
ar
X

iv
:2

40
5.

02
23

2v
1

 [
cs

.C
C

]
 3

 M
ay

 2
02

4

From Proof Complexity to Circuit Complexity
via Interactive Protocols

Noel Arteche∗ Erfan Khaniki† Ján Pich‡ Rahul Santhanam§

Abstract

Folklore in complexity theory suspects that circuit lower bounds against NC1 or P/poly, currently out of reach,
are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended
Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough
separation NEXP * P/poly, as recently observed by Pich and Santhanam [PS23].

We show such a connection conditionally for the Implicit Extended Frege proof system (iEF) introduced by
Krajíček [Kra04b], capable of formalizing most of contemporary complexity theory. In particular, we show that if
iEF proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average
for subexponential-size circuits, then any superpolynomial lower bound on the length of iEF proofs implies #P *
FP/poly (whichwould in turn imply, for example, PSPACE * P/poly). Our proof exploits the formalization inside iEF
of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [LFKN92]. This has consequences
for the self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to require
progress in constructing interactive proof systems with more efficient provers.

∗Lund University and University of Copenhagen, noel.arteche@cs.lth.se
†Institute of Mathematics of the Czech Academy of Sciences, e.khaniki@gmail.com
‡University of Oxford, jan.pich@cs.ox.ac.uk
§University of Oxford, rahul.santhanam@cs.ox.ac.uk

1

http://arxiv.org/abs/2405.02232v1
mailto:noel.arteche@cs.lth.se
mailto:e.khaniki@gmail.com
mailto:jan.pich@cs.ox.ac.uk
mailto:rahul.santhanam@cs.ox.ac.uk

1 Introduction

At a high level, both circuit complexity and proof complexity can be thought of as an approach towards the P versus
NP question. The circuit complexity program, which met with considerable success in the 1980s, tries to prove lower
bounds against gradually larger circuit classes, hoping to eventually show NP * P/poly. Proof complexity, often
identified with the so-called Cook-Reckhow program, intends to show NP ≠ coNP and, in turn, P ≠ NP, by proving
lower bounds against gradually more powerful proof systems for propositional logic.

While both enterprises share the motivation to study concrete computational models of increasing power hoping
to build up techniques to attack the long-sought separations, there exist notable differences. Circuit complexity looks
at deterministic models of computation, while proof complexity deals with proof systems, which are inherently non-
deterministic. Furthermore, while circuit complexity has a clear end-goal (lower bounds against general Boolean
circuits), it remains wide open whether the Cook-Reckhow program can be realized even in principle. It is not
known whether lower bounds against strong systems like Extended Frege can imply lower bounds for every other
system and, as such, one could potentially keep proving lower bounds for ever-stronger systemswithout ever settling
whether NP ≠ coNP.

The parallels between circuit complexity and proof complexity are made clearer by Frege systems. For each
circuit complexity class C, one can define the proof system C-Frege, in which proof lines are restricted to be circuits
from C. In this setting strong systems like Frege and Extended Frege correspond to NC

1-Frege and P/poly-Frege,
respectively, and thus the natural question arises: Canwe turn explicit lower bounds for C circuits into lower bounds
for C-Frege systems, and vice versa?

While the question is essentially open, work on weaker systems and circuit classes has proven successful. In
one direction, the method of feasible interpolation [Kra94; Raz95a; Kra97] (see [Kra19, §17.9.1] for the history of the
method) has been extensively applied to obtain proof complexity lower bounds. The framework of feasible inter-
polation formalizes the idea of extracting computational content from proofs: given short proofs in a given system,
one can extract a small Boolean circuit in some restricted classes for a related interpolant function. Contrapositively,
circuit lower bounds for such functions (often coming from unconditional results such as lower bounds against
monotone circuits [Raz85; And85; AB87]), turn into lower bounds for proofs systems like Resolution [Kra97] or Cut-
ting Planes [Pud97] (and conditionally for other systems, such as Polynomial Calculus or Sum-of-Squares [Hak20]).
Unfortunately, this connection breaks for stronger proof systems: already AC

0-Frege and TC
0-Frege are known to

lack feasible interpolation properties1 under standard cryptographic hardness assumptions [KP98; BPR00; BDG+04],
and this holds even if we allow feasible interpolation by quantum circuits [ACG24].

In the other direction (circuit complexity from proof complexity), the theory of lifting has unveiled deep con-
nections between proofs, circuits and communication protocols. Here, so-called query-to-communication lifting
theorems translate query complexity lower bounds (corresponding to weak systems, like Resolution) into communi-
cation complexity lower bounds (e.g. [RM97; LMM+22]). The latter provide restricted circuit lower bounds, such as
for monotone circuits (see e.g. [GGKS18; DMN+20; dRGR22] and references therein). It is, however, not known how
to derive non-monotone lower bounds for unrestricted Boolean circuits by lifting proof complexity lower bounds.

For proper Frege systems, the connection hasworkedmostly in one direction, from circuits to proofs, particularly
at the level of techniques. The method of random restrictions and the celebrated switching lemmas used to show
constant-depth circuit lower bounds in the 1980s [FSS84; Ajt83; Hås86] were successfully transferred intoAC0-Frege
lower bounds shortly after [Ajt94; BPU92; Kra94; BIK+92; PBI93; KPW95]. This suggests that understanding what
makes proof lines largemight be necessary to understand why proofs are long. Intriguingly, understanding the proof
lines alone does not seem to suffice: the AC0 [?] lower bounds of Razborov and Smolensky [Raz87; Smo87] are yet
to be successfuly translated to proof complexity, with lower bounds for AC0 [2]-Frege being one of the prominent
frontier problems in the field.

The current situation seems to suggest that in order to make progress towards proof complexity lower bounds,
it is necessary (though seemingly not sufficient) to first obtain strong enough circuit lower bounds. In particular,
under this folklore belief, circuit lower bounds against NC1 or P/poly, currently out or reach, would be a necessary
step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. However, the
suspicion remains unproven, and no generic way of deriving explicit circuit lower bounds for unrestricted Boolean
circuits from proof complexity lower bounds for concrete propositional proof systems has been discovered2.

1Some of these systems are known to admit some form of interpolation by stronger computational models, see e.g. [Pud20; DR23], but we
are interested in Boolean circuits.

2We note that the issue lies in establishing such a connection for a concrete system. Of course, the statement “there is a proof system (such

2

The first result giving such a connection under relatively conventional assumptions which are presumably
weaker than the conclusion of the connection itself was presented recently by Pich and Santhanam [PS23]. Specifi-
cally, they showed that any superpolynomial lower bound on the length of tautologies in the Extended Frege system
EF implies NP * P/poly assuming hypotheses (I) and (II) below:

I. (Provable circuit lower bound.) EF proves efficiently that a concrete Boolean function in E is average-case hard
for subexponential-size circuits.

II. (Provable reduction of OWFs to P ≠ NP.) EF proves efficiently that a polynomial-time function transforms
circuits breaking one-way functions into circuits solving SAT.

We remark that Hypothesis I above presupposes E * P/poly, which is however believed to be a significantly
weaker statement than NP * P/poly. Alternatively, Hypotheses I and II can be replaced by a single assumption on
the feasible provability of the existence of anticheckers in EF. These results remain valid even if we replace EF by
an essentially arbitrary proof system simulating EF.

Crucially, improving this and related results by dropping the hypotheses is surprisingly daunting. As noted by
Pich and Santhanam [PS23, Prop. 1], if one unconditionally establishes the implication “if (is not polynomially
bounded, then NP * P/poly” for a concrete proof system (, then the breakthrough separation NP * SIZE[=:], for
every fixed : (and NEXP * P/poly) follows!

In short, proving a formal connection between proof complexity and circuit complexity provably requires break-
through circuit lower bounds! Despite this setback, one can still hope to get evidence that points at these connections,
possibly by shifting some of the components of the ingredients. Namely, one may try to (a) adopt some hardness
assumption, in the style of [PS23]; (b) conclude lower bounds weaker than NP * P/poly; or (c) look at non-Cook-
Reckhow proof systems (such as MA proof systems or proof systems for languages beyond coNP).

In this style, Grochow and Pitassi [GP18] showed that the Ideal Proof System (IPS) does satisfy such a connection,
to algebraic circuit complexity. Indeed, any superpolynomial lower bound in the length of proofs in IPSF implies
VPF ≠ VNPF. Grochow and Pitassi avoid the Pich-Santhanam barrier by means of (b) and (c) above: first, IPS is not
known to be a Cook-Reckhow system, since proofs are verified by randomized machines via polynomial identity
testing; second, the lower bounds are algebraic and not Boolean. Recall that while separating VP and VNP is a
necessary step3 towards NP * P/poly [Bür00], the converse is not known.

Another interesting connection has been established in the realm of quantified Boolean formulas, where the
connection can be made essentially optimal. Beyersdorff, Bonacina, Chew, and Pich [BBCP20] showed that for every
circuit class C, the quantified system C-Frege+∀red is not polynomially bounded if and only if either PSPACE * C

or C-Frege is not polynomially bounded. Here, C-Frege +∀red stands for the natural quantified system obtained by
extending C-Fregewith a universal reduction rule, which takes care of universal quantifiers by instantiating concrete
values for its variables in the hope of refuting the formula. The reason this avoids the Pich-Santhanam barrier is
the disjunct in the conclusion. That is, in the context of QBF the statement of the Pich-Santhanam barrier becomes
that if C-Frege + ∀red is not polynomially bounded implies PSPACE * C or C-Frege is not polynomially bounded,
then it already holds that either NEXP * P/poly or C-Frege is not polynomially bounded. But this disjunction
is no breakthrough, since it follows directly by a diagonalization argument anyway: if a propositional system is
polynomially bounded, then NEXP is hard for P/poly [Kra04a].

Contributions

We prove a new conditional connection between proof complexity and circuit complexity, giving further evidence
that strong proof complexity lower bounds require circuit lower bounds. This constitutes the first example of a
natural proof system that is conditionally Cook-Reckhow and whose lower bounds imply Boolean circuit lower
bounds.

The system in question is (an extension of) the Implicit Extended Frege (iEF) proof system of Krajíček [Kra04b],
capable of formalizing most of contemporary complexity theory. Our result can be informally stated as follows,

that if (is not polynomially bounded, then P ≠ NP” is true: if NP = coNP the implication is vacuously true by taking a polynomially bounded
proof system; if NP ≠ coNP, then P ≠ NP and thus the statement holds for any proof system. It would be dramatically different to obtain such
a connection for a concrete system.

3Unconditionally over finite fields, and assuming the Generalized Riemann Hypothesis for infinite fields.

3

where iEFtt(ℎ) stands for the proof system extending iEF by axioms tt
avg
1/4

(ℎ=, 2=/4) claiming there are no circuits of

size 2=/4 approximating a concrete function ℎ on more than a (1/2 + 1/2=/4)-fraction of the inputs.4

Theorem 1.1 (Main theorem, informal). Suppose there exists a Boolean function ℎ ∈ NE ∩ coNE that is hard on

average for subexponential-size circuits. If the Cook-Reckhow proof system iEFtt(ℎ) is not polynomially bounded, then

#P * FP/poly.

In the theorem above one could instead consider the system iEFtt(ℎ) for some unconditionally hard function
family ℎ that is guaranteed to exist. The only problem in this case is that we might need non-uniform advice to
verify the proofs, and so the system would not be Cook-Reckhow (we refer to Cook and Krajíček [CK07] for a
systematic treatment of non-uniform proof systems).

One can interpret our theorem as improving on the connection of Pich and Santhanam [PS23] from proof com-
plexity to circuit complexity. Our result improves that of Pich and Santhanam by completely dropping their second
assumption (the one about EF proving the existence of one-way functions under P ≠ NP). The price to pay for these
changes is two-fold:

1. we need to replace EF by the seemingly stronger Implicit Extended Frege system (iEF). Informally, iEF extends
EF with an extra rule allowing us to derive a formula i after we have derived that a truth table of a given
circuit encodes an EF-proof of i . Such a circuit is called an implicit proof;

2. we can conclude only #P * FP/poly from iEF lower bounds, instead of NP * P/poly.

One may also compare our result to that of Grochow and Pitassi [GP18], who showed VP ≠ VNP (and hence
hardness of computing the permanent) would follow from IPS lower bounds. Like our result, the IPS proof system is
only conditionally Cook-Reckhow. Indeed, IPS is a Merlin-Arthur proof system which can be derandomized5 under
standard assumptions, like E being hard to approximate by subexponential-size circuits. Our result is in some sense
stronger in that the lower bounds obtained are Boolean rather than algebraic. However, we seem to be getting to
lower bounds for the same problem as Grochow and Pitassi, since computing the permanent is both VNP-complete
and #P-complete.

We note that the requirement that ℎ ∈ NE ∩ coNE is not strictly needed and, in fact, one can phrase the result
in a more general style (as we do in the technical part) in which the connection holds for any extension of iEF by
truth table formulas for any hard function. Observe, however, that iEF is a very strong proof system, conjectured
to be strictly stronger than the standard EF and capable of formalizing most of computational complexity theory,
with its bounded arithmetic counterpart being the theory V1

2 (or S12 + 1-EXP, in the first-order setting), and so it
is plausible that iEF already proves such a circuit lower bound. Indeed, the existing formalizations of complexity-
theoretic statements support the assumption that iEF is able to prove efficiently practically everything we can prove
in complexity theory today (or, more precisely, every coNP statement of that kind). For example, already EF can
prove efficiently the PCP theorem [Pic15], AC0, AC0 [2] and monotone circuit lower bounds [Raz95b; MP20], or
the hardness amplification producing average-case hard functions in E from worst-case hard functions in E [Jeř05].
Furthermore, iEF proves efficiently the correctness of Zhuk’s algorithm from a CSP dichotomy [Gay22; Gay24].
Hence it is plausible to imagine that if circuit lower bounds are at all provable, they may well be provable already
in iEF. If that turned out to be the case, then the concrete proof system in our main theorem becomes iEF itself.

Corollary 1.2. (Main theorem, restated) Assume that iEF proves efficiently ttavg
1/4

(ℎ=, 2=/4) for some function family ℎ

and each sufficiently big =. Then, if iEF is not polynomially bounded, #P * FP/poly.

Let us note that one cannot make big improvements to this result without hitting the Pich-Santhanam barrier
that implies NEXP * P/poly unconditionally: if we managed to prove Theorem 1.1 for a Cook-Reckhow proof
system, then NEXP * P/poly would follow unconditionally. On the other hand, if our final goal is to prove FP ≠ #P,
then the assumption of Theorem 1.1 is given to us for free even for some hard ℎ ∈ E, as otherwise, if E can be
computed by subexponential-size circuits, it is not hard to show that P ≠ NP [Kra04a].

4For technical reasons, we define iEFtt(ℎ) using a system which is polynomially equivalent to iEF instead of iEF itself, see Definition 3.9.
5In fact, derandomizing IPS at all by simulating it by a Cook-Reckhow system implies a non-trivial derandomization of polynomial identity

testing to NP [Gro23]; this, in turn, implies some circuit lower bounds, as shown by Kabanets and Impagliazzo [KI04].

4

Consequences for self-provability of circuit upper bounds

Our result has consequences for the self-provability of circuit upper bounds. Suppose that #P ⊆ FP/poly. Then,
there is a sequence of polynomial-size circuits {�=}=∈N that on input a formula i of size =, outputs a satisfying
assignment if one exists. This means that the propositional formula SAT= (i, U) → SAT= (i,�= (i)) claiming the
correctness of �= as a SAT solver is tautological (where SAT= is the satisfiability predicate, taking a formula i and
an assignment U and evaluating the formula). But by Theorem 1.1, iEFtt is now polynomially bounded, and so the
proof system is able to efficiently argue for the correctness of the circuits. Namely, the mere validity of the upper
bound #P ⊆ FP/poly would imply the efficient propositional provability of SAT ∈ P/poly.

Outline of the proof

Our main result follows from a derandomization of the known fact that coNP * MA implies #P * FP/poly (see,
for example, [AB09, Thm. 8.22]), together with a formalization of the underlying MA system in a suitable theory
of bounded arithmetic. The implication holds, actually, for the MA system given by the sum-check protocol of
Lund, Fortnow, Karloff, and Nisan [LFKN92] in which proofs consist of circuit simulating the moves of the Prover
in the protocol, so that given such a circuit, the Verifier can simulate the entire protocol on their own with the
aid of randomness. If #P ⊆ FP/poly, then the #P-powerful Prover in the sum-check protocol can be replaced by a
polynomial-size circuit and thus the system is a polynomially boundedMerlin-Arthur system. Clearly, lower bounds
on the length of proofs in this system are exactly circuit lower bounds against #P.

SinceMA can be derandomized under standard hardness assumptions, assuming, for example, that E is hard for
subexponential-size circuits, the proof system ' based on the sum-check protocol above becomes a Cook-Reckhow
system such that if ' is not polynomially bounded, then #P * FP/poly. This is almost our goal. Our task now
is to replace this system by a different more standard Cook-Reckhow system (. This can be achieved by proving
efficiently the reflection principle of the system ' in (, which essentially amounts to proving the soundness of
the sum-check protocol in (. Here, we employ a recent work of Khaniki [Kha23b], in which the soundness of the
sum-check protocol was formalized in S12 + 1-EXP.

In order to translate the formalization inside S12+1-EXP into propositional logic, we need to express the soundness
of the sum-check protocol by propositional formulas. This is achieved using the machinery of approximate counting
of Jeřábek [Jeř07], which exploits Nisan-Wigderson generators based on a hard Boolean function.

Open problems

Improving our result seems to require significant conceptual work. Of course, simultaneously dropping the circuit
lower bound assumption as well as getting the stronger separation NP * P/poly would already imply NEXP *

P/poly, but one may hope to improve the existing connection by improving on one of the two fronts only. Interest-
ingly, this seems to require progress in some of the central open questions in the theory of interactive proof systems
or in hardness magnification.

The power of the prover. Is it possible to strengthen the conclusion of the main theorem all the way down
to NP * P/poly? This would follow, for example, if we managed to design an interactive protocol for Taut with
a prover solving only NP problems and prove its correctness in iEF (unlike the current situation, where the prover
is required to compute a #P-complete function). The general question of constructing a protocol for a language !
where the prover’s power is limited to P

! is a well-known open problem in the theory of interactive proof systems
(see, for example, [AB09, §8.4]).

Note, of course, that the existence of such a protocol does not suffice, since its soundness must be provable inside
iEF. In fact, the reason why we require iEF (or S12 + 1-EXP) to carry out the formalization of the existing sum-check
protocol is that one cannot feasibly talk about #SAT directly in EF or S12 (unless FP = #P).

Hardness magnification. Is it possible to replace iEF in the main theorem by Gentzen’s system G, or even
by Extended Frege? One option would be to carry out the existing formalization inside EF, as mentioned above.
The caveat would be, however, that we would then have to make the assumption on truth table tautologies for
EF. Whether EF can prove general circuit lower bounds at all seems much less believable than for iEF, and so the
plausibility of our hypotheses seems affected.

5

Instead, one may choose to keep everything in iEF and obtain the connection indirectly for EF via hardness
magnification. Is there a natural class of formulas over which EF simulates iEF (and which are believably hard
for EF)? If so, assuming hardness of these formulas for EF would imply iEF lower bounds. By our main theorem,
#P * P/poly would follow. To the best of our knowledge, no such type of hardness magnification is known for
strong proof systems.

2 Preliminaries

We assume familiarity with the central concepts of computational complexity theory, propositional proof complexity
and mathematical logic. Some of our work relies on formalizing standard text-book material on computational
complexity in different theories of arithmetic; for the standard proofs of these results, we refer the reader to Arora
and Barak [AB09]. Below we review the central concepts of proof complexity and bounded theories of arithmetic
and fix some notation.

2.1 Proof complexity

Following Cook and Reckhow [CR79], a propositional proof system (for the language Taut of propositional tautolo-
gies is a polynomial-time surjective function (: {0, 1}∗ → Taut. We shall think of (as a proof checker taking
as input a proof c ∈ {0, 1}∗ and outputting ((c) = i , the theorem that c proves. Note that soundness follows
from the fact that the range is exactly Taut, and implicational completeness is guaranteed by the fact that (is sur-
jective. We sometimes drop the term proof in proof system and use the term system alone to refer to a function (

that is not guaranteed to be a Cook-Reckhow proof system (perhaps because it is unsound, or not deterministically
computable).

We denote by size((i) the size of the smallest (-proof of i plus the size of i . A proof system (is polynomially-

bounded if for every i ∈ Taut, size((i) ≤ |i |$ (1) . We say that a proof system (polynomially simulates a system
& , written (≥ & , if for every i ∈ Taut, size((i) ≤ size& (i)

$ (1) . Note that the notion of size and the definition
of simulation do not exploit the soundness requirement of Cook-Reckhow systems. These notions are well-defined
for any function whose range contains Taut. In particular, an unsound system can be polynomially bounded and
simulate every other system. In some cases simulations hold only for some set) of tautologies, such as the set of
tautologies written as 3DNFs, and not for all formulas, and then we say that (polynomially simulates & over) .
Given a family {i=}=∈N of propositional tautologies, we write (⊢ i= whenever size((i=) ≤ |i= |

$ (1) .

2.1.1 Frege systems

Proof complexity studies a wide variety of proof systems. The most important ones for us are Frege systems. A
Frege system is a finite set of axiom schemas and inference rules that are sound and implicationally complete for
the language of propositional tautologies built from the Boolean connectives negation (¬), conjunction (∧), and
disjunction (∨). A Frege proof is a sequence of formulas where each formula is obtained by either substitution
of an axiom schema or by application of an inference rule on previously derived formulas. The specific choice of
rules does not affect proof size up to polynomial factors, as long as there are only finitely many rules and these
are sound and implicationally complete. Indeed, Frege systems polynomially simulate each other [Kra19, Thm.
4.4.13]. Alternatively, one may choose to think of Frege systems as some variant of Natural Deduction or the Sequent
Calculus for classical propositional logic.

Particularly important for us is the Extended Frege (EF) system, in which proof lines can be Boolean circuits and
not just formulas, which would allow in principle for more succinct proofs. We shall often consider extensions of
Extended Frege by sets of additional axioms. For a set � ⊆ Taut of tautologies recognizable in polynomial time,
the system EF +� refers to Extended Frege extended with substitution instances of any formula in �. Note that if �
were to contain contingent formulas, then EF+�would not be sound; in particular, it would not be a Cook-Reckhow
system, though it would be polynomially bounded.

A useful property of EF is the fact that, for every propositional system (, EF + Ref(≥ ([KP90]. Here Ref(
is the sequence of tautologies encoding the reflection principle for (, which states that (is sound. Namely, Ref(≔
{Ref(,=,<}=,<∈N where Ref(,=,< ≔ Prf(,=,< (c, i) → Sat=,< (i, U), andi is a formula of size=, c is a purported (-proof
of size< and U is an assignment to the variables in i , which are all encoded by free variables. The formula Prf(,=,<
encodes that c is a correct (-proof of i , and Sat=,< (i, U) encodes the standard satisfaction relation for propositional

6

formulas. Alternatively, onemay exploit the same relationwith respect to the consistency of (, Con(≔ {Con(,<}<∈N,
where Con(,< ≔ ¬ Prf(,1,< (c,⊥) and c encodes a purported proof of size<.

2.1.2 Quantified propositional systems

The focus of proof complexity is on proof systems for propositional tautologies, but it is often convenient to operate
on systems capable of reasoning with quantified Boolean formulas, where the quantification ranges over {0, 1}. We
denote by Σ

@
8 (respectively, Π

@
8) the class of quantified Boolean formulas with 8 alternations between existential and

universal quantifiers, starting with an existential (respectively, universal) one. In this context, the true formulas in
Π
@
1 correspond to the usual propositional tautologies.
We are particularly interested in Gentzen’s Sequent Calculus for quantified propositional logic. The system

extends the usual propositional Sequent Calculus by four new rules to handle quantifiers (see [Kra19, Def. 4.1.2]
for a formal definition of the rules). We denote this system by G, and by G∗ its tree-like counterpart. The system
G8 , for 8 ∈ N, corresponds to G where the quantified formulas appearing in the sequents can only be in the class
Σ
@
8 ∪Π

@
8 . The tree-like counterpart ofG8 is naturally denotedG∗

8 . It is useful to know that EF andG∗
1 are polynomially

equivalent with respect to Π
@
1 formulas [Kra19, Thm. 4.1.3].

2.1.3 Implicit proof systems

Implicit proof systems constitute a systematic way of obtaining, for every proof system (, a potentially stronger
system (′, and were introduced by Krajíček [Kra04b]. The essential idea is to encode a given proof in the system
(as a multi-output Boolean circuit taking as input a number 8 in binary and outputting the 8-th step of the proof.
More formally, given propositional proof systems (and & , a proof of a tautology i in the implicit system [(,&] is a
pair (c,�) consisting of a proof and a circuit, such that the truth table of� encodes a valid&-proof of i (the implicit

proof), while c is an explicit (-proof of the formula Correct& (i,�), which is the formula stating that the truth table
of � is a correct&-proof of i . If (and & are Cook-Reckhow proof systems, then so is [(,&].

For a system (, the implicit system [(, (] is denoted by i(. In particular, we shall work with the Implicit Extended

Frege proof system, iEF ≔ [EF, EF]. The system iEF is particularly strong, and it can in fact simulate all of G with
respect to propositional tautologies [Kra04b, Cor. 2.4].

2.2 Bounded arithmetic

Our proofs extensively exploit the connections between propositional proof complexity and theories of bounded
arithmetic. Below we cover the essential preliminaries needed in our formalizations, which should be accessible to
any reader with basic knowledge of first-order logic.

2.2.1 The theories S12 and S12 + 1-EXP

Theories of bounded arithmetic capture various levels of feasible reasoning and act as a uniform counterpart of
propositional systems. Intuitively, feasibility is achieved by restricting the complexity of formulas over which one
can apply general reasoning schemes like induction.

The central theory for us is Buss’s S12, which we think of as corresponding to polynomial-time reasoning. In this
context, we work over the first-order language of bounded arithmetic, LBA ≔ {0, (,+, ·,<, |G |, ⌊G/2⌋, G#~}, which
extends the language of Peano Arithmetic by the symbols |G |, ⌊G/2⌋ and G#~. The standard interpretation of ⌊G/2⌋
is clear. The notation |G | denotes the length of the binary encoding of the number G , ⌈log(G + 1)⌉, while the smash

symbol G#~ stands for 2 |G | · |~ | .
The definition of bounded formulas, is analogous to the bounded quantification one encounters in the Polynomial

Hierarchy. For a quantifier & ∈ {∃,∀} and a term C in the language of bounded arithmetic, a formula of the form
&G < C .i (G) stands for either ∀G.(G < C → i (G)) or ∃G.(G < C ∧ i (G)). These are called bounded quantifiers.
Whenever the bounded quantifier is of the form & < |B | for some term B , we talk about sharply bounded quantifiers.
The hierarchy of bounded formulas consists of the classes Σ1= and Π

1
= , for = ≥ 1, which are defined by counting the

alternations of bounded quantifiers ignoring the sharply bounded ones, starting with an existential (respectively,
universal) one. The class Δ1

= consists of all formulas that admit an equivalent definition in both Σ
1
= and Π

1
= . In

particular, the class Δ1
0 stands for all formulas with sharply bounded quantifiers only.

7

The theory S12 of Buss [Bus85] extends Robinson’s arithmetic Q by some basic axioms for the new function
symbols and the polynomial induction scheme (PInd) for Σ11-formulas: for every i ∈ Σ

1
1 , the theory contains the

axiom
i (0) ∧ ∀G (i (⌊G/2⌋) → i (G)) → ∀Gi (G). (PInd)

An alternative system intended to capture polynomial-time reasoning is Cook’s equational theory PV [Coo75].
In the formalism of PV one has some basic function symbols and introduces new ones recursively by composition
and limited recursion on notation, in the style of Cobham’s functional definition of FP [Cob64]. In this way, the
function symbols obtained in PV are precisely those of all polynomial-time functions over the naturals. The first-
order version of PV is PV1 [KPT91; Bus95; Coo96]. Without loss of generality, we shall work in the theory S12(PV),
which is the theory S12 in the language of bounded arithmetic extended by all PV function symbols, meaning that
we have a fresh symbol for each function in FP, and induction is now available for all Σ11 (PV) formulas. We abuse
notation and refer to this directly as S12.

While S12 is able to formalize a significant amount of complexity theory and some mathematics, it suffers from
the drawback of being unable to even state the existence of exponentially large objects. For certain more elaborate
arguments we shall work instead inside S12+1-EXP, which patches this issue. We follow here the definition of Krajíček
[Kra04b, Cor. 2.2]: we write S12 + 1-EXP ⊢ ∀Gi (G) for some arithmetic formula i if there exists a term C such that

S12 ⊢ ∀G∀~(C (G) ≤ |~ | → i (G)).

The definition is somewhat indirect and may be hard to grasp at first glance. Intuitively, it allows one to derive
properties about G under the assumption that ~ = 2G exists.

The theory S12 corresponds to polynomial-time computations in the sense that the provably total relations in S12
are precisely the polynomial-time-computable ones. The same relation holds for S12+1-EXP and the complexity class
EXP.

2.2.2 Approximate counting

Many of the formalizations carried out in bounded arithmetic require the ability to count. In some cases, small sets
can be counted exactly, but one often requires more sophisticated machinery for approximate counting, needed to
formalize many probabilistic arguments.

For 0 ∈ N, a bounded definable set is a set of naturals - = {G < 0 | i (G)} ⊆ [0, 0), where i ∈ Σ
1
∞ is some

arithmetic formula. For - ⊆ 0 and . ⊆ 1, we define - ×. ≔ {1G +~ | G ∈ -,~ ∈ . } ⊆ 01 and - ¤∪. ≔ - ∪ {~ +0 |

~ ∈ . } ⊆ 0 + 1. Rational numbers are assumed to be represented by pairs of integers in the natural way. We also
use the unfortunate but standard Log-notation widespread in bounded arithmetic, by which = ∈ Log stands for the
formula ∃G (= = |G |) and = ∈ LogLog stands for ∃G (= = | |G | |).

Intuitively, from the point of view of the theory, numbers in Log are “small” numbers. For a circuit � : 2: → 2,
where we adopt the set-theoretic custom of identifying {0, 1} with the number 2, we can consider the bounded
definable set -� ≔ {G < 2: | � (G) = 1}, and ask about the task of counting the size of -� .

There exists a PV-function Count(�,~) = |-� ∩ |~ | |. This means that if 2: ∈ Log, then one can do exact counting
of |-� | efficiently. We use the notation PrG< |~ | [� (G) = 1] ≤ I/F for the PV-relationF · Count(�,~) ≤ |~ | · I.

If 2: ∉ Log, exact counting becomes problematic. To avoid this, Jeřábek [Jeř05; Jeř07] systematically developed
the theory APC1 capturing probabilistic polynomial-time reasoning by means of approximate counting. The theory
APC1 is defined as PV1 + dWPHP(PV) where dWPHP(PV) stands for the dual (surjective) pigeonhole principle for all
PV-functions. That is, the set of all formulas

G > 0 → ∃E < G (|~ | + 1).∀D < G |~ |. 5 (D) ≠ E, (dWPHP)

where 5 is a PV-function which might involve other parameters not explicitly shown.
We write � : - ։ . if � is a surjective mapping from - to . . Let -,. ⊆ 2= be definable sets, and n ≤ 1. The

size of - is approximately less than the size of . with error n , written as - �n . , if there exists a circuit � , and E ≠ 0
such that

� : E × (. ¤∪ n2=) ։ E × - .

In this context, the notation - ≈n . stands for - �n . and . �n - . As with exact counting, the notation
PrG<~ [� (G) = 1] ◦n I/F stands for F · (-� ∩ ~) ◦n ~ · I, for ◦ ∈ {�,≈}. Since a number B is identified with the
interval [0, B), - �n B means that the size of - is at most B with error n .

8

The definition of - �n . is an unbounded ∃Π1
2 formula even if - and . are defined by circuits, so it cannot be

used freely in bounded induction. This problem can be solved by working in sHARDA, defined as the relativized
theory S12(U) extended with axioms postulating that U (G) is a truth table of a function on | |G | | variables hard on
average for circuits of size 2 | |G | |/4 . In sHARDA there is a PV(U) function Size approximating the size of any set
- ⊆ 2= defined by a circuit � so that - ≈n Size(U,�, 2=, 2n

−1
) for n−1 ∈ Log (by combination of [Jeř07, Lemma 2.14]

and [Jeř04, Cor. 3.6]).
The following key definition allows us to express that a function is indeed hard on average.

Definition 2.1 (HardAn (5), in PV1 [Jeř07]). Let 5 : 2: → 2 be a truth table of a Boolean function with : inputs
(with 5 encoded as a string of 2: bits, and hence with : ∈ LogLog). We say that 5 is average-case n-hard, written as
HardAn (5), if for every circuit � of size at most 2n: ,

|{D < 2: | � (D) = 5 (D)}| < (1/2 + 2−n:)2: .

Note that HardAn (5) is Π
1
1 -definable in PV1.

We write tt
avg
n (5: , 2

n:) ≔ | |HardAn (5) | |< for the propositional translation (see Section 2.2.3) of the formula
HardAn (5) above, and an appropriately chosen parameter< depending on : and n . We also consider the polynomial-
time function CorrectFracTTX (B, =,�, 5), that checks whether 5 is a string of length 2=,� encodes a circuit of size at
most B , and finally verifies whether the fraction of accepted inputs is larger than (1/2 + 2−X=)2=.

The theory APC1 is strong enough to show that hard-on-average functions do exist.

Proposition 2.2 (Jeřábek [Jeř04]). For every rational constant n < 1/3, there exists a constant 2 such that APC1 proves

that for every : ∈ LogLog such that : ≥ 2 , there exist a function 5 : 2: → 2 that is average-case n-hard.

The theory S12 can be relativized to S12(U). This means, in particular, that the language of S12(U), denoted also
S12 (U), contains symbols for all polynomial-time machines with access to the oracle U .

Definition 2.3 (sHARDA [Jeř04]). The theory sHARDA is an extension of the theory S12(U) by the axioms stating

1. the number U (G) encodes the truth table of a Boolean function in | |G | | variables;

2. G ≥ 2 → HardA1/4(U (G)), where 2 is the constant from the previous proposition;

3. | |G | | = | |~ | | → U (G) = U (~).

The key technical tool from the framework of approximate counting is the following theorem by Jeřábek.

Theorem 2.4 (Jeřábek [Jeř07]). There is a PV(U)-function Size such that sHARDA proves that if - ⊆ 2= is definable

by a circuit � , then - ≈n Size(U,�, 2=, 4), where n = |4 |−1 .

For a circuit � : 2= → 2, we introduce the notation

Pr
G<~

[� (G) = 1] �5
n

I

F

to meanF · Size(5 ,�, 2=, 4) ≤ ~ · I, where n = |4 |−1.

2.2.3 Correspondences and propositional translations

While our formalizations are comfortably carried out in the first-order theories presented above, we are able to trans-
fer our results back to propositional logic thanks to the existence of propositional translations. Following Krajíček
[Kra19], we say that a theory) corresponds to a propositional proof system (if (i)) can prove the soundness of
(and (ii) every universal consequence ∀Gi (G) of) , where i is quantifier-free, admits polynomial-size proofs in (

when grounded into a sequence of propositional formulas. Pudlák alternatively says that (is the weak system of the
theory) [Pud20]. More formally, for such a universal formula i , we denote by | |i | |= the propositional translation
for models of size =. Sometimes we abuse the notation and write | |i | | dropping the subscript =. We refer the reader
to standard texts like those of Krajíček [Kra19] or Cook and Nguyen [CN10] for formal definitions of the translation.

The key fact for us is that universal theorems of S12 admit short propositional proofs in Extended Frege. More
importantly, S12 + 1-EXP corresponds to Implicit Extended Frege.

Theorem 2.5 (Correspondence of S12 + 1-EXP and iEF [Kra04b, Thm. 2.1]). The proof system iEF corresponds to

S12 + 1-EXP. That is,

9

(i) the theory S12 + 1-EXP proves the soundness of iEF;

(ii) whenever a ∀Π1
1 -sentence ∀Gi (G) is provable in S12 + 1-EXP, there are polynomial-size iEF-proofs of the sequence

of tautologies {| |i | |=}=∈N;

(iii) if S12 + 1-EXP proves the soundness of some propositional system (, then iEF ≥ (.

The translation also works for formulas beyond ∀Π1
1 as long as we translate into a quantified propositional

system. The definition of the translation is straightforward, and we note that Σ11 consequences of S
1
2 translated as

Σ
@
1 formulas admit polynomial-size proofs in G∗

1.

Theorem 2.6 (Correspondence of S12 and G∗
1 [KP90]). Whenever a ∀Σ11-sentence ∀G∃~ ≤ C .i (G, ~) is provable in S12,

there are polynomial-size proofs of the sequence of Σ
@
1-formulas {| |∃Gi (G,~) | |=}=∈N in G∗

1.

2.3 Interactive proof systems and the sum-sheck protocol

While our focus is on propositional proof systems in the sense of Cook and Reckhow, our work exploits relations to
more lax notions of provability. Following Babai [Bab85], anMerlin-Arthur proof system orMerlin-Arthur protocol for
a language ! ⊆ {0, 1}∗ is a polynomial-time function (together with some constant 2 such that the two following
properties are satisfied for every G ∈ {0, 1}∗. Namely,

1. if G ∈ !, then there exists some c ∈ {0, 1}∗ such that PrA ∈{0,1} (|G |+|c |)2 [((G, c, A) = 1] = 1;

2. if G ∉ !, then for every c ∈ {0, 1}∗, PrA ∈{0,1} (|G |+|c |)2 [((G, c, A) = 1] < 1/3.

The first condition formalizes completeness, while the second corresponds to soundness. The complexity class
MA contains all languages that admit a polynomially-bounded Merlin-Arthur protocol, meaning that there exists

a constant 3 such that the completness guarantee is strengthened to proofs c ∈ {0, 1} |G |
3
. One should think of

MA proof systems as Cook-Reckhow systems where the verifier is randomized and may thus accept some incorrect
proofs with small probability.

We recall that, under the standard derandomization assumption that there exists a Boolean function family in
E that is wort-case hard for subexponential-size circuits, every Merlin-Arthur system derandomizes into a Cook-
Reckhow system and, in particular,MA = NP [NW94; IW97].

Our proofs rely on a particular interactive protocol, the Sum-Check Protocol of Lund, Fortnow, Karloff, and Nisan
[LFKN92] for the language of unsatisfiable 3CNFs. Unlike Merlin-Arthur protocols, this is an interactive protocol
running for multiple rounds between a Prover and a Verifier, before the Verifier makes a decision. We now recall
the details of the protocol.

The Sum-Check Protocol [LFKN92] The protocol considers a 3CNF i (G1, . . . , G=) over< clauses, known to
both the Verifier and the Prover.

1. The Prover generates a prime number6 ? ∈ (22=
3+=, 2(2=

3+=)
2?

] together with a Pratt certificate7 on the primality
of ? and sends them to the Verifier, who checks for correctness of the certificate, and aborts if incorrect.

2. The Prover and the Verifier arithmetize i into a polynomial %i (G1, . . . , G=) of degree at most 3< over F? in the
usual way: a clause like (G ∨ ¬~ ∨ I) is turned into 1 − (1 − G)~(1 − I), and one then takes the product of all
such arithmetized clauses. In this way, for all G ∈ {0, 1}=, i (G) = 1 if and only if %i (G) = 1.

3. The Verifier sets (01, . . . , 0=) ≔ (0, . . . , 0),&0(00) := 0 and for 8 ∈ {1, . . . =}, the following interaction is carried
out:

(a) Leaving G8 free, the Prover computes the coefficients of the following univariate polynomial over F? ,
&8 (G8) ≔

∑

G8+1∈{0,1} · · ·
∑

G= ∈{0,1} %i (01, . . . , 08−1, G8, G8+1, . . . , G=) and sends the $ (<) coefficients of &8 to
the Verifier.

(b) The Verifier checks whether&8 (0) +&8 (1) = &8−1(08−1). If the check fails, the Verifier rejects. Otherwise,
it samples a random 08 ∈ F? and sends it to the Prover.

(c) In the final round, instead of sending 0= to the Prover, the Verifier checkswhether %i (01, . . . , 0=) = &= (0=)

and accepts or rejects based on this.
6The constant 2? in the exponent comes from the formalization of the soundness of the sum-check protocol inside S12 + 1-EXP in a recent

work of Khaniki [Kha23b]; while we do not need such details in our proofs, we leave it here to be faithful to the formalization.
7A Pratt certificate is a succinct witness for primality checkable in polynomial time [Pra75]. The details are not relevant for our results, but

it is important that the Verifier can be convinced of ? being a prime.

10

3 Main result

Our proof exploits the known fact that if #P ⊆ FP/poly, then coNP ⊆ MA. Indeed, if #P has small circuits one can
provide polynomial-size circuits that simulate the Prover’s movements in the Sum-Check protocol for Unsat, since
one can consider the MA proof system in which Arthur receives from Merlin a circuit claiming to be the circuit that
the Prover used to carry out their strategy, and with the aid of randomness, Arthur can execute this on his own and
decide based on the outcome of this simulation.

Let us make this formal.

Definition 3.1 (The SC proof system). Let+ (?,D, i,�, A) be the polynomial-time function carrying out the simula-

tion of the Sum-Check protocol. Namely, ? is intended to be a prime in (22=
3+=, 2(2=

3+=)
2?

], D a Pratt certificate for ? ,
i a 3CNF over = variables, A a string of random bits, and � a multi-output circuit providing the Prover’s responses
in the interactions with the Verifier in the Sum-Check protocol.

The Sum-Check Proof System, denoted by SC, is a Merlin-Arthur proof system for proving 3DNF tautologies. An
SC proof of i is a tuple 〈?,D,�〉 such that ? is indeed a prime in the interval above, correctly certified by the Pratt
certificate D, and such that PrA ∈F=?

[

+ (?,D,¬i,�, A) = 1
]

= 1.

The following is just a rephrasing of the fact that #P ⊆ FP/poly implies coNP ⊆ MA, in terms of the Merlin-
Arthur system SC.

Lemma 3.2. If #P ⊆ FP/poly, then SC is polynomially bounded over 3DNF tautologies.

Proof. Suppose #P ⊆ FP/poly and observe closely the computational tasks of the Prover in the Sum-Check protocol.

On input a formula i over = variables, the Prover sends a prime number in the range (22=
3+=, 2(2=

3+=)
2?

]. Note that
the well-known Betrand’s postulate in number theory states that for every 0 > 3, there is a prime in the interval

(0, 20 − 2). Since 2(2=
3+=)

2?

> 2 · 22=
3+= − 2, such a prime ? always exists in our interval, which we fix for all our

proofs of formulas over = variables.
We shall now argue that, on inputs of size =, there is a multi-output circuit�= taking as input the number of the

round in the protocol and the information sent by the Verifier, and which outputs the coefficients of the polynomial
&8 . Note that for formulas over< clauses, this is an $ (<)-degree polynomial, and thus it suffices to evaluate it at
$ (<) points in the field (say, the first $ (<) elements in F?) and then solve a system of linear equations to learn
the coefficients. The hard task is to evaluate the polynomial &8 , but this is precisely a #P task, since it amounts
to adding the outputs of the function %i (01, . . . , 08−1, G8, G8+1, . . . , G=), which can be efficiently evaluated, for every
possible (G8+1, . . . , G=) ∈ {0, 1}=−8 . Since #P ⊆ FP/poly, there is a small circuit taking care of this task, which we
use inside our circuit �= . Then, the prime ? for inputs of size =, together with a suitable Pratt certificate (which is
always small) and the polynomial-size circuit �= constitute a polynomial-size SC proof of the formula i . �

At this point, our goal is to extend the previous lemma from SC to a concrete and natural Cook-Reckhow system.
Our goal is to do this for Implicit Extended Frege. The idea again is that iEF (or rather its first-order counterpart,
S12 + 1-EXP) can prove the soundness of this system and thus simulate it. We shall then derandomize the SC protocol
inside iEF, to argue that iEFmust satisfy the same connection to lower bounds as SC does in the lemma above.

Fortunately for us, the soundness of the Sum-Check protocol was recently proven by Khaniki in the right theory
of bounded arithmetic.

Theorem 3.3 (Soundness of the sum-check protocol [Kha23a, Thm. 15.3]). There are constants 2, : ∈ N such that S12
proves the following sentence: for every =,i, 0, ?,D,� , if it holds that (i) i is a 3CNF in = variables where = ≥ 2 , and (ii)

i (0) = 1 and, (iii) 22=
3+=

< ? ≤ 2(2=
3+=)

2?

and, (iv) =: ∈ Log Log, then

Pr
A ∈F=?

[

+ (?,D, i,�, A) = 1
]

≤
=
(2=
3

)

?
.

Based on the soundness of the interactive protocol, we can now formalize the soundness of the SC proof system
fromDefinition 3.1. The arguments that follow can be seen as a concrete application ofmore sophisticated techniques
employed by Khaniki [Kha23b; Kha23a], who has studied interactive protocols in the context of defining new jump
operators in proof complexity.

11

Definition 3.4 (The Sound2 (SC) formula). We denote by Sound2 (SC) the following ∀Σ11 sentence, claiming the
soundness of SC: for all i, 0, ?,D,�, 5 , where |i | > 2 , there is a circuit � of size ≤ ⌈|5 |1/4⌉ such that if

¬

(

Pr
A ∈F=?

[+ (?,D,¬i,�, A) = 1] �5
n

3

8

)

holds, then at least one of the following conditions holds:

(i) |5 | ≠ |� |:0 + :′0 or,

(ii) CorrectFracTT1/4(⌈|5 |1/4⌉, | |5 | |, �, 5) = 1 or,

(iii) ? ∉ (22=
3+=, 2(2=

3+=)
2?

] or,

(iv) i (0) = 1,

where :0, :′0 are the constants from Theorem 2.4 ensuring that Size function works properly (see the remark below),
n = 1/16 and = is the number of variables of i . In the definition of the displayed probability, we assume that ~ = ?= ,
that the circuit defining the set of strings accepted by + has< inputs, for the smallest integer< such that 2< ≥ ?= ,
and that it rejects all A ≥ ?=.

A couple of remarks are in place. First, note that even if + accepts with probability 1, the probability can be
approximated in Definition 3.4 by a significantly smaller value because of the difference between ?= and 2< . Another
relevant point is that, as a closer look at the proof of Theorem2.4 reveals, for each�, 2=, 4 , the function Size(U,�, 2=, 4)
calls U only once. In fact, it calls U on an input G which depends only on |� |, =, |4 |. This is needed for the formula
Sound2 (SC) to be well-defined: in Definition 3.4 we do not supply the Size function with an oracle generating truth
tables but with a single truth table 5 representing a single answer of the oracle.

It now suffices to verify that the encoding of the soundness of SC is indeed provable in S12 + 1-EXP.

Proposition 3.5 (Soundness of SC inside S12 + 1-EXP). There is a constant 2 ∈ N such that S12 + 1-EXP ⊢ Sound2 (SC).

Proof. Let 2 ∈ N be a big enough constant that can be computed from the rest of the argument and

Sound2 (SC) ≔ ∀i, 0, ?,D,�, 5 ∃�Φ(i, 0, ?,D,�, 5 , �)

the soundness formula in Definition 3.4 above. Let i be a 3DNF in = variables such that |i | > 2 , and consider
0, ?,D,�, 5 . Then the following cases can happen:

(a) If |5 | ≠ |� |:0 + :′0 or ? ∉ (22=
3+=, 2(2=

3+=)
2?

], then Φ(i, 0, ?,D,�, 5 , 0) is trivially true.

(b) If there is a circuit � of size ≤ ⌈|5 |1/4⌉ such that CorrectFracTT1/4(⌈|5 |1/4⌉, | |5 | |, �, 5) = 1, then the formula
Φ(i, 0, ?,D,�, 5 , �) is trivially true.

(c) If the previous cases do not happen and moreover

¬

(

Pr
A ∈F=?

[+ (?,D,¬i,�, A) = 1] �5
n

3

8

)

holds, then we have that 8 · Size(5 ,�∗, 2<, 4) > 3?=, where < is the smallest integer such that 2< ≥ ?= ,
n ≔ |4 |−1 and �∗ (A) ≔ + (?,D,¬i,�, A). By the assumption HardA1/4 (5) holds and by the fact that we are over

S12 and we can use 5 as a parameter in polynomial induction for Σ11 formulas, we can do approximate counting
using Theorem 2.4. (Here, we use also the fact that in order to derive the conclusion of Theorem 2.4, the axioms
postulating the properties of U (G) for G ’s not queried by Size are not needed.) Hence there is a circuit � and
some E ≤ poly(<n−1 |�∗ |) such that

� : E × (-�∗ ¤∪ n2<) ։ E × Size(5 ,�∗, 2<, 4).

As we work in S12 + 1-EXP and� is surjective, we can find a subset � ⊆ E × (-�∗ ¤∪ n2<) such that� restricted
to � is a one-to-one function from � to E × Size(5 ,�∗, 2<, 4). Now we can apply exact counting (as we have
1-EXP) and show that

Size(5 ,�∗, 2<, 4) ≤ |-�∗ | + n2< .

12

By the fact that 8 · Size(5 ,�∗, 2<, 4) > 3?= > 3 · 2</2, we have 2</8 < |-�∗ |. Now if i (0) = 0, by Theorem 3.3
we get

Pr
A ∈F=?

[

+ (?,D,¬i, c, A) = 1
]

≤
=
(2=
3

)

?
.

Note that |i | > 2 which implies that = is big enough and as ? > 22=
3+= we get that =

(2=
3

)

/? ≤ 1/8, which
implies

Pr
A ∈F=?

[

+ (?,D,¬i, c, A) = 1
]

≤
1

8
.

As �∗ rejects all A ≥ ?=, this implies that |-�∗ | ≤ 2</8 which leads to a contradiction, so i (0) = 1.

�

The main technical issue now is that Sound2 (SC) is a ∀Σ11 sentence and thus it does not translate into a propo-
sitional formula that iEF can reason about. Instead, we shall work on a quantified propositional system, but for this
to make sense we need to know the quantified propositional proof system associated with S12 + 1-EXP.

We invoke the following known TFNP characterization of the Σ11 consequences of S
1
2 + 1-EXP, which identifies

a “complete” Σ11 sentence Ψ such that any other Σ11 consequence of S
1
2 + 1-EXP reduces to it in G∗

1.

Theorem 3.6 ([Kra90; KNT11; Kra16; BB17]). There is a ∀Σ11 sentence Ψ ≔ ∀G∃~k (G,~) (the bound on ~ is implicit

ink) such that the following statements are true:

(i) S12 + 1-EXP ⊢ ∀G∃~k (G,~);

(ii) for any ∀Σ11 sentence ∀G∃~U (G,~) such that S12 + 1-EXP ⊢ ∀G∃~U (G,~), there are PV functions 5 and 6 such that

S12 ⊢ ∀G,~(k (5 (G),~) → U (G,6(G,~))).

In what follows, we shall work with Gentzen’s system G extended with the propositional translation of the
sentenceΨ in the theorem above. We denote this system byGEXP ≔ G∗

1+||Ψ| | and prove the following key properties
about it.

Corollary 3.7. The following statements about GEXP hold:

(i) S12 + 1-EXP ⊢ Σ
@
1-Ref (GEXP), i.e. the reflection principle for GEXP and Σ

@
1 formulas is provable in S12 + 1-EXP;

(ii) for every ∀Σ11-sentence ∀G∃~U (G,~), if S
1
2 + 1-EXP ⊢ ∀G∃~U (G,~), then there are polynomial-size GEXP-proofs of

the sequence of Σ
@
1-tautologies {| |∃~U (~) | |=}=∈N;

(iii) if S12 + 1-EXP proves the soundness of a propositional proof system (, then GEXP ≥ (.

Proof. The proof of this corollary is standard and it is similar to the case of the usual correspondence for propositional
proof systems and theories (see, for example, [Pud20]). Here we only sketch the proof item by item.

(i) Working in S12 + 1-EXP, let c be a GEXP-proof of ∃@̄i (?̄, @̄) and 0 be an assignment for the ?̄ variables. Let
k ′
1, ...,k

′
:
be the substitution instances of | |Ψ| | that are used in c . This means that there is a G∗

1-proof c
′ of

the formula
∨:

8=1¬k
′
8 ∨ ∃@̄i (?̄, @̄). Since S12 proves the reflection principle for G∗

1 for Σ
@
1-formulas [Kra95], it

knows that the formula is true. Moreover, by Theorem 3.6 the sentence Ψ is provable in S12 + 1-EXP which

immediately implies that
(

∨:
8=1 ¬k

′
8

)

[0/?̄] is false and hence ∃@̄i (0, @̄) is true.

(ii) Suppose S12 + 1-EXP ⊢ ∀G∃~U (G,~) where ∀G∃~U (G,~) is a Σ
1
1 sentence. Then by Theorem 3.6, there are PV

functions 5 and 6 such that S12 ⊢ ∀G,~(k (5 (G),~) → U (G, 6(G,~))). Then by Theorem 2.6 there are polynomial-
size G∗

1-proofs of
{| |∀G,~(k (5 (G),~) → U (G,6(G,~))) | |=}=∈N.

Note that GEXP has substitution instances of | |Ψ| | which implies that using the rules of G∗
1 we get polynomial-

size GEXP-proofs of the sequence {| |∀G∃~U (G,~) | |=}=∈N.

(iii) If S12+1-EXP proves Ref ((), then by the previous item,GEXP has polynomial-size proofs of the family {| | Ref (() | |=}=∈N
and so GEXP ≥ ((see Section 2.1.1 for details on correspondences and simulations).

�

Let us observe that GEXP is in fact equivalent to iEF.

13

Lemma 3.8. The proof systems iEF, EF + Ref iEF and GEXP are polynomially equivalent over propositional tautologies.

Proof. By item (iii) of Corollary 3.7 and item (iii) Theorem 2.5, iEF and GEXP polynomially simulate each other. As
mentioned in Section 2.1.1, EF+Ref iEF ≥ iEF. It is also easy to see that S12+1-EXP proves the soundness of EF+Ref iEF,
which by item (iii) of Theorem 2.5 gives us iEF ≥ EF + Ref iEF. �

We are now ready to define the extension of iEF for which our main theorem holds. Recall that the propositional
formulas ttavg

1/4
(ℎ=, 2=/4) were defined in Section 2.2.2 and state the average-case hardness of a Boolean function ℎ=

represented as a truth table (hence the name tt).

Definition 3.9 (The systems iEFtt). Letℎ = {ℎ=}=∈N be some family of Boolean functions, and let =0 ∈ N. We denote
by iEFtt(ℎ,=0)

≔ GEXP + {tt
avg
1/4

(ℎ=, 2=/4)}=≥=0 the system that extends GEXP by the axioms claiming the hardness of ℎ= ,

for = ≥ =0.

Note that iEFtt(ℎ,=0) is a family of proof systems, parameterized by a Boolean function familyℎ and some threshold
parameter =0. Observe that depending on the choice of ℎ and =0, the system iEFtt(ℎ,=0) may not be a Cook-Reckhow
system: if ℎ is not a hard function, or =0 is not large enough, we will be adding axioms which are not tautologies,
and the system will be inconsistent; and even if ℎ is hard and =0 is large enough, the system may require advice in
order to verify the proofs. As we shall see, however, these degenerate instantiations of iEFtt(ℎ,=0) are not a problem.

What is more important, the systems iEFtt(ℎ,=0) , regardless of their consistency, always simulate SC.

Lemma 3.10. Let ℎ be family of Boolean functions and let =0 ∈ N. The system iEFtt(ℎ,=0) polynomially simulates SC

over 3DNF tautologies.

Proof. If the system iEFtt(ℎ,=0) is unsound because the added axioms are not tautologies, then the system is trivially
polynomially bounded and so it simulates every other proof system.

Suppose the added axioms are indeed tautologies, meaning that the function ℎ is indeed hard on average.
Let i1 be a 3DNF in =1 variables and 〈?1, D1,�1〉 be a SC-proof of i1 . This means

22=
3
1+=1

< ?1 ≤ 2(2=
3
1+=1)

2?

∧ Pr
A ∈F

=1
?1

[

+ (?1,D1,¬i1,�1, A) = 1
]

= 1.

Note that by Theorem 3.3 and Corollary 3.7, there are PV functions ;, 6 such that

S12 ⊢ ∀i, 0, ?,D,�, 5 (k (; (i, 0, ?,D,�, 5), ~) → Φ(i, 0, ?,D,�, 5 , 6(i, 0, ?,D,�, 5 ,~))) ,

where Sound2 (SC) ≔ ∀i, 0, ?,D,�, 5 ∃�Φ(i, 0, ?,D,�, 5 , �). Let B ≔ | 〈?,D,�〉 |. Then by Theorem 2.6 there is a
B$ (1) -size G∗

1-proof of

| |∀i, 0, ?,D,�, 5 (k (; (i, 0, ?,D,�, 5), ~) → Φ(i, 0, ?,D,�, 5 , 6(i, 0, ?,D,�, 5 ,~))) | |B′ ,

where B′ ≔ poly(B). Let us rewrite the previous quantified propositional formula as | |Ψ′ | | → ||Φ′ | | with the right
range of parameters such that ?1,D1, i1,�1 are substituted in the formula in their corresponding places. Now we
take the substitution instance ttavg

1/4
(ℎ=′ , 2=

′/4) where |ℎ=′ | ≔ |�1 |
:0 + :′0 and we substitute ℎ=′ to the variables cor-

responding to 5 and therefore the disjunct which corresponds to CorrectFracTT disappears from | |Φ′ | | when we
apply the rules of G∗

1. Moreover, it is not hard to verify that after the substitutions every other disjunct which cor-
responds to subformulas of Sound2 (SC) from Definition 3.4 disappears except i1. So what we have is G∗

1-proof of
| |Ψ′′ | | (Ḡ, ~̄) → i1 (Ḡ) (Ḡ and ~̄ are disjoint variables) where | |Ψ′′ | | is a substitution instance of | |Ψ′ | |. Since we are
working in GEXP, we have the substitution instance ∃~̄ | |Ψ′′ | | (Ḡ, ~̄) and therefore using the rules of G∗

1 we get a short
GEXP-proof of i1 (Ḡ). �

Our main theorem now easily follows.

Theorem 3.11 (Main theorem). Let ℎ be a family of Boolean functions and let =0 ∈ N. If the system iEFtt(ℎ,=0) is not

polynomially bounded, then #P * FP/poly.

Proof. By Lemma 3.10 above, for every choice of ℎ and =0, the system iEFtt(ℎ,=0) polynomially simulates SC, so if
iEFtt(ℎ,=0) is not polynomially bounded, then SC is not either. Then, by the contrapositive of Lemma 3.2, #P *
FP/poly. �

14

As discussed, depending on the choice of ℎ and =0, the system iEFtt(ℎ,=0) may not be sound and thus possibly not
a Cook-Reckhow system. However, for any fixed choice of a uniform candidate hard function, the system is concrete
and exhibits the desired connection that proof complexity lower bounds for it imply strong circuit lower bounds. In
particular, if there exist functions in NE∩ coNE average-case hard for subexponential-size circuits, then we recover
the version of the theorem presented in the introduction (Theorem 1.1).

We note that there is the possibility that iEF, given its strength, already proves such strong circuit lower bounds
for some Boolean function. It is thus worth to mention the following corollary.

Corollary 3.12. Suppose there exists a sequence of Boolean functions {ℎ=}=∈N for which iEF has polynomial-size proofs

of the formula family {tt
avg
1/4

(ℎ=, 2=/4)}=≥=0 for some sufficiently large =0 ∈ N. If iEF is not polynomially bounded, then

#P * FP/poly.

Proof. If there is such a function ℎ and threshold =0, then iEFtt(ℎ,=0) is polynomially equivalent to iEF itself, so by
Theorem 3.11 the corollary follows. �

Acknowledgments

Independently, Albert Atserias suggested to us to consider the possibility of using interactive proof systems in order
to derive circuit lower bounds from proof complexity lower bounds.

We would like to thank Pavel Pudlák for useful comments and suggestions. We are also grateful to different
anonymous reviewers for several comments and references.

This work was done in part while the first author was visiting the University of Oxford and the Institute of
Mathematics of the Czech Academy of Sciences.

Noel Arteche was supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation. Erfan Khaniki was supported by the Institute of Mathematics of
the Czech Academy of Sciences (RVO 67985840) and GAČR grant 19- 27871X. Ján Pich received support from the
Royal Society University Research Fellowship URF\R1\211106 “Proof complexity and circuit complexity: a unified
approach”.

For the purpose of Open Access, the authors have applied a CC BY public copyright license to any Author
Accepted Manuscript version arising from this submission.

References

[AB09] S. Arora and B. Barak, Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

[AB87] N. Alon and R. B. Boppana, “The monotone circuit complexity of Boolean functions,” Combi-

natorica, vol. 7, pp. 1–22, 1987.

[ACG24] N. Arteche, G. Carenini, and M. Gray, “Quantum automating TC0-Frege is LWE-hard,” arXiv
preprint arXiv:2402.10351, 2024.

[Ajt83] M. Ajtai, “Σ1
1-formulae on finite structures,” Annals of Pure and Applied Logic, vol. 24, no. 1,

pp. 1–48, 1983.

[Ajt94] M. Ajtai, “The complexity of the pigeonhole principle,” Combinatorica, vol. 14, pp. 417–433,
1994.

[And85] A. Andreev, “On amethod for obtaining lower bounds for the complexity of individual mono-
tone functions,” in Soviet Math. Dokl., vol. 31, 1985, pp. 530–534.

[Bab85] L. Babai, “Trading group theory for randomness,” in Proceedings of the seventeenth annual

ACM symposium on Theory of computing, 1985, pp. 421–429.

[BB17] A. Beckmann and S. Buss, “The NP search problems of Frege and Extended Frege proofs,”
ACM Transactions on Computational Logic (TOCL), vol. 18, no. 2, pp. 1–19, 2017.

15

[BBCP20] O. Beyersdorff, I. Bonacina, L. Chew, and J. Pich, “Frege systems for quantified boolean logic,”
Journal of the ACM (JACM), vol. 67, no. 2, pp. 1–36, 2020.

[BDG+04] M. L. Bonet, C. Domingo, R. Gavalda, A. Maciel, and T. Pitassi, “Non-automatizability of
bounded-depth Frege proofs,” computational complexity, vol. 13, pp. 47–68, 2004.

[BIK+92] P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, P. Pudlák, and A. Woods, “Exponential lower
bounds for the pigeonhole principle,” in Proceedings of the Twenty-Fourth Annual ACM Sym-

posium on Theory of Computing, 1992, pp. 200–220.

[BPR00] M. L. Bonet, T. Pitassi, and R. Raz, “On interpolation and automatization for Frege systems,”
SIAM Journal on Computing, vol. 29, no. 6, pp. 1939–1967, 2000.

[BPU92] S. Bellantoni, T. Pitassi, and A. Urquhart, “Approximation and small-depth Frege proofs,”
SIAM Journal on Computing, vol. 21, no. 6, pp. 1161–1179, 1992.

[Bür00] P. Bürgisser, “Completeness and reduction in algebraic complexity theory,” Algorithms and

Computation in Mathematics, 2000.

[Bus85] S. R. Buss, Bounded arithmetic. Princeton University, 1985.

[Bus95] S. R. Buss, “Relating the bounded arithmetic and polynomial time hierarchies,”Annals of Pure
and Applied Logic, vol. 75, no. 1-2, pp. 67–77, 1995.

[CK07] S. Cook and J. Krajíček, “Consequences of the provability of NP ⊆ P/poly,” The Journal of
Symbolic Logic, vol. 72, no. 4, pp. 1353–1371, 2007.

[CN10] S. Cook and P. Nguyen, Logical Foundations of Proof Complexity. Cambridge University Press,
2010.

[Cob64] A. Cobham, “The intrinsic computational difficulty of functions,” in Proc. 1964 Congress for

Logic, Methodology, and the Philosophy of Science, North-Holland, 1964, pp. 24–30.

[Coo75] S. A. Cook, “Feasibly constructive proofs and the propositional calculus,” in Proceedings of

the Seventh Annual ACM Symposium on Theory of Computing, 1975, pp. 83–97.

[Coo96] S. Cook, “Relating the provable collapse of P to NC
1 and the power of logical theories,” in

Proof Complexity and Feasible Arithmetics, 1996, pp. 73–91.

[CR79] S. A. Cook and R. A. Reckhow, “The relative efficiency of propositional proof systems,” Logic,
Automata, and Computational Complexity, 1979.

[DMN+20] S. De Rezende, O. Meir, J. Nordström, T. Pitassi, R. Robere, and M. Vinyals, “Lifting with
simple gadgets and applications to circuit and proof complexity,” in 61st Annual Symposium

on Foundations of Computer Science (FOCS), 2020, pp. 24–30.

[DR23] B. Davis and R. Robere, “Colourful TFNP and Propositional Proofs,” in 38th Computational

Complexity Conference (CCC 2023), ser. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 264, 2023, 36:1–36:21. doi: 10.4230/LIPIcs.CCC.2023.36.

[dRGR22] S. F. de Rezende,M. Göös, and R. Robere, “Proofs, circuits, and communication,”ACM SIGACT

News, vol. 53, no. 1, pp. 59–82, 2022.

[FSS84] M. Furst, J. B. Saxe, andM. Sipser, “Parity, circuits, and the polynomial-time hierarchy,”Math-

ematical Systems Theory, vol. 17, no. 1, pp. 13–27, 1984.

[Gay22] A. Gaysin, “Proof complexity of CSP,” arXiv preprint arXiv:2201.00913, 2022.

[Gay24] A. Gaysin, “Proof complexity of universal algebra in a CSP dichotomy proof,” arXiv preprint
arXiv:2403.06704, 2024.

16

https://doi.org/10.4230/LIPIcs.CCC.2023.36

[GGKS18] A. Garg, M. Göös, P. Kamath, and D. Sokolov, “Monotone circuit lower bounds from reso-
lution,” in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
2018, pp. 902–911.

[GP18] J. A. Grochow and T. Pitassi, “Circuit complexity, proof complexity, and polynomial identity
testing: The ideal proof system,” Journal of the ACM (JACM), vol. 65, no. 6, pp. 1–59, 2018.

[Gro23] J. A. Grochow, “Polynomial identity testing and the Ideal proof system: PIT is in NP if and
only if IPS can be p-simulated by a Cook-Reckhowproof system,” arXiv preprint arXiv:2306.02184,
2023.

[Hak20] T. Hakoniemi, “Feasible interpolation for Polynomial Calculus and Sums-of-Squares,” in 47th

International Colloquium on Automata, Languages, and Programming (ICALP 2020), 2020.

[Hås86] J. Håstad, “Almost optimal lower bounds for small depth circuits,” in Proceedings of the Eigh-

teenth Annual ACM Symposium on Theory of Computing, 1986, pp. 6–20.

[IW97] R. Impagliazzo andA.Wigderson, “P = BPP ifE requires exponential circuits: Derandomizing
the XOR lemma,” in Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of

computing, 1997, pp. 220–229.

[Jeř04] E. Jeřábek, “Dual weak pigeonhole principle, Boolean complexity, and derandomization,”An-
nals of Pure and Applied Logic, vol. 129, no. 1-3, pp. 1–37, 2004.

[Jeř05] E. Jeřábek, “Weak pigeonhole principle, and randomized computation,” Ph.D. dissertation,
Faculty of Mathematics and Physics, Charles University, Prague, 2005.

[Jeř07] E. Jeřábek, “Approximate counting in bounded arithmetic,” The Journal of Symbolic Logic,
vol. 72, no. 3, pp. 959–993, 2007.

[Kha23a] E. Khaniki, “(Im)possibilty results in proof complexity and arithmetic,” Ph.D. dissertation,
Faculty of Mathematics and Physics, Charles University, Prague, 2023. [Online]. Available:
https://dspace.cuni.cz/handle/20.500.11956/187614.

[Kha23b] E. Khaniki, “Jump operators, interactive proofs, and proof complexity generators,” 2023, Un-
published preprint.

[KI04] V. Kabanets and R. Impagliazzo, “Derandomizing polynomial identity tests means proving
circuit lower bounds,” Computational Complexity, vol. 13, no. 1/2, pp. 1–46, 2004.

[KNT11] L. A. Kołodziejczyk, P. Nguyen, and N. Thapen, “The provably total NP search problems of
weak second order bounded arithmetic,” Annals of Pure and Applied Logic, vol. 162, no. 6,
pp. 419–446, 2011.

[KP90] J. Krajíček and P. Pudlák, “Quantified propositional calculi and fragments of bounded arith-
metic,” Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 36, no. 1,
pp. 29–46, 1990.

[KP98] J. Krajíček and P. Pudlák, “Some consequences of cryptographical conjectures for S12 and EF,”
Information and Computation, vol. 140, no. 1, pp. 82–94, 1998.

[KPT91] J. Krajíček, P. Pudlák, and G. Takeuti, “Bounded arithmetic and the polynomial hierarchy,”
Annals of Pure and Applied Logic, vol. 52, no. 1-2, 1991.

[KPW95] J. Krajíček, P. Pudlák, and A. Woods, “An exponential lower bound to the size of bounded
depth Frege proofs of the pigeonhole principle,” Random Structures & Algorithms, vol. 7, no. 1,
pp. 15–39, 1995.

[Kra04a] J. Krajíček, “Diagonalization in proof complexity,” FundamentaMathematicae, vol. 182, pp. 181–
192, 2004.

17

https://dspace.cuni.cz/handle/20.500.11956/187614

[Kra04b] J. Krajíček, “Implicit proofs,” The Journal of Symbolic Logic, vol. 69, no. 2, pp. 387–397, 2004.

[Kra16] J. Krajíček, “Consistency of circuit evaluation, Extended Resolution and totalNP search prob-
lems,” in Forum of Mathematics, Sigma, Cambridge University Press, vol. 4, 2016, e15.

[Kra19] J. Krajíček, Proof Complexity (Encyclopedia of Mathematics and its Applications). Cambridge
University Press, 2019. doi: 10.1017/9781108242066.

[Kra90] J. Krajíček, “Exponentiation and second-order bounded arithmetic,” Annals of Pure and Ap-

plied Logic, vol. 48, no. 3, pp. 261–276, 1990.

[Kra94] J. Krajíček, “Lower bounds to the size of constant-depth propositional proofs,” The Journal of
Symbolic Logic, vol. 59, no. 1, pp. 73–86, 1994.

[Kra95] J. Krajíček, Bounded Arithmetic, Propositional Logic and Complexity Theory (Encyclopedia of
Mathematics and its Applications). CambridgeUniversity Press, 1995. doi: 10.1017/CBO9780511529948.

[Kra97] J. Krajíček, “Interpolation theorems, lower bounds for proof systems, and independence re-
sults for bounded arithmetic,” The Journal of Symbolic Logic, vol. 62, no. 2, pp. 457–486, 1997.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, “Algebraic methods for interactive proof sys-
tems,” Journal of the ACM (JACM), vol. 39, no. 4, pp. 859–868, 1992.

[LMM+22] S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang, “Lifting with sunflowers,” in 13th Inno-

vations in Theoretical Computer Science Conference (ITCS 2022), 2022.

[MP20] M. Müller and J. Pich, “Feasibly constructive proofs of succinct weak circuit lower bounds,”
Annals of Pure and Applied Logic, vol. 171, no. 2, p. 102 735, 2020.

[NW94] N. Nisan and A. Wigderson, “Hardness vs randomness,” Journal of Computer and System

Sciences, vol. 49, no. 2, pp. 149–167, 1994.

[PBI93] T. Pitassi, P. Beame, and R. Impagliazzo, “Exponential lower bounds for the pigeonhole prin-
ciple,” Computational complexity, vol. 3, pp. 97–140, 1993.

[Pic15] J. Pich, “Logical strength of complexity theory and a formalization of the PCP theorem in
bounded arithmetic,” Logical Methods in Computer Science, vol. 11, 2015.

[Pra75] V. R. Pratt, “Every prime has a succinct certificate,” SIAM Journal on Computing, vol. 4, no. 3,
pp. 214–220, 1975.

[PS23] J. Pich and R. Santhanam, “Towards P ≠ NP from Extended Frege lower bounds,” arXiv
preprint arXiv:2312.08163, 2023.

[Pud20] P. Pudlák,Reflection principles, propositional proof systems, and theories, 2020. arXiv: 2007.14835.

[Pud97] P. Pudlák, “Lower bounds for resolution and cutting planes proofs and monotone computa-
tions,” The Journal of Symbolic Logic, vol. 62, no. 3, pp. 981–998, 1997.

[Raz85] A. Razborov, “Lower bounds on the monotone complexity of some Boolean function,” in
Soviet Math. Dokl., vol. 31, 1985, pp. 354–357.

[Raz87] A. A. Razborov, “Lower bounds on the size of bounded depth circuits over a complete basis
with logical addition,” Mathematical Notes of the Academy of Sciences of the USSR, vol. 41,
no. 4, pp. 333–338, 1987.

[Raz95a] A. Razborov, “Unprovability of lower bounds on circuit size in certain fragments of bounded
arithmetic,” Izvestiya: mathematics, vol. 59, no. 1, p. 205, 1995.

[Raz95b] A. A. Razborov, “Bounded arithmetic and lower bounds in boolean complexity,” in Feasible

Mathematics II, Springer, 1995, pp. 344–386.

18

https://doi.org/10.1017/9781108242066
https://doi.org/10.1017/CBO9780511529948
https://arxiv.org/abs/2007.14835

[RM97] R. Raz and P. McKenzie, “Separation of the monotone NC hierarchy,” in Proceedings 38th

Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 1997, pp. 234–243.

[Smo87] R. Smolensky, “Algebraic methods in the theory of lower bounds for boolean circuit complex-
ity,” in Proceedings of the Nineteenth Annual ACM Symposium on the Theory of Computing,
1987, pp. 77–82.

19

	Introduction
	Preliminaries
	Proof complexity
	Frege systems
	Quantified propositional systems
	Implicit proof systems

	Bounded arithmetic
	The theories S12 and S12 + 1-EXP
	Approximate counting
	Correspondences and propositional translations

	Interactive proof systems and the sum-sheck protocol

	Main result
	References

