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Abstract

The Northern European Enclosure Dam (NEED) is a hypothetical project to prevent flooding in
European countries following the rising ocean level due to melting arctic glaciers. This project involves
the construction of two large dams between Scotland and Norway, as well as England and France. The
anticipated cost of this project is 250 to 500 billion euros. In this paper, we present the simulation of
the aftermath of flooding on the European coastline caused by a catastrophic break of this hypothetical
dam. From our simulation results, we can observe that there is a traveling wave after the accident,
with a velocity of around 10 kilometers per hour, raising the sea level permanently inside the dammed
region. This observation implies a need to construct additional dams or barriers protecting the northern
coastline of the Netherlands and the interior of the Baltic Sea. Our simulations have been obtained using
the following building blocks. First, a graph transformation model was applied to generate an adaptive
mesh approximating the topography of the Earth. We employ the composition graph grammar model
for breaking triangular elements in the mesh without the generation of hanging nodes. Second, the wave
equation is formulated in a spherical latitude-longitude system of coordinates and solved by a high-order
time integration scheme using the generalized α method.

1 Introduction

Rising ocean levels caused by climate change and melting Arctic glaciers have worried European environmen-
talists to the point that a plan has been made to build a large dam to separate the oceans from the North Sea
and Baltic Sea basins. The Northern European Enclosure Dam (NEED) project [1, 2] contemplates building
two huge dams, the first between Scotland and Norway and the second between England and France. This
would require the construction of four sections of dams in the north and one section in southern England.
The first dam, 331 kilometers long respectively, would connect the west coast of Norway with the Scottish
island of Shetland. Another section between the Isle of Shetland and Scotland with a total length of 145
kilometers, and another covering the Orkney islands. In addition, a dam would need to be built in the south
of England between England’s Cornwall and Bretagne in France, with a length of 161 kilometers.

The water depth at the dam sites reaches 110 meters at its deepest points. Technical details of the
construction of the NEED dam are under consideration, but nevertheless, preliminary estimates have put
the cost of building such a dam at an expense of 250-500 billion euros. Despite such an extreme cost, the
project is being considered very seriously since the Arctic glaciers are melting [1]. Since 1880, the average
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sea level has risen by 21 centimeters [4], and the predicted average increase in ocean levels is 2.3 meters for
every one degree Celsius increase in average temperature [5]. The result, as noted by [3], is an inevitable
rise in sea levels in the range of 5-11 meters over the next centuries. The bleakest scenarios assume a more
than 10-meter rise in global average ocean levels by the year 2500 [6, 7]. More cautious scenarios described
in [8, 9, 10] predict a 1-2 meter rise in average ocean levels by 2100. A recent paper [28] shows that the West
Antarctic Ice Sheet encountered rapid melting 8000 years ago, which could cause an increase of the average
ocean level up to 4 meters in 200 years.

We focus on a hypothetical scenario where we assume that the Northern Sea and Atlantic Ocean levels
rise by 6 meters and the Northern and Baltic Seas are protected by the NEED. This is the starting point of
our consideration. At this moment, we assume a massive dam break. There may be several potential causes
of such a scenario, including natural causes like an earthquake or asteroid strike, as well as material fatigue
or design flaws. Another theoretically possible scenario is a terrorist attack against the dam.

To perform our simulation, we employ the following tools:

• A computational mesh is generated using a novel composition graph grammar model described in
Section 2. The topography of the Earth and the seabed is based on the Global Multi-Resolution
Topography Data Synthesis database [25].

• A simulation that employs the wave equations summarized in Section 3 discretized in space using finite
element method over the entire Earth mesh.

• A time integration scheme which employs a high-order generalized α method described in Section 4.

The simulation of the NEED dam break using all the above tools is summarized in Section 5. In Section 6
we also discuss the parallel scalability of our implementation. The paper is concluded in Section 7.

2 The first building block, a simple composition graph grammar
model for breaking triangular elements in the mesh without
generation of hanging nodes

The first building block for our simulator is the composition graph grammar model. It models Rivara’s
algorithm [20, 21] for breaking triangular elements in a way that does not generate hanging nodes. All
the triangles of the mesh are represented by the composition graph grammar [13]. The way we break
the triangular elements is described by some rules that transform the composition graph. These rules are
defined following the idea of the composition graph grammar proposed by Ewa Grabska [14, 15]. The formal
definition of the composition graph grammar can be found in [13].

The Rivara longest-edge refinement algorithm is summarized in Figure 2. The main assumption of the
Rivara algorithm is that we can only break the longest edges of elements. This prevents the creation of
elongated elements that may cause numerical problems. We start with four triangular finite element meshes.
We want to break the first triangle; see panel (a) in Figure 2. We mark its longest edge by the red dot; see
panel (a) in Figure 2. The general condition says that we can break the marked edge only if two neighboring
triangles share it, and for both triangles, this edge is the longest. Another option is when this edge is located
on the boundary. This is not the case here since the second element has another longest edge. Thus, we
mark the other longest edge of the second element, which we denote again by the red dot, see panel (a) in
Figure 2. This procedure is repeated; see panel (b) in Figure 2 until we end up with the edge located on the
side of the domain. This time it can be broken. We break the last element; see panel (b) in Figure 2. After
this operation, the previous red dot is located on the edge that fulfills the breaking condition; see panel (c)
in Figure 2. We can break this edge and the two adjacent elements; see panel (c) in Figure 2. The same
happens to the second edge denoted by the red dot in panel (c) in Figure 2. We can break this edge. Finally,
the first edge denoted by the red dot also fulfills the breaking condition; see panel (c) in Figure 2. We can
break the two adjacent elements, including the first element that was our original target, see panel (c) in
Figure 2.

The composition graph grammars have been successfully used to model mesh refinements with triangular
or rectangular elements [16, 17, 18, 19]. The definition of the Rivara algorithm by another kind of trans-
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formative rules called the hypergraph grammar, has already been described in [30]. There are the following
differences between the previous model described in [30] and the new model presented in this paper:

• The previous model employs the hypergraph grammar model, while the new model uses the composition
graph grammar model.

• The previous model needs six hypergraph grammar productions presented in Figures 5-10 in [30], while
the new model needs only four composition graph grammar productions presented in Figures 3-7.

• The six productions from the hypergraph grammar model described in [30], presented in Figures 5-10
there, have complex left-hand sides, which are very costly to implement. The subgraphs of the left-hand
sides of these productions need to be identified as subgraphs of the big hypergraph representing the
entire computational mesh there. They consist of triangular elements with between 3 to 5 vertices and
several hyperedges. The four productions of our new composition graph model presented in Figures
3-7 have only one or two vertices, so their identification is straightforward.

Summing up, our new model presented in Figure 3-7 is simpler and cheaper to implement than our previous
model described in [30].

The Rivara algorithm has also been expressed by graph-grammar in [23]. There are the following differ-
ences between [23] and this paper:

• In [23], the graph-grammar-based mesh generation has been performed in the spherical system of coor-
dinates, but the PDE has been formulated in the Cartesian system of coordinates, and the simulation
was performed only on small part of the domain. In our new paper, the PDEs are formulated in the
spherical system of coordinates, and the simulation is performed on the entire mesh.

• The graph grammar model presented in [23] expressed the Rivara algorithm by two productions, with
four connected vertices and six connected vertices on the left-hand sides. These left-hand sides of the
productions are still expensive to identify. In this new paper, we introduce graph-grammar productions
that have only one or two vertices on the left-hand sides, and they are easy to identify to execute graph
grammar productions.

• The computations performed in [23] were sequential, while the computations presented in this paper
are parallel.

Let us now introduce the new composition graph grammar model for breaking two-dimensional triangular
elements without the creation of the hanging nodes. Figure 1 presents an exemplary two-element mesh and
the corresponding CP-graph. A node represents a triangular element. Each node has label T and attributes
C1, C2, C3 the coordinates of the triangle vertices. Each node has three bonds representing the edges of a
triangle. Each edge has three attributes: attribute L - the length of the edge; attribute B, which equals 1 if
the edge is boundary edge and ”0” in the other case; and attribute BR, which equals 1 if the edge should
be broken and ”0” in the other case.

T
L=L2

B=1

BR=0

L=L1

B=1

BR=0

L=L3

B=0

BR=0

T

L=L5

B=1

BR=0

L=L4

B=1

BR=0
L=L6

B=0

BR=0C1=C1_1
C2=C2_1
C3=C3_1

C1=C1_2
C2=C2_2
C3=C3_2

Figure 1: An exemplary two-element mesh and the corresponding CP-graph.

The graph grammar modeling the longest edge Rivara algorithm consists of four productions:

• Production (graph transformation) GT1 (Figure 3) which marks for refinement the longest edge of
an element that should be refined (element for which the refinement criteria (RC) is fulfilled). If an
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element has more than one longest edge, the boundary edge will be chosen. The value of the attribute
BR for the longest edge is set to 1.

• Production (graph transformation) GT2 (Figure 4) which propagates the refinement - marks for re-
finement of the longest edge of the neighboring element. If the neighboring element has more than one
longest edge, the boundary edge will be chosen. The value of the attribute BR for the longest edge is
set to 1.

• Production (graph transformation) GT3 (Figure 5), which propagates the refinement in the case when
the neighboring element’s longest edge is the common edge and performs refinement of both ele-
ments to the longest common edge. This production replaces the CP-graph representing two big
neighboring elements with a CP-graph representing four smaller elements. Figure 6 presents changes
in the two-element mesh when we perform refinement (graph transformation GT3). The function
Calculate1(C1, C2, C3) and Calculate2(C1, C2, C3) calculate the coordinates of vertices of the newly
created first and second small triangle, respectively, on the base of coordinates of vertices of the big tri-
angle. The function CalculateDistance(C1, C2, C3) calculates the length of the newly created common
edge.

• Production (graph transformation)GT4, presented in Figure 7, performs refinement of the longest edge,
which is the boundary edge. This production replaces the CP-graph representing one big boundary
element with a boundary edge marked for refinement by a CP-graph representing two smaller elements.
The function Calculate1(C1, C2, C3) and Calculate2(C1, C2, C3) calculate the coordinates of vertices
of the newly created first and second small triangle, respectively, on the base of coordinates of vertices
of the big triangle.

(GT1) (GT2)

(GT2) (GT2) (GT4)

(GT3) (GT3) (GT3)

(a)

(b)

(c)

Figure 2: Rivara algorithm of refinement, step by step.

Figure 8 presents derivation modeling the process of Rivara refinement algorithm as presented in Figure
9.

3 The second building block modeling the dam break with the
wave equations

The second building block for our simulations are the wave equations. A comprehensive review of modeling
tsunami waves is described in [26]. Seawater flow is often modeled using shallow water theory and leads to a
set of transient and nonlinear PDEs, i.e., the shallow water equations (SWE) [24]. The solution of the SWE
for physically relevant flows requires significant resources due to its nonlinear nature and multiple unknowns.
Multiple surrogates exist that are valid in certain limited cases and admit accurate solutions within their
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T

L=L2

B=B2

BR=BR2

L=L1

B=B1

BR=BR1

L=L3

B=B3

BR=BR3

RC and [ (BR1==BR2==BR3==0) and [ (L1>L2) or [(L1==L2) and  [(B1==B2) or (B2==0)] ]] a
[ (L1>L3) or [(L1==L3) and  [(B1==B3) or (B3==0)]]] ]

T

L=L2

B=B2

BR=BR2

L=L1

B=B1

BR=1

L=L3

B=B3

BR=BR3

1 1

2 2

33

C1=C1_1
C2=C2_1
C3=C3_1

C1=C1_1
C2=C2_1
C3=C3_1

Figure 3: Production GT1, marking element for breaking.
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1
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L=L5

B=B5

BR=BR5

L=L4

B=B4

BR=BR4

L=L6

B=B6

BR=BR6

4

T L=l2

B=B2

BR=BR2

L=l1

B=B1

BR=1

L=l3

B=B3

BR=BR3

1

2

3 T

L=l5

B=B5

BR=BR5

L=l4
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BR=BR4

L=l6

B=B6

BR=BR6

4

(BR6==1) and [ (BR1==BR2==BR3==0) and [ (L1>L2) or [(L1==L2) and  [(B1==B2) or (B2==0)] ]] and
[ (L1>L3) or [(L1==L3) and  [(B1==B3) or (B3==0)]]] ]

C1=C1_1
C2=C2_1
C3=C3_1

C1=C1_1
C2=C2_1
C3=C3_1

C1=C1_2
C2=C2_2
C3=C3_2

C1=C1_2
C2=C2_2
C3=C3_2

Figure 4: Production GT2, propagation of refinement marker.

T
L=L2

B=B2

BR=BR2

L=L1

B=B1

BR=BR1

L=L3

B=B3

BR=BR3

1

2

3 T

L=L5

B=B5
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L=L1

B=B1

BR=BR6

4

T

L=L3

B=B3

BR=BR3

1

T

L=L5

B=B5

BR=BR5

L=L1/2

B=B1

BR=0

4

T
L=l2

B=B2

BR=BR2

2

3 T
L=l4

B=B4

BR=BR4

L=CalculateDistance(C1_1,C2_1,C3_1)

B=0

BR=0

(BR6==1) and [ (BR1==BR2==BR3==0) and [ (L1>L2) or ( (L1==L2) and  (B2==0) )] and
[ (L1>L3) or ( (L1==L3) and   (B3==0) )] ]

L=CalculateDistance(P1_1,P2_1,P3_1)

B=0

BR=0

L=CalculateDistance(C1_2,C2_2,C3_2

B=0

BR=0

L=CalculateDistance(C1_2,C2_2,C3_2)

B=0

BR=0

L=L1/2

B=B1

BR=0

L=L1/2

B=B1

BR=0

L=L1/2

B=B1

BR=0

(C1,C2,C3)=
Calculate1(C1_1, C2_1,C3_1)

(C1,C2,C3)=
Calculate1(C1_2, C2_2,C3_2)

(C1,C2,C3)=
Calculate2(C1_1, C2_1,C3_1)

(C1,C2,C3)=
Calculate2(C1_2, C2_2,C3_2)

C1=C1_1
C2=C2_1
C3=C3_1

C1=C1_2
C2=C2_2
C3=C3_2

Figure 5: Production GT3, breaking of common longest edge.

region of validity. In this case of tsunami modeling, we will focus on the case in which the wave propagation
is governed by long wave theory.

The approach we use has been studied extensively and appears in, e.g., [11, 22, 23]. Starting with
nonlinear shallow water theory and performing modeling assumptions (see [26]), the SWE can be reduced
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Figure 6: Breaking of two neighboring elements.

T

L=L2

B=B2

BR=BR2

L=L1

B=B1

BR=BR1

L=L3

B=B3

BR=BR3

(BR1==1) and (B1==1) 

1

2 T

L=L1/2

B=B1

BR=0

L=L3

B=B3

BR=BR3

1

T

L=L1/2

B=B1

BR=0

3

L=L2

B=B2

BR=BR2

2 3

1

L=CalculateDistance(C1_1,C2_1,C3_1)

B=0

BR=0

L=CalculateDistance(C1_1,C2_1,C3_1)

B=0

BR=0

(C1,C2,C3)=
Calculate1(C1_1, C2_1,C3_1)

(C1,C2,C3)=
Calculate2(C1_1, C2_1,C3_1

C1=C1_1
C2=C2_1
C3=C3_1

Figure 7: Production GT4, breaking of boundary edge.

to the following wave equation:

∂2u

∂t2
−∇ (g(u− hb)∇u) = 0 in Ω. (1)

In this formula, the unknown scalar field u represents the water level, thus, u − hb is the water depth
relative to the seabed denoted by the hb. The acceleration due to gravity is denoted by g = 9.81m

s2 . The
computations are performed on the model of the whole Earth, where the North Pole and South Pole are
modeled as the zero Neumann baoundary conditions. Here, we have assumed that the wave speed is the
shallow water wave celerity, i.e., c2 = g(u−hb). Note that (1) is the standard representation of the nonlinear
wave equation in x, y, z coordinates. As the computational domain of consideration, we include the entire
Earth. In our graph grammar-based mesh generation procedure, described in Section 2, we produce finite
element meshes that are defined using spherical coordinates with a fixed radius R. Hence, classical longitude-
latitude coordinates (λ, ψ). The reference water level corresponds to the sphere. The wave equation seeks a
water level (λ, ψ) → u(λ, ψ) ∈ R. The sea floor is defined by (λ, ψ) → hb(λ, ψ) ∈ R. The three-dimensional
mesh obtained by the graph-grammar model approximates the bathymetry, topography, and coastline based
on the data provided by [25]. The generated computational mesh for the whole Earth is presented in Figures
10-12.

To accomplish this, we use standard transformations to this reference frame using the following transfor-
mations to a longitude-latitude coordinate system, i.e.,

x = (λ− λ0)R cosϕ0,

y = Rϕ.
(2)

Here (λ0, ϕ0) are coordinates of a reference point. Using the chain rule, we can perform a substitution and
coordinate shift such that:

∇ (g(u− hb)∇u) = ∇{g(u− hb)(Rcosϕ0)−1 ∂u

∂λ
, g(u− hb)R

−1 ∂u

∂ϕ
}T, (3)

Thus:

∂2u

∂t2
−R2

(
1

cos2ϕ0

∂

∂λ
{g(u− hb)

∂u

∂λ
}
)
−R2 ∂

∂ϕ

(
g(u− hb)

∂u

∂ϕ

)
= 0 in Ω. (4)
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BR=0
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BR=0
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B=0
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T
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B=1

BR=0

L=L3/2

B=0

BR=0

T

L=L6

B=0

BR=0

L=CalculateDistance(C1_3,C2_3,C3_3)

B=0

BR=0

L=L3/2

B=0

BR=0

(GT3)

T
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B=1
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L=L4

B=1
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(C1,C2,C3)=
Calculate1(C1_1, C2_1,C3_1)
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B=0

BR=0

L=CalculateDistance(C1_1,C2_1,C3_1)
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C1=C1_1
C2=C2_1
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C1=C1_2
C2=C2_2
C3=C3_2

C1=C1_1
C2=C2_1
C3=C3_1

C1=C1_2
C2=C2_2
C3=C3_2

C1=C1_1
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C1=C1_1
C2=C2_1
C3=C3_1

C1=C1_2
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Figure 8: An exemplary derivation modeling the process of Rivara algorithm as presented in Figure 9.

(GT1) (GT2)

(GT4) (GT3)

Figure 9: The process of Rivara refinement algorithm for the simple two element mesh in the case the left
element should be refined.
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Figure 10: Generation of the topography of the Earth (1/3) with composition graph grammar expressing
the Rivara method.
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Figure 11: Generation of the topography of the Earth (2/3) with composition graph grammar expressing
the Rivara method.
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Figure 12: Generation of the topography of the Earth (3/3) with composition graph grammar expressing
the Rivara method.
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4 Numerical scheme

To develop numerical simulations using (4), we discretize in space using the Finite Element method and use
the generalized alpha scheme [27] to perform time stepping. After integration by parts and application of
boundary conditions, we can write the equivalent weak formulation of (4) as:(

∂2u

∂t2
, v

)
+ b(u, v) = 0 ∀v ∈ V, (5)

for a bilinear form b(·, ·) and trial space V :

b(u, v) = R2g

(
(u− hb)

∂u

∂ϕ
,
∂v

∂ϕ

)
−R2g

1

cos2ϕ0

(
(u− hb)

∂u

∂λ
,
∂v

∂λ

)
∀v ∈ V, (6)

Since we solve the whole Earth, there are no boundary conditions. To alleviate encountered stability issues,
we also introduce a non-zero dampening term of the form c∂u∂t , where

c = c0
h0

min{h0, hb}
, (7)

In deep regions of the ocean (hb ≪ h0) we have c ≈ 0, while in the shallow waters (hb ≈ h0) we have c ≈
c0, meaning that the damping effect is only meaningful near the shores, where we encountered numerical
instabilities. In the numerical experiments presented in the paper, we used c0 = 5 × 10−4 and h0 = −5.

Applying the Bubnov-Galerkin method results in a semi-discrete formulation,

M ü + Cu̇ +Bu = 0. (8)

The first term involves the mass matrix, the second term involves the damping matrix, and the last term
involves the matrix of our bilinear form. The solution vector u contains the coefficients of the discrete
solution uh. We use the generalized-α scheme with time step size τ . We introduce the acceleration a = ü as
well as we introduce the velocity v = u̇. Using this notation, we can rewrite our problem (8) into

Ma + Cv +Bu = 0, (9)

The generalized-α method parameterized with α1, α2, β, γ involves the following sequence of steps

Man+1−α1
+ Cvn+1−α2

+Bun+1−αf
= 0, (10)

where the symbols with fractional indices are defined as

an+1−α1
= (1 − α1)an+1 + αman,

vn+1−α2
= (1 − α2)vn+1 + αfvn,

un+1−α2
= (1 − α2)un+1 + αfun,

(11)

and new values of v, u are given by

vn+1 = vn + τ [(1 − γ)an + γan+1] ,

un+1 = un + τvn +
τ2

2
[(1 − 2β)an + βan+1] .

(12)

In the numerical tests, their values are

α1 =
2ρ− 1

ρ+ 1
,

α2 =
ρ

ρ+ 1
,

β =
1

4
(1 − α1 − α2)2,

γ =
1

2
− α1 − α2,

(13)

where ρ = 0.2. Such the setup of the method parameters makes sure that this time integration scheme is of
the second order [27].
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Figure 13: The computational domain of Earth including the coastline, seabed, and the reference sea level.

5 Simulation of a tsunami caused by dam break

We present a numerical simulation of the aftermath of the hypothetical NEED failure, caused by either
natural causes, structural failure, or terrorist attack. While all these scenarios could cause slightly different
initial conditions, we assume that in our initial configuration, the NEED has disappeared, including the
Northern and Southern parts, and we perform a simulation of the aftermath.

The simulation is performed on a model of the entire Earth, presented in Figure 13, generated using com-
position graph grammar adapting the coastline and the seabed to the Global Multi-Resolution Topography
Data Synthesis database [25]. We employ a spherical coordinate system since our numerical model describes
the ocean water level with respect to a reference level which is shown in blue on the presented sphere. In
our further pictures, we focus on the part of the adaptive mesh describing the Northern Sea, Baltic Sea, and
the Northern European Enclosure Dam (NEED).

The simulation performed with our homemade code takes around 2 hours on a laptop having an 11th
Generation Intel(R) Core(TM) i5-11500H processor with a 2.92 GHz clock with 32 GB of RAM. In Section 6,
we also summarize the scalability of the parallel code executed on a multi-core node of Ares parallel machine
[29]. The simulated time period is 12500 minutes, or 8 days 16 hours and 20 minutes.

Subsequent snapshots from the computer simulation, summarized in Table 1 are shown in Figures 14-28.
These figures show the systematic flooding of the North Sea basin and then the Baltic Sea by a diffusing
wave with a speed of about 10 kilometers per hour. In this stage, the level of the North Sea and the Baltic
Sea gradually rises to the initially assumed level of 6 meters above the original average sea level.

6 Parallel computations

We have run 20 time iterations of our simulator on a single node of ARES supercomputer [29] equipped with
48 cores and 192 GB of RAM, measuring:

• ”mesh loading” - mesh file loading time,

• ”setup” - time to allocate memory, pre-process the mesh, initial state, etc.

• ”assembly” - time spent generating matrices and right sides for the system of equations,

12



Figure time step simulated time
18 1 41 minutes
19 2 1 hours 23 minutes
20 3 2 hours 5 minutes
21 4 2 hours 46 minutes
22 5 3 hours 28 minutes
23 10 6 hours 56 minutes
24 15 10 hours 25 minutes
25 20 13 hours 3 minutes
26 40 1 day 3 hours 46 minutes
27 60 1 day 17 hours 40 minutes
28 100 2 days 21 hours 26 minutes
29 150 4 days 8 hours 10 minutes
30 200 5 days 18 hours 53 minutes
31 250 7 days 5 hours 36 minutes
32 300 8 days 16 hours 20 minutes

Table 1: Snapshots of the simulation

Figure 14: 41 minutes after breaking of the NEED.

• ”solver” - time of linear solver,

• ”step update” - the updates of the velocity and wave shape fields, estimated from the accelerations
solved,

• ”file output” - saving the results to a file.

The execution times of different parts of the algorithm, measured as we increase the number of cores, from
1 to 48 cores, are presented in Figure 29. The fractional decompositions of the total simulation time into
different parts for increasing number of cores are outlined in Figure 30.

The summary of the speedup of the particular parts, measured for 1-48 cores, is presented in Figure 31.
The efficiency for 1-48 cores is presented in Figure 32. To summarize the execution times, we can perform
20 iterations of the simulator using 48 cores in less than 4 seconds; see Figure 29.

13



Figure 15: 1 hour 23 minutes after breaking of the NEED.

Figure 16: 2 hours 5 minutes after breaking of the NEED.

7 Conclusions

The massive damage to the Northern European Enclosure Dam is predicted to have huge consequences for
the European population living in coastal areas.

We combined a unique graph transformation model to generate the entire Earth to perform a simulation
of the NEED break using wave equation, finite element method solver with the higher-order generalized-α
method.

From our simulations, we can draw the following conclusions: a potential NEED should be built with
great care and certainly with additional coastal protection systems in the event of a catastrophic break.
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Figure 17: 2 hours 46 minutes after breaking of the NEED.

Figure 18: 3 hours 28 minutes after breaking of the NEED.
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Figure 19: 6 hours 56 minutes after breaking of the NEED.

Figure 20: 10 hours 25 minutes after breaking of the NEED.

9 Computer Code Availability

NEED dam break simulation was carried out using tsunami-europe script, developed by Marcin  Loś, using
FEniCS framework

https://fenicsproject.org/download/archive/

Running it requires Python (version at least 3.10), FEniCS framework and meshio Python package. No
special hardware is required. The script consists of 170 lines of Python code. The source code and the mesh
file are freely available at

https://github.com/marcinlos/tsunami-europe
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Figure 21: 13 hours 3 minutes after breaking of the NEED.

Figure 22: 1 day 3 hours 46 minutes after breaking of the NEED.

under MIT License, with a brief instruction.
The meshes used in the NEED dam break simulation have been generated using the tsunami-europe-

mesh script developed by Pawe l Maczuga and Albert Oliver-Serra. You can access the script in the following
publicly available repository:

https://github.com/albert-oliver/Tsunami-Europe-mesh

The code runs in the Julia programming language, and it depends on the following two libraries, also
developed by Pawe l Maczuga and Albert Oliver-Serra:

https://github.com/albert-oliver/MeshGraphs.jl

This library implements the Graph Grammar for the Rivara refinement and provides an API for gener-
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Figure 23: 1 day 17 hours 40 minutes after breaking of the NEED.

Figure 24: 2 days 21 hours 26 minutes after breaking of the NEED.

ating and refining a mesh.
https://github.com/albert-oliver/TerrainGraphs.jl

This library implements the mesh generation of terrains (either flat or spherical). It reads a GeoTIFF
file, generates an initial coarse mesh, checks the refinement criteria specific to terrains, and refines the mesh
until it obtains the final mesh.

Please note that the software code is available under the MIT license
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Figure 25: 4 days 8 hours 10 minutes after breaking of the NEED.

Figure 26: 5 days 18 hours 53 minutes after breaking of the NEED.
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