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Abstract—Time series data from real-world systems often dis-
play non-stationary behavior, indicating varying statistical char-
acteristics over time. This inherent variability poses significant
challenges in deciphering the underlying structural relationships
within the data, particularly in correlation and causality analyses,
model stability, etc. Recognizing distinct segments or regimes
within multivariate time series data, characterized by relatively
stable behavior and consistent statistical properties over extended
periods, becomes crucial. In this study, we apply the regime
identification (RegID) technique to multivariate time series, fun-
damentally designed to unveil locally stationary segments within
data. The distinguishing features between regimes are identified
using covariance matrices in a Riemannian space. We aim to
highlight how regime identification contributes to improving the
discovery of causal structures from multivariate non-stationary
time series data. Our experiments, encompassing both synthetic
and real-world datasets, highlight the effectiveness of regime-
wise time series causal analysis. We validate our approach by
first demonstrating improved causal structure discovery using
synthetic data where the ground truth causal relationships are
known. Subsequently, we apply this methodology to climate-
ecosystem dataset, showcasing its applicability in real-world
scenarios.

Index Terms—causal inference, regime identification, non-
stationary time series.

I. INTRODUCTION

Most often, the analysis and identification of the underlying
system of multivariate time series is built on the stationarity
assumption. However, the underlying dynamics may vary, e.g.,
over different seasons reflecting non-stationary behavior or
changes in the system’s state. Notably, there are shifts in
patterns that give rise to distinct regimes, which typically
refers to identifiable patterns with change points that the data
exhibits over a significant period of time, demonstrated in
Figure 1. The non-stationary behavior poses challenges in time
series analysis, i.e., correlation and causality, model robust-
ness, forecasting, etc. [15], [2]. A straightforward approach
would be manually selecting segments instead of an entire
time series for analysis. However, this disregards the stability
and co-evolving dynamics inherent in multivariate time series.
Hence, there is a need for automatic identification of regimes,
which considers the stability and relationships among variables
within the multivariate time series. In this work, we apply
regime identification to obtain time series segments with stable
statistical properties and enhance the understanding of the

underlying causal structure in multivariate time series. In addi-
tion, identification of regimes or regime change points (RCP),
i.e, points where regime switches, could be leveraged for
various applications in climate (i.e., extreme events detection),
health [8], [13] and predictive maintenance [24].
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Fig. 1: Illustration of regimes, i.e., distribution shift in time
series over a period of time, separated by regime change point
(RCP) in multivariate time series.

We achieve regime identification by clustering the covari-
ance matrices of the multivariate non-stationary time series
using k-Means with Riemannian distance metric. This tech-
nique generates multivariate time series segments with locally
consistent statistical properties. This idea has been previously
applied in brain science to estimate functional connectiv-
ity in brain networks [4], [20], [6], which we borrowed
to climatic time series analysis. We performed experiments
first on synthetic data as a proof of concept and show how
coupling of RegID with the state-of-the-art causality methods
CDMI [1], VAR Granger causality (VAR-GC) [10], PCMCI+

[17] improves causal discovery. Subsequently we apply our
approach to identify climate-ecosystem causal interactions by
using RegID in tandem with , Vanilla-PC [11], Trace method
[25] and 2GVecCI [23].

II. RELATED WORK

The work of [21] presents a method for regime shifts in co-
evolving time series. They model multiple time series in an
ecosystem by summarizing them into a mapping grid, captur-
ing behavioral dependencies and regime transitions. The model
utilizes a dynamic network representation for understanding
time series behavior and employs a full-time-dependent Cox
regression model for learning regime transitions. The work
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of [22] presents a comprehensive review of RCPs detection
where they categorize the approaches into likelihood-based,
kernel-based, and graph-based methods. The authors of [7]
present ClasP, a parameter-free and domain-agnostic time
series segmentation method that segments a uni-variate time
series in an unsupervised manner. Methods like FLOSS [9]
and ESPRESSO [5] use neural networks-based approaches for
time series segmentation. Most methods do not consider the
co-existence of the time series [14], [3]. Indeed, examining
multiple time series as an ecosystem implies a co-evolutionary
dynamic among the series, aligning with the concept of
complex systems and suggesting potential interactions between
these variables at various time intervals. Investigating the
interconnections among time series at different time intervals
is essential for identifying and predicting regimes. The work of
[19] presents a regime-dependent causal structure from time
series where they differ between two regimes based on the
discovered causal structure with PCMCI [18]. On the contrary,
our approach is to estimate regimes based on covariance
structures existing within the multivariate time series and
discover the causal structure for each regime.

III. METHOD

We use the time series’s covariance matrix space to identify
regimes previously used in brain science [4], [20], and [6],
where covariance matrices in Riemannian surfaces are used
for estimating functional connectivity in brain regimes. The
covariance structure can reveal how the multivariate time
series change relative to each other, which makes it ideal
for segmenting time series based on their dynamics and
discovering the underlying causal structure. Let Z(t) denote
the multivariate time series at time t, and w be the window
size. We extract covariance matrices for each time window
with no overlap until the end of the multivariate time series and
obtain a pool of the covariance matrices over time {Σ(t)}Tt=w

where T is the total number of time steps in multivariate
time series. We apply k-means with Riemannian and Euclidean
distance metrics to group non-stationary time series based on
their dynamics.

The k-Means clustering using Euclidean distance is repre-
sented as:

CE = argminC

T∑
t=w

∑
i∈C

∥Σ(t)− µi∥2 (1)

where C represents the set of cluster indices, µi is the centroid
of cluster i, and ∥·∥ denotes the Euclidean norm. Similarly,
for the k-Means clustering Riemannian distance, the objective
function is represented as:

CR = argminC

T∑
t=w

∑
i∈C

d(Σ(t), µi)
2 (2)

where d(·, ·) is the Riemannian distance using
the Log-Euclidean, an affine-invariant metric that
remains unchanged under affine transformations:
d(Σi,Σj) =

(∑n
i=1 log

2(λi)
)1/2

. Here λi represents the

eigenvalues of the matrix Σ
−1/2
i ΣjΣ

−1/2
i . These eigenvalues

are used to compute the Riemannian distance between two
symmetric positive definite matrices (SPDMs) Σi and Σj .
Riemannian is a distance measurement that deals with the
study of nonlinear or curved surfaces. Unlike Euclidean,
which measures the straight-line distance between two points
on a flat surface, Riemannian distance represents the shortest
path along a curved surface where the geometry of the space
is considered. The pseudo-code for regime identification in
multivariate non-stationary time series is given in Algorithm
1.

Algorithm 1 : RegID
function REGIMES(Z,w, k, dim)
Input: Zi,i=1,...,N is N-variate non-stationary time series,
w is the window size. If k (number of expected regimes) is
not provided, then optimally determined by algorithm.
Output: R are identified regimes in non-stationary time
series.
for j ← 1 to l/w
// l is the length of the time series

Σj ← covariance(Z,w)
spdms[j] ← Σj

end for
if dim != full:

spdms ← reducedim(spdms, n)
if k is None:

k = optimalk(Z)
// based on the elbow point of the
Calinski-Harabasz score curve
R← k-Means(spdms, k)
// Clustering of covariance matrices
or spdms using Riemannian/Euclidean as
distance metrics
Return R : {Rr,r=1,...,k}

IV. EXPERIMENTS

a) Synthetic Data: To evaluate the performance of our
method, we use synthetic data model: Zj,t = ajZj,t−1 +
Σicifi(Zi,t−τi)+ηj,t. The system variables Zj have auto and
cross-functional dependencies with a time delay of τ . The data
model incorporates linear and nonlinear dependencies f , i.e.,
exponential, polynomial, and adds uncorrelated, normally dis-
tributed noise ηjt . We artificially inject regimes in the generated
multivariate time series. To evaluate the effectiveness of the
regime identification method, we conducted experiments using
artificially generated non-stationary time series. Changes in
statistical properties such as mean, variance, and noise were
introduced at specific time points to simulate different regimes.
We embedded three distinct regimes within the data, each
marked by specified RCPs.

Figure 2 and A.1 illustrates the qualitative outcomes of
regime identification in the synthetic time series employing
k-Means with both Riemannian and Euclidean distance mea-
sures. The regime identification process utilizing the Rieman-
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Fig. 2: Detected regimes using a. Euclidean and b. Riemannian distance metric, are separated by black dotted lines while
ground truth RCPs are shown in red lines.

nian metric closely aligns with the ground truth by considering
the nonlinear geometry of covariance matrix-associated sur-
faces, which the Euclidean metric method overlooked. Similar
findings have been reported in the work of [12]. Riemannian
has advantages over Euclidean as a distance metric in the anal-
ysis of covariance matrices. First, it considers the geometry of
the space, which is essential when comparing data represented
as SPDMs. Besides, it is invariant to data transformations,
i.e., scaling, rotations, and translations. Moreover, it fulfills
the triangle inequality property, which states that the distance
between any two points is always less than or equal to the sum
of the distances between those points and a third point. This
property is vital for distance-based clustering and classification
methods as it allows for efficient computation of distances
and ensures that the resulting clusters are coherent and well-
separated, as we have seen in our experiments. For regime
identification in synthetic multivariate time series utilizing co-
variance structure in a Riemannian space demonstrates greater
stability across various sizes of time series batches. In contrast,
the Euclidean metric is highly sensitive to changes in window
size and generally fails to accurately identify regimes in non-
stationary time series, except for a window size of 90 in our
experiments, see Figure A.1. The red vertical lines in the
figures indicate the true RCPs in the dynamics of the time
series. We segmented the time series by varying window sizes
from 15 to 90, with detected regimes shaded in different colors
to distinguish one regime from another.

TABLE I: Performance analysis of causality methods on
synthetic time series with and without regime identification.
For regime-wise causal discovery, the mean values over all
regime are shown.

Methods Precision Recall Accuracy F-score
CDMI 0.60 0.90 0.72 0.72
RegID-CDMI 0.96 0.87 0.93 0.91
VARGC 0.50 1.00 0.60 0.67
RegID-VARGC 0.72 0.90 0.77 0.79
PCMCI+ 0.58 0.70 0.68 0.63
RegID-PCMCI+ 0.69 0.73 0.76 0.71

In Table I, we provide a comparative analysis of the
performance of the CDMI, VAR-GC, and PCMCI+ methods
with and without regime identification. The regimes exhibit lo-

cally stable statistical properties, where the causality methods
generally demonstrate superior F-score and accuracy (values
are averaged over all identified regimes) compared to their
performance without regime identification. This outcome is
anticipated since the CDMI method relies on modeling non-
linearity in a stationary system, where both the learning and
testing data originate from similar distributions, a condition
satisfied within each regime. VAR-GC and PCMCI+ also ex-
hibit enhanced regime-wise performance. All causality meth-
ods assuming data stationarity are expected to show improved
performance in causal discovery analysis when preceded by
regime identification.

Fig. 3: Identified regimes (blue, gray, green) in various sites
in FLUXNET dataset where summer and winter periods are
clearly separated by transition phase in each year.

b) Climate Data: Here, we conduct a causal analysis
of environmental time series data following the identifica-
tion of different regimes. We perform experiments using the
FLUXNET2015 dataset[16]. This dataset, acquired through
the eddy covariance technique, captures carbon, water, and
energy cycling between the biosphere and atmosphere across
multiple regional networks. Data preparation efforts are carried
out at individual site and network levels. For our experiments,
we selected focus on several measurement sites, including
Hainich (DE-Hai), Monte Bondone (IT-MBo: Grasslands),
Puechabon (FR-Pue: Evergreen Broadleaf Forests), and Tonzi
Ranch (US-Ton: Woody Savannas). We selected these sites due
to their diverse ecological characteristics, representing differ-



TABLE II: Performance of the methods in identifying causal direction (fractional occurrence) in climate-ecosystem data across
regimes for various sites. We test a bi-directional causal link only for CDMI as it facilitates so.

Methods
Sites Links CDMI 2GVecCI Trace Vanilla-PC

DE-Hai
(Deciduous Broadleaf

Forests)

GC → GE 0.17 0.66 0.50 0.00
GC ← GE 0.00 0.17 0.50 0.17
GC ↔ GE 0.83 − − −
GC ↮ GE 0.00 0.17 0.00 0.83

IT-MBo
(Grasslands)

GC → GE 0.66 0.34 0.83 0.00
GC ← GE 0.17 0.00 0.17 0.00
GC ↔ GE 0.17 − − −
GC ↮ GE 0.00 0.66 0.00 1.00

FR-Pue
(Evergreen Broadleaf

Forests)

GC → GE 0.34 0.34 1.00 0.50
GC ← GE 0.00 0.00 0.00 0.17
GC ↔ GE 0.66 − − −
GC ↮ GE 0.00 0.66 0.00 0.33

US-Ton
(Woody Savannas)

GC → GE 0.34 0.34 1.00 0.50
GC ← GE 0.00 0.00 0.00 0.17
GC ↔ GE 0.66 − − −
GC ↮ GE 0.00 0.66 0.00 0.33

ent ecosystem types across different geographical regions. The
FLUXNET2015 dataset encompasses climatic and ecological
time series data, such as global radiation (Rg), temperature
(T ), gross primary production (GPP ), and ecosystem respira-
tion (Reco), measured at various time scales (e.g., half-hourly,
hourly, daily, weekly). We categorize these variables into two
groups: the climate group (GC), comprising temperature (T )
and global radiation (Rg), and the ecosystem group (GE),
consisting of the ecosystem variables GPP and Reco. We
opt for daily sampling frequency, which offers advantages in
mitigating the influence of daily patterns that might obscure
the underlying causal relationships in the data. Our results,
presented in Table II, presents the fractional occurrences of
the specified causal links from climate-ecosystem interac-
tions across multiple sites and various regimes from 2008
to 2010 as shown in Figure 3. The CDMI method shows a
notable prevalence of bidirectional causal links (GC ↔ GE),
suggesting robust mutual interactions between climate and
ecosystem variables specifically in forest sites. In contrast, the
2GVecCI method effectively identifies causal links (GC →
GE) primarily in the DE-Hai site, but struggles to detect such
links in other sites. The Trace method consistently highlights
causal links (GC → GE) across all sites, along with CDMI
for grasslands. Conversely, Vanilla-PC demonstrates limited
success in identifying climate-ecosystem links, with notable
detection only in the US-Ton site (fractional occurrence of
0.5).

V. CONCLUSION

In conclusion, our study introduces the coupling of regime
identification (RegID) technique with causality methods as a
powerful approach for improving causal analysis by revealing
locally stationary segments within multivariate time series
data. The challenges in time series analysis, i.e, correlation
and causation, posed by non-stationary behavior in real-
world systems, including changing statistical characteristics
over time, are addressed through the identification of distinct

regimes characterized by stable behavior and consistent statis-
tical properties. Leveraging the covariance properties of the
data and employing principles from Riemannian geometry,
RegID effectively extracts distinguishing features among these
regimes. Our experiments demonstrate the efficacy of the
regime identification technique in enhancing the identification
of distinct regimes and improving causal analysis of the
non-stationary time series. As a future work, we conduct
experiments on regime identification for high-dimensional data
in a reduced-dimension space.
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Fig. A.1: Displayed are the identified regimes in synthetic time series Z using k-means with Euclidean and Riemannian metrics
for a variety of window sizes [15-90]. The identified regimes are shown in red, green, and white. The red vertical lines show
the actual change points.
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