
cuPSS: a package for pseudo-spectral integration of stochastic PDEs

Fernando Caballero
Department of Physics, Brandeis University, Waltham, Massachusetts 02453, USA∗ and

Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA
(Dated: May 7, 2024)

A large part of modern research, especially in the broad field of complex systems, relies on the
numerical integration of PDEs, with and without stochastic noise. This is usually done with eiher in-
house made codes or external packages like MATLAB, Mathematica, Fenicsx, OpenFOAM, Dedalus,
and others. These packages rarely offer a good combination of speed, generality, and the option to
easily add stochasticity to the system, while in-house codes depend on certain expertise to obtain
good performance, and are usually written for each specific use case, sacrificing modularity and
reusability. This paper introduces a package written in CUDA C++, thus enabling by default gpu
acceleration, that performs pseudo-spectral integration of generic stochastic PDEs in flat lattices in
one, two and three dimensions. This manuscript describes how the basic functionality of cuPSS,
with an example and benchmarking, showing that cuPSS offers a considerable improvement in speed
over other popular finite-difference and spectral solvers.

I. INTRODUCTION

Many interesting phenomena are described by stochas-
tic partial differential equations when some fast degrees
of freedom can be integrated out into noise on mesoscopic
timescales. These include systems in fields as varied as
fluid mechanics [1], ferromagnetism [2], forms of phase
separation [3, 4], interface dynamics [5–8], soft and active
matter [9–14], systems biology [15, 16], finance [17, 18],
and many others. These equations, in what will interest
us below, can be generally written as a function of a field
ϕ(x, t), as

dϕ = F [ϕ]dt+
√
2DdW, (1)

where F [ϕ] is a function describing the deterministic evo-
lution of ϕ, while dW is a Wiener process. I assume that
all differential equations are written calculated in the Ito
formulation when writing any discretization for them,
which allows a more natural description of the noise in
discrete time [19]. I also allow the strength of the noise
D to be a differential operator, which will be useful for
describing different types of noise [3].

Despite the rich theoretical machinery to analyze the
properties of this type of equations, their stochastic na-
ture, and usually complex form of their deterministic evo-
lution, makes numerical methods a powerful tool in in-
vestigating them. These methods offer a quick insight
into their behavior, as well as a way to test hypotheses
about a model prior to investing more effort into different
approaches.

A. Pseudo-spectral integration

Of the plethora of methods to numerically integrate
an equation as Eq. 1, spectral methods offer the ad-

∗ fcaballero@brandeis.edu; http://github.com/fcaballerop/cuPSS

vantage of higher numerical stability to space discretiza-
tion, especially when the deterministic part of the evo-
lution F [ϕ] has terms with many gradients. Writing

the Fourier transform of ϕ(x, t) in space as ϕ̃(q, t) =
(2π)−d/2

∫
dqe−iq·xϕ(x, t), Eq. 1 as can be rewritten as

∂tϕ̃(q, t) = F̃ [ϕ̃] +
√

2D̃η̃, (2)

where I have dropped the differential form of the starting
equation, and rewritten the noise as η̃, now defined with
an average of 0 and a variance

⟨η(q, t)η(q′, t′⟩ = (2π)dδ(d)(q+ q′)δ(t− t′). (3)

The noise strength is written with a tilde because, as
mentioned above, it is not necessarily a constant. For
instance, a common form of Eq. 2 is a continuity equation

for a mass conserving field, ∂tϕ = −∇·J⃗ , for some current

J⃗ . A noise term to this system is therefore applied to the

current, so that J⃗ = J⃗d+Λ⃗, where J⃗d is the deterministic

part of the current, and Λ⃗ is a vectorial noise. A simple
calculation can show that, in Fourier space, this noise
can be written as in Eq. 2, where D̃ = Dq2 [3].
A drawback of spectral methods is their inefficiency

when it comes to computing nonlinear terms in F [ϕ],
since polynomial nonlinearities of order n will involve
convolutions that take O(Nn) steps to compute, where
N is the number of steps in which space is discretizes. A
solution for dealing with these types of nonlinearities in a
more efficient way is to use the so-called pseudo-spectral
methods [20], where the nonlinearities are instead cal-
culated in real space, while gradients are calculated in
Fourier space. This offers a considerable speedup, despite
the need to transform fields back and forth between real
and Fourier spaces, since there are fast Fourier trans-
form algorithms (commonly known as FFT algorithms
[21]) that work at a speed of O(N logN).
For instance, let’s consider a simple example of a de-

terministic evolution of a field ϕ(x, t) with cubic decay

∂tϕ(x, t) = −ϕ(x, t)3. (4)

ar
X

iv
:2

40
5.

02
41

0v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 3
 M

ay
 2

02
4

mailto:fcaballero@brandeis.edu
http://github.com/fcaballerop/cuPSS

2

This equation can be readily written for the Fourier
transform of ϕ(x, t), ϕ̃(q, t), with wavevector q,

∂tϕ̃(q, t) = −
∫∫

dkdl

(2π)2d
ϕ̃(k, t)ϕ̃(l, t)ϕ̃(q−k− l, t). (5)

Computing the right-hand side numerically in a sys-
tem discretized in a lattice of size N would thus require
O(N3) calculations; N2 calculations for the convolution
at each wavevector q. A pseudo-spectral method con-
sists of viewing the previous equation in the following
equivalent way

∂tϕ̃(q, t) = F
[
F−1

[
ϕ̃(q, t)

]3]
, (6)

where F and F−1 are the Fourier transform and inverse
Fourier transform operators respectively. This method
will require only O(N2 logN) steps, since multiplication
in real space is linear in the number of lattice points, and
Fourier transforms can be computed at a faster speed
than a naive convolution.

A pseudo-spectral method thus consists of numerically
integrating Eq. 2 in Fourier space, but calculating non-
linear terms by transforming each factor to real space,
calculating the product in real space, and transforming
the result back to Fourier space.

B. De-aliasing

One last detail must be mentioned when talking about
these numerical methods, for which we need to intro-
duce an explicit discretization of space. Consider a field
ϕ(x, t), defined in a one-dimensional space of size N , dis-
cretized in N/∆x points, each separated from the next
at a distance of ∆x. This induces a natural discretiza-
tion of Fourier space in N frequencies qi at a distance
of ∆q = 2π/(N∆x), where it is common to choose a
frequency interval symmetric around q = 0, such that
qi ∈ (−π/∆x, π/∆x). Let us assume for simplicity, and
without loss of generality, that ∆x = 1. We then have
a lattice of N frequencies going from −π to π. Let us
now consider the discrete Fourier series of the field ϕ(x),

which can be written ϕ(x) =
∑

qi
ϕ̃(qi) exp(iqix). Con-

sider a quadratic nonlinearity derived from this field

ϕ(x)2 =
∑
qi,qj

ϕ̃(qi)ϕ̃(qj) exp(i(qi + qj)x). (7)

Notice that for high frequencies, it is possible that
qi + qj > π, and due to the periodic nature of Fourier
frequencies, the resulting equivalent mode in the inter-
val (−π, π) is qi + qj − 2π, which might describe a much
lower wavevector, so that a mode that is describing the
amplitude of a low length-scale feature will contribute to
the a mode describing a large length-scale. This artifact,
which results from discretizing space, is known as alias-
ing, and the need to mitigate aliasing has been known in
the context of spectral integration for decades [22–24].

There are several methods to avoid these artifacts, all
under the common name of de-aliasing [25]. A simple
one, which is implemented here, is creating a de-aliased
version of the fields that form part of nonlinearities, by
setting to 0 the amplitude of their Fourier modes that
create aliasing artifacts, and using these de-aliased fields
to compute nonlinearities.
More specifically, if a field is part of a nonlinearity of

order n, we find the values of q such that nq > 2π/∆x−q,
and set those modes to 0. This must also be done for
negative frequencies, that is, for every q < 0 such that
nq < −2π/∆x + q. This condition trivially becomes
|q| > 2π/[(n+ 1)∆x]. For instance, for a quadratic non-
linearity, where n = 2, we set every mode of a field to
0 for every frequency q such that |q| > 2π/(3∆x). This
becomes the commonly known two thirds rule for de-
aliasing quadratic nonlinearities.
In the rest of the paper, it is assumed that nonlinear

terms in any equation are written in terms of de-aliased
fields, for instance, Eq. 6 should be rewritten as

∂tϕ̃(q, t) = F
[
F−1

[
ϕ̃d3(q, t)

]3]
, (8)

where the field has been de-aliased before being trans-
formed to real space, such that

ϕ̃d3(q, t) =

{
ϕ̃(q, t) if |q| < 2π

4∆x

0 if |q| > 2π
4∆x

(9)

The rest of this paper describes a software package
that allows to numerically integrate systems of equations
described generally by Eq. 1. This package is avail-
able at https://github.com/fcaballerop/cuPSS, and
runs natively on GPUs, allowing for fast integration when
compared to other packages that run only on CPUs. This
package allows equations to be written in a quasi-natural
syntax, which is its main strength, and allows fast model
prototyping; for instance, a diffusion equation in Fourier
space ∂tϕ(q, t) = −Dq2ϕ(q, t) can be coded as dt phi
= -D*q^2*phi. This together with its GPU-accelerated
capabilities is what I hope will make this useful to the
scientific community.
The next sections describe, respectively, what the

package will calculate when given a set of equations, how
it does it technically, how to write models, other features
such as callback functions, and finally some benchmark-
ing done against other similar packages.

II. WHAT CUPSS CALCULATES

cuPSS integrates in time a system of first-order
stochastic PDEs for a set of fields {ϕi(x, t)} defined on a
discrete lattice. Thus, each field follows an equation.

∂tϕi = Liϕi +
∑
j

Nij [{ϕk}] +
√

2D̃ηi (10)

3

where Li is a linear operator, and Nij [{ϕk}] is a set of
terms, linear or nonlinear on the full set of fields. The
nonlinearities are taken to be polynomials of the fields,
each of which can be acted upon by a differential opera-
tor, so that Nij [{ϕk}] can be written as

Nij [{ϕj}] =Mij

∏
k

ψnk

k . (11)

where Mij are differential operators, and the fields ψk

are functions of the fields ϕi operated upon by arbitrary
differential operators. This form of writing the nonlinear-
ities, although cumbersome, will facilitate solving these
equations pseudo-spectrally.

This form of writing an equation can be illustrated
with an example. Consider the KPZ equation [5], de-
scribing nonlinear growth of interfaces,

∂tϕ = σ∇2ϕ+ λ(∇ϕ)2 +
√
2Dη. (12)

In this case, the only nonlinearity is N = λψ2, where
the only field ψ = ∇ϕ is the field we are solving for acted
on by the operator ∇.

In order to solve Eq. 10 in a pseudo-spectral manner,
first it must be written in Fourier space,

∂tϕ̃i = L̃iϕ̃i +
∑
j

Ñij [{ϕk}] + η̃i, (13)

where

ϕ̃(q, t) = (2π)−d/2

∫
dxe−iq·xϕ(x, t), (14)

and where the nonlinearities are written as the general
form of Eq. 6

Ñij [{ϕj}] = M̃ijF

[∏
k

F−1[ψ̃k]
nk .

]
(15)

The amplitude of the noise has been absorbed in the
definition of η̃i, so that, in Fourier space, the noise has
the following variance

⟨η(q, t)η(q′, t′⟩ = 2D̃(q)(2π)dδ(d)(q+ q′)δ(t− t′). (16)

cuPSS will discretize each field ϕ in space, in a lat-
tice with spacing ∆x (and ∆y,∆z if the system is 2-
dimensional or 3-dimensional). Given all fields at a time
t, time is discretized with a timestep size of ∆t, and the
next timestep is calculated in a simple finite difference
scheme. For simplicity and stability, cuPSS uses an im-
plicit form of the Euler-Maruyama method, where the
linear terms are treated in a strong implicit way, equiv-
alent to a Taylor method [19]. Usually, one would dis-
cretize Eq. 1 in an implicit way by introducing a pa-
rameter α such that the discretization in time looks as
follows

ϕ(t+∆t)− ϕ(t)

∆t
= αF [ϕ(t+∆t)]

+ (1− α)F [ϕ(t)]

+

√
2D

∆t
∆Wt,

(17)

where α measures the amount of “implicitness”, and
∆Wt is a Wiener process with variance ∆t. Choosing
the Ito representation of the initial stochastic process al-
lows produces a more natural time discretization of the
noise term, so that, in practice, ∆Wt is calculated as a
set of independent noise terms every timestep [19].
Setting α = 1 corresponds to a fully implicit method

for the deterministic part of the equation, sometimes
called Milstein scheme [19, 26, 27], while α = 0 corre-
sponds to the Euler-Maruyama scheme. The Milstein
scheme involves having to solve an algebraic equation,
which would give greater numerical stability at the sacri-
fice of speed. What cuPSS does —which is used in some
other widespread packages for the numerical integration
of PDEs [28]— is to use a Milstein scheme for the linear
terms of each field only, for which the algebraic equa-
tion to solve is trivial, and an Euler-Maruyama step for
terms that are either linear on different fields, or non-
linear. This offers a way that sacrifices some numerical
stability, and might require smaller timestepping, but of-
fers a higher speed of integration. This means that a
single time update step for a field ϕi is

ϕi(t+∆t) =
ϕi(t) + ∆t

∑
j Nij +

√
∆tη̃i

1−∆tL̃i

. (18)

cuPSS will, every timestep, perform the following steps

1. Calculate all intermediate terms of the nonlineari-
ties ψk.

2. de-alias all intermediate terms ψ̃k according to the
highest order nonlinearity in which they are found.

3. Convert all intermediate terms to real space, and
calculate each Nij by multiplying its factors.

4. Convert the nonlinearities to Fourier space.

5. If any of the fields is stochastic, generate a Gaus-
sian white noise field and apply its corresponding
variance D̃.

6. Advance each field one timestep according to Eq.
18

cuPSS will perform these steps using a GPU if set up
to do so, in which case it will use CUDA and some of its
packages to considerably speed up the process. cuFFT
is used to perform all Fourier transforms, and cuRAND
is used to calculate noise realizations if any of the fields
are stochastic. If the solver is set to run on CPU, then
fftw3 will be used to calculate Fourier transforms, and the
standard C++ random library will be used to calculate
noise terms.

III. WRITING MODELS

cuPSS offers functions to make it possible to write
models in close to natural language. The steps to in-
tegrating a model in cuPSS are (i) creating a system,

4

which holds information about the system size, space
and time discretization and data output; (ii) defining the
fields that make up the system and the equations that
describe their time evolution, and whatever parameters
they depend on; (iii) setting an initial condition and call-
back functions (if any); (iv) evolving the system in time.

These steps, for a single field and a single equation,
can be as simple as

1 system.createField("phi", true);

2 system.addParameter("D", 1.0);

3 system.addEquation("dt phi + D*q^2*phi = 0");

4 system.addNoise("phi", "D");

where it is hopefully natural enough to read the equa-
tion line as a noisy diffusion equation for a field ϕ, with
diffusion constant D, i.e. ∂tϕ̃+Dq2ϕ = 0.

Writing equations is done through a parser that follows
rules similar to other available numerical solvers; when
writing an equation for a dynamic field, named for in-
stance phi, the string corresponding to it must look as
follows

dt phi + lhs = rhs

where lhs represents terms that are treated implicitly
in time, while rhs represents terms that are treated ex-
plicitly, as described above. If there are no implicit terms,
the string becomes dt phi = rhs; and if there are only
implicit terms, it becomes dt phi + lhs = 0.

Implicit terms must be linear in the field for which we
are writing an equation, so each term must be op * phi,
where op can be a combination of numbers or differential
operators that form its prefactor.

Explicit terms can be any combination of differential
operators and fields. It is important to have in mind
that, since the equation is written in Fourier space, dif-
ferential operators will be applied on the whole term, and
not on any of the factors. For instance, if we write dt
phi = -q^2*phi*psi, where psi is some other field, this
equation correspondg to ∂tϕ = ∇2(ϕψ).

If we wanted the Laplacian to act on a single field,
∂tϕ = ψ∇2ϕ, we would need to define an intermediate
field for∇2ϕ, cuPSS will then appropriately de-alias both
this field and ψ, and compute their product, we would
then need two equations:

dt phi = psi*lapphi

lapphi = -q^2*phi

Equations for intermediate field ψi are written simi-
larly, except there is no dt operator. Again, the left hand
side must only have terms linear in the field the equation
is describing, and terms in the right hand side can be
general products of the rest of the fields. For instance,
we can write, for a field psi

psi + psi * q^2 = -q^2phi

which is equivalent to a field ψ defined as a function
of ϕ, such that ψ̃(q, t) + q2ψ̃(q, t) = −q2ϕ̃(q, t), or alter-

natively, ψ̃(q, t) = −q2(1 + q2)−1ϕ̃(q, t).

Reserved keywords

The equation parser has certain keywords that must
not be used as parameter or field names. These keywords
are the following
dt. This keyword should be read as ∂t, and indicates

we are writing the equation of motion for a field. It
should be the first two characters of a dynamical equa-
tion, and the parser will interpret that whatever comes
after it it the name of the field we are writing an equa-
tion for, thus if the parser is given dt phi ..., it will
interpret that string as the dynamic equation for a field
with the name phi.
q. This keyword is interpreted as a derivative operator,

it must be accompanied by a caret and an even number,
and should be interpreted as powers of the laplacian, for
example q^2 should be read as a −∇2 operator.
iqx, iqy and iqz. These represent derivatives in the

x, y and z directions respectively. For example dt phi =
iqx^2*phi will be interpreted as the equation ∂tϕ = ∂2xϕ.
Notice there must be an asterisk between every pair of
factors.
1/q. This keyword represents a division over the ab-

solute value of the frequency in Fourier space. It can be
useful to write certain nonlocal kernels [6, 8].

A. Adding noise

Stochasticity can be added to a field through the func-
tion evolver::addNoise, which will turn a field’s inter-
nal boolean isNoisy to true and add the noise’s appro-
priate prefactor describing D̃, so that noise correlations
are written as in Eq. 16. This prefactor can be a prod-
uct of a real number with a power of q^2 and 1/q. For
instance, the noise corresponding to a mass conserving
continuity equation, with D̃ = Dq2 would be added to a
field phi with these two lines

1 system.addParameter("D", 0.01);

2 system.addNoise("phi", "D*q^2");

IV. EXAMPLE

Since spectral methods usually overperform real space
methods when integrating equations with high order gra-
dient terms, I provide a simple example for one such
model. Commonly known in the literature as models
B or Cahn-Hilliard model, this equation describes binary
mixtures and their transition between uniform and phase
separated regimes [3]. A phase field ϕ(r, t) represents lo-
cal relative concentration of the two species of the binary
mixture, and follows a continuity equation ∂tϕ+∇·J = 0,
where the current follows the gradient of a chemical po-
tential J = −∇µ. The chemical potential is derived from
a free energy G[ϕ], thus µ = δG/δϕ, which is taken to be

5

a Landau-Ginzburg expansion on the field ϕ and its gra-
dients.

G[ϕ] =
∫
d2r

a

2
ϕ2 +

b

4
ϕ4 +

k

2
(∇ϕ)2 (19)

The full equation of motion for ϕ̃ can thus be written,
in this case ignoring stochasticity, as

∂tϕ̃+ q2(a+ kq2)ϕ̃ = −bq2F
[
(F−1[ϕ̃])3

]
. (20)

A solver for this equation involves three parameters, a,
b and k, and a single field ϕ. The following short code
snippet creates such a system, in this case discretized in
a two-dimensional lattice of size Nx×Ny, with lattice sites
of size ∆x = ∆y, and with a timestep ∆t:

1 evolver system(1, Nx, Ny, dx, dy , dt , output);

2

3 system.addParameter("a", -1.0);

4 system.addParameter("b", 1.0);

5 system.addParameter("k", 4.0);

6

7 system.createField("phi", 1);

8

9 system.addEquation(

10 "dt phi + (a*q^2 + k*q^4)*phi = -b*q^2*phi^3");

Since the chosen parameters are −a = b = 1 and k = 4,
if the system is initialized with a small noise, it should
display an initial instability that leads the system into
a spinodal decomposition into two regions with ϕ = ±1,
separated by interfaces of thickness ℓ ≈

√
−k/a = 2.

Fig. 1 shows some snapshots of the output created by
the solver above.

V. CALLBACK FUNCTIONS

cuPSS offers direct dynamic access to all fields and
terms, meaning the user can access directly the value of
all fields during the progress of a simulation. It offers
an easy way to do so through callback functions; func-
tions that are called giving access to the real values of
a field at the end of a timestep. There are many appli-
cations for callback functions, such as applying bound-
ary conditions. Since a Fourier spectral decomposition
assumes periodic boundary conditions, applying other
boundary conditions through callback functions should
be done with caution. Setting Dirichlet boundary condi-
tions, which would be properly done spectrally through
the choice of a different spectral basis [25], can then be
done, for instance, by setting a field to a certain value at
a range of positions close to the boundary, making sure
this range is bigger than all lengthscales of the problem.

We illustrate the issue of setting boundary conditions
this way by solving a heat diffusion equation in one di-
mension between two heat baths at two different tem-
peratures T1 and T2. The temperature T (x, t) obeys
∂tT (x, t) = ∂2xT (x, t), with the boundary conditions

FIG. 1. Snapshots at different times of the phase field ϕ
obeying Cahn-Hilliard dynamics, as calculated by the exam-
ple solver of the main text, showing standard spinodal decom-
position. The parameters are −a = b = 1, k = 4 for a system
of size 256×256, a timestep of ∆t = 0.1. The initial condition
is a small random perturbation over a uniform state, and the
snapshots are taken at times t = 10, 100, 1000, 5000.

T (0, t) = T1 and T (L, t) = T2. The steady state so-
lution is T (x, t) = T1 + (T2 − T1)x/L. To implement
this boundary condition we first need to define a call-
back function which must take five arguments, a pointer
to the evolver itself, giving access to the full system, a
pointer to the array storing the real space value of the
field we are setting a boundary for, and the three dimen-
sional size of the system (the last two parameters will be
1 for a one-dimensional system)

1 #define T1 10.0

2 #define T2 0.0

3 void boundary_diffusion(evolver *sys , float2 *

array , int Nx , int Ny, int Nz)

4 {

5 array [0] = T1;

6 array[Nx -1] = T2;

7 }

We then assign the boundary condition, by setting the
hasCB flag on that field to true, and assigning a pointer
to the callback function to that field’s callback compo-
nent

1 system.fieldsMap["phi"]->hasCB = true;

2 system.fieldsMap["phi"]->callback =

boundary_diffusion;

Running a diffusion solver with the previous bound-
ary condition would result in a numerical artifact coming
from creating a high gradient at x = 0 = Nx, created by
the periodic nature of the problem, as seen in Fig 2. If
instead we create a frame, thus setting the boundaries

6

in a small region around the boundaries, we get rids of
the numerical artifacts. Specifically, if we changed the
boundary condition to

1 #define T1 10.0

2 #define T2 0.0

3 void boundary_diffusion(evolver *sys , float2 *

array , int Nx , int Ny, int Nz)

4 {

5 for (int i = 0; i < 10; i++)

6 {

7 array[i] = T1;

8 array[Nx -1-i] = T2;

9 }

10 }

we would obtain a solution that now converges to the ac-
tual analytical solution for the steady state T (x, t→ ∞),
which should be a straight line between the temperatures
of both heat baths, as shown also in Fig 2.

VI. BENCHMARKING

This section shows limited benchmarking of cuPSS in
different systems, a consumer level system with a Intel
Core i7-13700K CPU and a NVIDIA RTX 3060 Ti GPU,
and a high-performance computing cluster, running in
a few different GPUs. For reference, some benchmarks
are compares to the same systems integrated in two dif-
ferent packages, FEniCSx [29], a finite difference solver
for PDEs written in weak form, and Dedalus [30], an-
other spectral solver that implements the same spectral
techniques as cuPSS, together with extra features such
as non-flat spaces and other spectral basis. This section
shows the main advantage of cuPSS, which achieves much
higher speeds compared to other packages through the di-
rect implementation of the library on CUDA C++, and
having a simplified codebase that relies more on speed
than depth of features and breadth.

The benchmarks have been run with two example
solvers, for models B and H [3], as these two solvers im-
plement both a simple example with a single field and
nonlinear term, and a more complex example with several
fields and constraints. The benchmark results are given
in terms of average time taken to integrate one timestep,
calculated as an average over a number of timesteps that
ranges from 100 to 10000 depending on the problem and
system size. If there is any overhead in any of these
solvers, associated to preparing the problem, reserving
memory and so on, this time has not been counted.

Figure 3 shows the time per timestep to integrate
the Cahn-Hilliard dynamics, compared between differ-
ent solvers on different configurations, Figure 4 shows
the same for a solver of model H, and finally Figure 5
shows again Cahn-Hilliard dynamics benchmarks in four
different types of GPUs.

There is one series of benchmarking done on CPU,
while all others run on GPUs. CPUs are only more effi-
cient when integrating small systems, in this case when
the system size is less than 128×128. This corresponds to

FIG. 2. Solution of a diffusion heat diffusion equation between
two heat baths at two different temperatures in discretized
space with 256 lattice sites. The dashed red line is the an-
alytical solution, while the other lines represent the numeri-
cal solution starting from a constant value T (x, 0) = 5, and
where lighter colors represent later times. The plot at the top
show the solution where the heat baths are applied by setting
T (0, t) = 10 and T (256, t) = 0 every timestep, showing the
numerical artifact that results from setting Dirichlet bound-
ary conditions on an intrinsically periodic field, in which the
numerical steady state deviates from the analytical solution.
The plot in the bottom shows the same, where the heat baths
are applied in a frame of width 10 around the boundary, i.e.
T (x < 10, t) = 10 and T (x > 246, t) = 0. This eliminates the
numerical artifact, allowing for smoother Fourier representa-
tions of the field at any time, and obtaining a solution that
now converges to the analytical solution.

16384 lattice points, which means that one dimensional
systems smaller than this should typically run faster on
CPU. Due to the limited extent of this benchmarking,
every solver should be tested on both to verify which op-
tion offers a higher speed. Benchmarks have also been
run only on system sizes that are powers of 2. These
system sizes result in the best speeds given the nature
of both the way CUDA launches kernels on GPUs, and
the way FFT algorithms work. This means running on
system sizes different than powers of 2 might show a loss

7

10-5

10-4

10-3

10-2

10-1

100

101 102 103 104

t/d
T	

(s
)

N

F	1C
F	4C

F	16C
D	1C
D	4C

D	16C
cuPSS	CPU
cuPSS	GPU

Cahn-Hilliard	solver

FIG. 3. Time t it takes on average to integrate one timestep
dT , in seconds, as a function of the size of a 2-dimensional
system, N being its side length. Each of these runs is done
over 10.000 timesteps in a system of size N × N . cuPSS in
this case is running on a single core on an i7-13700K, or on a
3060 Ti in the case of the GPU runs. In the legend, F and D
stand for FEniCSx and Dedalus respectively, and the number
is the number of cores they run on, on the same system.

10-4

10-3

10-2

10-1

100

101

101 102 103 104

t/d
T	
(s
)

N

Dedalus	4C
Dedalus	16C

cuPSS	pressure
cuPSS	explicit

Model	H	(Cahn-Hilliard	+	flow	field)

FIG. 4. Same as Fig. 3, but for a solver for model H, consider-
ably more complicated and with several intermediate fields to
calculate. In the case of cuPSS, the pressure and explicit refer
to solvers that solve the Poisson equation for the pressure and
the flow directly, as described in the Examples section.

10-5

10-4

10-3

10-2

10-1

100

101 102 103 104

t/d
T	

(s
)

N

GTX	1050
GTX	TitanX
RTX	2080Ti
RTX	3060Ti
Tesla	V100

L40

Cahn-Hilliard	solver

FIG. 5. Comparison of speed in several different graphics
cards for a Cahn-Hilliard solver on cuPSS. There is no appre-
ciable difference in speed until the system size is large enough,
at which point the faster graphics cards are able to process
the bigger textures associated to each field in less time.

of speed compared to the system size. In the worst case
scenario, a system size different than 2n might run at the
same speed as a system size that is equal to the next
power of 2, specially when running on GPUs.
The main result of this section is that cuPSS offers a

very significant improvement in speed, of up to a few or-
ders of magnitude, specially in bigger lattice sizes, when
compared to other popular finite-difference solvers. This
is thanks to several factors, such as relying on GPUs and
sacrificing some breadth of application by restricting sys-
tems to Fourier representations, as well as keeping a small
codebase that does not introduce unnecessary features for
simple applications.

VII. FUTURE DEVELOPMENT

cuPSS is offered as open source with several examples,
and its source code can be found on github [31] under
an MIT license, and is thus open to other people to fur-
ther develop or contribute to. Additionally, cuPSS has a
relatively small code base of around 3000 lines of code,
making it in principle easy for developers to change and
modify to meet their needs. This small code base is at the
same time one of its biggest strengths when compared to
other similar packages, making the code very accessible
to new users. There is ample space for cuPSS to grow and
incorporate new features, such as higher dimensionality
spaces, curved spaces, and so on, without much sacrifice
to its speed.
In conclusion, cuPSS offers a quick way to prototype

8

and test continuum theories for a variety of different
physical systems. It eliminates the need to know details
about particular algorithmic implementations of numeri-
cal methods, and provides a simple way to write theories
in a quasi-natural language, without deep knowledge of
either C++ or CUDA.

With continuum development and optimization,
cuPSS has the potential to become a useful tool for re-
searchers in very different areas, as it is already being
used in work, specially in its purely deterministic form,
some of which has already been published [32]. Written
in the CUDA C++ standard, it should be accessible to
most research groups to, not only use, but easily modify

and adapt to their needs.

ACKNOWLEDGMENTS

I thank Paarth Gulati for help testing during the early
parts of the development of cuPSS, and for suggesting its
name, and Daniel Hellstein for guidance in the develop-
ment of the equation parser. This work was done during
stays at the University of California, Santa Barbara and
Brandeis University, and was partially funded by NSF
grants DMR-2041459 & DMR-2011846.

[1] D. Forster, D. R. Nelson, and M. J. Stephen, Large-
distance and long-time properties of a randomly stirred
fluid, Physical Review A 16, 732 (1977).

[2] S.-k. Ma and G. F. Mazenko, Critical dynamics of ferro-
magnets in 6-ε dimensions: General discussion and de-
tailed calculation, Physical Review B 11, 4077 (1975).

[3] P. C. Hohenberg and B. I. Halperin, Theory of dynamic
critical phenomena, Reviews of Modern Physics 49, 435
(1977).

[4] E. Tjhung, C. Nardini, and M. E. Cates, Cluster phases
and bubbly phase separation in active fluids: reversal of
the ostwald process, Physical Review X 8, 031080 (2018).

[5] M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic scaling
of growing interfaces, Physical Review Letters 56, 889
(1986).

[6] A. J. Bray, A. Cavagna, and R. D. Travasso, Interface
fluctuations, Burgers equations, and coarsening under
shear, Physical Review E 65, 016104 (2001).

[7] F. Caballero, C. Nardini, F. van Wijland, and M. E.
Cates, Strong coupling in conserved surface roughening:
a new universality class?, Physical review letters 121,
020601 (2018).

[8] M. Besse, G. Fausti, M. E. Cates, B. Delamotte,
and C. Nardini, Interface roughening in nonequilibrium
phase-separated systems, Physical Review Letters 130,
187102 (2023).

[9] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J.
Allen, D. Marenduzzo, and M. E. Cates, Scalar φ 4 field
theory for active-particle phase separation, Nature com-
munications 5, 4351 (2014).

[10] A. Tiribocchi, R. Wittkowski, D. Marenduzzo, and
M. E. Cates, Active model h: scalar active matter in a
momentum-conserving fluid, Physical review letters 115,
188302 (2015).

[11] F. Caballero, C. Nardini, and M. E. Cates, From bulk to
microphase separation in scalar active matter: a pertur-
bative renormalization group analysis, Journal of Statis-
tical Mechanics: Theory and Experiment 2018, 123208
(2018).

[12] F. Caballero and M. C. Marchetti, Activity-suppressed
phase separation, Physical Review Letters 129, 268002
(2022).

[13] H. Chaté and A. Solon, Dynamic scaling of
two-dimensional polar flocks, arXiv preprint
arXiv:2403.03804 (2024).

[14] M. Besse, H. Chaté, and A. Solon, Metastability of
constant-density flocks, Physical Review Letters 129,
268003 (2022).

[15] R. Lande, S. Engen, and B.-E. Saether, Stochastic popu-
lation dynamics in ecology and conservation (Oxford Uni-
versity Press, USA, 2003).

[16] D. J. Wilkinson, Stochastic modelling for systems biology
(Chapman and Hall/CRC, 2018).

[17] I. Mastromatteo, B. Toth, and J.-P. Bouchaud, Anoma-
lous impact in reaction-diffusion financial models, Phys-
ical Review Letters 113, 268701 (2014).

[18] B. Tóth, Y. Lemperiere, C. Deremble, J. De Lataillade,
J. Kockelkoren, and J.-P. Bouchaud, Anomalous price
impact and the critical nature of liquidity in financial
markets, Physical Review X 1, 021006 (2011).

[19] P. E. Kloeden and E. Platen, Numerical Solution of
Stochastic Differential Equations (Springer Berlin, Hei-
delberg, 1992).

[20] B. Fornberg, A practical guide to pseudospectral methods
(Cambridge University Press, 1998).

[21] M. Frigo and S. G. Johnson, The design and implementa-
tion of FFTW3, Proceedings of the IEEE 93, 216 (2005),
special issue on “Program Generation, Optimization, and
Platform Adaptation”.

[22] S. A. Orszag, On the elimination of aliasing in finite-
difference schemes by filtering high-wavenumber compo-
nents, Journal of Atmospheric Sciences 28, 1074 (1971).

[23] S. A. Orszag, Comparison of pseudospectral and spectral
approximation, Studies in Applied Mathematics 51, 253
(1972).

[24] G. Patterson and S. A. Orszag, Spectral calculations of
isotropic turbulence: Efficient removal of aliasing inter-
actions, Physics of Fluids 14, 2538 (1971).

[25] J. P. Boyd, Chebyshev and Fourier spectral methods
(Courier Corporation, 2001).

[26] R. Mannella, Numerical integration of stochastic differ-
ential equations, Proc. Euroconf. on Supercomputation
in Nonlinear and Disordered Systems , 100 (1997).

[27] R. Mannella, A gentle introduction to the integration of
stochastic differential equations, in Stochastic Processes
in Physics, Chemistry, and Biology (Springer Berlin Hei-
delberg, 2000) pp. 353–364.

[28] See for example the CFD package OpenFOAM, which al-
lows the user to describe each term in a dynamic equation
as explicit or implicit: https://www.openfoam.org.

9

[29] I. A. Barrata, J. P. Dean, J. S. Dokken, M. Habera,
J. Hale, C. Richardson, M. E. Rognes, M. W. Scroggs,
N. Sime, and G. N. Wells, Dolfinx: The next gener-
ation fenics problem solving environment 10.5281/zen-
odo.10447666 (2023).

[30] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and

B. P. Brown, Dedalus: A flexible framework for numer-
ical simulations with spectral methods, Physical Review
Research 2, 023068 (2020).

[31] https://github.com/fcaballerop/cuPSS.
[32] F. Caballero, Z. You, and M. C. Marchetti, Vorticity

phase separation and defect lattices in the isotropic phase
of active liquid crystals, Soft Matter 19, 7828 (2023).

https://doi.org/10.5281/zenodo.10447666
https://doi.org/10.5281/zenodo.10447666

	cuPSS: a package for pseudo-spectral integration of stochastic PDEs
	Abstract
	Introduction
	Pseudo-spectral integration
	De-aliasing

	What cuPSS calculates
	Writing models
	Reserved keywords
	Adding noise

	Example
	Callback functions
	Benchmarking
	Future development
	Acknowledgments
	References

