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Abstract—The emerging research shows that lncRNAs 
are associated with a series of complex human diseases. 
However, most of the existing methods have limitations in 
identifying nonlinear lncRNA-disease associations (LDAs), 
and it remains a huge challenge to predict new LDAs. 
Therefore, the accurate identification of LDAs is very 
important for the warning and treatment of diseases. In this 
work, multiple sources of biomedical data are fully utilized to 
construct characteristics of lncRNAs and diseases, and 
linear and nonlinear characteristics are effectively 
integrated. Furthermore, a novel deep learning model based 
on graph attention automatic encoder is proposed, called 
HGATELDA. To begin with, the linear characteristics of 
lncRNAs and diseases are created by the miRNA-lncRNA 
interaction matrix and miRNA-disease interaction matrix. 
Following this, the nonlinear features of diseases and 
lncRNAs are extracted using a graph attention auto-encoder, 
which largely retains the critical information and effectively 
aggregates the neighborhood information of nodes. In the 
end, LDAs can be predicted by fusing the linear and 
nonlinear characteristics of diseases and lncRNA. The 
HGATELDA model achieves an impressive AUC value of 
0.9692 when evaluated using a 5-fold cross-validation 
indicating its superior performance in comparison to several 
recent prediction models. Meanwhile, the effectiveness of 
HGATELDA in identifying novel LDAs is further 
demonstrated by case studies. the HGATELDA model 
appears to be a viable computational model for predicting 
LDAs. 
 

Index Terms— lncRNA, lncRNA-disease association, 
Graph attention network, Feature fusion.  

I. INTRODUCTION 
ONG non-coding RNAs (lncRNAs) are a class of RNA 
molecules that are longer than 200 nucleotides and do 
not encode proteins [1-4]. Despite being previously 
classified as "junk DNA," recent research has 

demonstrated that long non-coding RNAs (lncRNAs) are vital 
in numerous biological processes, including gene expression 
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regulation, chromatin modification, and epigenetic regulation. 
Additionally, dysregulated expression of lncRNAs has been 
linked to the onset and progression of diverse diseases, such as 
cancer, cardiovascular disease, and neurological disorders [5-7]. 
Identifying the associations between lncRNAs and diseases holds 
significant implications for comprehending disease mechanisms, 
devising novel diagnostic tools, and identifying potential 
therapeutic targets. However, further experimental validation is 
required to confirm these associations and establish their clinical 
relevance [8, 9]. Mining the potential LDAs is of far-reaching 
significance to the prevention and treatment of diseases, and to 
help medical staff understand the pathological mechanism of 
various complex diseases [10]. However, the wet experimental 
verification of LDAs is laborious and limited to small-scale. 
Therefore, efficient and economical computational models 
provide the conditions to predict potential LDAs on a large scale 
[11, 12].  

  In recent years, the prediction of lncRNA-disease 
associations has received significant attention from researchers 
both domestically and internationally [13, 14]. Despite 
significant progress in the field, challenges still remain, such as 
the lack of experimental validation and the need for more 
accurate computational methods. Nevertheless, the domain of 
predicting associations between long non-coding RNAs 
(lncRNAs) and diseases is rapidly expanding, with the potential 
to make significant contributions to our understanding of disease 
mechanisms and the development of innovative therapeutics [15, 
16]. In conclusion, the development of a feasible predictive 
model is crucial for validating potential LDAs. 

To date, numerous computational approaches have been 
proposed for LDA prediction [17-19], which can be broadly 
classified into three main groups: machine learning-based 
prediction, network-based prediction and deep learning-based 
prediction. The first category is the machine learning-based 
prediction. These methods utilize the similarity between lncRNA 
and disease profiles to predict potential lncRNA-disease 
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associations. For instance, Chen et al. proposed LRLSLDA, 
which employs Laplacian regularized least squares to predict 
unknown LDAs and achieves improved accuracy [20]. Xie et al. 
developed a model for predicting LDA based on a regularized 
least squares approach with normal Laplacian regularization, 
called SKF-LDA [21]. SKF-LDA adopted a more appropriate 
fusion method that incorporated more biological knowledge, 
resulting in more accurate predictions. Yu et al. proposed 
CFNBC model [22], which utilized Naïve Bayes classifier to 
predict potential LDAs. Lu et al. proposed SIMCLDA model 
[23], which utilizes principal component analysis and inductive 
matrix completion to predict potential LDAs. However, these 
methods do not leverage all the diverse data relevant to lncRNAs, 
which could affect the model's performance to a certain extent. 

  The second group is the network-based prediction. Sun et al. 
developed the random walk model (RWRlncD) on a known 
network to predict potential associations [24]. Zhang et al. 
proposed a model based on random walk, called BRWMC [25]. 
The model uses similarity network fusion and random walk 
methods to predict potential LDAs. Later, Hu et al. developed a 
model to predict LDA, called BiWalkLDA [26]. In this model, 
the scores of disease side and lncRNA side are obtained by 
double random walk algorithm, and the average score is used as 
the result. Gu et al. developed a model based on global network 
random walk (GrwLDA)[27], which has the greatest advantage 
of not requiring negative samples and enhancing the predictive 
performance of the model for LDAs. However, these methods are 
dependent on the known correlation information. 
The third group is the deep learning-based prediction. With the 
development of research, the deep learning methods have been 
successfully extended to numerous aspects of life, such as 
natural language processing, computer vision, automatic 
driving [28], etc. Moreover, researchers have applied deep 
learning to biological network [29-31], and made it a reliable 
technology for LDA prediction. For example, Fan et al. 
proposed a method (GCRFLDA) based on the completion of 
the convolution matrix model [32], this model introduces 
attention mechanism and conditional random field to predict 
potential LDAs. Zhao et al. developed a novel prediction model 
called HGATLDA [33], which combines meta-path and graph 
attention model to predict LDAs. Ma et al. combined deep 
network fusion and graph embedding technology to establish a 
deep multi-network embedding model to predict potential 
LDAs [34]. Meanwhile, there is room for improvement in these 
models. In each model, only single-category features are 
utilized to forecast potential LDAs. 

  In this study, a new model is proposed to predict LDAs, 
called HGATELDA. In our model, we utilized multiple sources 
from biological data, and combined linear and nonlinear features 
to construct LncRNA and disease feature representation. Finally, 
a deep neural network is employed to obtain the prediction results. 
The flowchart of our model is presented in Fig. 1. Meanwhile, 
our model's advantages are manifested in the following aspects: 
l  To obtain more association data information, we make full 

use of biological characteristics from a variety of sources to 
construct features of diseases and lncRNAs, including 
diseases, miRNAs, lncRNAs. 

l The linear characteristics of lncRNAs and diseases are 
established by the similarity matrix and miRNA correlation 
network, which largely retains the initial information. 

l To extract the nonlinear characteristics of lncRNAs and 
diseases, the graph attention auto-encoder is utilized, which 
largely retains the critical information and effectively 
aggregates the neighborhood information of nodes.  

l To obtain more informative representations, we combine 
multiple categories of features. By fusing the linear and 
nonlinear features of diseases and lncRNA, the potential 
LDAs can be predicted. 

l Our comprehensive experimental results and case studies 
indicated that the performance of HGATELDA method 
outperforms other advanced methods. This further validates 
the contribution and efficacy of our model in predicting 
disease-related lncRNAs. 

Other parts of this article are described below. After 
introducing the work related to lncRNAs and diseases (section 
1), we give the experimental data and methods in sections 2 and 
3. The experimental results are given in section 4. Finally, we 
concluded in section 5. 

 
Fig. 1. The overall framework of HGATELDA. Step 1: ⅰ. the disease 

linear feature is obtained by linear multiplication of the disease-miRNA 
interaction matrix and disease semantic similarity matrix; The lncRNA 
linear feature is obtained by linear multiplication of the lncRNA-miRNA 
interaction matrix and the lncRNA functional similarity matrix. ⅱ. The 
nonlinear characteristics of disease and lncRNA are obtained by using 
a graph attention network. Step 2: The linear and nonlinear features of 
disease and lncRNA are fused to get the lncRNA-disease feature 
representation, which is input to the deep neural network for prediction.  

II. MATERIALS 

A. Datasets 
In recent years, many public databases have been used to 

predict the LDAs. In this paper, a commonly used dataset, was 
obtained from Fu et al.’s study, including 240 lncRNAs, 495 
miRNAs, and 412 diseases. Specifically, this information 
includes 2697 LDAs obtained from the Lnc2Cancer [35], and 
LncRNADisease [36], 13562 MDAs come from the HMDD 
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(v2.0) database [37], and 1002 MLAs are obtained from the 

StarBase database [38]. The dataset details are showed in Table 
1. 

B. Disease Semantic Similarity 

In this section, through directed acyclic graph ( ) of 
disease to depict their relationships and compute their semantic 
similarity. Consequently, for a disease D, its semantic value can 
be expressed as: 

  (1) 

f disease and contains all ancestor nodes. Consequently, the 
semantic contribution value of a disease  is calculated by: 

 (2) 

where  is the semantic contribution factor. In general, 
[39]. After that, the similarity between the two diseases 

 and  is computed as follows: 

 (3) 

C. LncRNA Functional Similarity 
     Based on the diseases with similar phenotypes are usually 
associated with functionally similar lncRNAs. Here, we 
employed the model proposed by Chen et al. to assess the 
functional similarity of lncRNA pairs by measuring the 
semantic similarity between two disease-related lncRNA 
groups [40]. Therefore, LFS can be defined as: 

(4) 

  (5) 

where m and n represent diseases numbers of lncRNA  and 
, and  represents the diseases related to lncRNA . Eq.5 

computes the similarity between a disease element 𝑑 in the set 
𝐷(𝑙!) and the entire set 𝐷(𝑙!). 
 

III. METHODOLOGY 

A. The Construction of Linear Features 
To obtain more similarity information, we introduce miRNA 

data into the model. In this case, linear multiplication is utilized 
to extract the linear characteristics of lncRNAs and diseases, 
thereby obtaining additional node similarity information. The 

linear feature of lnRNA is obtained by multiplying  and 
MLA profiles : 

   (6) 
Meanwhile, the linear feature of disease is obtained by 

multiplying disease semantic similarity and miRNA-
disease interaction profiles : 

    (7) 
An l-dimensional vector can then be constructed for each 

disease or lncRNA. Finally, the features of all diseases and 
lncRNA are represented by F: 

,   (8) 

where  denotes the total number of nodes, with  
denotes the linear characteristics of each node. 

B. The construction of non-linear features 
  As an unsupervised learning model, Graph Attention 

Autoencoder (GATE) can reconstruct the node attributes of 
data through the encoder and decoder. Fig. 2 shows the specific 
architecture of GATE. Meanwhile, GATE calculates the 
importance of nodes' neighbors through attention mechanism 
and updates the characteristics of nodes. 

At first, the lncRNA-disease graph by the association matrix 
LD, and it is represented by . 

 represents the vertices,  is defined as 
the edge between nodes, and the original characteristics of 
nodes in graph G are denoted by  . Following that, the 
attention mechanism is applied to determine the contribution 
value of each node and its neighbors. To be more specific, the 
attention coefficient  between node  and its neighbor  
can be computed as: 

  (9) 

where  serves as a transformation matrix that projects 
the initial node characteristics into a space with l' dimensions, 
and  refers to a nonlinear activation function. 

 represents the attention parameter, which assigns real 
numbers to features. 

To eliminate dimensionality between different attention 
coefficients, the attention coefficients  are further 
normalized as follows: 
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TABLE I 
THE DATASET DETAILS USED IN THE EXPERIMENT  

Datasets Data sources Amounts  
LDA  LncRNADisease databases; 

 lnc2Cancer databases 2697  

MDA HMDD (v2.0) 13562  
MLA StarBase 1002  

 

 
Fig.2. The process of using GATE to reconstruct the features of 

node. 
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  (10) 

where  represents the set of neighboring nodes of node .
 indicates the importance of node  in relation to node  

based on the normalized attention coefficient. 
To update the representation of the given node , the 

concentration coefficients calculate the importance of 
information from its neighboring nodes, and then aggregate this 
information. This aggregation process typically involves a 
weighted sum of the neighboring node features, with the 
weights determined by the concentration coefficients. By using 
these coefficients to aggregate information from the neighbors, 
the representation of the given node can be updated to 
incorporate information:  

   (11) 

where   is the  activation function. 
Multi-head attention enhances the stability of the self-

attention learning process and strengthens the model's ability to 
extract information by mitigating biases. In addition, to enhance 
information capture capability, multi-head attention is used to 
pick up information from different representation spaces, thus 
enhancing its learning capacity. The integration of the K-
independent attention mechanism is specifically carried out in 
the following manner:  

   (12) 

The output of a Graph Attention Layer is: 

  (13) 

   A graph consisting of lncRNA-disease associations is 
inputted into a graph attention autoencoder along with the linear 
characteristics F of each node. The propagation of features and 
the fusion of attention allows for obtaining non-linear 
representations of the nodes. 

C. Fusion lncRNA‑disease Features 
Existing methods typically utilize either linear or nonlinear 

features for lncRNA-disease prediction, but such single-
category features are insufficient to capture the complex 
relationships between them. To solve the above problem, the 
linear and nonlinear features are integrated into our model for 
prediction. Particularly, new lncRNA feature vectors and 
disease node feature vectors are obtained by connecting linear 
and nonlinear features: 

    (14) 

  (15) 
Subsequently represents the characteristics of the 

lncRNA-disease pair  as follows:   

  (16) 

IV. RESULTS AND DISCUSSION 

A. Evaluation Metrics 
To assess the performance of HGATELDA, we employ the 

receiver operating characteristic (ROC) curve as the evaluation 
metric and calculate the area under the curve (AUC) of the ROC. 
Additionally, three evaluation metrics, namely Accuracy 
(ACC), F1-Score (F1), Precision (Pre) and Matthews 
correlation coefficient (Mcc) are also computed, as follows: 

   (17) 

   (18) 

   (19) 

,(20) 

     (21) 

B. Comparative Experiment 
To demonstrate the predictive capabilities of HGATELDA, it 

underwent a 5-fold cross-validation process, where it was 
compared against various other methods: SIMCLDA [23], 
LDAP [41], Ping’s method [42], iLncDA-LTR [16], VADLP 
[43] and GCNLDA [44]. As shown in Fig. 3, our model 
achieved the best AUC value of 0.969, which was 0.4% higher 
than the GCNLDA, 1.3% better than VADLP, 1.7% better than 
iLncDA-LTR, 9.9% higher than Ping ’s method, 13.9% and 
22.4% higher than LDAP and SIMCLDA.  

The factors that have achieved good experimental results are 
described as follows: To begin with, the linear characteristics 
of lncRNAs and diseases are established by the MLI matrix and 
MDA matrix. Following this, the graph attention auto-encoder 
extracts the nonlinear features of diseases and long noncoding 
RNAs, largely retaining the critical information. In the end, by 
combining both linear and nonlinear characteristics of diseases 
and lncRNAs. The results of the 10-fold cross-validation of 
HGATELDA are presented in Table 2 and Fig. 4. Subsequently, 
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Fig.3. Comparison of AUC values with different methods. 
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Fig.5 depicts the results of leave-one-out cross-validations 
(LOOCV). 

Here, the performance of the model is proved by comparing 
different feature combinations. At first, the linear feature is 
obtained by basic linear multiplication (combination 1). 
Secondly, the nonlinear characteristics of prediction are 
obtained by GAT (combination 2). Finally, the combination of 
linear features and nonlinear features is used to obtain the 
prediction feature (combination 3). 

The specific results are shown in Table 3, which shows that 
combination 3 has achieved the best experimental results. 
Based on the results, we can conclude that combining linear and 
nonlinear features can yield a greater amount of 
information and improve the model's performance. 

At the same time, we study the layers of decoder and encoder 
of the GATE model, abbreviated as GATE-1, GATE-2 and 

GATE-3. All the evaluation results are recorded in Fig. 6. The 
experimental results show that the best experimental results are 
obtained when the number of layers of decoder and encoder is 
set to 2. In our study, we investigated the impact of the number 
of attention heads in multi-head attention on the model's 
performance. Fig. 7 clearly illustrates the trend of how different 
numbers of heads affect the model's performance. This research 
helps us gain a better understanding of how parameter selection 
within the model affects performance, offering valuable 
insights for optimizing the model. 

The performance of HGATELDA will vary based on the 
parameter values. There are many hyperparameters in the DNN 
classifier that needs to be tuned as follows: 

(1) Number of layers and hidden neurons. The model 
employs a three-layer neural network, consisting of 128, 64, 
and 32 neurons, respectively. 

(2) Optimizer and learning rate. The classifier utilizes the 
Adam optimizer, and the learning rate is set to .  

(3) Dropout. To prevent overfitting of the model, we carried 
out sensitivity analysis of dropout . As shown in Fig. 8, the 
best experimental results are obtained when . 

(4) Weights and biases are initialized to 0 as the initial values. 
The hyperparameters for GATE are configured as follows: 

(1) Number of layers: Both the encoder and decoder are set 

310-

a
0.2a =

TABLE Ⅲ 
COMPARATIVE EXPERIMENT OF FEATURE FUSION 

Feature fusion AUC ACC F1 PRE RE 

combination 1 0.914 0.819 0.821 0.829 0.813 
combination 2 0.933 0.860 0.865 0.836 0.895 
combination 3 0.969 0.901 0.903 0.882 0.925 

 

TABLE Ⅱ 
TEN-FOLD CV RESULTS PERFORMED BY HGATELDA 

Fold Acc Sen Spec Pre Mcc 

0 0.946 0.963 0.930 0.932 0.893 
1 0.939 0.967 0.911 0.916 0.879 
2 0.952 0.956 0.948 0.949 0.904 
3 0.943 0.941 0.944 0.944 0.885 
4 0.930 0.952 0.907 0.911 0.860 

5 0.920 0.937 0.904 0.907 0.841 

6 0.939 0.948 0.930 0.931 0.878 

7 0.931 0.937 0.926 0.927 0.863 

8 0.948 0.967 0.930 0.932 0.897 

9 0.941 0.944 0.937 0.938 0.881 

Average 0.939 0.951 0.927 0.928 0.878 

 

 
Fig.4. Ten-fold CV curve of HGATELDA. 

 
Fig.5. LOOCV curve of HGATELDA. 

 
Fig.6. AUC under different numbers of talking heads k. 
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to 2 layers. 

(2) Number of neurons per layer: The decoder layer aligns 
with the corresponding encoder layer, with 128 and 64 neurons 
for the two encoder layers, respectively. 

(3) Learning rate, Lambda, and Dropout: We set the learning 
rate to 0.001, enabling fast convergence of the model. 

C. Case Study 
This section provides case studies of three types of human 

cancers to further illustrate the predictive capabilities of 
GATELDA. The cancers studied include breast, pancreatic, 
and colorectal cancer. The process involves ranking 
candidate lncRNAs for each disease based on their final 
predicted score. The top lncRNA for each cancer is then 
selected for analysis in two databases: Lnc2cancer (I) and 
LncRNADisease (II). Here, the candidate genes labeled as 
"literature" are all confirmed to be related to pancreatic 
cancer in the literature. 

The first disease of choice is breast cancer. Breast cancer is 
a common malignant tumor in gynecology, which seriously 

endangers the physical and mental health of women. 

GATELDA was used to predict the 15 potential lncRNA with 
the highest correlation score with breast cancer to analyze 
whether they were associated. The results are listed in Table 
4. Out of the initial 15 new lncRNA predictions, 12 have been 
linked to breast cancer in the database, indicating a high 
success rate for these potential lncRNA. It's important to note 
that the validity of these lncRNA has been confirmed by two 
databases, further emphasizing their potential significance in 
prostate cancer research. For example, Recent research has 
found that the TUG1 gene is abnormally expressed in breast 
cancer cells [45]. This study revealed that TUG1 may play a 
significant role in the development of breast cancer, as its 
abnormal expression may lead to cell proliferation and 
metastasis [46]. This discovery provides new directions for 
further research and holds promise for the development of 
more effective methods to treat breast cancer. Although 
MIR17HG, HNF1A-AS1 and TUSC7 are not recorded in the 
database, they are all supported by the literature [47-49]. The 
treatment of breast cancer is significantly impacted by the 
above three types of lncRNAs, as indicated by recent research 
findings. 

The second disease of choice is pancreatic cancer. Due to 
its hidden and atypical nature, pancreatic cancer poses 
significant challenges to both diagnosis and treatment, and 
its incidence and mortality rates are among the highest in 
malignant tumors. In this context, we have selected 15 
potential lncRNAs with the highest correlation scores with 
pancreatic cancer to investigate their potential association 
with pancreatic cancer, and the results are listed in Table 5. 
Out of the initial 15 newly predicted lncRNAs, 13 have been 
found to be associated with pancreatic cancer in the database. 
It is worth noting that 11 out of these potential lncRNAs have 
been validated by two separate databases. For instance, a 
study reported a significant increase in the expression level 

 
Fig.8. AUC under different dropout rate . a

TABLE Ⅳ 
PREDICTED LNCRNAS FOR BREAST CANCER 

Rank lncRNA Evidence PMID 

1 TUG1 Ⅰ; Ⅱ 35232340 
2 HULC Ⅰ; Ⅱ 37910386 
3 MIR17HG literature 36943627 
4 BANCR Ⅰ; Ⅱ 29565494 
5 PCAT1 Ⅰ; Ⅱ 35014684 
6 PRNCR1 Ⅱ 33608112 
7 HNF1A-AS1 literature 33603481 
8 GHET1 Ⅰ; Ⅱ 30787968 
9 TUSC7 literature 34305410 

10 LINC01133 Ⅰ; Ⅱ 31557401 
11 GHET1 Ⅰ; Ⅱ 30787968 
12 SOX2-OT Ⅰ; Ⅱ 34997317 
13 FAL1 Ⅰ; Ⅱ 29987852 
14 PVT1 Ⅰ; Ⅱ 37531833 
15 CDKN2B-AS1 Ⅰ; Ⅱ 35965791 

 

 
Fig.7. AUC under different numbers of talking heads k. 
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of BANCR in pancreatic cancer tissues, where high 
expression was correlated with advanced clinical stage and 
poor patient prognosis [50]. A separate study discovered that 
BANCR can regulate the expression of miR-195 to promote 
the proliferation and invasion of pancreatic cancer cells [51]. 
These studies suggest that BANCR may be a potential 
therapeutic target and biomarker for pancreatic cancer. 
Among them, the study found that HNF1A-AS1, ADPGK-AS1 
and PCA3 are related to the clinicopathological features of 

pancreatic cancer, which indicate that three kinds of lncRNAs 
are potential therapeutic targets for pancreatic cancer [52-54]. 

 The last disease of choice is colorectal cancer. Colorectal 
cancer ranks third among the most prevalent malignant 
tumors globally and is the second leading cause of death. 
Early detection through timely diagnosis increases the 
likelihood of successful treatment through surgery, resulting 
in a higher cure rate. Similarly, the top 15 results are chosen. 
The results are listed in Table 6. In colorectal cancer samples, 
CRNDE has been found to be upregulated in colorectal 
cancer tissues and has been associated with tumor growth 
and progression [55]. However, further research is needed to 

fully understand the role of CRNDE in colorectal cancer. In 
addition, PCAT1 has been found to be upregulated in colorectal 
cancer tissues and has been associated with tumor growth and 
progression [56]. Although there are five lncRNAs that have 
not been confirmed, experimental results indicate that these five 
lncRNAs are also closely related to prostate cancer, and it has 
been confirmed in the literature that these five lncRNAs are also 
closely related to colorectal cancer [57, 58]. 

V.  CONCLUSION 
The growing body of evidence indicates that the 

identification of potential LDAs holds immense importance 
in both comprehending disease pathogenesis and advancing 
clinical medicine. As biomedical data continues to grow in 
complexity and size, new methods are needed to effectively 
integrate and analyze this information.  In our study, we 
propose a novel computational model that utilizes a 
heterogeneous network and graph attention auto-encoder to 
attain a deeper comprehension of candidate LDAs. Initially, 
we construct the linear characteristics of lncRNAs and 
diseases based on various biological premises related to 
lncRNAs, diseases, and miRNAs. Subsequently, the 
nonlinear features of diseases and lncRNAs are extracted 
using a graph attention auto-encoder. Finally, the linear and 
nonlinear characteristics of both diseases and lncRNAs are 
combined to make predictions about their association. The 
predictive performance of HGATELDA is evaluated using 5-
fold CV and its results are compared with those of other 
experiments. The effectiveness of the proposed method in 
predicting potential LDAs, including many unknown 
associations, is demonstrated in case study. Although our 
method has achieved high performance, due to data 
limitations, the proposed model did not incorporate 
additional data sources related to lncRNAs and diseases. At 
the same time, we will explore more interpretable models in 
the future to delve into deeper associations between lncRNAs 
and diseases.  
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