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4 Some Remarks on Shanks-type Conjectures

Christopher Felder∗

Abstract

We discuss the zero sets of two-variable polynomials as they relate

to an approximation problem in the Hardy space on the bidisk.

1 Introduction

Let D := {z ∈ C : |z| < 1} denote the open unit disk and, for d a positive
integer, let D

d = ×d
j=1D denote the polydisk of dimension d. The present

work is concerned with the Hardy spaces on these domains, which are defined
as

H2(Dd) :=

{

f ∈ Hol(Dd) : sup
0≤r<1

∫

Td

|f(rz)|2 dm(z) <∞
}

,

where Hol(Dd) is the set of holomorphic functions on the polydisk and dm
is normalized Lebesgue measure on the d-dimensional torus Td. It is well
known that functions in H2(Dd) have radial limits almost everywhere on Td

and that H2(Dd) is a closed subspace of L2(Td, dm).
Given f ∈ H2(Dd), we are interested in polynomials p which solve the

minimization problem
inf
p∈Pn

‖pf − 1‖,

where Pn is the collection of analytic polynomials of a given (multi)degree n.
For fixed n and f , the polynomial minimizing the above quantity is known
as the n-th optimal polynomial approximant (OPA) to 1/f . In particular, we
are interested in the zero sets of these polynomials. We refer to results which
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describe the location of the zeros of OPAs as Shanks-type results. Primarily,
we will be concerned with Shanks-type results which describe whether or not
the zeros of an OPA are inside the (open or closed) polydisk.

For example, it is well known that when d = 1, OPAs cannot vanish in
the closed unit disk. A proof of this can be found in [2, Theorem 4.2] but
was known to engineers working in digital filter design in the 1970s (see [1, 9]
and the references therein).

From an engineering perspective, there has been a desire to extend this
result to the case d > 1. This prompted Shanks, Treitel, and Justice [10] to
conjecture that if f ∈ H2(D2) is any polynomial, then the OPAs to 1/f can-
not vanish inside the closed bidisk. Within a few years, this conjecture was
proved to be false by Genin and Kamp [4]. After disproving the conjecture
of Shanks et al., the authors in [4] went on to construct a method for pro-
ducing polynomials with OPAs having zeros in the bidisk [5]. However, their
counterexamples to Shanks’ conjecture were for the optimal approximants of
functions with zeros in the bidisk. In turn, they conjectured the following,
which, after almost fifty years, is still unresolved:

Conjecture 1.1 (Weak Shanks Conjecture, [4]). If f ∈ H2(D2) is a polyno-
mial with no zeros in the closed bidisk, then the OPAs to 1/f cannot vanish
inside the open bidisk.

Apart from their examples, it is unclear what additional intuition guided
the authors in [4] to make this conjecture.

The purpose of this note is to communicate some remarks on Shanks-type
conjectures in general. Unfortunately, we do not provide a resolution to the
Weak Shanks Conjecture, but do provide some contributions and observa-
tions in the direction of resolving the conjecture. In short, the difficulty of
this conjecture is in determining a precise relationship between the zero set
of a function and the zero sets of its OPAs.

The outline of the paper is as follows:

• We will provide notational conventions and more thoroughly discuss
background in Section 2.

• In Section 3, we show that that if an OPA has a one-variable factor,
then that factor must vanish outside of the closed disk (Theorem 3.1).
We also show that if f ∈ H2(D2) is a polynomial of a certain form,
then the OPAs to 1/f are, up to a multiplicative constant, the same
as the OPAs to the reciprocal of the reflection of f (Theorem 3.6).
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• In Section 4, we prove that if f ∈ H2(D2) is a function of one variable
or a one-variable function ‘in disguise,’ then the OPAs to 1/f cannot
vanish in the closed bidisk (Theorem 4.2). We also provide a result
which characterizes precisely when a function with no zeros in the bidisk
has OPAs with no zeros in the bidisk (Theorem 4.4).

• Section 5 concerns weakly-inner functions.

2 Notation and Background

For relevant background on Hilbert spaces on polydisks we suggest [7] as a
general reference, but will list a few elementary facts here:

• The space H2(Dd) is a Hilbert space; for

f(z1, . . . , zd) =
∑

j1,...,jd≥0

aj1,...jdz
j1
1 . . . zjdd

and
g(z1, . . . , zd) =

∑

j1,...,jd≥0

bj1,...,jdz
j1
1 . . . zjdd ,

both elements of H2(Dd), we have

〈f, g〉 =
∑

j1,...,jd≥0

aj1,...jdbj1,...,jd.

We mention that functions in H2(Dd) have radial limits almost every-
where on Td and this inner product may also be expressed as the inner
product on L2(Td, dm):

〈f, g〉 =
∫

Td

fg dm,

where dm is normalized Lebesgue measure.

• Further, H2(Dd) is a reproducing kernel Hilbert space on Dd; this means,
for every α = (α1, . . . , αd) ∈ D

d, the linear functional of point evalua-
tion

f 7→ f(α)
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is bounded. By the Riesz Representation Theorem, for each α ∈ Dd

there is a unique element kα ∈ H2(Dd) so that for any f ∈ H2(Dd), we
have

f(α) = 〈f, kα〉.
The element kα is called the reproducing kernel at α and can be verified
to be the function

kα(z1, . . . , zd) =

d∏

j=1

1

1− αjzj
.

• The set of polynomials in d variables is dense in H2(Dd).

We will be concerned with the cases d = 1, 2. In this setting, we will use
the indeterminates z and w instead of z1 and z2, respectively. We will also
abuse notation and use zf or wf to mean the action of the multiplication
operator on the function f ∈ H2(D2) induced by multiplication of these
variables.

2.1 Optimal Polynomial Approximants

Let us begin by recalling the degree lexicographic order of d-variable poly-
nomials, where monomials are ordered by increasing total degree and ties
are broken lexicographically. This is the usual order when d = 1. For two
variables, we use the notation

χ0 = 1, χ1 = z, χ2 = w, χ3 = z2, χ4 = zw, χ5 = w2, . . .

and so on. For n a positive integer, if we define Pn := span{χ0, . . . , χn}, then
we have a chain of subspaces

P0 ⊂ P1 ⊂ · · · ⊂ Pn ⊂ Pn+1 ⊂ · · · .
A standard functional analysis argument then shows, given f ∈ H2(Dd), the
sequence of orthogonal projections

Πn : H
2(Dd)→ Pnf := {pf : p ∈ Pn}

converges, in the strong operator topology, to the orthogonal projection from
H2(Dd) onto the closure of all polynomial multiples of f in H2(Dd) (see, e.g.,
[3, Proposition 2.4]). We will not use this property of the ordering, but
mention that it is useful in certain other contexts, including limits of optimal
polynomial approximants, which we formally discuss now.
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Definition 2.1 (OPA). Let f ∈ H2(Dd). Given a non-negative integer n,
the n-th optimal polynomial approximant (OPA) to 1/f in H2(Dd) is the
polynomial solving the minimization problem

min
q∈Pn

‖qf − 1‖p.

This polynomial is given by the orthogonal projection of 1 onto the subspace
Pnf (therefore uniquely exists), and will be denoted by

p∗n[f ].

An elementary linear algebra exercise shows that the coefficients of an
OPA, say, p∗n[f ] =

∑n

j=0 ajχk, can be recovered from the linear system

(〈χjf, χkf)0≤,j,k≤n
(a0, . . . , an)

T =
(

f(0), 0, . . . , 0
)T

.

We refer to this linear system as the optimal system (with respect to f , of
degree n). Note that the Gram matrix above is of full rank when f is not
identically zero. Consequently, p∗n[f ] ≡ 0 if and only if f vanishes at the
origin; later, we make the assumption f(0) 6= 0 in order to avoid this case.
See [9, 8] for more background on OPAs in several variables.

Let us provide an example to illustrate the methods at play.

Example 2.2. Let f(z, w) = 1− z − w. For n = 0 and p∗0[f ] = a0, we have

‖f‖2a0 = 〈1, f〉,

which gives

p∗0[f ](z, w) =
〈1, f〉
‖f‖2 =

1

3
.

For n = 1 and p∗1[f ](z, w) = a0 + a1z, we can recover a0, a1 as the solution
to the system [

‖f‖2 〈f, zf〉
〈zf, f〉 ‖zf‖2

] [
a0
a1

]

=

[
〈1, f〉
0

]

.

Making the appropriate computations, this yields

[
3 −1
−1 3

] [
a0
a1

]

=

[
1
0

]

.
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In turn, we have

p∗1[f ](z, w) =
3

8
+

1

8
z.

Carrying on in a similar manner, the coefficients of p∗2[f ](z, w) = a0 + a1z+
a2w can be recovered via the system





‖f‖2 〈f, zf〉 〈f, wf〉
〈zf, f〉 ‖f‖2 〈zf, wf〉
〈wf, f〉 〈wf, zf〉 ‖f‖2









a0
a1
a2



 =





〈1, f〉
0
0



 ,

which is 



3 −1 −1
−1 3 1
−1 1 3









a0
a1
a2



 =





1
0
0



 ,

and gives

p∗2[f ](z, w) =
2

5
+

1

10
z +

1

10
w.

2.2 The Shanks Conjecture

Let us state a theorem in the one-variable Hardy space. As previously men-
tioned, there are several proofs of this theorem, one of which can be found in
[2, Theorem 4.2], which has a surprising connection with the zeros of orthog-
onal polynomials on the unit circle. We will provide a different proof here
that uses only the Fundamental Theorem of Algebra and the Cauchy-Schwarz
Inequality.

Theorem 2.3. Let f ∈ H2(D) with f(0) 6= 0. For each n ≥ 0, the zeros of
p∗n[f ] lie outside the closed unit disk.

Proof. The case n = 0 is trivial, so let us proceed assuming n > 0.
Let w ∈ C, suppose p∗n[f ](w) = 0, and put p∗n[f ](z) = (z − w)p̃(z). As

p∗n[f ]f is the orthogonal projection of 1 onto
∨{f, zf, . . . , znf}, we have

1− p∗n[f ]f ⊥ zp̃f.
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In turn, this yields

0 = 〈1− p∗n[f ], zp̃f〉
=⇒ 0 = 〈1− (z − w)p̃f, zp̃f〉
=⇒ w〈p̃f, zp̃f〉 = 〈zp̃f − 1, zp̃f〉

=⇒ w =
〈zp̃f − 1, zp̃f〉
〈p̃f, zp̃f〉

=⇒ w =
‖zp̃f‖2 − 〈1, zp̃f〉
〈p̃f, zp̃f〉

=⇒ w =
‖p̃f‖2
〈p̃f, zp̃f〉 ,

where the last implication above follows from the fact that multiplication by
z is an isometry on H2(D) and 1 = k0 is the reproducing kernel at the origin.
Cauchy-Schwarz then yields

|w| > ‖p̃f‖2
‖p̃f‖‖zp̃f‖ = 1,

where we note the inequality is strict as p̃f and zp̃f are not collinear.

It is natural to ask if a similar result holds in H2(D2). As previously
mentioned, Shanks, Treitel, and Justice [10], in studying digital filter design,
conjectured the following:

Conjecture 2.4 (Strong Shanks Conjecture). If f ∈ H2(D2) is any polyno-
mial, then the OPAs to 1/f cannot vanish inside the closed bidisk.

Again, this conjecture was quickly proved to be false [4]. A simplified
counterexample can be found in [9, Example 20]. Although this particular
conjecture is false, it is natural to wonder if a similar result may be true for
some other subclass of Hardy space functions. In particular, one may ask:

Question 2.5. For which functions f ∈ H2(D2) is it true that the OPAs to
1/f don’t vanish in the (closed) bidisk? Is there a function-theoretic charac-
terization of such functions?

If f ∈ H2(D2) has OPAs which do not vanish in the closed bidisk, we will
say that f satisfies a Shanks-type result.
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3 Factorizations

Let us begin by exploring what happens under the assumption that an OPA
has a one-variable factor.

Proposition 3.1. Let f ∈ H2(D2) with f(0) 6= 0. If

p∗n[f ](z, w) = (z − α)p̃(z, w),

then
|α| > 1.

Similarly, if p∗n[f ](z, w) = (w − β)q̃(z, w), then |β| > 1.

Proof. We mimic the argument in the proof of Theorem 2.3. Recall that
〈p∗n[f ], qf〉 = 0 for all polynomials q ∈ Pn with q(0) = 0 (this can be seen by
noting that p∗n[f ]f is the orthogonal projection of 1 onto Pnf and 1 is the
reproducing kernel at the origin in H2(D2)). In particular, taking

q(z, w) = zp̃(z, w),

which is an element of Pn, we have

0 = 〈p∗n[f ]f, zp̃f〉
= 〈(z − α)p̃f, zp̃f〉
= 〈zp̃f, zp̃f〉 − α〈p̃f, zp̃f〉.

In turn, we have

α =
〈zp̃f, zp̃f〉
〈p̃f, zp̃f〉 .

Noting that multiplication by z (or w) is an isometry on H2(D2), we have

|α| = ‖zp̃f‖2
|〈p̃f, zp̃f〉|

>
‖zp̃f‖2
‖p̃f‖‖zp̃f‖

= 1,

where we have used the Cauchy-Schwarz inequality with the fact that p̃f
and zp̃f are not collinear. The same argument holds when z and w are
switched.
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Remark 3.2. This result may be regarded as potential evidence for certain
Shanks-type results. We also note that this result has an immediate corollary;
any function f ∈ H2(D2) satisfies a Shanks-type result for the first-degree
OPA. We will discuss this again following Theorem 4.4.

We will now make some observations when f has factorizations of a certain
form. First, we need a lemma.

Lemma 3.3. Let f, g ∈ H2(D2) with f(0) 6= 0 and g(0) 6= 0. If, for 0 ≤
j, k ≤ n, we have

〈χjf, χkf〉 = 〈χjg, χkg〉,
then there exists a constant c so that

p∗n[f ] = c · p∗n[g].

Proof. Consider the optimal systems

(〈χjf, χkf)0≤,j,k≤n
(a0, . . . , an)

T =
(

f(0), 0, . . . , 0
)T

and

(〈χjg, χkg)0≤,j,k≤n
(b0, . . . , bn)

T =
(

g(0), 0, . . . , 0
)T

.

Notice that, for c = f(0/g(0), we have

(〈χjf, χkf)0≤,j,k≤n
(a0, . . . , an)

T = c ·
(

g(0), 0, . . . , 0
)T

= c (〈χjg, χkg)0≤,j,k≤n
(b0, . . . , bn)

T

= c (〈χjf, χkf)0≤,j,k≤n
(b0, . . . , bn)

T .

As each Gram matrix above is invertible, we see

(a0, . . . , an) = c (b0, . . . , bn) .

The result then follows.

We will employ this lemma but first need to recall a definition. A function
f ∈ H2(D2) is said to be inner in H2(D2) if

|f | = 1 a.e. on T
2.

A more thorough discussion of inner functions will occur later but we provide
an initial observation here first.
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Proposition 3.4. Let f ∈ H2(D2) with f(0) 6= 0. For any factorization of
the form

f(z, w) = θ(z, w)f̃(z, w),

with θ an inner function, and for every n ≥ 0, there exists a constant c so
that

p∗n[f ] = c · p∗n[f̃ ].

Proof. Using the fact that θ induces an isometric multiplication operator on
H2(D2), it is elementary to check, for all j, k ≥ 0, that

〈χjf, χkf〉 = 〈χj f̃ , χkf̃〉.

Invoking Lemma 3.3 then gives the result.

We can say something similar for other types of factorizations. Let us
first establish some notation.

Definition 3.5 (Reflection). A two-variable polynomial has bi-degree (n,m)
if it is degree n in z and degree m in w. For such a polynomial, we define
the reflection of p as

←−p (z, w) := znwmp

(
1

z
,
1

w

)

.

Notice that, as an operator, this reflection is a densely defined isometry
on H2(D2); it is elementary to check that ‖←−p ‖ = ‖p‖ for any polynomial p.

Theorem 3.6. Suppose f ∈ H2(D2) with f(0) 6= 0. For any factorization of
the form

f(z, w) = q(z, w)f̃(z, w),

with q a polynomial such that ←−q (0) 6= 0, and any n ≥ 0, there exists a
constant c so that

p∗n[f ] = c · p∗n[←−q f̃ ].

Proof. It suffices to notice that for any polynomial q, we have |q|2 = |←−q |2 on
T2. Thus, for any 0 ≤ j, k ≤ n, we have

〈χjf, χkf〉 = 〈χjqf̃ , χkqf̃〉
= 〈χj

←−q f̃ , χk
←−q f̃〉.

So long as ←−q (0) 6= 0, we may invoke Lemma 3.3 to conclude the result.
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Remark 3.7. Heuristically, this theorem says that the OPAs to 1/f do not
care about the location of certain polynomial factors of f . This could be,
perhaps, strong motivation to search for a counterexample to the Weak Shanks
Conjecture. In particular, Theorem 3.6 implies that if f is a polynomial so

that
←−
f (0) 6= 0 (i.e., if f is of degree (n,m), then the coefficient of znwm in

f is non-zero) , then

p∗n[f ] = p∗n[
←−
f ].

The function f could have no zeros in the closed bidisk, while
←−
f has a

plethora of zeros inside D2(!).
This observation could also be of use when considering known counterex-

amples to the Strong Shanks Conjecture. For example, what can be said of
the counterexamples of Genin and Kamp [5] with respect to factorizations?
Can their algorithm be used to construct a function with OPAs vanishing in
D2, but for which the function can be factored as the product of two polyno-
mials, one of which vanishes only in the bidisk and the other which vanishes
only outside the closed bidisk? If so, the above observation could be used to
produce a counterexample to the Weak Shanks Conjecture.

We will end this section with an observation about constant OPAs.

Proposition 3.8. Let f, g, h ∈ H2(D2), each non-zero at the origin, and
with g(z, w) = g(z) and h(z, w) = h(w). If f = gh, then p∗0[f ] = p∗0[g] · p∗0[h].

Proof. Recall that

p∗0[f ] =
f(0)

‖f‖2 .

Since f(0) = g(0)h(0), it suffices to show that ‖f‖2 = ‖g‖2‖h‖2. Put g(z) =

11



∑

j≥0 ajz
j and h(w) =

∑

k≥0 bkw
k. Then

‖f‖2 =
∥
∥
∥
∥
∥

(
∑

j≥0

ajz
j

)(
∑

k≥0

bkw
k

)∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

∑

n≥0

∑

ℓ≥0

aℓz
ℓbn−ℓw

n−ℓ

∥
∥
∥
∥
∥

2

=
∞∑

n=0

n∑

ℓ=0

|aℓbn−ℓ|2

=

(
∑

j≥0

|aj |2
)(

∑

k≥0

|bk|2
)

= ‖g‖2‖h‖2.

Notice that the third equality in the above proof holds only because g
and h are functions of different variables. This begs a natural question.

Question 3.9. Are there any circumstances where the OPAs to 1/f = 1/gh
factor as the OPAs to 1/g and 1/h?

If this question has an affirmative answer, this may be a tool for pro-
ducing a counterexample to the Weak Shanks Conjecture, especially if the
factorization of f might hold with two one-variable factors. In this case,
some traction might be gained, since the varieties at hand would be much
easier to understand.

4 Shanks-Type Results

We begin by providing a class of functions for which a Shanks-type theorem
holds (c.f. Question 2.5), but first need a lemma.

Lemma 4.1. Let f ∈ H2(D2) with f(0) 6= 0. If p∗n[f ] can be expressed as

p∗n[f ](z, w) = q(z, w) + r(z, w), q, r ∈ Pn

with r(0) = 0 and qf ⊥ rf , then r ≡ 0 and p∗n[f ](z, w) = q(z, w).

12



Proof. Observe:

‖p∗n[f ]f − 1‖2 = ‖(q + r)f − 1‖2

= ‖(q + r)f‖2 − 2Re{〈(q + r)f, 1〉}+ 1

= ‖qf‖2 + 2Re{〈qf, rf〉
︸ ︷︷ ︸

=0

}+ ‖rf‖2 − 2Re{〈qf, 1〉+ 〈rf, 1〉
︸ ︷︷ ︸

=0

}+ 1

= ‖qf − 1‖2 + ‖rf‖2
≥ ‖qf − 1‖2.

By definition, this tells us that p∗n[f ] = q.

Theorem 4.2. Let h ∈ H2(D). If f(z, w) = h(χk) for some k ≥ 0, then, for
each n ≥ 0, p∗n[f ] is zero-free in the closed bidisk.

Note that f(z, w) = h(χk) is an element of H2(D2); the coefficients are
square-summable.

Proof. Begin by collecting all terms of p∗n[f ] which are a power of χk, includ-
ing the constant term; call the sum of these terms q(χk). Now, put

p∗n[f ](z, w) = q(χk) + r(z, w),

and note that r(0) = 0 by construction. Notice that 〈qf, rf〉 = 0, so by
Lemma 4.1, we can conclude that p∗n[f ](z, w) = q(χk). Now, we can factor
p∗n[f ] as

p∗n[f ] = c
M∏

j=1

(χk − αj) ,

for some constant c and M a positive integer. Putting χk = zℓwm and
arguing in the same manner as in the proof of Theorem 2.3, we see that p∗n[f ]

vanishes only when |zℓwm| > 1. However, if (z, w) ∈ D
2
, then |zℓwm| ≤ 1.

From this, we conclude that p∗n[f ] is zero-free in the closed bidisk.

Remark 4.3. This theorem tells us that there are plenty of functions for
which a Shanks-type theorem holds. On the other hand, it also tells us that
if searching for a counterexample to the Weak Shanks Conjecture, one must
work in “true” polynomials of two variables; it will not suffice to consider a
polynomial of one variable, or a one-variable polynomial “disguised” in two
variables.
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We now give an equivalent formulation for a function with no zeros in the
bidisk to have OPAs with no zeros in the bidisk.

Theorem 4.4. Let f ∈ H2(D2) be zero-free in the bidisk. Then the OPA
p∗n[f ] has no zeros in the bidisk if and only if, for every α ∈ D2, the matrix








〈kα, f〉 〈f, χ1f〉 . . . 〈f, χnf〉
〈kα, χ1f〉 〈χ1f, χ1f〉 . . . 〈χ1f, χnf〉

...
...

. . .
...

〈kα, χnf〉 〈χnf, χ1f〉 . . . 〈χnf, χnf〉








is invertible.

Proof. For α ∈ D2, let qαf be the orthogonal projection of the kernel kα onto
Pnf . Notice that

p∗n[f ](α)f(α) = 〈p∗n[f ]f, qαf〉 = qα(0)f(0).

In turn, p∗n[f ] vanishes at α if and only if qα vanishes at the origin. This
occurs if and only if the constant term in qα is zero. Putting qα =

∑n

j=0 bjχj ,
routine linear algebra (Cramer’s rule) gives

b0 =
detG0

detG
,

where G is the Grammatrix (〈χjf, χkf〉)0≤j,k≤n andG0 is formed by replacing
the first column of G by

[〈kα, f〉, 〈kα, χ1f〉, . . . , 〈kα, χnf〉]T .

Thus, we have b0 is zero if and only if

detG0 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

〈kα, f〉 〈f, χ1f〉 . . . 〈f, χnf〉
〈kα, χ1f〉 〈χ1f, χ1f〉 . . . 〈χ1f, χnf〉

...
...

. . .
...

〈kα, χnf〉 〈χnf, χ1f〉 . . . 〈χnf, χnf〉

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

The result then follows.
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Remark 4.5. We know, from Proposition 3.1, that if we are to search for
a counterexample to the Weak Shanks Conjecture, we must consider the case
when the OPA has degree n ≥ 2. In the case n = 2, we have considered
various implications of Theorem 4.4. However, even in this simplest case,
the analysis is non-trivial and it is unclear how to relate the determinantal
expression to the zero set of the function f . This difficulty demonstrates
the crux of the Weak Shanks Conjecture. Nonetheless, Theorem 4.4 could
potentially be a powerful tool for more effectively exploring the conjecture.

5 Weakly Inner Functions

A function f ∈ H2(D2) is said to be inner in H2(D2) if

|f | = 1 a.e. on T
2,

and weakly-inner if
〈f, χkf〉 = 0 for all k ≥ 1.

Notice that every weakly inner function is inner.
Theorem 4.4 gives an immediate corollary for certain weakly inner func-

tions (however, we will shortly see that this result is trivialized by a result
of Sargent and Sola [9]).

Corollary 5.1. Let f ∈ H2(D2) be zero-free in the bidisk. If f is weakly-
inner, then the OPA p∗n[f ] has no zeros in the open bidisk.

Proof. If f is weakly inner, then for any α ∈ D2, we have

det








〈kα, f〉 〈f, χ1f〉 . . . 〈f, χnf〉
〈kα, χ1f〉 〈χ1f, χ1f〉 . . . 〈χ1f, χnf〉

...
...

. . .
...

〈kα, χnf〉 〈χnf, χ1f〉 . . . 〈χnf, χnf〉








=det








f(α) 0 . . . 0
〈kα, χ1f〉 〈χ1f, χ1f〉 . . . 〈χ1f, χnf〉

...
...

. . .
...

〈kα, χnf〉 〈χnf, χ1f〉 . . . 〈χnf, χnf〉








= f(α) det(〈χjf, χkf〉)1≤j,k≤n).
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As f(α) is non-zero (by hypothesis) and the Grammatrix (〈χjf, χkf〉)1≤j,k≤n)
is of full rank, the above determinant must be non-zero. The result then
follows from Theorem 5.1.

Although this result may seem interesting, as it could be interpreted as
Shanks-type theorem for “singular” inner functions on the bididsk, it is really
just a statement about constants:

Proposition 5.2. [9, Proposition 7] If f ∈ H2(D2) is weakly inner then

p∗n[f ] = p∗0[f ] for all n ≥ 0.

That is, weakly inner functions have OPAs which are all constant.

We note that this result can be strengthened to an if and only statement;
it follows from the same approach in [3, Lemma 3.7]. We include Corollary
5.1 in order to stress that one must be careful about hypothesis when looking
for Shanks-type results.

There is a related result which deals with functions which satisfy 〈f, χkf〉 =
0 for k in some subset of natural numbers (such functions will not always be
constants). Before stating this result, we need a definition.

Definition 5.3. For each k, n ≥ 0, let £(k, n) be the index j so that (χk)
n =

χj.

For example, we have £(0, n) = 0 for all n ≥ 0 (since χn
0 = 1n = χ0),

£(1, 2) = 3 (since χ2
1 = z2 = χ3), and £(2, 2) = 5 (since χ2

2 = w2 = χ5).
Using this notation, we show that if f ∈ H2(D2) is a one-variable func-

tion or one-variable function in disguise, then p∗n[f ] will plateau for certain
consecutive values of n.

Proposition 5.4. Let h ∈ H2(D2) with h(0) 6= 0. If f(z, w) = h(χk) for
some k ≥ 0, then, for each j ≥ 0 and each N = £(k, j), . . . ,£(k, j + 1)− 1,
we have

p∗
£(k,j)[f ] = p∗N [f ].

Proof. It suffices to notice that if f(z, w) =
∑

ℓ≥0 aℓχ
ℓ
k, then χnf and χmf

are orthogonal for any n and m for which both n 6= £(k, j) for some j ≥ 0
and m 6= £(k, j′) for some j′ ≥ 0. Considering the optimal system for f of
degree £(k, j + 1)− 1 then immediately gives the result.
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Example 5.5. For f(z, w) = 1− zw, we have

p∗0[f ](z, w) = p∗1[f ](z, w) = p∗2[f ](z, w) =
1

2
,

p∗3[f ](z, w) = p∗4[f ](z, w) = · · · = p∗11[f ](z, w) =
2

3
+

1

3
zw,

p∗12[f ](z, w) = p∗13[f ](z, w) = · · · = p∗21[f ](z, w) =
3

4
+

1

2
zw +

1

4
(zw)2.

Other interesting questions can be asked about (weakly) inner functions.
For example, inner functions are bounded– is the same true for weakly inner
functions? The answer to this turns out to be no.

Proposition 5.6. There are weakly-inner functions which are not bounded
on the bidisk.

Proof. Let M ⊂ H2(D2) be any shift invariant subspace and let ϕ := ΠM1
be the orthogonal projection of 1 onto M. Since M is shift-invariant, we
have χkϕ ∈M for any k ≥ 0. In turn, for any k ≥ 1, we have,

〈ϕ, χkϕ〉 = 〈ΠM1, χkϕ〉 = 〈1, χkϕ〉 = 0.

Hence, ϕ is weakly inner. However, there are shift invariant subspaces of
H2(D2) which do not possess any bounded functions (see [7]). Therefore, if
M is one of these subspaces, then ϕ will be unbounded.

Up to this point, we have left existing literature, and results therein,
largely untapped– especially the literature originating from outside of the
immediate OPA community. We conclude, in an appendix, with a few re-
marks about other possible tools to address the Weak Shanks Conjecture.

Appendix: Determinantal Representations

A two-variable polynomial is called stable if it has no zeros in the open
bidisk and strongly stable if it has no zeros in the closed bidisk. Using this
nomenclature, one can state the Weak Shanks Conjecture as:

Any strongly stable polynomial has OPAs which are stable.

Stable polynomials have certain determinantal representations (see, e.g. [6]).
The following theorem will be taken as a black box.
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Theorem 5.7. A polynomial p(z, w) is stable if and only if it can be expressed
as

p(z, w) = α det(I − CD),

where α is a constant, C is an n × n matrix which is contractive, and D is
a diagonal matrix of the form diag(z, . . . , z, w, . . . , w).

Further, p is strongly stable if and only if the above expression holds with
C being a strict contraction.

Example 5.8. The polynomial p(z, w) = 2− z−w is stable but not strongly
stable (p is non-zero on the open bidisk but p(1, 1) = 0), and has the deter-
minantal represntation

p(z, w) = 2 det

((
1 0
0 1

)

−
(
1/2 1/2
1/2 1/2

)(
z 0
0 w

))

.

Note that ∥
∥
∥
∥

(
1/2 1/2
1/2 1/2

)∥
∥
∥
∥
= 1.

Compare this to the polynomial q(z, w) = 4− z − w, which is strongly stable
and has the determinantal representation

q(z, w) = 4 det

((
1 0
0 1

)

−
(
1/4 1/4
1/4 1/4

)(
z 0
0 w

))

,

with ∥
∥
∥
∥

(
1/4 1/4
1/4 1/4

)∥
∥
∥
∥
=

1√
2
< 1.

If f ∈ H2(D2) is strictly stable and has the determinantal representation

f = det(I − AB),

with appropriate m × m matrices, then if the Weak Shanks Conjecture is
true, p∗n[f ] must have determinantal representation

p∗n[f ] = det(I − CD),

where C is a k×k matrix which is a contraction, and D is a diagonal matrix
in z and w. This says that the polynomial p∗n[f ]f must have representation

p∗n[f ]f = det(I −EF ),
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where E is a contraction (not necessarily strict, and not necessarily m ×m
or k×k(!)) and F is a diagonal matrix in z and w. If the size of the matrices
in the representations for f and p∗n[f ] are equal, then we have

det(I − AB) det(I − CD) = det(I −AB − CD + ABCD)

= det(I −EF ).

Thus, one approach to understanding the Weak Shanks Conjecture is
through understanding if such a determinantal factorization can always exist.
Note that this works only for f and p∗n[f ] having the same representation size.
However, we can augment any representation to arrive at a similar statement.
In particular, if p∗n[f ] has a k × k representation with k < m (here m is the
representation size of f), i. e.

p∗n[f ] = det(Ik −GH),

with G a k × k contraction and H a k × k diagonal in z and w, then we can
augment Ik −GH as (

Ik −GH 0
0 Im−k

)

to get an m×m matrix with the same determinant as Ik−GH . The upshot
here is that the dimensions are now correct to make sense of the representa-
tion

p∗n[f ]f = det

(
Ik −GH 0

0 Im−k

)

det(Im − AB).

If p∗n[f ] is such that its representation is of size k > m, then we can augment
the representation of f in a similar way. The matrix multiplication here turns
out to be messy, so the approach may not be very friendly. However, it is
nonetheless valid.

We end by pointing out that there is a natural matrix associated with an
OPA. If G = (〈χjf, χkf)0≤j,k≤n, then

p∗n[f ] = (χ0, . . . , χn) G−1
(

f(0), 0, . . . , 0
)T

.

Can we witness this as a determinant? Is it useful to note that since G is a
Gram matrix, that G−1 must also be a Gram matrix? Could a factorization
of G−1 be useful?
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[1] C. Bénéteau and R. Centner. A survey of optimal polynomial approxi-
mants, applications to digital filter design, and related open problems.
Complex Anal. Synerg., 7(2):Paper No. 16, 12, 2021.
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