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No One-Size-Fits-All Neurons: Task-based
Neurons for Artificial Neural Networks
Feng-Lei Fanf, Meng Wang', Hang-Cheng Dong, Jianwei Ma*, Tieyong Zeng*

Abstract—In the past decade, many successful networks are on novel architectures, which almost exclusively use the same type of
neurons. Recently, more and more deep learning studies have been inspired by the idea of NeuroAl and the neuronal diversity
observed in human brains, leading to the proposal of novel artificial neuron designs. Designing well-performing neurons represents a
new dimension relative to designing well-performing neural architectures. Biologically, the brain does not rely on a single type of neuron
that universally functions in all aspects. Instead, it acts as a sophisticated designer of task-based neurons. In this study, we address the
following question: since the human brain is a task-based neuron user, can the artificial network design go from the task-based
architecture design to the task-based neuron design? Since methodologically there are no one-size-fits-all neurons, given the same
structure, task-based neurons can enhance the feature representation ability relative to the existing universal neurons due to the
intrinsic inductive bias for the task. Specifically, we propose a two-step framework for prototyping task-based neurons. First, symbolic
regression is used to identify optimal formulas that fit input data by utilizing base functions such as logarithmic, trigopnometric, and
exponential functions. We introduce vectorized symbolic regression that stacks all variables in a vector and regularizes each input
variable to perform the same computation, which can expedite the regression speed, facilitate parallel computation, and avoid
overfitting. Second, we parameterize the acquired elementary formula to make parameters learnable, which serves as the aggregation
function of the neuron. The activation functions such as ReLU and the sigmoidal functions remain the same because they have proven
to be good. As the initial step, we evaluate the proposed framework via systematic experiments on tabular data and using polynomials
as base functions. Empirically, experimental results on synthetic data, classic benchmarks, and real-world applications show that the
proposed task-based neuron design is not only feasible but also delivers competitive performance over other state-of-the-art models.
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1 INTRODUCTION

N the past decade, a majority of deep learning research is
Ion designing outstanding architectures, such as the bot-
tleneck in autoencoders [1], shortcuts [2], [3], and neural ar-
chitecture search (NAS) [4]. Almost exclusively, these works
employ neurons of the same type that use an inner product
and a nonlinear activation. We refer to such a neuron as a
linear neuron, and a network made of these neurons as a
linear network (LN) hereafter. Recently, the field “NeuroAI”
emerged [5] to advocate that a large amount of neuroscience
knowledge can help catalyze the next generation of AL
This idea is well-motivated, as the brain remains the most
intelligent system to date, and an artificial network can be
regarded as a miniature of the brain. Following the advocacy
of “NeuroAl”, it is noted that our brain is made up of
many functionally and morphologically different neurons,
while the existing mainstream artificial networks are ho-
mogeneous at the neuronal level. Thus, why not introduce
neuronal diversity into artificial networks and examine as-
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sociated merits?

Our overarching opinion is that the neuron type and
architecture are two complementary dimensions of an artifi-
cial network. Designing well-performing neurons represents
a new dimension relative to designing well-performing ar-
chitectures. Therefore, the neuronal type should be given
full attention to harness the full potential of connectionism.
In recent years, a plethora of studies have introduced new
neurons into deep learning [6], [7], [8], [9], [10], [11] such
as polynomial neurons [6] and quadratic neurons [7], [8],
[9], [10], [11]. Despite focusing only on a specific type
of neuron, this thread of studies reasonably verifies the
feasibility and potential of developing deep learning with
new neurons. However, the performance of these neurons is
not universally satisfactory, and the improvement is minor
on some tasks. Biological neuronal diversity, both in terms of
morphology and functionality, arises from the brain’s needs
to perform complex tasks [12]. The brain does not rely on a
single type of neuron to universally function in all aspects.
Instead, it acts as a sophisticated designer of task-based
neurons. Hence, in the realm of deep learning, we think
that promoting neuronal diversity should also not be limited
to specific neuron types like linear or quadratic neurons.
Instead, it should take into account the specific context of
the tasks at hand.

Can we design different neurons for different tasks (task-
based neurons)? Computationally, the philosophy of task-
based architectures and task-based neurons is quite distinct.
The former is “one-for-all”, which implicitly assumes that
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stacking a universal and basic type of neurons into different
structures can solve a wide class of complicated nonlinear
problems. This philosophy is well underpinned by the
universal approximation theorem [13]. The latter is “one-
for-one”, which assumes that there are no one-size-fits-all
neuron types, and it is better to solve a specific problem
by prototyping customized neurons. Because task-based
neurons are imparted with the implicit bias for the task,
the network of task-based neurons can integrate the task-
driven forces of all these neurons, which given the same
structure should exhibit stronger performance than the net-
work of generic neurons. The key difference between task-
based neurons and preset neurons is that the mathematical
expression in the task-based neurons is adaptive according
to the preference of the task, while in the preset neurons, the
mathematical expression is preset.

(a) symbolic regression

(b) parameterization
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Fig. 1. Two steps to establish a task-based neuron. a) The symbolic
regression constructs an elementary neuronal model, which stacks all
variables in a vector and regularizes each input variable to perform the
same computation. b) The acquired elementary formula is parameter-
ized to be learnable, serving as the aggregation function of a neuron.

Along this direction, three main challenges face us in
prototyping task-based neurons: 1) How to efficiently de-
sign task-based neurons? 2) How to make the resultant neu-
rons transferable to a network? 3) How to transfer the supe-
riority at the neuronal level to the network level? Here, we
propose a two-step framework to address these challenges:
First, we introduce vectorized symbolic regression (VSR)
to construct an elementary neuronal model, as depicted
in Figure 1. Symbolic regression (SR) draws inspiration
from scientific discoveries in physics [14], [15], aiming to
identify optimal formulas that fit input data by utilizing
base functions such as logarithmic, trigonometric, and expo-
nential functions. The vectorized symbolic regression stacks
all variables in a vector and regularizes each input variable
to perform the same computation. Given the complexity
and unclear nonlinearity of the tasks, formulas learned from
vectorized symbolic regression can capture the underlying
patterns in the data, and these patterns are different in dif-
ferent contexts. Thus, fixed formulas used in pre-designed
neurons are disadvantageous. Second, we parameterize the
acquired elementary formula to make parameters learnable,
which serves as the aggregation function of the neuron.
The role of the vectorized symbolic regression is to identify
the basic patterns behind data, the parameterization allows
the task-based neurons to adapt and interact with each
other within a network. The activation functions such as
ReLU and the sigmoidal functions remain the same when
connected to a network, as these activation functions are
widely tested as well-performed.

The vectorized symbolic regression in our framework
greatly expedites the search process by avoiding learning
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highly complex and disordered formulas, particularly for
high-dimensional inputs (challenge 1). It also facilitates
parallel computing and ensures the feasibility of building a
deep network with the designed neurons (challenge 2). The
formulas learned by vectorized symbolic regression capture
basic patterns in the data and are not sufficiently complex
to solve highly intricate problems due to the ablated search
space. By connecting task-based neurons into a network,
we tap into the power of connectionism, enabling further
amplification of the advantages without concerns about
overfitting (challenge 3). We refer to a network made of task-
based neurons as a task-based network (TN) hereafter.

As the initial step, we evaluate the feasibility and su-
periority of the proposed framework via systematic exper-
iments on tabular data. Tabular data is one of the most
common and important types of data in various domains,
including finance, medicine, e-commerce, and many others
[16]. Moreover, it encompasses various types of information,
such as electronic health records, financial records, sensor
readings, and more. Analyzing and understanding tabular
data is crucial for making informed decisions and extracting
valuable insights. Motivated by the success of quadratic and
polynomial neurons, we mainly use polynomials as the base
functions for symbolic regression. System experiments show
that task-based neurons and associated networks can out-
perform networks of preset neurons and other state-of-the-
art models. To summarize, our contributions are threefold:

o Towards NeuroAl, we propose a framework to de-
sign task-based neurons, which is a new dimension
compared to task-based architectures and can greatly
expand the armory of deep learning models.

e We propose the vectorized symbolic regression to
solve the computational challenges in prototyping
new neurons. Methodologically, our work is the first
to introduce symbolic regression into the design of
neurons in deep learning.

o With systematic experiments over synthetic data,
public data, and real-world applications, we confirm
the effectiveness of the task-based neurons.

2 RELATED WORK

Neuronal diversity. There has been a growing interest in re-
cent years to prototype new neurons and introduce neuronal
diversity into artificial networks [7]. It is important to clarify
that modifying the activation function should not be consid-
ered as creating new neurons. This is because the decision
boundary of a neuron is solely determined by the aggrega-
tion function, as long as the activation function is mono-
tonic. Therefore, compared to modifying the aggregation
function, changing the activation function has a relatively
weaker influence on the behavior of a neuron. Currently,
excluding spiking neurons [17] featuring the spatiotempo-
ral processing ability, the exploration of neuronal diversity
primarily revolves around polynomial or quadratic neurons
[7], which replace the inner product with a polynomial or
a specially-engineered quadratic function, expanding the
range of computations by individual neurons.

In recent years, polynomial neurons were revisited in
hope of enhancing the expressive ability of a single neuron.
The key issue in designing polynomial neurons is to reduce
the complexity such that they can be deployed into a deep
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network. [6], [18] decreased the complexity of polynomial
neurons via tensor decomposition and factor sharing, while
a majority of studies directly used quadratic neurons to save
parameters to express high-order terms. Table 1 summarizes
the recently-proposed quadratic neurons. As seen, given
an n-dimensional input, the complexity of neurons in [8],
[9], [19] is of O(n?), which is still not bearable for deep
networks, while neurons from [10], [20], [21], [22] enjoy
the linear parametric complexity. Notably, neurons in [10],
[20], [21], [22] are the special cases of [22]. Polynomial and
quadratic neurons have demonstrated competitive perfor-
mance in many tasks such as medical imaging [23], bearing
fault diagnosis [11], inverse problems in partial differential
equations (PDEs) [20], and signal processing [24].
TABLE 1
A summary of the recently-proposed quadratic neurons. o(-) is the
nonlinear activation function. ® denotes Hadamard product.

W € R**" w,; € R**!, and the bias terms in these neurons are
omitted for simplicity.

Authors Formulations

Zoumpourlis et al.(2017) [19] | y = o(z Wz +w ')

Jiang et al.(2019) [8] B T

Mantini&Shah(2021) [9] y=o(x W)

Goyal et al.(2020) [10] y=ocWw'(z0Ox))
Bu&Karpatne(2021) [20] y = a((w] z)(w, x))

Xu et al.(2022) [21] y = a((w] z)(w, ) + W, x)

Fan et al.(2018) [22] y =a((w] z)(w, ) + w, (z O x))

AutoML and Neural Architecture search (NAS). AutoML,
short for Automated Machine Learning, attempts to auto-
mate and accelerate these steps to make machine learning
more accessible to individuals and organizations that may
not have extensive domain expertise [25]. With AutoML,
users can focus on higher-level decisions and insights rather
than getting swamped in the technical details of machine
learning. Regarding selecting a neural network, neural ar-
chitecture search (NAS) [4], [26] that automatically navigates
the best-performing architecture from a set of possible archi-
tectures for a given dataset has gained lots of traction in the
field of AutoML. NAS has been successful in discovering
novel and efficient network architectures, leading to state-
of-the-art results in various domains [27].

Although the neuron type and the architecture are the

two most important elements of an artificial network, the
neuronal type is much less explored. Our methodology for
task-based neurons is parallel to NAS, which is a valuable
addition to AutoML by extending its scope from architec-
tures to neuronal types.
Symbolic Regression in Deep Learning Recent advances
in symbolic regression include learning underlying PDEs
from data [28], differentiable symbolic regression [29], and
so on. Some works use neural networks to improve symbolic
regression. For example, [30] uses a neural network archi-
tecture to span the hypothesis space of symbolic regression
such that the formulas can be learned in an end-to-end man-
ner. [31] extended symbolic regression to solve parametric
systems whose coefficients may vary but the intrinsic struc-
ture of the underlying equation keeps intact. [32] proposed
a Symbolic Network-based Rectifiable Learning Framework
(SNR) that can correct errors generated in the learning-with-
experience model.

However, the role of symbolic regression in deep learn-
ing is much less explored. To the best of our knowledge, our
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work is the first time that symbolic regression has been used
for task-based neuronal designs.

3 METHOD

In this section, we first provide a detailed description of
how to create task-based neurons using the proposed vec-
torized symbolic regression. We will explain step-by-step
and highlight the benefits of using this approach in terms of
efficiency, parallelism, and generalizability.

3.1 Vectorized Symbolic Regression

Unlike traditional regression algorithms that fit numerical
coefficients, symbolic regression first encodes a formula into
a tree structure and then uses a genetic algorithm to explore
the space of possible mathematical expressions to identify
the best formula. Because no gradients with respect to the
mathematical formula can be computed, the most common
technique for solving symbolic regression problems is ge-
netic programming (GP) [33]. GP is a powerful population-
based evolutionary algorithm, which mainly uses crossover
(Figure 2) and mutation (Figure 3) to generate new formulas.

Fig. 2. A schematic diagram of crossover operation.

Crossover is a genetic programming operation to gener-
ate new individuals by means of subtree crossover among
the selected individuals, and then explore the symbolic
expression space. The specific method is to randomly select
subtrees of the winner candidates and exchange them (Fig-
ure 2). This operation promotes diversity in the population
and can lead to the discovery of new and more effective
mathematical formulas.

(@) —
6o 6

Fig. 3. A schematic diagram of mutation operation.
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Mutation is a genetic programming operation to ran-
domly select a position of an individual, and generate a
new individual through single-point mutation. Due to the
randomness of mutation, it can re-join some functions and
variables that were eliminated before, thereby potentially
leading to the discovery of novel and effective expressions.
By injecting variability into the population, mutation plays
a crucial role in exploring the solution space and preventing
premature convergence to suboptimal solutions (Figure 3).

In prototyping task-based neurons, we consider three
important aspects: 1) How to efficiently design task-based
neurons? 2) How to make the resultant neurons transferable
to a network? 3) How to transfer the superiority at the neu-
ronal level to the network level? We find that the traditional
symbolic regression cannot fulfill these needs, particularly
for high-dimensional inputs, due to three problems: First,
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the regression process of traditional symbolic regression
becomes slow and computationally expensive for high-
dimensional inputs. The search space becomes vast for high-
dimensional inputs, as it requires checking an arbitrary form
of interactions among two or more input variables. Second,
the formulas learned by the traditional symbolic regression
are heterogeneous, which suffers from the parametric ex-
plosion for high-dimensional inputs and does not support
parallel computing and GPU acceleration. Thus, such for-
mulas cannot serve as the aggregation function of a neuron
because the resultant neuron cannot be easily integrated into
deep networks. Third, the traditional symbolic regression
may learn overly complex formulas, subjected to the risk of
overfitting when connecting those neurons into a network.

To address these problems, we propose a solution called
vectorized symbolic regression. This approach regularizes
every variable to learn the same formula, allowing us to
organize all variables into a vector. The formulas are then
based on vector computation, as illustrated in Figure 4. Un-
like traditional symbolic regression, which tends to identify
a heterogeneous formula. The vectorized symbolic regres-
sion is simple yet mighty, which has valuable characteristics
suitable to this task:

(a) Traditional Symbolic Regression

[ x5+ xq + x5 —x; — x5 — 343 ]

(b) Vectorized Symbolic Regression

B+t +xg+x3+x%+x,+ x5 +x%+x3

4

([xf, 23, 23] + [xf, 23, 23] + [x1, %2, x3]) - [1,1,1]7

XOXOX+XOX+X)-[1,1,1]7

Fig. 4. The proposed vectorized symbolic regression.

Regression Speed: The vectorized symbolic regression
decreases the computational complexity of the regression
process, making it much faster than traditional symbolic
regression, especially for high-dimensional inputs. This is
because the search space is significantly reduced when all
variables are regularized to learn the same formula.

Low Complexity and Parallel Computing: Due to the
homogeneity, the proposed vectorized symbolic regression
leads to mathematical formulas with much fewer parame-
ters. Given d-dimensional inputs, the number of parameters
is O(d), which is at the same level as the linear neuron.
Moreover, because each variable conducts the same op-
eration, formulas obtained from the proposed vectorized
symbolic regression can be organized into the vector or ma-
trix computation, which can facilitate parallel computation
aided by GPUs. The low complexity and parallel computing
allow for faster and more efficient training of deep networks
composed of task-based neurons.

Generalization: The proposed vectorized symbolic re-
gression has a significantly restricted search space. It is
unlikely that a homogeneous formula can perfectly fit or
overfit data all the time. Therefore, the learned formula
tends to underfit data. The power of a neural network is
not solely determined by neurons. We can introduce addi-
tional flexibility and adaptability to the network structure,
enabling it to better handle complex problems and achieve
the optimal generalization performance.
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Remark. One may ask since linear neurons can already
represent any function based on universal approximation
[13], why are task-based neurons necessary? While it is
true that there is no task that can only be done by task-
based neurons but not by linear neurons, the key issue is
effectiveness and efficiency. It was reported that a linear
network needs an exponential number of parameters to
learn the multiplication operation [34]. Task-based neu-
rons search the suitable formulas from a broad function
space, which can automatically integrate task-related priors,
thereby leveraging the specific strengths of these neurons
to tackle complex tasks effectively. Furthermore, task-based
neurons can be optimized for a specific task, which can
improve the efficiency of the network.

TABLE 2
The comparison between SR and the proposed VSR.

traditional SR vectorized SR

Regression Speed
Parametric Complexity
Parallel Computing
Generalization

ANANA NN

X
X
X
X

3.2 Parameterization

We expect that the vectorized symbolic regression can iden-
tify hidden patterns behind data collected from different
tasks. Leveraging these patterns to prototype new neurons
would be useful. These patterns are basic and not neces-
sarily specific functions. For instance, we refer to a cell
as circular that is characterized by an elliptical equation,
but we don’t need to specify the radius of the circle. To
take advantage of these patterns, we reparameterize the
learned formula by making the fixed constants trainable.
Such neurons will perform better than preset neurons since
considering the complexity of tasks, there should be no
one-size-fits-all neurons. By reparameterizing the learned
formula, we can fine-tune the neuron’s behavior to better
fit the task at hand. As mentioned earlier, the task-based
neurons established through vectorized symbolic regression
have limited expressive ability and cannot effectively scale
to handle complex tasks on their own. Given a network, the
trainable parameters allow for a more efficient and effective
search for the optimal solution.

4 ANALYSIS EXPERIMENTS

In this section, we present a series of experiments designed
to analyze the feasibility, necessity, and superiority of the
proposed task-based neurons. For all experiments, we pre-
scribe that the function space of symbolic regression is
polynomial. We first validate via the synthetic data the feasi-
bility of the proposed framework for the task-based neurons
(Section 1.1 in Supplementary Materials, SMs). It is shown
that the vectorized symbolic regression can capture correct
hidden formulas from heavily-noised data. Then, we show
the necessity of the proposed methodology relative to the
symbolic regression. We find that the vectorized symbolic
regression is inferior to the symbolic regression in fitting
data, while the resultant task-based networks can outper-
form the symbolic regression. Next, we compare task-based
neurons with conventional neurons and different quadratic
neurons (Section 1.3 in SMs) to show the superiority of
task-based neurons. Furthermore, we compare task-based
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TABLE 3
Comparison of the network built by neurons using randomly generated polynomials and expressions generated by symbolic regression. The

number hi-ho-- -

--hi-y(z) means that this network has k hidden layers, each with h;, neurons, and z is the number of parameters used in such a

network. For example, 5-3-1 (145) means this network has two hidden layers with 5 and 3 neurons respectively in each layer, and 145 parameters.
RP denotes random polynomials.

Datasets Random Polynomial (RP) ™~ Structure RP N Test results RD

california housing P2)T +(xox)’ +1 6-3-1 (148)  6-3-1 (148) 0.0720 (0.0024)  0.0770 (0.0051)
house sales (x ot w)T +(zoz) +x 6-4-1 (483)  8-5-1(509) 0.0079 (0.0008)  0.0133 (0.0150)
airfoil self noise (xox)" 4-1 (53) 8-1 (57) 0.0438 (0.0065)  0.0840 (0.0102)
wine quality (xotz)T +(zox)T 6-1 (295) 9-5-1 (313) 0.0545 (0.0026)  0.0567 (0.0034)
fifa (z®2)T +(xox)" +a 3-1(94) 5-1 (96) 0.0611 (0.0032)  0.0616 (0.0048)
diamonds (0" 2)T +(x@x) +(xox)" 4-1 (205) -1 (218) 0.0109 (0.0036)  0.0123 (0.0052)
abalone (x@®x)T +x+1 5-1 (141) 8-1 (153) 0.0239 (0.0024)  0.0240 (0.0030)
Bike Sharing Demand (xoz)" 8-1(217) 10-8-1 (227) | 0.0184 (0.0026)  0.0747 (0.0025)
space ga (zote)T +(x@x) +(xox)T 2-1 (59) 3-1(67) 0.0057 (0.0029)  0.0078 (0.0041)
Airlines DepDelay (xox)" 4-1 (53) 8-1(57) 0.1645 (0.0055)  0.1664 (0.0058)
credit (zotz)T + (0’ x)| +x+1 6-2 (152) 6-2 (224) 0.7441 (0.0092)  0.7427 (0.0118)
heloc (x e z)T +(xox) +a 18-2 (1316)  18-2 (1316) 0.7077 (0.0145)  0.6944 (0.0157)
electricity (x® m) 5-2 (107) 10-2 (112) 0.7862 (0.0075)  0.7647 (0.0083)
phoneme (z@®2)T +(xz0*z)T +(z0%z)T +x+1 | 53(89) 5-3 (89) 0.8242 (0.0207)  0.8198 (0.0252)
bank-marketing (zotz)T +(zo0x) +x+1 5-2 (187) 7-2 (198) 0.7938 (0.0099)  0.7919 (0.0099)
MagicTelescope (zet)T +(xox) +x+1 6-2 (296) 8-2 (298) 0.8449 (0.0092)  0.8417 (0.0092)
vehicle (xetz)T +1 4-4 (360) 13-7-4 (377) 0.8176 (0.0362)  0.6894 (0.0401)
Oranges-vs.-Grapefruit | (z ® )" 3-2 (47) 6-2 (50) 0.9305 (0.0037)  0.8952 (0.0160)
eye movements (x> )T +1 10-2 (452)  15-8-2 (461) | 0.5849 (0.0125)  0.5823 (0.0146)
Contaminant (e 2)T +(x@x)T +a 102 (1612)  15-6-2 (1679) | 0.9208 (0.0192)  0.9142 (0.0203)

TABLE 4
Test results of the symbolic regression (SR), the vectorized symbolic
regression (VSR), and task-based networks (TN).

Dataset #Instances  #Features SR VSR TN (Strcture)
google stock price 12,454 4 0.0362  0.5505  0.0319 (4-1)
concrete strength 10,308 8 0.4617 0.7914 0.1144 (4-1)
health insurance 13,386 6 0.3072  0.7009 0.1849 (3-1)
white wine quality 395,611 11 0.7430  0.9288 0.6174 (4-1)
song popularity 1,492,613 13 1.0137  1.0075  0.9366 (13-1)

neurons with neurons using random polynomials to confirm
that the polynomials learned from the symbolic regression
are reasonable. Lastly, we extend the search space from
polynomial bases to trigonometric functions (Section 1.3 in
SMs). By expanding the repertoire of functions that task-
based neurons can search and utilize, their adaptability and
effectiveness in handling more diverse and complex tasks
are investigated.

4.1 Necessity of Task-based Neurons

One may argue that instead of using the vectorized sym-
bolic regression to construct an elementary neuron, why
not directly use symbolic regression to fit data? The reason
is that symbolic regression is not good at handling high-
dimensional data. Constructing a neuron is to tap into
connectionism, which has been proven to be a powerful
approach by numerous successes of deep learning.

To validate these points, we perform TN, traditional
symbolic regression (SR), and vectorized symbolic regres-
sion (VSR) on five publicly available tabular datasets and
compare their performance. For SR and VSR, prediction on
the test set is made directly using the expression obtained by
SR and VSR, respectively. For TN, we no longer perform the
vectorized symbolic regression; instead, we use the math-
ematical expression obtained from VSR to build a neuron.
The network structure is the fully connected network.

To eliminate the effect of large differences in the order of
magnitude of features in the data, we do the normalization
for features. The training and test sets are divided according
to the ratio of 8 : 2, and MSE is the evaluation index. We use
machine learning library gplearn' to implement symbolic
regression, gplearn is a mature symbolic regression library

1. https:/ /gplearn.readthedocs.io/en/stable/intro.html

based on Python, with good stability and superior per-
formance. Traditional symbolic regression deals with each
input variable individually. To implement the vectorized
symbolic regression, we just need to feed the input vector
into the symbolic regression in gplearn.

We set the fixed random seed to ensure that the symbolic
regression can be repeated. For important hyperparameters,
we finetune them to achieve the optimal performance for
SR and VSR. Finally, in the traditional SR, the population
size is set to 5,000; the max generation is 20; the crossover
probability is set at 55%; the mutation probability at 40%; the
reproduction probability is set at 5%. In VSR, the random
seed is set to 100; the population size is set to 5,000; the
max generation is set to 30; the crossover probability is set
at 30%; the mutation probability at 60%; the reproduction
probability at 10%; the tournament size is 3% of the popu-
lation size. The range of numeric symbols returned is set to
[—1, 1], following a uniform distribution.

The test results are shown in Table 4, from which we can
draw two highlights: First, overall, the performance of the
VSR is inferior to SR. While VSR slightly outcompetes SR on
the dataset of song popularity, SR leads VSR by a large mar-
gin on the rest of datasets. This is because the search space
of VSR is ablated. SR is more likely to find a better formula.
Second, TN outperforms SR on five datasets, which suggests
the power of connectionism and the efficacy of VSR to build
a neuron. When a basic pattern regarding data is captured
by a single neuron, the corresponding network can leverage
these basic patterns to form an effective representation.

4.2 Superiority of Task-based Neurons over Neurons
Using Random Polynomials

To further illustrate the necessity and effectiveness of us-
ing symbolic regression to generate neurons for different
tasks, we perform experiments on 20 public datasets: 10 for
classification and 10 for regression. MSE and classification
accuracy are evaluation metrics for regression and classifi-
cation, respectively. Datasets are collected from the scikit-
learn package and the official website of OpenML. We first
normalize the original data to [—1, 1]. Then we perform the
vectorized symbolic regression on the normalized dataset.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023

TABLE 5
The formulas learned by the vectorized symbolic regression over 20 public data.

Datasets Instances  Features Classes

Predicted Function

california housing 20640 8 continuous  0.068(x ®> ) + 0.15x ' + 0.76

house sales 21613 15 continuous  —0.062(z ®* )T +0.025(z @ )T —0.010(z © x)" +0.067x " + 0.74

airfoil self noise 1503 5 continuous  0.064(z ® )T — 0.038x " — 0.087

wine quality 6497 11 continuous  0.0076(xz ®* x) T + 0.055(x ®> x) " +0.10(x ® x) " + 0.055z " — 0.00034

fifa 18063 5 continuous  0.30(z ®°z)T —0.63(z 0% z)" —0.10(z % z)T +0.38(x O z)" + 0.13z" + 0.010
diamonds 53940 9 continuous  —0.075(x ®” )" +0.16(x @% )T +0.10(x ©° )T —0.27(x ©* &) + 0.090(x @3 x)
abalone 4177 8 continuous  —0.088(z @3 )T —0.12(x ©x) " + 0.0462 "

Bike Sharing Demand 17379 12 continuous  —0.081(z ® )" + 0.054x

space ga 3107 6 continuous  0.052(z ®* )T +0.12(x @3 )T +0.025(x O x)T —0.073x " + 0.54

Airlines DepDelay 8000 5 continuous  0.010(z ® )" +0.042z " —0.27

credit 16714 10 2 —0.43(x 0% x) " +0.37(x O x) " +0.21

heloc 10000 22 2 0.031(z %) T —0.026(x > z)T + 0.055(x @3 =)

electricity 38474 8 2 -0.21(z @) +0.21z" +1.18

phoneme 3172 5 2 1.36(z 0% )" —2.91(z®% )" +0.60(z O ) +1.22z"

bank-marketing 10578 7 2 -1.04(z 0% z)T —0.14(z @ )T +0.81(x ® )" +0.043z " — 0.068
MagicTelescope 13376 10 2 —0.30(z0*x)T +1.13(x %) T +0.46(x®x)T — 0.060x" + 1.02

vehicle 846 18 4 —0.074(z ©* )T +0.068(z ©° )T + 0.072(z © =) T + 0.0015z "
Oranges-vs.-Grapefruit 10000 5 2 —0.52(z @) +0.70z" +0.89

eye movements 7608 20 2 -0.017(x @ 2)T —0.011(z O x) "

contaminant 2400 30 2 —0.75(x @ x) T —0.67(x 0% z)" +0.38(x % x)" +0.24(x®x)" +0.13z"

The relevant information regarding these 20 datasets,
and the regression results are shown in Table 5. After learn-
ing formulas from different datasets, we use them to build a
neuron and connect neurons into a network to conduct the
training and test. We randomly generate a polynomial with
the highest number of expressions as the highest number of
expressions obtained by symbolic regression, as shown in
Table 3, and then use the randomly generated expressions
to build a neuron and the associated network and compare
it with the task-based network.

It should be noted that 1) on the dataset of electricity,
Airlines DepDelay, and Oranges-vs.-Grapefruit, because the
expression obtained by symbolic regression is of degree
2, we can only set the randomly generated polynomial to
a polynomial with only one term and degree 2 (which is
2?) to make it different from the expression obtained by
the symbolic regression. 2) When using neurons to build
the network, since the weight parameters and bias will
be randomly initialized again, we set the coefficients and
constant terms (if any) of the randomly generated neuron
expression to 1. In fact, the coefficients and constants of the
neuronal expressions do not affect the performance of the
network, because they are randomly initialized.

It can be seen that the fitting ability of the network
built by randomly generated neurons is weaker than that of
the neural network built by neurons obtained by symbolic
regression. On both regression and classification, task-based
networks scale better and use fewer parameters. These
results indicate that symbolic regression plays an important
role in identifying the appropriate polynomials.

4.3 Superiority of Task-based Neurons over Linear
Neurons

Here, we test the superiority of task-based neurons relative
to linear ones. We use the same 20 datasets in the last
subsection: 10 for regression and 10 for classification. We
don’t need to repeat the process of the vectorized symbolic
regression. Instead, we directly use polynomials learned in
Table 5. The training and test sets are divided according to
the ratio of 8 : 2. For TN and LN, the data division and
the batch size are the same. We select 5 different network
structures for each dataset for a comprehensive comparison.
When designing the network structures of TN, we ensure
that the number of parameters of TN is fewer than the LN

to show the superiority of task-based neurons in efficiency.
The specific network structure and corresponding number
of parameters are shown in SMs. Each dataset is tested 10
times for reliability of results. The MSE and classification
accuracy are presented in the form of mean (std) in Table 6.

Regression. The designs of LN and TN all adopt a fully
connected network. The activation function is ReLU for LN
and Sigmoid for TN. Both networks use MSELoss as the loss
function and RMSProp as the optimizer. The details of the
specific network structures and the corresponding number
of parameters are shown in SMs.

In Table 6, in every dataset, the mean and standard
deviation of fitting errors (MSE) of LN are larger than those
of TN, indicating that TN has a stronger fitting ability and
better generalization than LN. In some datasets such as fifa
and airfoil self noise, TN leads LN by a large margin.

Classification. For this task, the network design uses a
fully connected network both for LN and TN. The activation
function uses ReLU for LN and Sigmoid for TN. Both net-
works use CrossEntropyLoss as the loss function and Adam
as the optimizer. The network is trained and tested in the
same way as the regression tasks.

The classification results are shown in Table 6. It is
observed that TN has higher training accuracy and test
accuracy, indicating that TN has stronger fitting ability. For
every dataset, the accuracy of TN over test sets is higher
than LN, and the standard deviation is smaller than LN. For
datasets like phoneme, electricity, and Orange-vs-Grapefruit,
the improvement by TN is at least 3%, which is significant.
Moreover, TN achieves better classification accuracy with
fewer parameters.

5 COMPARATIVE EXPERIMENTS

In this section, we compare the task-based networks with
other state-of-the-art models over two real-world tasks. To
highlight the superiority of the network using task-based
neurons, we select advanced machine learning models for
comparison, namely XGBoost [35], LightGBM [36], CatBoost
[37], TabNet [38], TabTransformer [39], FT-Transformer [16]
and DANETs [40]. All these models are either classic models
or recent models that were published in prestigious venues
of machine learning.

High-energy Particle Collision Prediction. High-energy
particle collision experiments are an important means to
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TABLE 6
Test results of linear networks and task-based networks of different structures on the public data

Datasets LN(S1) TN(S1) LN(S2) TN(S2) LN(S3) TN(S3) LN(S4) TN(S4) LN(S5) TN(S5)

california housing 0.0760 (0.0057) ~ 0.0702 (0.0019) | 0.0844 (0.0486)  0.0685 (0.0047) | 0.0988 (0.0664) 0.0667 (0.0057) | 0.0861 (0.0452) 0.0670 (0.0044) | 0.1013 (0.0614) ~ 0.0540 (0.0036)
house sales 0.0113 (0.0046)  0.0109 (0.0041) | 0.0111 (0.0037)  0.0100 (0.0027) | 0.0139 (0.0130)  0.0098 (0.0017) | 0.0139 (0.0105)  0.0098 (0.0017) | 0.0158 (0.0128)  0.0112 (0.0047)
airfoil self noise 0.0428 (0.0181)  0.0402 (0.0050) | 0.0329 (0.0286)  0.0270 (0.0042) | 0.0669 (0.0547) ~0.0287 (0.0091) | 0.0250 (0.0070)  0.0233 (0.0049) | 0.0327 (0.0358) ~ 0.0134 (0.0024)
wine quality 0.0636 (0.0084)  0.0625 (0.0083) | 0.0619 (0.0041)  0.0602 (0.0021) | 0.0634 (0.0098)  0.0592 (0.0051) | 0.0613 (0.0076)  0.0592 (0.0051) | 0.0604 (0.0094)  0.0597 (0.0066)
fifa 0.0895 (0.0283)  0.0637 (0.0055) | 0.0728 (0.0085)  0.0608 (0.0023) | 0.1138 (0.0477)  0.0622 (0.0032) | 0.1093 (0.0425) 0.0634 (0.0051) | 0.0946 (0.0420) ~ 0.0597 (0.0018)
diamonds 0.0128 (0.0050)  0.0097 (0.0023) | 0.0108 (0.0066) ~ 0.0078 (0.0020) | 0.0084 (0.0032) ~ 0.0081 (0.0027) | 0.0103 (0.0073)  0.0080 (0.0018) | 0.0145 (0.0169)  0.0084 (0.0024)
abalone 0.0253 (0.0026)  0.0250 (0.0025) | 0.0289 (0.0109)  0.0250 (0.0029) | 0.0296 (0.0087)  0.0269 (0.0074) | 0.0282 (0.0098)  0.0258 (0.0032) | 0.0300 (0.0102)  0.0268 (0.0037)
Bike Sharing Demand | 0.0144 (0.0040)  0.0132 (0.0022) | 0.0133 (0.0047) ~0.0110 (0.0022) | 0.0103 (0.0015)  0.0092 (0.0010) | 0.0137 (0.0043)  0.0101 (0.0021) | 0.0104 (0.0018) ~ 0.0083 (0.0011)
space ga 0.0077 (0.0021)  0.0069 (0.0015) | 0.0063 (0.0020)  0.0054 (0.0007) | 0.0120 (0.0050)  0.0054 (0.0015) | 0.0108 (0.0053)  0.0061 (0.0036) | 0.0103 (0.0046)  0.0049 (0.0006)
Airlines DepDelay 0.1631 (0.0055)  0.1617 (0.0049) | 0.1643 (0.0057)  0.1616 (0.0046) | 0.1662 (0.0062) 0.1649 (0.0051) | 0.1636 (0.0060) 0.1634 (0.0047) | 0.1651 (0.0063)  0.1635 (0.0059)
credit 0.7123 (0.0398)  0.7433 (0.0077) | 07302 (0.0108) ~ 0.7392 (0.0087) | 0.7358 (0.0089) ~ 0.7447 (0.0055) | 0.7267 (0.0260) ~ 0.7447 (0.0055) | 0.7108 (0.0316) ~ 0.7372 (0.0083)
heloc 0.7030 (0.0091)  0.7080 (0.0077) | 0.6980 (0.0112)  0.7040 (0.0063) | 0.6950 (0.0145)  0.6950 (0.0098) | 0.6890 (0.0073)  0.6900 (0.0073) | 0.6910 (0.0129)  0.6930 (0.0100)
electricity 0.7770 (0.0062)  0.7860 (0.0045) | 0.7880 (0.0068)  0.7950 (0.0046) | 0.7910 (0.0046)  0.8000 (0.0047) | 0.7900 (0.0055)  0.7990 (0.0051) | 0.7630 (0.0882)  0.8100 (0.0035)
phoneme 0.8170 (0.0321)  0.8420 (0.0099) | 0.8020 (0.0994) 0.8510 (0.0116) | 0.7790 (0.1460)  0.8560 (0.0107) | 0.8470 (0.0131)  0.8550 (0.0079) | 0.8120 (0.1080)  0.8540 (0.0090)
bank-marketing 0.7780 (0.0140)  0.7840 (0.0078) | 0.7870 (0.0102) ~ 0.7940 (0.0067) | 0.7600 (0.0839) ~0.7930 (0.0066) | 0.7560 (0.0893) ~ 0.7920 (0.0073) | 0.7840 (0.0086) ~ 0.7920 (0.0083)
MagicTelescope 0.8452 (0.0098)  0.8531 (0.0071) | 0.8430 (0.0078) ~ 0.8557 (0.0062) | 0.8456 (0.0047) 0.8580 (0.0040) | 0.8462 (0.0073) 0.8573 (0.0063) | 0.8433 (0.0090)  0.8580 (0.0066)
vehicle 0.8090 (0.0335)  0.8180 (0.0277) | 0.8090 (0.0258)  0.8240 (0.0237) | 0.7980 (0.0312)  0.8150 (0.0241) | 0.8100 (0.0377)  0.8110 (0.0264) | 0.8090 (0.0349)  0.8140 (0.0214)
Oranges-vs.-Grapefruit | 0.9288 (0.1381)  0.9429 (0.0049) | 0.9430 (0.1489) ~ 0.9740 (0.0020) | 0.9429 (0.1490) 0.9751 (0.0020) | 0.9426 (0.1457)  0.9751 (0.0020) | 0.8927 (0.1944)  0.9758 (0.0076)
eye movements 0.5790 (0.0117)  0.5840 (0.0116) | 0.5800 (0.0188)  0.5910 (0.0107) | 0.5720 (0.0267)  0.5880 (0.0179) | 0.5680 (0.0293)  0.5840 (0.0103) | 0.5790 (0.0288)  0.5800 (0.0113)
Contaminant 0.9220 (0.0108)  0.9300 (0.0095) | 0.9290 (0.0134)  0.9300 (0.0120) | 0.9250 (0.0092) 0.9310 (0.0083) | 0.9260 (0.0126)  0.9300 (0.0109) | 0.9010 (0.0638)  0.9340 (0.0096)

help people understand the fundamental composition and
evolution of our universe. In the collision, the medium
quickly becomes a soup of deconfined quarks, gluons, and
partons within the first few microseconds. Quark-Gluon
Plasma (QGP) is the name of this blazing and dense fireball.
To investigate the distinctive qualities and evolution of
the QGP, particles created at each phase of the medium
developed in high-energy collision tests are employed as
a probe. The important QGP phase probe is the J/1) meson,
which is the bound state of the charm quark (c) and its
antiparticle (¢). The invariant mass spectrum of the particle
is very useful for selecting the distribution region of the .J /1)
signal. In high-energy physics, predicting the invariant mass
spectrum of the particle is a critical research topic.

TABLE 7
The test results (MSE errors) of different models on particle collision
dataset.
Method particle collision | asteroid prediction
XGBoost 0.0094 + 0.0006 0.0646 £+ 0.1031
LightGBM 0.0056 £ 0.0004 0.1391 £+ 0.1676
CatBoost 0.0028 £ 0.0002 0.0817 £ 0.0846
TabNet 0.0040 £ 0.0006 0.0627 £ 0.0939
TabTransformer 0.0038 £ 0.0008 0.4219 £ 0.2776
FT-Transformer 0.0050 £ 0.0020 0.2136 £+ 0.2189
DANETs 0.0076 £ 0.0009 0.1709 £ 0.1859
Task-based Network | 0.0016 +0.0005 | 0.0513 + 0.0551

CERN collected the collision data and disclosed a dataset
on Kaggle 2. This data set is used to predict the invariant
mass of the two electrons in the collision experiment by the
properties of electrons such as energy, charge, transverse
momentum, and pseudorapidity. It consists of 99,915 obser-
vations, and each observation has 16 features.

Asteroid Prediction. Asteroids are petite celestial bodies
composed of rocks that revolve around the Sun in elliptical
orbits. They are remnants left over from the early stages
of solar system formation. Two categories of asteroids,
namely Near-Earth Asteroids (NEAs) and Potentially Haz-
ardous Asteroids (PHAs), attract particular interest among
researchers. NEAs are characterized by their proximity to

2. https:/ /www.kaggle.com/datasets/fedesoriano/cern-electron-
collision-data

Earth’s orbit, indicating the potential risk of collision with
our planet. PHAs, in particular, raise concerns due to their
potential to approach Earth’s orbit even closer, coupled
with their substantial size, which could result in significant
damage upon collision with Earth. The prediction of diam-
eter holds crucial significance in the identification of NEAs
and PHAs, as the size of these celestial bodies profoundly
influences the manner in which they interact with Earth.
Smaller asteroids are more prone to be burned out within
the Earth’s atmosphere prior to reaching the terrestrial
surface, while larger asteroids possess substantial potential
for catastrophic destruction upon impact. By accurately
predicting the diameters of NEAs and PHAs, researchers
can strengthen their assessment of the potential threats these
celestial entities pose to our planet, thereby facilitating the
formulation of strategies to mitigate any potential hazards.

To predict the diameters of NEAs and PHAs, physicists
from the Jet Propulsion Laboratory of CalTech collected
a dataset that consists of 137,636 observations and each
observation has 19 features, available on Kaggle 3,

For both datasets, the training set, validation set, and
test set are randomly divided at a ratio of 8:1:1. We choose
the MSE as the evaluation metric. To ensure a reliable
comparison and mitigate the influence of randomness, we
conduct 10 times tests for each model, and the final results
are presented in the form of mean =+ (std). The detailed test
results are shown in Table 7.

It can be seen that while TabTransformer has good
performance on the particle collision dataset but unsatis-
factory performance on the asteroid dataset, CatBoost and
TabNet have the consistent performance on both datasets.
The highlight of Table 7 is that the task-based network is the
best performer on both datasets. It leads TabTransformer,
FT-transformer, and DANETSs by a large margin.

6 CONCLUSION AND FUTURE WORK

In this paper, towards NeuroAl, we have proposed the
roadmap for task-based neurons via symbolic regression,

3. https:/ /www.kaggle.com/datasets /basu369victor/prediction-of-
asteroid-diameter
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which is a new frontier of neural network research com-
pared to the architecture design. Systematic experiments
over 10 synthetic datasets (Supplementary Materials), 25
public datasets, and 3 real-world applications, have con-
firmed the potential of the task-based neuronal designs.

In the future, on the one hand, the process of the
vectorized symbolic regression should be assiduously op-
timized. We can further investigate how to select suitable
base functions for different scenarios to replace the simple
symbolic regression algorithm in this paper. Also, from the
perspective of algorithmic efficiency, the proposed vector-
ized symbolic regression has not been facilitated by par-
allel acceleration and GPU acceleration, so the regression
speed has room for improvement. On the other hand, we
will explore synergizing task-based neurons and task-based
architectures to build a more powerful network model.
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1 ANALYSIS EXPERIMENTS

In this section, we supplement two experimental results: one
is to validate the feasibility of the proposed methodology
of the task-based neurons and the other is to compare the
performance of task-based neurons with quadratic neurons.

1.1 Feasibility of Task-based Neurons

Here, we conduct experiments to validate the feasibility
of the proposed task-based neurons, with an emphasis
on whether or not the vectorized symbolic regression can
identify the appropriate formulas from noisy data and the
impact of noise. We first make synthetic data which are clean
signals perturbed by noise. Then, we apply the vectorized
symbolic regression to the synthetic data to learn the math-
ematical formula. Next, we use the learned formula as the
basic neuron to build a task-based network. Through this
experiment, we can verify whether the task-based network
could achieve lower regression errors while utilizing fewer
parameters compared to a linear network.

Synthetic data generation. 10 multivariate polynomials
are constructed, as shown in Table 1. For simplicity and
conciseness, we prescribe

n
Zm"f:r-(sc@-(aa:)T:r-(wQSw)T, (1)
s times
where 7 = [r,7,--- ,r] € R%, and ® is a Hadarmad product.

Moreover, we add three levels of noise into polynomials
to test the noise-resistant learning ability of the vectorized
symbolic regression. After obtaining clean data, low (¢ =
5%), medium (¢ = 15%), and high (¢ = 30%) levels of noise
are added by using the following formula:
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y=vy+eE(y) n, )

where y is the output of some polynomial, § is the noisy
output, n is a vector whose elements obey G(0, 1), € stands
for noise level, and E(y) represents the power of the data.

E(y) is calculated as E(y) = \/+ SN 92, where N is the
number of data points. Here, we uniformly sample 600 data

points in the interval [—50, 50].

Data with e=5% Data with e=15% Data with €e=30%
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Fig. 1. The visualization of fitting performance by formulas learned by the
proposed vectorized symbolic regression with respect to the polynomial
p1(x) under three different noise levels.

Experimental setups of the vectorized symbolic regres-
sion. To ensure reproducibility, here we explicitly specify
experimental setups. The random seed is set to 0. The depth
of the tree that encodes formulas is set to no more than
6 to prevent the program from learning over-complicated
formulas. The initial population size is set to 500, and the
maximum number of generations is 80. The tournament size
is 3% of the population size, which represents the number
of winning individuals selected to produce the next gener-
ation. The crossover probability is set at 30%, the mutation
probability at 60%, and the reproduction probability at 10%.
The top 5% of the dominant individuals in each generation
are selected to generate the next generation. The range of
the returned numeric symbols is set to [—20, 20], following a
uniform distribution. The mean squared error (MSE) serves
as a fitness function.

Results of the vectorized symbolic regression. The
learned mathematical expressions with respect to different
noise levels are shown in Table 1. The corresponding regres-



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023

TABLE 1
Formulas learned by the vectorized symbolic regression with respect to different noise levels.

True Function Predicted Function
e=0% e=5%
pi(z) =6(xOx) 6(xz0x) 6(xox) !
pa(z) =3(x0*a)T 3(xotx)’ 3(x0tx) —14(zx0x)T — 88z + 106
p3(x) =4(xOx) + 5z 4(zxox) +52T 4(xox) +5z7 —42
pa(x) =2(x 0 x) T +6xT 2xo*e)’ +6x" 2(xota)’ —4(z@w)T — 387z — 14344
ps(x) =2(x0%x) +3x0x) +62" 2(x0tz) +3xz0x) +6xT 2xtx) +12x0x)" 7547z + 3162
pe(z) = 3(x 0* )" + 4(z @3 z)T+2 0z)T +3z" | 3(z0tz) +4(z?z)T +2(z0x) +3z' | 3(x0tz) +2(x0%x) —3(zx0z)" + 3243z — 10331
pr(z) =4z otx) +2x0x)" 4xotx)T +2x0x)" 4x0tz) +4(z P x)T +14(a:®m) — 6287z — 729
ps(x) =2(x0*z)T +3(x%x)" 2xotz) +3(xodx)T 2x0lz)l +3z02)T +2(x0x) — 264z + 78
po(x) =2(x @3 x)" + 3z’ 2(x @ x)" +3x" 2(x @3 x) " + 1227 +282
pio(x) = 3(x oXd z)T+4 ot z)T +5z" 3(x ol z)T +4(x ot m)T +5¢ " 3(x ol m)T+4(z ot m)T+6(z o3 m)T+13(m®m)—r 42227
True Function e=15% e =30%
pi(x) = 6(xOx) 6(xox) +5x +11 6(xox) +10x' +13
pa(x) = 3(x 0t x) T 3(xtx)T —42(x 0 )" —441xT 4 1431 3x0tx) —3x@®x)’ —98(xOx) + 3488z — 131
p3(z) =4(xOx) +5x" 4xzox) +6x’ —174 4(xox) +6x" —383
pa(z) =2(x0*z)T + 62T 2z 0tz) —9(xox) —1688x" — 70667 2x0%x) —35(x0x)’ — 2859z — 36
4T 3T ST
ps(z) =2(x0*z)" +3(zx0x)" +6zT 3(;021;-2 +-|;é6$40 z) +21(zow) 2z 0tz) +6(x@%z) +46(x @)’ — 12055z — 559
ps(x) =3(x0x) +4(x @ x)T +2(z0x)T +3z" | 3(zotz) —11(zoz)" +10980x" + 155 3(xotx) +3(x03x)T —T4(xOx)" + 3405z — 25168
4\ T 3\ T T
pr(@) =4(@o*z) +2(x0z)" i%%g 7‘;19@ O'®)’ +36(x0=) 4xoita) +12(x @3 2)T +76(x O x) — 17838z + 126
4T 33T ST .
ps(@) =2(z ' 2)"T +3(x 3 x)T 3?62E$)+ 1;(;(; o'2) +7@0w) 2@ 0le)T +4z 0% 2)T +20(x0@) T — 125527 — 8
po(z) =2(x 3 x) " +3x T 2(x@®z)] —(xO) +35x" +2713 2(x 0% x)" + 652" + 2376
_ 5 AT 4T T 3z x) +4(xotx)T +4(xedx)T 3z’ x) +6(xote) +21(xe% )"
po(@) =3@0°z) +4(xo'z) +5z —240(z © )T — 196z — 2940 —-3523(z 02 @) + 67827 + 2325

TABLE 2
The error rates of the symbolic regression for clean and noisy data.

True Function | e=0% | e=5% | e=15% | e =30%
pi(x) 0.00% | 0.30% | 0.75% 151%
p2(x) 0.00% 0.34% 1.00% 2.37%
p3(x) 0.00% 0.14% 0.59% 1.28%
pa(z) 0.00% | 0.23% | 0.79% 1.44%
ps(x) 0.00% 0.37% 0.90% 2.35%
pe(x) 0.00% 0.35% 1.44% 1.96%
pr(x) 0.00% 0.51% 0.71% 1.80%
pr(x) 0.00% 0.11% 0.37% 0.73%
po(x) 0.00% 0.68% 5.60% 4.81%
pw () 0.00% 0.15% 1.26% 4.26%

sion errors by the vectorized symbolic regression are shown
in Table 2. The error rate is calculated as
600

600 ;

\y-l ’ ®
=1 4

where y is the truth, and y is the prediction. Per Table 2
the vectorized symbolic regression can learn the patterns
behind data well, even when data are highly polluted,
which suggests the effectiveness of the proposed vectorized
symbolic regression.

Setups of task-based networks. Now, we use the ex-
pression shown in Table 1 to build a neuron and the corre-
sponding neural network to fit the synthetic data again. The
activation function is ReLU. We compare the performance
of the linear neuron and task-based neurons in five different
structures from simple to complex. The network structure
is the fully connected network. The network structure used
and the corresponding number of network parameters are
shown in Table 3. In every structure, a task-based network
uses fewer parameters. Thus, the task-based network enjoys
model efficiency. Each data set is divided into a training set
and a test set by a ratio of 8 : 2. Two types of networks use
MSELoss as the loss function and RMSProp as the optimizer.
We run ten times on each synthetic dataset to avoid the
effects of randomness. The MSE is the evaluation metric,
and the test results are presented in the form of mean (std).

Performance of task-based networks. Results are shown
in Table 4. It can be seen that even if the number of pa-
rameters in TN does not exceed LN and the network depth
is shallower than LN, the mean and standard deviation of
errors in the synthetic data of LN are larger than TN, which
indicates that TN is more powerful and efficient than LN.
Figure 1.1 visualizes the fitting performance by formulas
learned by the proposed vectorized symbolic regression
with respect to the polynomial p;(z) under three different
noise levels. It can be seen that the vectorized symbolic
regression can capture the suitable formulas to fit the curve.

This experiment also confirms that the learned formula,
and consequently the learned neuron, is indeed basic. If the
learned neuron were non-basic, it would lead to a potential
misalignment between the function space of task-based
networks and the inherent characteristics of the data. In
such a scenario, connecting task-based neurons into a deep
network could potentially hinder performance. However, in
practice, we observe that deep task-based networks perform
well for all synthetic signals. This observation is crucial in
evaluating the compatibility between task-based neurons
and deep networks.

1.2 Superiority of Task-based Neurons over Linear
Neurons

As Table 5 shows, we show the structure information of
task-based networks and conventional networks.

1.3 Comparison with Quadratic Neurons

Here, we compare the fitting effects between task-based
neurons and four different quadratic neurons on the 20
public datasets to demonstrate that task-based neurons are
more flexible and have better generalization ability for var-
ious datasets than preset neurons. All the operations on 20
datasets and experimental setups are the same as those in
the main body. We do not rerun the vectorized symbolic
regression; instead, we use the formulas learned in the
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TABLE 3

Comparing the linear and task-based neurons in five different network structures for synthetic data. The number h;-ho-- -

--hj-1(z) means that this

network has k hidden layers, each with h; neurons, and z is the number of parameters used in such a network. For example, 5-3-1 (145) means
this network has two hidden layers with 5 and 3 neurons respectively in each layer, and 145 parameters

No s1 s2 s3 54 S5
- [IN TN [IN TN LN TN LN TN LN TN

pi(x) | 21125 1@2D) | 5-1(6L)  2-1(d7) | 53-1(77) __ 3-1(70) | 10-5-3-1(187) _ 5-3-1(145) | 12-8-5-3-1(303) _ 8-5-3-1(293)

p2(z) | 3137) 131) | 6-1(73)  2-1(69) | 7-5-1(123) _ 3-1(103) | 10-8-5-1(249)  5-3-1(213) | 12-10-63-1(353) _ 6-4-2-1(295)

ps(@) | 2125 121 | 5-1(61)  21(d7) | 53-1(77) _ 3-1(70) | 10-5-3-1(187) _ 53-1(145) | 12-8-5-3-1(303) __ 8-5-3-1(293)

pa(x) | 3167 13D | 6-1(73) _ 2-1(69) | 7-5-1(123)  3-1(103) | 10-8-5-1249)  5-3-1(213) | 12-10-6-3-1(353) _ 6-4-2-1(295)

ps(z) | 3137) 1(31) | 6-1(73)  2-1(69) | 7-5-1(123) _ 3-1(103) | 10-8-5-1(249)  5-3-1(213) | 12-10-63-1(353) _ 6-4-2-1(295)

pe(z) | 41d9) 1@1) | 81097)  21091) | 8-5-1(139) _ 3-1(136) | 12-:8-5-1(287)  53-1(281) | 12-10-85-1(401) _ 6-4-2-1(389)

pr(z) | 41(49) 14D | 8-1(97)  2-191) | 85-1(139)  3-1(136) | 12-8-5-1287) _ 5-3-1(281) | 12-10-8-5-1(401)  6-4-2-1(389)

ps(z) | 4149) 1(d1) | 81(97)  21(91) | 8-5-1(139) _ 3-1(136) | 12-8-5-1(287)  5-3-1(281) | 12-10-85-1(401)  6-4-2-1(389)

po(z) | 2125 1(1) | 5161)  21(&7) | 53-1(77) __ 3-1(70) | 1053-1(187)  53-1(145) | 12-85-3-1(303) _ 8-5-3-1(293)

pro(®) | 5-1(61) 1(1) | 10-1(121) 2-1(113) | 10-5-1(171) 3-1(169) | 12-10-8-1(359) 5-3-1(349) | 13-10-8-5-1(422) 5-4-2-1(412)

TABLE 4
The mean squared errors of task-based networks and the linear networks of five structures.
No st s2 s3 54 S5
: IN N IN ™N LN N LN ™N [N N
pi() | 0.0215 (0.0013) _0.0009 (0.0002) | 0.0212 (0.0020) _0.0008 (0.0002) | 0.0217 (0.0023) _ 0.0009 (0.0002) | 0.0208 (0.0018) _ 0.0009 (0.0002) | 0.0207 (0.0023) __0.0010 (0.0002)
p2(x) | 0.0234 (0.0018) _ 0.0040 (0.0003) | 0.0238 (0.0012) _ 0.0039 (0.0003) | 0.0239 (0.0029) _0.0038 (0.0002) | 0.0219 (0.0014) _ 0.0038 (0.0003) | 0.0221 (0.0012) _0.0040 (0.0002)
ps(x) | 0.0253 (0.0015) _0.0013 (0.0003) | 0.0250 (0.0022) 00010 (0.0002) | 0.0255 (0.0022) _0.0010 (0.0001) | 0.0240 (0.0013) _ 0.0012 (0.0003) | 0.0228 (0.0032) _0.0014 (0.0004)
pa(x) | 0.0238 (0.0015) 0.0038 (0.0003) | 0.0224 (0.0016)  0.0037 (0.0002) | 0.0233 (0.0023)  0.0036 (0.0002) | 0.0224 (0.0028)  0.0037 (0.0003) | 0.0213 (0.0012) _ 0.0037 (0.0003)
ps(x) | 0.0218 (0.0017) _0.0040 (0.0004) | 0.0219 (0.0017) _ 0.0038 (0.0003) | 0.0223 (0.0028) _ 0.0038 (0.0002) | 0.0190 (0.0021) _ 0.0037 (0.0002) | 0.0199 (0.0022) _0.0039 (0.0003)
pe(=) | 0.0212 (0.0009) _0.0037 (0.0003) | 0.0212 (0.0019) _0.0037 (0.0002) | 0.0205 (0.0012) _0.0035 (0.0003) | 0.0180 (0.0027) _ 0.0036 (0.0005) | 0.0191 (0.0017) _ 0.0041 (0.0008)
p7(x) 0.0236 (0.0024)  0.0043 (0.0003) | 0.0227 (0.0028)  0.0041 (0.0004) | 0.0237 (0.0018)  0.0039 (0.0001) | 0.0232 (0.0030)  0.0042 (0.0007) | 0.0236 (0.0019)  0.0046 (0.0010)
ps(x) | 0.0189 (0.0015) _ 0.0035 (0.0003) | 0.0188 (0.0015) _ 0.0034 (0.0002) | 0.0203 (0.0025) _ 0.0033 (0.0003) | 0.0175 (0.0028) _ 0.0035 (0.0006) | 0.0181 (0.0009) _0.0039 (0.0007)
po(x) | 0.0136 (0.0105) _0.0058 (0.0000) | 0.0060 (0.0006) _ 0.0056 (0.0002) | 0.0084 (0.0072) _0.0056 (0.0001) | 0.0185 (0.0107) _ 0.0056 (0.0002) | 0.0199 (0.0114) _0.0058 (0.0003)
pio(a) | 0.0088 (0.0010) 0.0024 (0.0003) | 0.0095 (0.0008) 0.0022 (0.0007) | 0.0117 (0.0050) 0.0017 (0.0004) | 0.0103 (0.0020)  0.0020 (0.0006) | 0.0110 (0.0037)  0.0023 (0.0009)
TABLE 5

Comparing the linear and task-based neurons in five different network structures for public data. The number h1-ha-- -

--h-y(z) means that this

network has k hidden layers, each with h; neurons, and z is the number of parameters used in such a network.

Datasets S1 S2 S3 S4 S5

LN ™™ LN N LN ™™ LN ™™ LN N
california housing 7-7-1(127) 5-1(96) 12-12-8-1377)  8-1(153) 18-14-10-6-1(651)  23-1(438) | 14-12-10-8-1(533) 14-1(267) | 12-16-24-16-8-1(1269)  20-6-1(599)
house sales 15-15-1(496)  7-1(456) 22-22-15-1(1219)  18-1(1171) | 32-25-22-15-1(2270) ~ 28-1(1821) | 30-25-20-15-1(2106) ~ 28-1(1821) | 23-30-45-30-15-1(4344)  30-13-1(3456)
airfoil self noise 5-5-1(66) 2 1(27) 8-8-5-1(171) 5-1(66) 10-8-8-5-1(271) 9-1(118) 9-8-6-5-1(229) 12-1(157) | 8-10-15-10-5-1(524) 12-4-1(241)
wine quality 11-11-1276)  5-1(246) 16-16-11-1(663)  11-1(540) | 22-16-16-11-1(1103)  19-1(932) | 19-16-14-11-1(963)  19-1(932) | 16-22-33-22-11-1(2338)  28-9-1(2314)
fifa 5-5-1(66) z -1(63) 8-8-5-1(171) 5-1(156) 10-8-8-5-1-(271) 8-1(249) 9-8-6-5-1(229) 7-1(218) 8-10-15-10-5-1(524) 10-4-1(485)
diamonds 8-8-1(161) 3-1(154) 14-14-9-1(495)  9-1(460) 18-14-14-10-1(817)  15-1(766) | 16-14-11-9-1(681) 12-1(613) | 15-18-25-15-10-1(1474)  17-6-1(1329)
abalone 8-6-1(133) 4-1(113) 12-12-8-1(377) 7-1(197) 18-14-12-8-1(721) 16-1(449) | 14-12-10-8-1(533) 14-1(393) | 18-22-24-16-8-1(1677)  20-15-1(1461)
Bike Sharing Demand | 12-12-1(325)  6-1(163) 18-18-12-1(817)  12-1(325) | 24-20-18-12-1(1431)  30-1(811) | 24-18-15-12-1(1252)  26-1(703) | 18-24-36-24-12-1(2791)  30-10-1(1381)
space ga 3-1(25) 1(25) 6-3-1(67) 2-1(59) 6-6-3-1(109) 3-1(88) 6-12-6-3-1(229) 6-1(175) 12-18-12-6-3-1(649) 6-12-1(499)
Airlines DepDelay 5-5-1(66) 2-1(27) 8-6-3-1(127) 6-1(79) 15-10-7-3-1(355) 15-1(196) | 9-8-6-5-1(229) 10-1(131) | 8-10-15-10-5-1(524) 12-4-1(241)
credit 10-10-2(242)  5-2(127) 15-15-10-2(587)  10-2(252) | 20-15-15-10-2(957)  18-2(452) | 18-15-12-10-2(827)  18-2(452) | 15-20-30-20-10-2(1967)  25-8-2(967)
heloc 2222-2(1058)  14-2(1024) | 33-33-22-2(2675)  35-2(2557) | 40-30-30-20-2(3742)  40-2(1864) | 38-33-28-22-2(3797)  44-2(3214) | 30-40-60-40-20-2(7692)  55-18-2(6783)
electricity 8-8-2(162) 4-2(86) 12-12-82(386)  8-2(170) 16-12-12-8-2(626) 14-2(296) | 14-12-10-8-2(542) 14-2(296) | 12-16-24-16-8-2(1278)  20-6-8(690)
phoneme 5-5-2(72) 2-2(60) 8-8-5-2(177) 5-2(147) 10-8-8-5-2(277) 9-2(263) 9-8-6-5-2(235) 8-2(234) 8-10-15-10-5-2(530) 12-4-2(482)
bank-marketing 7-7-2(128) 2(58) 10-10-7-2(283) 7-2(261) 14-10-10-7-2(465) 12-2(446) | 12-10-9-7-2(411) 10-2(372) | 10-15-20-15-6-2(990) 15-6-2(851)
MagicTelescope 12-13-2(329)  5-2(247) 12-10-10-2(394)  7-2(345) 20-15-15-10-2(957)  16-2(786) | 18-12-10-8-2(662) 13-2(639) | 15-20-23-18-8-2(1570) 15-10-2(1307)
vehicle 18-16-4(714)  7-4(627) 25-20-15-4(1374)  10-4(894) | 36-27-27-18-4(3019)  32-4(2852) | 32-27-22-18-4(2605)  28-4(2496) | 27-36-54-36-18-4(6241)  45-14-4(6047)
Oranges-vs.-Grapefruit | 3-3-2(38) 2(22) 8-8-5-2(177) 5-2(77) 10-8-8-5-2(277) 9-2(137) 8-8-6-4-2(212) 9-2(137) 8-8-10-8-4-2(344) 12-5-2(279)
eyemovements 18-18-2(758)  15-2(677) | 25-15-10-2(1097)  20-2(902) | 40-30-30-20-2(3662)  35-2(1577) | 35-30-20-10-2(2667)  40-2(1802) | 25-30-35-20-15-2(3457)  40-20-2(3342)
Contaminant 30-18-2(1526)  8-2(1290) | 45-45-30-2(4907)  30-2(4832) | 65-45-45-30-2(8497)  49-2(7891) | 52-45-38-30-2(6977)  39-2(6281) | 45-60-90-60-30-2(16997)  55-25-2(15457)

main body to prototype task-based neurons. The designs
for TN and the quadratic networks (QN) all adopt the fully
connected structure, and the activation function is ReLU for
QNN and Sigmoid for TN. Each dataset was tested 10 times
to avoid the accidental effects. The test results are presented
in the form of mean (std), which are shown in Table 6.

From Table 6, we can see that compared with four kinds
of QNs, TN uses simpler network structures with fewer
parameters, but it gets the lowest MSE and highest accuracy,
which highlights the high efficiency and superior fitting
ability of TN.

Quadratic neurons are a special case of polynomial
neurons with fixed neurons. The task-based neurons we
design are also based on polynomials but more flexible and
adaptive. Data usually have different features in the real
world, and the quadratic neurons can fit the data suitable
for quadratic functions. Compared to task-based neurons,

the form of quadratic neurons is fixed and less flexible,
naturally, and the scope of application (data with different
characteristics) is not as wide as TN. It is seen from our
experiments that the depth and width of the network need
to become large for quadratic networks to get a satisfactory
result, which is inefficient. In contrast, if we can fit the
data with a neuron that is flexibly designed for the data
characteristics, the characteristics of the data will be easier
to capture, which is easier to scale in this task.

1.4 Extension to a Broader Functional Class.

In the earlier experiments, the proposed vectorized symbolic
regression searches the space using polynomials as base
functions. Actually, the framework we propose is quite
flexible. Here, we explore to extend beyond the search for
polynomial functions as artificial neurons for constructing
neural networks. We observe that, in real-world problems,
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TABLE 6
Test results of task-based and quadratic networks on the 20 public datasets. The number hi-ha-- - - -h-1(z) means that this network has k hidden
layers, each with h; neurons, and z is the number of parameters used in such a network.

Datasets ™ Bu Goyal Fan Xu
index structure index structure index structure index structure index structure
california housing 0.0689 (0.0055)  5-3-1 (125) 0.0737 (0.0061) ~ 5-3-1 (134) 0.1083 (0.0128)  7-7-1 (127) 0.1237 (0.0677)  3-3-1 (129) 0.0926 (0.0423)  3-3-1(129)
house sales 0.0102 (0.0023)  4-1 (261) 0.0170 (0.0093)  8-3-1 (318) 0.0245 (0.0039)  11-8-1 (281) 0.0488 (0.0317)  5-3-1 (306) 0.0220 (0.0164)  5-3-1 (306)
airfoil self noise 0.0189 (0.0043)  6-4-1 (127) 0.0204 (0.0054)  7-4-1 (158) 0.0479 (0.0165)  11-8-1 (171) 0.0492 (0.0445)  5-3-1 (156) 0.0382 (0.0331)  5-3-1 (156)
wine quality 0.0586 (0.0045)  5-1 (246) 0.0754 (0.0359)  7-5-1 (260) 0.0898 (0.0632)  12-8-1 (257) 0.0684 (0.0112)  5-4-1 (267) 0.0668 (0.0117)  5-4-1 (267)
fifa 0.0613 (0.0021)  8-1 (249) 0.0776 (0.0068)  10-6-1 (266) 0.0811 (0.0320)  12-10-5-1 (263) 0.0784 (0.0330)  8-4-1 (267) 0.0827 (0.0315)  8-4-1 (267)
diamonds 0.0078 (0.0007)  4-1 (205) 0.0411 (0.1029)  9-5-1 (292) 0.0352 (0.0493)  12-8-5-1 (275) 0.0457 (0.0687)  6-4-1 (279) 0.0292 (0.0518)  6-4-1 (279)
abalone 0.0238 (0.0024)  5-3-1 (183) 0.3189 (0.8751)  6-5-1 (190) 0.0289 (0.0028)  12-6-1 (193) 0.0369 (0.0163)  5-3-1 (201) 0.0319 (0.0121) ~ 5-3-1 (201)
Bike sharing Demand 0.0097 (0.0007) 7,41 (244) 0.0129 (0.0026)  7,4,1 (256) 0.0814 (0.0093)  12,7,1 (255) 0.0519 (0.0436)  5,3,1 (261) 0.0167 (0.0033)  5,3,1 (261)
space ga 0.0049 (0.0007)  5-1 (146) 0.0064 (0.0026)  6-5-1 (166) 0.0109 (0.0035)  10-7-1 (155) 0.0100 (0.0050) ~ 5-2-1 (150) 0.0086 (0.0051)  5-2-1 (150)
Airlines DepDelay 0.1616 (0.0045)  6-5-1 (142) 0.1642 (0.0047)  6-5-1 (154) 0.1637 (0.0052)  10-8-1 (157) 0.1646 (0.0061)  5-3-1 (156) 0.1630 (0.0056)  5-3-1 (156)
credit 0.7457 (0.0070)  6-4-2 (196) 0.7165 (0.0276) ~ 6-5-2 (226) 0.7370 (0.0082)  10-8-2 (216) 0.6943 (0.0679)  5-3-2 (243) 0.7235 (0.0107) ~ 5-3-2 (243)
heloc 0.7165 (0.0086)  5-4-2 (425) | 0.7118 (0.0098)  8-4-2 (460) 07127 (0.0123)  14-6-2 (426) 0.7117 (0.0106)  5-4-2 (447) 0.6915 (0.0680)  5-4-2 (447)
electricity 0.8012 (0.0046)  10-5-2 (297) | 0.7865 (0.0097)  10-5-2 (314) 0.7798 (0.0079)  14-8-6-2 (314) 0.7910 (0.0078)  7-4-2 (315) 0.7280 (0.1134)  7-4-2 (315)
phoneme 0.8561 (0.0102)  7-2 (205) 0.8447 (0.0148)  8-6-2 (232) 0.7447 (0.0160)  13-8-2 (208) 0.8088 (0.1098)  6-4-2 (222) 0.8413 (0.0143)  6-4-2 (222)
bank-marketing 0.7933 (0.0060)  7-2 (261) 0.7835 (0.0071)  10-6-2 (320) 0.7777 (0.0068)  12-10-6-2 (306) 0.7895 (0.0065)  8-4-2 (330) 0.7867 (0.0100)  8-4-2 (330)
MagicTelescope 0.8552 (0.0056)  8-2 (394) 0.8474 (0.0075)  12-5-2 (418) 0.8105 (0.0068)  14-10-8-2 (410) 0.8487 (0.0077)  8-5-2 (435) 0.8471 (0.0079)  8-5-2 (435)
vehicle 0.8312 (0.0190)  8-4 (716) 0.7271 (0.0380)  12-8-4 (736) 0.6535 (0.0873)  18-12-9-4 (727) | 0.7112 (0.0573)  8-7-4 (741) 0.7912 (0.0246)  8-7-4 (741)
Oranges-vs.-Grapefruit | 0.9906 (0.0035)  3-2 (47) 0.9868 (0.0076)  5-2 (84) 0.8710 (0.1213) ~ 8-3-2 (83) 0.9760 (0.0086)  3-2 (78) 0.9803 (0.0091)  3-2(78)
eye movements 0.5905 (0.0122)  10-2 (452) 0.5823 (0.0140)  10-2 (464) 0.5673 (0.0079)  15-8-2 (461) 0.5687 (0.0270)  20-8 (558) 0.5803 (0.0140)  20-8 (558)
Contaminant 0.9310 (0.0084)  8-2 (1290) 0.8775 (0.0529)  15-10-2 (1294) | 0.8435(0.1135)  28-12-5-2(1293) | 0.8448 (0.1012)  12-6-2(1392) | 0.9229 (0.0140) 12-6-2 (1392)

numerous physical phenomena or laws cannot be ade-
quately described by polynomials. For example, in fields
such as signal analysis and electronic circuits, polynomial
functions are not the optimal mathematical tools. Instead,
researchers commonly employ trigonometric functions to
analyze related problems. Therefore, we straightforwardly
extend the search space to include the sine and cosine
functions, enabling a neural network to better learn from
data with salient physical significance.

TABLE 7
Test results (trigonometric function as a neuron).

Dataset
Function space

california housing
{sine function, cosine function }
0.79 — cos(x — sin(x) + cos(x)
—0.67)17T + 22T +1
mean square error
15-15-10-5-1
0.0564 + 0.0034
0.0512 £ 0.0021

Symbolic regression result

Evaluation index
Network structure
LN test result

TN test result

Along this direction, we perform the vectorized symbolic
regression on the dataset california housing, with trigonomet-
ric functions as the search space. Subsequently, the obtained
regression formula is utilized to construct neurons and neu-
ral networks for data fitting. Here, in order to better capture
the direct current (DC) component (linear component) in
the data, we artificially add a linear component of 2x " + 1
to the regression formula. The test results of LN are also
compared. The LN shares identical hyperparameters and
network architecture settings with TN. The only difference
is the type of neurons used. Each model is tested three
times with different random seeds. Detailed information
is summarized in Table 7. As can be seen, TN that uses
trigonometric functions in its neurons can outperform the
LN. It is also better than TN which uses polynomials in its
neurons (Table ??). The trigonometric functions as base func-
tions validate that the proposed framework for task-based

neurons is flexible to a broader class of functions. We argue
that instead of manually selecting types of base functions,
we should include more base functions and let the symbolic
regression automatically select the optimal expression, as
long as the computational resources are supported.

Additionally, in the future, other functions like expo-
nential functions can be utilized to fit data that exhibit
exponential growth or decay trends. The exponential func-
tion is closely related to complex numbers and Euler’s
formula, finding extensive applications in signal processing,
circuit analysis, and other fields. Therefore, by expanding
the search space to include the exponential function, we can
enhance the learning capacity of neural networks.



