin, we calculate ϕ(R,α)

and RC(R,α)§. By inverting the mapping RC(R,α) (to yield R(RC , α)), we analyze

the relationship between confinement size for a close-packed structure and its packing

fraction. As an example, we show several traces of ϕ(RC , α) for fixed α and ϵ = 0.25

in Fig. 9A-B. Importantly, when both α and RC are small, ϕ(RC) is multivalued since

there are multiple R values with the same α that perfectly fit within a specific capillary

(see schematic examples in Fig. 9C.).

As we are presently interested in the densest packing, we take only the higher ϕC
configuration in this multi-valued region in our analysis, neglecting the features of the

“loose” (larger pitch) branch of capillary confinement.

For ϵ = 0.25 the map between helical radius and capillary radius is shown in Fig.

9D, where the “loose” structures occupy a region at low-R low-α. The boundary of this

region (white dashed line in Fig. 9) corresponds to the minimal capillary radius for a

given α in this regime. For all confined packings along this boundary between single-

§ Note that by constraining our optimization to close-packed structures, ϕ(R,α) and RC(R,α) have

an implicit dependence on Pmin, where Pmin = Pmin(R,α)
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and multi-valued helical radius, we observe helical geometry (θ > 0, marked with black

dots in Fig. 9B), which is not the case for larger tilt and lower asymmetry, where the

tightest capillary radius is achieved for R → 0. For example, at values of tilt larger than

the bifurcation region for ϵ = 0.25, α ≳ 0.6, the minimal capillary size is independent of

α; all structures exhibit a minimal RC governed by θ = 0 “rod-like” packing, in which

RC is exactly the semi-major cross-sectional axis, b. Regardless of aspect ratio (and

tilt), these rod-like packings exhibit a density ϕ = Afil/πRC
2 = πab/πb2 = ϵ.

Taken together, these effects lead to complex landscapes of capillary packing density

as a function of cross-section tilt and capillary radius, as shown for example for ϵ = 0.25

in Fig. 9E. Here, ϕ spans 0.8 ≳ ϕ ≳ 0.1. Within the parameter range shown, ϕ exhibits

a minimum when RC/d0 ≃ 1.5, α = π/2; structures in this neighborhood correspond

to high-Pmin Local (+) structures, like Fig. 8C.v. Of course, these configurations only

correspond to a local minima; ϕ → 0 as RC/d0 → ∞, resulting from the center of the

coil opening.

In the following, we next consider α as a configurational degree of freedom (like

R and P ) and determine the optimal tilt and helical geometry for dense packing of a

tube with a given anisotropy ϵ and in a given capillary radius RC . For the example of

ϵ = 0.25 shown in Fig. 9E, the optimal α value for each given RC is shown as blue curve,

which transitions from α = 0 for small RC to α = π/2 for large RC , a generic feature

for all ϵ as we discuss below.

4.2. Variable-Radius Capillary Packing

Fig. 10A shows plots of the optimal capillary packing density and configurations

as function of capillary radius (RC) and for a sequence of increasing cross-sectional

asymmetry. For all aspect ratios of the filament, packing fraction ϕ exhibits a non-

monotonic dependence on the confining radius. When the tube is isotropic (ϵ = 1), the

packing exhibits four extrema (Fig. 10A,top):

(i) when the capillary is the same size as the tube, the tube perfectly packs within the

capillary (ϕ = 1). We consider this to be a “rod-like” packing motif.

(ii) when the capillary size is intermediate to the tube radius and tube diameter, the

structure is helical with lower packing fraction, corresponding to high-Pmin local

contact structures.

(iii) when the capillary size is comparable to the tube diameter, the packing fraction

reaches a local maxima of ϕ = π/4; based on the density, we consider this to be a

“toroid-like” packing motif ∥.
(iv) when the RC is larger than the tube diameter, the core of the helical structure begins

to open, leading to a monotonic decrease in density with increasing capillary size

(ϕ→ 0 with RC → ∞).

∥ Toroid-like packing exhibits a packing density ϕ = π/4, equivalent to that of a horn-torus within a

cylinder of radius and height equal to the tube diameter; interestingly, the helical capillary exhibits the

same ratio of size (a cylinder of radius equal to the tube diameter)
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Figure 10. Densest configurations within variable sized capillaries. (A.) Maximal

density (ϕ, black, left axis), tilt angle (α, red, right axis), helical angle (θ, blue, right

axis) within capillary RC/d0 for selected values of ϵ. Global maxima of ϕ marked with

solid dots; local maxima marked with open dots. (B.) Structures for ϵ = 0.316 within

increasing RC/d0, displaying increasing α and θ.

The helical angle (θ = tan−1(2πR
P

)) exhibits a monotonic dependence on RC . When

the filament is isotropic and the cylinder is in the small limit (RC = d0/2), the tube is

straight (i.e, R = 0) thus θ = 0. In the large limit (RC → ∞), the tube approaches a

toriodal geometry (i.e, a helix with P → 0) thus θ = π/2.

Helical packing of asymmetric tubes (ϵ ̸= 1) leads to new features of the capillary

dependent packing, shown in Fig. 10A. With any degree of anisotropy, we observe that

the minimal capillary radius no longer corresponds to a local maxima in density; this

maxima shifts to larger capillaries and decreases in density with increasing anisotropy,

first very slightly for low anistropy (e.g. ϵ = 0.95) and then more obviously with larger

anisotropy (ϵ = 0.49) The minimum helical angle (which occurs within the smallest

possible capillary radius) increases with anisotropy, never limiting to the isotropic value

of θ = 0; in other words, the straight, non-helical tube is never a density maximizer (for

an aniostropic tube), regardless of size of the capillary. For any degree of cross-sectional

anisotropy, capillary density favor helical over straight configurations.

Relative to small-RC , the large-capillary behavior is qualitatively insensitive to

anisotropy; the density exhibits a local maxima when the capillary radius is equal to

twice the semi-major tube axis. Naturally, this value of RC grows as with increasingly
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tubes anisotropy.

Given a tube anisotropy, optimal capillary density requires strongly non-linear

variation in the tilt angle (α) of the cross-section. Near maxima of ϕ(RC), we observe

extremes in the tilt angle. When RC is small, the cross-section is oriented with the

short axis pointing (inward) in the curvature direction (α = 0). This general motif,

observed at the low RC density maxima, is reminiscent of a coiled tape, on for example,

bicycle handlebars, and shown for ϵ = 0.316 in Fig. 10B.i. When RC is larger, the dense

structures exhibit a cross-section with the long axis oriented (inward) in the curvature

direction (α = π/2; this motif is reminiscent of the threads on a screw, see Fig. 10B.v;

the onset of this regime universally exhibits the toroidal density, ϕ = π/4.

For large anisotropies (ϵ ≲ 4/5, these states are connected at intermediate RC

via a monotonic increase in the tilt angle, visualized in Fig. 10B.ii-iv. The width

of the transition broadens with anisotropy, revealing an increasing number of dense,

intermediate-tilt states that exhibit a nested or “scroll”-like packing. Interestingly,

these states with large but sub-maximal tilt exhibit a packing density nearly degenerate

to the ϕ = π/4 toroidal packing. When the tube is moderately anistropic, we also

note the existence of a set of low-RC nested states; these structures correspond to a

slight preference for non-local contact over Local (-) contact, and persists until the

Local (-) regime no longer constrains the close-packing landscape (ϵ ≃ 0.81). Given the

slight amount of anisotropy, these configurations are structurally similar to the untilted

structures; the packing benefit and resulting structural changes are slight in this case.

We mark the locations of low-RC (tape-like) and high-RC (screw-like) density

maxima with black markers in Fig. 10A. For each value of ϵ, the global maximum

is marked with a solid dot, while the secondary maximum is marked with an open dot.

When ϵ is high (i.e. nearly isotropic), the low-RC maxima is most dense, and when ϵ is

small (i.e. large anisotropy), the high-RC maxima is most dense. This transition in the

geometry of maximally dense packing is examined in more detail in the next section.

4.3. Optimal Capillary Packing

As shown in Fig. 10, ϕ(RC) is characterized by two local maxima, one at low-RC with

small θ and a second at large-RC and large θ, which are respectively closer to nearly-

straight versus “gardenhose-like” coiling. In Fig. 11, we track each of these two localy

dense states (i.e the ϕ maxima in Fig. 10). Again, global maxima (“dense”) are marked

with a solid point while the secondary maxima (“loose”) are marked with an open

point. When the tube is either isotropic or only moderately elliptical, the density of

the small-RC (α = 0, low θ) state is higher than that of the large-RC (α = π/2,

high θ) state. However, the small-RC density decreases with anisotropy, while the

large-RC density remains constant; at a critical aspect ratio, ϵcr ≃ 0.316, the densest

state transitions between solution branches. This dependence is intuitive to understand

by simply considering the capillary fraction of a straight tube, ϕ(θ = 0) = ϵ, which

obviously decreases due to the inefficiently of filling a circular capillary with an elliptic
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Figure 11. Competing dense packing motifs. (A.) Densest configurations for selected

values of ϵ. (B. top) Density (ϕ) global (“dense”) and local (“loose”) maxima. Global

maxima are shown as solid dots while submaximal packings are shown as open dots.

(B. bottom) Helical angle (θ) for densest configurations

cross-section. Hence, secondary “gardenhose” maxima eventually overtakes the nearly-

straight state in density. This transition between packing motifs shows a characteristic

tilt- and helical angle dependence; the densest high-ϵ structures pack with α = 0 and

low θ (or a steep incline) while the low-ϵ structures with α = π/2 orientation and high

θ (or a gradual incline); the globally optimal configurations for assorted values of ϵ are

shown in Fig. 11A. These competing motifs are shown at approximately the transition

point, ϵcr ≃ 0.316, in Fig. 10B.i and B.v. Curiously, this transition occurs when the

aspect ratio is ≃ π−1, at which point the density of both the tape-like and screw-like

structure exhibit ϕ = π/4.

5. Discussion and concluding remarks

In this article, we have inventoried the dense-packing parameter space of helical tubes

with cross-sections of various aspect ratio (or flatness). We find that once cross-section

symmetry is broken, the tube configuration space is constrained by novel and non-

trivial variants of the local (curvature-limited) and non-local (turn-to-turn) contact

for isotropic filaments reported in [78]. This complex spectrum of closed-packing

geometries, and their non-linear dependence on anisotropy has important implications



20

Figure 12. Anisotropy-confinement landscapes. (A.) Density of packed filaments with

aspect ratio ϵ constrained to capillary with radius RC/d0. (B.) Configurational phase

diagram consists of spiral tapes (α = 0), spiral scrolls ((π/2 > α > 0)), and spiral

screws (α = π/2).

for the “local density” of helical close-packing, measured in terms of capillary packing

density. While the densest structure is straight for isotropic tubes, once cross-section

symmetry is broken, the densest configuration is either tape-like (α = 0) when the

tube is mildly anisotropic or screw-like (α = π/2) if the tube is sufficiently anisotropic.

Importantly, the density of the weakly-anisotropic regime decreases with ϵ while the

latter is independent of ϵ (and displays a packing fraction of ϕ = π/4, equivalent to

that of a horn torus confined to a tight cylinder). Therefore, the densest configuration

for any filament is bounded 1 ≥ ϕ ≥ π/4, assuming an optimal capillary. Regardless

of the morphology, the “locally dense” packing motif required an increasingly larger

capillary as the tube became more anisotropic. These trends of optimal density are

summarized in Fig. 12A. Based on our highest aspect ratio studied here (ϵ = 0.09),

it seems reasonable that the low ϵ preference for α = π/2 packing should hold in the

limit of thin ribbon- or sheet-like helices (i.e. ϵ → 0); perhaps, not surprisingly, these

packings seem to be abundant in biological membranes, including in the endoplasmic

reticulum [35] and plant (photosynthetic) thylakoid membranes [36].

The strong influence of cross-sectional anisotropy on optimal close-packing, raises

additional question about how (density and morphology) evolves under sub-optimal

confinement. Though the optimal structures always required extremal (tape-like with

α = 0 or screw-like with α = π/2) tilt, intermediate levels of confinement often preferred
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intermediately tilted, nested scroll-like configurations, as shown in the morphological

phase diagram in Fig. 12B (see Appendix B for a discussion of the small tape/scroll

region at low RC and high ϵ). Many of these nested configurations (especially at large

α) exhibit a density nearly degenerate to the screw-like structure (see the soft gradients

in Fig. 12A at low ϵ, intermediate RC). Further, the nested states occupy a larger portion

of confinement-parameter space as the cross-section becomes more asymmetric. Given a

driving force for densification (like some applied compressive force), these findings hint

at the potential to control the assembly morphology via the degree of confinement.

In considering the anisotropic filament packing geometry, we account for more

complex material shape, however we have thus far restricted ourselves to very simple

mechanical descriptions, namely, neglecting considerations of bend and twist elasticity

of filaments. A more complete mechanical model should take into elastic costs of

helical deformations, and specifically account for elastic anisotropies that result from

the geometric anisotropies [31, 118]. Based on simple Kirchoff rod theory, one should

expect (for a filament composed of an isotropic elastic medium) bending is stiffer in

the wide axis relative to the narrow axis by a factor of ϵ−2. On these grounds, and

assuming that filaments are straight and untwised in their rest configuration, it is

reasonable to expect that the α = π/2 configurations would impose a higher elastic

cost (assuming a straight rest configuration) than α = 0 packings. This suggests a

basic antagonism between geometries that favor optimal dense packing and those that

require low elastic energy. Further, we can imagine a class of situations for which the

rest state of filaments is helical [27,66,119–121], but the geometry of close-packing may

indeed frustrate the minimal elastic energy. One example of this scenario is likely to

be elastically programmed microfilaments that target inaccessible values of helical pitch

and radius [25]. Notably, accounting for both density and elasticity in this situation is

likely to direct the structures towards the tilted, nested structures shown in Fig. 1C.

Of course, the current question of dense packings underlies a range of other

interesting phenomena, including the mechanical response of helical structures under

an applied load, the impact of incompatible coiling (e.g. geometric frustration arising

from an inaccessible elastic ground state) on the resulting structure, multi-component

(and size-disperse) interacting systems including bundles [38, 122] and arrays [123]. In

particular, it remains to be explored how the mapping between packing of filaments in

helically-twisted structures and packing on non-Euclidean surfaces [38, 56] sheds useful

light on optimal states of packing anisotropic filaments. For example, for the present

model of helical filament configurations with elliptical cross-sectional asymmetry, it can

be expected that local and global geometric constraints can be understood by packing

of geodesic ellipses on positive curvature surfaces [124].
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Appendix A. Surface and Sectional Geometry

Appendix A.1. Frenet-Serret Formulas

To describe the material body anisotropically inflated around the helical backbone

(Fig. 2A), we employ the orthonormal (geometric) Frenet-Serret frame, composed of

the tangent, normal, and binormal triad, {T,N,B}:

T(s) = x′(s) = sin θϕ̂(s) + cos θẑ(s) (A.1)

N(s) = T′(s) = −r̂(s) (A.2)

B(s) = T(s)×N(s) = − cos θϕ̂(s) + sin θẑ(s) (A.3)

where {r̂, ϕ̂, ẑ} are the canonical cylindrical coordinate basis vectors and tan θ =

2πR/P :

r̂ = cos(2πs/ℓ)x̂+ sin(2πs/ℓ)ŷ (A.4)

ϕ̂ = − sin(2πs/ℓ)x̂+ cos(2πs/ℓ)ŷ (A.5)

Appendix A.2. 2D “Croiss-section” Derivation

We select the contents of the tube that lie in the x̂, ŷ plane at fixed height, z0

X(s, ψ) · ẑ = z0 (A.6)

P

2πl
s+ a cosψ sinα sin θ + b sinψ cosα sin θ = z0 (A.7)

This constraint allows us to eliminate one of the two parametric variable by yielding

the relationship between backbone (s) and surface (ψ) coordinate (that satisfies the

planar constraint).

s0(ψ) = −2πℓ sin θ

P
(a cosψ sinα + b sinψ cosα + z0) (A.8)

https://doi.org/10.7275/gr0k-fv13
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By substitution of this constraint, the full 3D model reduces to a 2D one-coordinate

function (see Fig. 3), where the (in-plane) boundary of the tube is given by

X⊥(ψ) = X(s0(ψ), ψ) (A.9)

And the 2D tangent of the surface is given by

T⊥(ψ) =
X′

⊥(ψ)

|X′
⊥(ψ)|

(A.10)

Appendix B. Determination of Self-Contact

Appendix B.1. Non-local Contact

To determine the distance between any two in-plane points, we define the separation

vector,

∆⊥(ψ1, ψ2) = X⊥(ψ1)−X⊥(ψ2) (B.1)

The distance of closest approach is defined between surface coordinates (ψ1 and

ψ2) when ∆⊥(ψ1, ψ2) is orthogonal to both surface tangents, T⊥(ψ1) and T⊥(ψ2) (or,

equivalently, T⊥(ψ1) ∥ T⊥(ψ2). In determining instances of non-local contact, we seek

to simultaneously satisfy T⊥(ψ1) ∥ T⊥(ψ2), ∆⊥(ψ1, ψ2) → 0, and ψ1 ̸= ψ2.

Recalling that the X⊥(ψ) croiss-section plane has ẑ as a normal, we define three

inequalities to capture the distance of closest approach

|T⊥(ψ1) ·∆⊥(ψ1, ψ2)|2 ≥ 0 (B.2)∣∣∣[T⊥(ψ1)×T⊥(ψ2)] · ẑ
∣∣∣2 ≥ 0 (B.3)∣∣∣[T⊥(ψ2)×∆⊥(ψ1, ψ2)] · ẑ

∣∣∣2 ≥ 0 (B.4)

When the first two quantities saturate 0, ψ1 and ψ2 correspond to a location of

distance of closest approach; these points are in the neighborhood of non-local contact

(given a sufficiently small P ). The third quantity extracts the separation distance

between the points; when this quantity also equals 0, non-local contact occurs. We

numerically solve this coupled system for saturation of all three constraints (in terms of

the contact pitch, Pnon−local and the surface contact coordinates, ψ1 and ψ2) for every

combination of R, α, and ϵ. In this procedure, we impose a constraint that ψ1 ̸= ψ2;

the angular constraints baked into our inequalities then maintain that ψ1 and ψ2 are in

fact non-local along the tube surface.
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Appendix B.2. Local Contact

Local contact occurs at a single location along the tube surface where the surface fails

to be smooth; this discontinuity manifests as a crease in the surface or cusp singularity

in the in-plane representation. Operationally, these singularities can be selected by

locations where the differential surface area of the tube vanishes, corresponding to the

surface being multivalued.

Using the surface metric, g, the magnitude of the surface normal can be expressed

as √
det(g) = |∂sX(s, ψ)× ∂ψX(s, ψ)| (B.5)

which yields the surface area of a differential element as

dA =
√

det(g) ds dψ (B.6)

We select vanishing area elements via solutions to det(g) = 0, which yields a

sum of three squares (corresponding to component for each of the orthonormal basis

components), c1
2(ψ) + c2

2(ψ) + c3
2(ψ) = 0.

c1
2(ψ) = b2 cosψ sinψ − a2 cosψ sinψ (B.7)

c2
2(ψ) = ab cos2 ψ cosα sin θ − b2 cosψ sinψ sinα sin θ − ℓb cosψ (B.8)

c3
2(ψ) = −ab sin2 ψ sinα sin θ + a2 cosψ sinψ cosα sin θ − ℓa sinψ (B.9)

Of course, satisfying c1
2(ψ) + c2

2(ψ) + c3
2(ψ) = 0 requires that each term equal

zero.

Importantly, the first condition, c1
2, exhibits a singular dependence on the aspect

ratio, ϵ; when the cross-section is circular (ϵ = 1), the condition is automatically satisfied

for any value of ψ and the minimal pitch (Plocal takes the form of a helix “limited by it’s

curvature” presented by Przybyl and Pieranski [78], see eqn. 8.

When ϵ < 1, satisfying the initial constraint (c1
2(ψ) = 0) requires that the

product cosψ sinψ = 0; naturally, this requires that either cosψ or sinψ = 0 (i.e.

ψ = 0, π/2, π, 3π/2, 2π). Substitution of these constraints into c2
2(ψ) and c3

2(ψ) yields

two physical solutions for Plocal, see eqn. 9 and 10:

These solutions present as ellipses in the (R,P ) plane, making it trivial to identify

their center and vertices. The ellipses are described by

P 2

(aπ cosα)2
+

(R− 1
2
a cosα)2

(1
2
a cosα)2

= 1 (B.10)

and

P 2

(bπ sinα)2
+

(R− 1
2
b sinα)2

(1
2
b sinα)2

= 1 (B.11)

Perhaps more intuitively (or at least more graphically), this contact feature can also

be detected numerically by a diverging in-plane curvature; the geometric significance

of both operations are the same. In Fig B1, the in-plane radius of curvature, κ−1
⊥ =

|X′
⊥(ψ)|3/2/|X′

⊥(ψ)×X′′
⊥(ψ)| is shown for the locally self-contacting structure presented

in Fig. 3B.
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A.
B.

Figure B1. Radius of curvature (κ−1
⊥ ) along X⊥(ψ) corresponding to Fig. 3B(top);

In this structure, κ−1
⊥ spans 0 (cusp) to ∞ (inflection); for visualization the color bar

scales logarithmically and was truncated to saturate at κ−1
⊥ = 10−5 (dark blue) and

κ−1
⊥ = 105 (dark red).

Appendix B.3. The Local - Non-local Boundary

As reported in [78], the isotropic filament contact regimes meet a single point, R ≃
0.431d0, P ≃ 1.083d0. This structure, shown in Fig 5A.iv simultaneously exhibits

local and non-local. Perhaps intuitively, these two modes occur at distinct locations

along the tube surface (i.e distinct ψ coordinates); the local contact (or curvature

constraint) occurs inside the helical core (i.e in the direction of curvature) while the

non-local contact occurs between successive turns (i.e roughly in the vertical direction).

Several anisotropic filaments with local/non-local coexistence were presented in the main

text (Fig. 6C.ii, Fig. 6C.iv, Fig. 7C.ii, Fig. 7C.v, and Fig. 8C.iii), however all of these

structures appear to exhibit simultaneous contact at a single point in the croiss-section;

the two sites of contact are indistinct. This curious difference occurs due to the specific

pathway shown in Fig. 6C - 8C, in particular that the coexistent structure is shown

at a relatively low value for R. In Fig. B2, we show additional structures along the

local/non-local coexistence line. For both ϵ = 0.95 and ϵ = 0.25, we find that the

boundary exhibits regions of distinct and indistinct coexistence, at large and small R,

respectively; transitions between these motifs can be determined by inflections in the
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coexistence boundaries shown in Fig. 6B and 8B. It seems then that this indistinct

coexistence is then a consequence (or in fact, a cause) of the non-local contact regime’s

ability to persist to smaller helical radii; this structural motif is an inherent feature of

cross-sectional anisotropy.

Appendix B.4. Nested packings at low RC and high ϵ?

Highly anistropic structures follow a straightforward progression, tape → scroll → screw

as RC increases, as shown in e.g. Fig. 10A,bottom for ϵ = 0.25. Curiously, when ϵ is

large, we observe a second state of scroll-like packing, which is apparently more dense

than the corresponding tape-like packing. This phenomena is observed under the entire

ϵ scale where the Local(-) branch constrains the contact manifold, 1 > ϵ ≳ 0.8175, and

corresponds for a preference for non-local contact over local(-) contact; we therefore dub

this transition as the “Cusp Escape” regime.

Based on Fig. B3B, it is obvious that this preference for intermediate tilt at low RC

does not significantly influence the packing; for ϵ = 0.95, the helical angle (θ) and the

packing density (ϕ) only deviate by at most ≃ 2%; this largely is a consequence of the

weak anisotropy. While this secondary tilt motif persists down to ϵ ≃ 0.8175 (where tilt

should have a larger consequence), the local(-) regime decrease in size with decreasing

ϵ (see Fig. 7); as a result, the magnitude of α (and therefore deviation from “Ideal”

packing) needed for “Cusp Escape” also decreases (compare, e.g. ϵ = 0.95 and ϵ = 0.85

in Fig. 10A. As such, we consider these low RC/high ϵ nested states to be a relatively

inconsequential deviation from the more intuitive tape → scroll → screw progression

with increasing capillary size.

Appendix C. Capillary Contact Maximizes Density

In the present work, we specifically report capillary density of dense (i.e. self-contacting)

helices within their tightest capillary. However, our approach is in fact far more

general; the capillary density, given in expression Eqn. 11 can be applied to helices

of arbitrary configuration (in particular, “expanded helices” with P > Pmin) within

arbitrary capillaries (in particular, with RC ≥ maxψ|X⊥(ψ)|).
While this larger ensemble of states may certainly be of interest in some physical

phenomena or systems, our current focus is on states that maximize density.

It can be shown analytically that

∂ϕ

∂P
≤ 0 (C.1)

for P ≥ Pmin (independent of the values of R, α, ϵ), so in surveying the densest

configurations, it is appropriate to only consider packings which simultaneously exhibit

self- and capillary-contact.
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Figure B2. Coexistence between Local (L) and Non-local (NL) contact. (A.) Single

point of isotropic (ϵ = 1) L/NL coexistence; here, the local contact points “inward”

(hence classified as local(-)) and the contacts occur at distinct locations along the tube

surface. (B.) States along the L/NL coexistence boundary for slightly anisotropic

tubes (ϵ = 0.95); the boundary pans both local(-) and local(+), as discussed in

Section 3.2. Most states (i.e. intermediate α)coexistent contact at a indistinct (i.e.

the same) location along the tube surface exhibit; extreme values of α exhibit distinct

contact. (C.) States along the L/NL coexistence boundary for highly anisotropic tubes

(ϵ = 0.25). States at smaller α exhibit indistinct contact while states at larger α exhibit

distinct contact.
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“Ideal Path”

A. B.

Local (+)

Non-localLocal (-)

Figure B3. Optimal packing at high ϵ yields two nested regimes. (A.) ϵ = 0.95

contact mode phase diagram (black, see Fig. 6B), optimal packing (red, corresponding

to Fig. 10A), and the “Ideal” low ϵ tape → scroll → screw progression (gray, dashed).

The preferred packing exhibits intermediate tilt to “escape” the local(-) regime. (B.

top) ϕ (black) and θ (blue) along the optimal branch, as well as along the “Ideal”

branch (gray, dashed). (B. bottom) Normalized deviation of the quantities (q), ϕ and

θ.
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