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Abstract—Optimizing metamaterials with complex geometries
is a big challenge. Although an active learning algorithm,
combining machine learning (ML), quantum computing, and
optical simulation, has emerged as an efficient optimization tool,
it still faces difficulties in optimizing complex structures that have
potentially high performance. In this work, we comprehensively
analyze the performance of an optimization algorithm for meta-
material design on the integrated HPC and quantum systems.
We demonstrate significant time advantages through message-
passing interface (MPI) parallelization on the high-performance
computing (HPC) system showing approximately 54% faster ML
tasks and 67 times faster optical simulation against serial work-
loads. Furthermore, we analyze the performance of a quantum
algorithm designed for optimization, which runs with various
quantum simulators on a local computer or HPC-quantum
system. Results showcase ∼24 times speedup when executing the
optimization algorithm on the HPC-quantum hybrid system. This
study paves a way to optimize complex metamaterials using the
integrated HPC-quantum system.

Keywords—high-performance computing, quantum simulator,
message-passing interface, metamaterial optimization, active
learning

I. INTRODUCTION

Metamaterials derive their properties from the inherent
properties of constituent materials as well as the geometri-
cal arrangements of sub-wavelength-scaled meta-atoms [1],
enabling them to manipulate incident waves [2]. Over the
past decade, metamaterials have drawn considerable interest
as potential substitutes for conventional optical, mechanical,
or thermal materials due to their unique properties, expecting
them increasingly applicable in practical settings with decreas-
ing optimization and fabrication costs [3], [4], [5]. While
optimizing their geometrical features is important to achieve
high performance for practical applications, their complex
parametric spaces lead to an explosion of optimization spaces,
making optimization processes impractical in realistic time
scales [6], [7]. Furthermore, evaluating their properties often
requires considerable time, even with approximation or nu-
merical methods, resulting in significant computational costs.

These difficulties make the optimization of metamaterials
challenging works.

An active learning algorithm [6], [7], [8], [9], combining
machine learning (ML), quantum computing, and wave-optics
simulation in an iteration, has been proven to be highly
efficient in designing various kinds of photonic structures
including metamaterials [6], [8], [10]. This algorithm keeps
enhancing the quality of datasets throughout the optimiza-
tion process by iteratively adding higher-quality data points,
leveraging benefits of ML- and quantum computing-assisted
optimization processes. As a result, it can build more accurate
surrogate models based on high-quality datasets, enabling
the identification of the global optimum or near-optimum
metamaterial structure. The success of the active learning
algorithm has been demonstrated across various applications,
such as metamaterial radiator [6], metamaterial thermal emitter
[11], metamaterial solar absorber [7], metamaterial optical
diode [12], transparent radiative cooler [8], and wide-angle
spectral filter [10].

However, previous works have largely focused on simple ge-
ometries with relatively small parametric spaces due to compu-
tational limitations on conventional computing. With growing
interest in designing more complex materials with potentially
higher performance, there is a need to explore advanced
computational techniques. Leveraging high-performance com-
puting (HPC) for parallel computations presents an efficient
solution to address these challenges. By distributing workloads
across multi-processors, HPC can accelerate overall computing
processes and handle large-scale problems that are intractable
on local computers [13], [14]. Therefore, it is important to
analyze the performance of parallel computations on an HPC
system to prepare an HPC-enhanced optimization algorithm
for complex metamaterial design.

In the meantime, the active learning algorithm involves
quantum computing to solve a surrogate model represented
by a Hamiltonian formulation (quadratic unconstrained binary
optimization; QUBO) [6], [7], [8], [10]. While previous studies
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mostly relied on quantum annealing, a specialized quantum
computing technique for solving combinatorial optimization
problems, the utilization of gate-based quantum computers has
become more important due to their universal applicability
across various problem domains [15], [16], [17]. In this regard,
the quantum approximate optimization algorithm (QAOA) is
considered a valuable quantum algorithm for universal gate-
based quantum computers in the noise intermediate-scale
quantum (NISQ) era [18].

QAOA can efficiently solve combinatorial optimization
problems by iteratively employing classical and quantum com-
puting, resulting in a global optimum or near-optimum solution
[19], [20]. However, performance evaluation of this quantum
algorithm (QAOA) on quantum hardware is hard due to limited
resources [21]; thus, quantum simulators have become essen-
tial tools for executing and evaluating quantum algorithms
[22], [23]. Quantum simulators have varying performances
depending on their types due to their inherently different
operating mechanisms, thereby leading to different outputs on
each simulator even for the same quantum algorithm [24],
[25]. In addition, an HPC-quantum hybrid system, such as the
Oak Ridge Leadership Computing Facility (OLCF) Frontier
supercomputer which is loosely integrated with the Quantum
Computing User Program (QCUP) quantum resources [26],
can offer enhanced capabilities for quantum simulators to solve
optimization problems with QAOA. Therefore, it is required
to evaluate the performance of QAOA across various quantum
simulators on a local computer or HPC-Quantum system to
understand which simulator is the most efficient depending on
a given problem.

In this work, we comprehensively analyze the performance
of an optimization algorithm aimed at designing highly com-
plex metamaterials on the integrated HPC and quantum sys-
tems. This work makes the following contributions:

• We provide clear insights into under what conditions the
optimization processes utilizing the HPC and quantum
system have advantages over those utilizing conventional
computing.

• We demonstrate the significant benefits of employing
parallel computing using the message-passing interface
(MPI) on multi-processors for wave-optics simulations.

• We showcase the acceleration in ML training using MPI
on multi-processors, and the potential advantages by
employing graphic processing units (GPUs) for ML tasks.

• We verify that the performance of QAOA varies across
different quantum simulators, highlighting the potential
advantages of utilizing the HPC-quantum hybrid sys-
tem to solve combinatorial optimization problems with
QAOA.

The remainder of this paper is organized as follows: Section
2 briefly introduces the active learning algorithm for meta-
material design. Section 3 explains the current limitations
in each step of the active learning algorithm and presents
solutions to overcome those challenges. Section 4 shows
detailed performance analysis results including our discussion.

We close this paper with the conclusion in Section 5.

II. BRIEF BACKGROUND OF AN ACTIVE LEARNING
ALGORITHM FOR METAMATERIAL DESIGN

The active learning algorithm [6], [7], [8], [9] for metama-
terial design involves three key components:

1) Machine Learning: ML is employed to construct a
surrogate model by learning the relationship between
inputs and corresponding output performance metrics
(i.e., figure-of-merit; FOM). This surrogate model serves
as a metamodel representing the relationship between
metamaterial structures and their FOMs.

2) Quantum Computing: Quantum computing is employed
to solve a given surrogate model generated by the ML
model. Here, variational quantum algorithms, such as
QAOA, can be used to efficiently solve given optimiza-
tion problems leveraging gate-based quantum computing
resources [19]. By formulating the problem as a quantum
optimization task, quantum computing can efficiently
explore the solution space and identify promising meta-
material structures.

3) Simulation: Wave-optics simulation is used to evaluate
the performance of the metamaterial structures identified
by the ML-quantum computing loop. The simulation
calculates FOM associated with the identified metama-
terial structure, providing feedback for the optimization
process.

After each iteration, a new data point is added to the dataset
that consists of binary vectors representing metamaterial struc-
tures identified by quantum computing and their corresponding
FOMs calculated from wave-optics simulation [10], [8]. The
iterations enable the inclusion of high-quality data points,
which in turn allows ML to refine the surrogate model. As
a result, quantum computing can identify a more valuable
metamaterial structure based on the improved surrogate model,
leading to the identification of global or near-global optimal
structures [10], [8], [6], [7].

Despite the demonstrated efficiency of the active learning
algorithm, computational limitations exist for each compo-
nent with conventional computing, especially when designing
complex metamaterials. These challenges can be overcome by
leveraging advanced computational capabilities, such as HPC
and HPC-quantum integrated systems (Figure 1). In the fol-
lowing section, we define complex optimization problems and
introduce strategies to overcome the computational limitations,
paving the way for more efficient and scalable optimization
processes.

III. STRATEGIES TO SOLVE LARGE-SCALE
OPTIMIZATION PROBLEMS

A. Optimization Problem - Radiative Cooling Materials

Metamaterials are applicable to a wide range of fields
including optical or thermal materials such as radiative cooling
materials [10], [8], optical diodes [12], and thermophoto-
voltaics [7]; One of the recent popular applications is radia-
tive cooling techniques [8]. The radiative cooling technique



Figure 1. Schematic of the active learning algorithms on different computing
systems, showing the key components (i.e., ML, quantum computing (QC),
simulation) and workflow. Bars at the bottom of each computing system rep-
resent the approximate required time for each component. The HPC (middle)
and integrated system (HPC+QC, bottom) show significant acceleration in
computational time compared to a local computer (top).

enables the emission of thermal radiation through the atmo-
spheric window (AW; wavelength: 8 to 13 um) to outer cold
space (∼ 3 K) without consuming energy and refrigerants [27].
Given the growing efforts to address global warming in the
last few decades, this technique has drawn great attention as
a green and passive cooling solution. In particular, transparent
radiative coolers (TRCs) can be applied to windows which
largely contributes to energy loss in enclosed spaces such as
buildings [28]. Photonic structures, such as optical metamate-
rials and multilayered structures, have been developed for TRC
applications [29], [30]. These materials exhibit high transmis-
sivity in the solar spectrum range and high emissivity in the
AW. However, ultraviolet (UV) and near-infrared (NIR) light
from sunlight significantly contribute to optical heating, thus
they are desired to be reflected to maximize TRC performance
[10], [8].

Many efforts have been made to develop high-performance
TRCs using various optimization algorithms including the
active learning algorithm. However, computational limitations
have often confined TRC designs to relatively simple ge-
ometries, hindering the exploration of more complex designs
that could offer better performance. For example, although
1,000-layered structures can have high TRC performance,
the optimization processes involve high computational costs,
hindering the optimization with such complexity in realistic
time scales. Furthermore, computational costs significantly
grow with an increasing number of simulation conditions; for
instance, considering TRC performance across a wide range
of incident angles can further increase computational costs.
In this scenario, parallel computing on HPC systems can be
greatly useful to mitigate these challenges.

B. Machine Learning

The active learning algorithm integrates iterative processes
of ML and quantum computing to accelerate optimization
tasks. In this algorithm, an ML constructs a surrogate model,
which serves as a representation of the optimization problem.
Quantum computing then operates on this surrogate model
formulated with a Hamiltonian (e.g., quadratic unconstrained
binary optimization; QUBO). This process aims to identify
an optimal binary vector, which corresponds to the ground
state of a given surrogate model represented by the QUBO
formulation. One of the keys of this algorithm is the factor-
ization machine (FM), a supervised machine learning model.
FM enables to describe the relationship between input binary
vectors (x) and outputs (y) through linear and quadratic
coefficients, which is given by the following equation [31]:

y = w0 +

n∑
i=1

wixi +
1

2

k∑
f=1

( n∑
i=1

vi,fxi

)2

−
n∑

i=1

v2i,fx2i


(1)

where xi represents an i-th element (either 0 or 1) of x with
a length of n. The parameters w0, wi, vi,f and k represent a
global bias, linear coefficient, quadratic coefficient and latent
space size, respectively. One advantage of using FM in this
algorithm is the transparency of this ML model. Hence, the
model parameters can be employed to build a surrogate model
for inverse design and combined with other methods, such
as quantum computing, for global optimization within the
active learning algorithm [6], [10], [8]. In addition, FM can
computationally efficiently learn pairwise interactions by fac-
torizing them, resulting in decreased algorithmic complexity
for training from O(kn2) to O(kn) [31], as seen in the above
equation. However, the optimization of complex metamaterial
usually requires lots of data points, and training with a
large volume of data can be computationally costly, requiring
significant time to complete.

A mini-batch is a subset of the entire dataset commonly
used in ML training. Using mini-batches provides several
advantages, including computational efficiency, smoother con-
vergence, better exploration of parameter space, and mitigation
of over/underfitting [32]. Furthermore, mini-batch training
allows for parallelization on GPU or HPC clusters, potentially
accelerating the training process [33]. However, it is important
to consider communication overheads in parallel computing
[34], [35], which refer to the additional time required for
coordinating and exchanging data between parallel computing
units, such as cores or nodes in a cluster. Communication
overheads can sometimes outweigh the advantages of parallel
computing. To investigate the advantage of utilizing parallel
computing, we systematically compare FM training time using
different volumes of datasets on different computing systems;
The training experiments are conducted on a single-processor,
GPU, and multi-processors.

We generate datasets to train FM with sizes of nd × nt for
this study, where nd is the number of decision variables and
nt represents the total number of data points. For example,



a dataset with a size of 120 × 1,000 indicates that it has
120 decision variables (i.e., binary bit-string length of 120)
and 1,000 data pairs (consisting of 1,000 binary vectors and
1,000 corresponding calculated FOMs). An Intel® Xeon®
Gold 6248R CPU is used to train FM on a single processor.
For parallel computing, we use the OLCF Frontier for MPI-
based parallel processing, and the OLCF Jupyter GPU Lab,
which offers a setup with 16GB Memory and Nvidia V100
GPU, for GPU-accelerated computations. We utilize the HPC
system (OLCF Frontier), which features 64-core AMD “Opti-
mized 3rd Gen EPYC” CPUs, to implement MPI for parallel
computations. The tests are conducted on a single node unless
otherwise noted.

C. Quantum Approximate Optimization Algorithm

As stated above, FM model parameters are well-fitted to
the QUBO formulation, represented by n×n upper-triangular
matrix Q, where the objective function can be defined as the
following:

ȳ =
∑

xi∈{0,1}n

xTQx (2)

The objective of quantum computing is to find an optimal
binary vector x̄ that minimizes the expected output (ȳ):

x̄ = arg min
x

ȳ (3)

Combinatorial optimization problems, such as max-cut, travel-
ing salesman, graph partitioning, and metamaterial optimiza-
tion problems, are known to be NP-hard, posing explosive
searching spaces with an increasing number of decision vari-
ables for optimization [36], [37]. Therefore, these problems
become intractable in classical computing systems when many
decision variables are considered. Quantum computing that
can evaluate numerous possible combinations simultaneously
is highly promising for such combinatorial optimization prob-
lems.

QAOA is a variational quantum algorithm specially de-
signed to solve combinatorial optimization problems on uni-
versal gate-based quantum computers, leveraging the limited
quantum computing resources (e.g., a limited number of
qubits, and errors from noise and imperfect gates) in the
NISQ era [37], [18]. This quantum algorithm can converge
to high-quality solutions close to the global optimum by
iteratively employing both classical and quantum computing
[19], [20]. Although QAOA may not outperform classical
optimization methods for all problems due to the limitation of
the current quantum hardware, it is considered highly valuable
as a practical tool for early quantum machines to understand
the capability of quantum computing [38], [18].

While quantum computers have demonstrated potential
advantages over classical computers in several fields, a
lack of accessibility to real quantum devices poses con-
siderable difficulties in executing quantum algorithms [22],
[23]. In this regard, quantum simulators play a significant
role in simulating and analyzing quantum mechanisms to
solve given quantum problems or quantum circuits. In this

work, we choose to use quantum simulators from IBM
Quantum (e.g., ibmq−qasm−simulator, simulator−statevector,
simulator−mps) and AerSimulator on a local computer. These
simulators can be used to run quantum algorithms on a local
computer or HPC system through Qiskit, or by submitting jobs
on a local or HPC-quantum hybrid system [39].

The operational mechanisms of each quantum simulator
are different, resulting in different outputs even for the same
quantum algorithm [24], [25]. In addition, quantum simulators
may perform better when jobs are submitted or executed on the
integrated HPC and quantum systems. Hence, we comprehen-
sively analyze the performance of each simulator for a specific
quantum algorithm (i.e., QAOA) executed or submitted on a
local computer (Apple M2 Max, 32 GB Memory) or HPC-
quantum system (OLCF Frontier). We establish various QUBO
matrices with different problem sizes (i.e., numbers of decision
variables (n) from 4 to 32; n × n upper-triangular matrices
fully filled with random real numbers). We solve these QUBOs
using QAOA with different simulators on the local computer
and HPC-quantum system. We then analyze the accuracy and
time-to-solution of each method. The accuracy is calculated by
dividing the obtained solution by the known global optimum
value (Accuracy = solution / global optimum). The time-to-
solution is measured from the start to the end of QAOA
jobs, including factors such as queue time and communication
between the local computer and IBM server [40].

D. Transfer Matrix Method

Transfer matrix method (TMM) is a promising mathemat-
ical technique to analyze the behavior of waves when they
propagate through layered structures [10], [8]. TMM needs
to define the overall transfer matrix (M) used to calculate
the transmission and reflection coefficients for the system,
which is composed of propagation matrices (P) and transfer
matrices (T). P is defined based on the properties of a layer
and wavelength of the incident wave, describing how the wave
behaves as it propagates through a layer, which is given by
[41]:

P =

[
eikwd 0
0 e−ikwd

]
(4)

where kw is a wavevector in the layer (kw = 2πnr

λ ), and nr

and d represent the refractive index and thickness of a layer.
The transfer matrix T describes how the wave propagates

and interacts when it passes from one layer to another,
explaining amplitudes and their derivatives at the interfaces
between adjacent layers (e.g., layer j to layer j + 1 refers to
Tj,j+1), as the following [41]:

Tj,j+1 =

[
tj,j tj,j+1

tj+1,j tj+1,j+1

]
(5)

Here, tj,j and tj,j+1 respectively represent the transmission
amplitude for the wave component parallel to the interface and
perpendicular to the interface. tj+1,j and tj+1,j+1 respectively
represent the reflection amplitude for the wave component
parallel to the interface and perpendicular to the interface.



They are calculated based on incident angles, polarization
states, and optical properties of materials in layers.

M is obtained by cascading P and T for each layer, given
by [41], [42]:

M = TN−1,N ×PN × . . .×T1,2 ×P1 (6)

TMM is particularly useful for calculating the optical proper-
ties (transmission, reflection, and emission) of multilayered
systems. However, it faces challenges when evaluating the
properties of highly complex structures under many simulation
conditions, particularly due to the need to calculate transfer
matrices serially for each wavelength domain and each sim-
ulation condition. This results in a significant computational
burden, especially when considering many simulation condi-
tions (e.g., wide wavelength regime and wide incident angle).

To address these challenges, we implement MPI to paral-
lelize TMM simulations on HPC systems. By using multi-
processors, MPI allows us to efficiently distribute the computa-
tional workload and calculate the optical properties with TMM
across wide wavelength domains and multiple simulation
conditions. We decompose the wavelength domain into several
sub-domains based on the number of MPI processors. Each
processor takes the decomposed wavelength domain for the
simulation, thereby reducing the workload. Hence, a large job
(the whole wavelength domain) is split into sub-jobs (sub-
wavelength domains), and each processor works with the sub-
jobs. Then, the master processor calculates the optical property
of the given optical system by taking all results from each
processor (Figure 2).

Figure 2. Schematic of MPI parallelization of TMM on HPC systems.

In this work, we evaluate the performance of HPC-enhanced
TMM implementing MPI by taking an example of a 1,000-

layered photonic structure with a different number of simula-
tion conditions (50 to 1,000, the incident angle from 0◦ to 89◦).
Note that it is impractical to evaluate the optical characteristics
of such a complex structure with 400 simulation conditions
on a local computer (Apple M2 Max, 32 GB Memory) due
to computational limitations. However, by leveraging HPC to
utilize MPI parallelization for TMM, we can efficiently solve
this highly complex problem within a minute, demonstrating a
significant time advantage over the conventional counterpart.
We utilize the OLCF Frontier for leveraging MPI parallel
computations. The tests are conducted on a single node unless
otherwise noted.

IV. RESULTS

A. Performance Analysis of HPC-Enhanced FM

FM training is an essential step in the active learning algo-
rithm, but it can pose computational challenges, particularly
when optimizing complex metamaterial structures. Although
FM training is known for its computational efficiency because
of the reduced algorithmic complexity [31], the training time
can still be considerable especially when dealing with large
volumes of data associated with complex metamaterial design.
In this subsection, we investigate the performance of the
FM training (i.e., FM training time) on different computing
systems.

First, we conduct a benchmarking study to verify the
advantages of leveraging GPUs for parallel computations. We
establish matrices of varying sizes, and measure the time
required for matrix multiplications on different computing
systems (CPU with a single processor and GPU for parallel
computations). Figure 3A shows that the matrix operation on
the CPU is faster than that on the GPU for small matrices (size
less than 100 × 100). However, the GPU becomes increasingly
efficient as the matrix size gets larger, and it is ∼15 times
faster than the CPU for the calculation with a matrix size
of 10,000 × 10,000 (takes 0.61 s on the GPU, but 9.94 s
on the CPU). This benchmarking study clearly demonstrates
that the GPU has a superior capability for matrix operations
by taking advantage of parallel data processing, showing the
potential advantages of GPU-accelerated ML training. Hence,
we compare the times required for FM training on the CPU
and GPU using different training datasets.

As seen in Figure 3B, the CPU consistently outperforms
the GPU for FM training tasks, primarily because the training
datasets are not sufficiently large to fully exploit the ad-
vantages of parallel processing. Instead, the communication
overhead associated with parallel computations outweighs the
computational advantages. However, we observe that the dis-
crepancy in the training time on the CPU and GPU decreases
as the volume of training data increases. For example, the CPU
is 17% faster than the GPU (CPU: 11.98 s, GPU: 14.05 s) for
training with a small dataset of 120 × 1,000, but this difference
decreases to only 0.3% for a larger dataset of 240 × 10,000
(CPU: 85.89 s, GPU: 86.17 s). These results illustrate that
leveraging GPU-accelerated training may draw computational
advantages by overcoming communication overhead when



handling a large volume of data. Thus, it is expected that the
training on the GPU will be faster than that on the CPU for
datasets larger than 240 × 10,000, highlighting the potential
for GPU acceleration in FM training for complex metamaterial
design [43].

Figure 3. (A) Elapsed time to complete matrix multiplication conducted on
the CPU and GPU as a function of matrix sizes. (B) FM training time with
different volumes of datasets on the CPU and GPU.

Since FM has a relatively small number of model parameters
and it can be trained on a relatively small dataset compared
to other ML algorithms, it is generally difficult to observe
acceleration in FM training on GPUs (Figure 3B). However,
training time can be reduced through MPI parallelization on
multi-processors instead of relying on a single processor [44]
(Figure 2). Hence, we investigate the performance of MPI-
parallelized FM. Figure 4A presents the FM training time
for different volumes of datasets with varying numbers of
processors used for MPI. It shows some benefits of employing
multi-processors on the HPC system (OLCF Frontier) when a
dataset is small (e.g., 120 × 1,000). Hence, FM training takes
11.66 s, 8.10 s, 10.12, and 23.24 s when using CPU with
single, 3, 6, and 21 processors, respectively. The training time
on the single processor CPU grows more rapidly than that on
the multi-processors, thus the advantage of MPI parallelization
becomes more evident when a dataset is large. For instance,
the training with a dataset size of 120 × 10,000 takes 79.76
s, 53.68 s, 53.93 s, and 67.09 s when using the CPU with
single, 6, 9, and 21 processors, respectively. Note that it cannot
be trained on the 3 processors, which may be due to the
time required for MPI job allocation on the HPC system
exceeding the wall time. Furthermore, we can infer that the

communication overhead can outweigh the advantage achieved
by utilizing multi-processors. Hence, for a dataset of 120 ×
1,000, the most efficient training is achieved by using the 3
processors instead of using more processors (e.g., 6, 9, or 21
processors). Interestingly, using more processors is preferable
when the volume of datasets increases, thus the training on
the 6 processors is the most efficient for a dataset size of
120 × 10,000. The benefit of leveraging multi-processors is
more obvious when datasets have larger volumes with more
decision variables (e.g., 120 → 240); training with a dataset
size of 240 × 10,000 takes 92.22 s, 59.98 s, 59.79 s, and 66.77
s when using the CPU with single, 6, 9, and 21 processors,
respectively, demonstrating a 54% acceleration by employing
9 processors compared to the training on the single-processor
(Figure 4B).

Figure 4. FM training time on the Frontier with different numbers of
processors used for MPI parallelization. Datasets include bit-string lengths
of (A) 120 and (B) 240.

Increasing the number of nodes while keeping the total num-
ber of MPI processors does not bring significant improvement
in FM training time. We analyze the performance of HPC-
enhanced FM on multi-nodes (keeping the total number of
MPI processors to 21) with a training set size of 240 × 10,000
(Figure 5). The results show leveraging 4 nodes is beneficial
with ∼10% acceleration, but it does not bring further notable
acceleration when using more than 4 nodes.

These results clearly verify the advantage of utilizing HPC-



Figure 5. FM training time on the Frontier with different numbers of nodes
using MPI with multi-processors for a dataset size of 240 × 10,000.

enhanced FM for MPI parallelization with multi-processors,
especially when the volume of a dataset is sufficiently large.
This advantage will be more significant with larger data
volumes, allowing for faster training and efficient optimization
of complex metamaterial structures that require large datasets
for FM. Therefore, the HPC-enhanced FM will be integrated
into the active learning algorithm for such optimization tasks.

B. Performance Analysis of QAOA with Quantum Simulators

QAOA is a promising quantum algorithm to solve combi-
natorial optimization problems with gate-based quantum com-
puters, where an objective function is formulated with QUBO
derived from FM model parameters [6], [7], [8]. Here, as
stated in the previous section, the performance of QAOA can
vary depending on the type of quantum simulator used, thus
we analyze the performance of QAOA on those simulators.
IBM Quantum offers quantum simulators accessible via Qiskit,
which can be run on a local computer (i.e., local simulators).
These simulators include BasicAer simulator, and Aer simu-
lator with different methods (Aer/density matrix, statevector,
matrix product state (MPS), and automatic) [21]. Addition-
ally, IBM Quantum provides cloud-based quantum simulators
such as ibmq−qasm−simulator, simulator−statevector, and
simulator−mps [45]. These simulators can be accessed by
submitting quantum jobs from a local computer or an HPC-
quantum hybrid system like the OLCF Frontier. We use these
quantum simulators to conduct the performance analysis of
QAOA, considering accuracy and time-to-solution.

We first run our QAOA jobs with various quantum simu-
lators on the local computer. As can be seen in Figure 6A,
all simulators quickly find accurate solutions for small-scale
problems (sizes ≤ 10). Here, the depth of the ansatz circuit
is 87 with the required number of qubits of 10. However,
errors have increasingly occurred as the problem size grows.
Notably, some local simulators (such as Aer/density matrix,
statevector, and MPS) cannot handle large-scale problems (size
≥ 16; ansatz circuit depth ≥ 141, required qubits ≥ 16) due to

their high memory requirements for simulating quantum be-
haviors [46]. BasicAer, Aer/automatic, ibmq−qasm−simulator,
and simulator−statevector simulators have better performance
than other simulators in handling larger problems. Espe-
cially, ibmq−qasm−simulator and simulator−statevector ex-
hibit higher accuracies compared to the local simulators. The
accuracy for a problem size of 20 (ansatz circuit depth:
177, required qubits: 20) is 0.99 (ibmq−qasm−simulator)
and 0.99 (simulator−statevector), which are higher than that
of BasicAer (0.74) and Aer/automatic (0.79). Furthermore,
ibmq−qasm−simulator and simulator−statevector can be uti-
lized for larger-scale problems, such as a size of 28, with high
accuracy (0.98 and 0.99, respectively), which is beyond the
limit of the local simulators. Although one local simulator
(Aer/automatic) can solve large problems such as a problem
size of 30, it exhibits a low accuracy (0.61).

Time-to-solution is also an important metric to evaluate the
performance of quantum simulators for the quantum algorithm.
Figure 6B indicates that the local simulators are much faster
than the IBM simulators to handle small-scale problems (sizes
≤ 12). For example, the Aer/statevector achieves a time-to-
solution of 4.07 s while the simulator−statevector requires
735.16 s for a problem size of 12 (ansatz circuit depth:
105, required qubits: 12). This may be because queue time
in the IBM server and communication time between the
local computer and IBM server are significant. However,
the benefit of using the IBM quantum simulators becomes
apparent when dealing with larger problems. Many local
simulators (Aer/density matrix, statevector, and MPS) have
challenges in solving a problem size of 24 (ansatz circuit
depth: 213, required qubits: 24), failing to solve the problem,
and BasicAer and Aer/automatic require 7,725 s and 167 s,
respectively. On the other hand, ibmq−qasm−simulator and
simulator−statevector can handle those problems within 820
s and 750 s, respectively. Given the lower accuracies of the
local simulators (Aer/automatic), the IBM quantum simulators
demonstrate much better performance. These results verify that
the local quantum simulators are good for small problems
(sizes ≤ 12), but the IBM quantum simulators have much
better performance for larger problems. Nevertheless, it is
observed that the time-to-solution for the IBM simulators in-
tractably increases with increasing problem sizes, for example,
the time-to-solution with simulator−statevector increases from
750 s to 10,833 s when increasing problem size from 24 to
28 (ansatz circuit depth: 249, required qubits: 28).

We have shown the performance of the quantum simulators
executed or submitted on the local computer. The performance
can be enhanced when employing the HPC-quantum hybrid
system (OLCF Frontier). To analyze the enhanced perfor-
mance, we solve the same problems using QAOA with the
same simulators, executed or submitted on the OLCF Frontier
instead of on the local computer. The Frontier shows better ca-
pability to handle large problems, enabling the local simulators
(Aer/density matrix and Aer/automatic) to solve problems with
sizes of 16 and 32 respectively, which cannot be handled on
the local computer. Despite its better capability, the Frontier



Figure 6. Performance analysis of QAOA with different quantum simulators
executed or submitted on the local computer. (A) Accuracy and (B) time-to-
solution as a function of the problem size.

cannot show a significant advantage in accuracy over the local
computer because the mechanisms of the quantum simulators
are basically the same (Figure 7A). However, the Frontier can
reduce the time-to-solution, as can be seen in Figure 7B. The
time-to-solution measured with the BasicAer, Aer/automatic,
ibmq−qasm−simulator and simulator−statevector to solve a
problem size of 24 is 6,081 s, 118 s, 692 s, and 655 s,
respectively. Furthermore, the time-to-solve measured with the
simulator−statevector to solve a larger problem (size: 28) can
be greatly reduced from 10833 s to 4240 s, demonstrating ap-
proximately 155% acceleration by submitting the quantum job
from the HPC-quantum hybrid system. Moreover, considering
the same type of quantum simulator (e.g., statevector), solving
a problem (size: 16) takes 7,691 s on the local computer with
Aer/statevector simulator. This time-to-solve greatly reduces
to 702 s by solving the same problem on the Frontier with the
same simulator (Aer/statevector). It can be further reduced to
314 s by submitting this job to simulator−statevector on the
HPC-quantum system, marking ∼24 times speedup compared
to the local computer.

These results clearly illustrate that the local quantum simu-
lators can be better for solving small-scale optimization prob-
lems (sizes ≤ 12; ansatz circuit depth ≤ 105, required qubits
≤ 12) since they do not require any queue and communication
times. However, for large-scale problems (sizes ≥ 16; ansatz
circuit depth ≥ 141, required qubits ≥ 16), it has been demon-
strated that QAOA jobs submitted on the HPC-quantum hybrid
system to run IBM quantum simulators provide superior
performance, presenting ∼24 times acceleration compared to
the local computer. However, the accuracy of QAOA submitted
either on the local computer or HPC-quantum system is at a
similar level since the operational mechanisms of quantum
simulators are the same. This analysis helps determine the

Figure 7. Performance analysis of QAOA with different quantum simulators
executed or submitted on an HPC-quantum hybrid system (Frontier). (A)
Accuracy and (B) time-to-solution as a function of the problem size.

most suitable quantum simulator for optimizing metamaterial
structures with QAOA depending on the size of optimization
spaces. Moreover, the integration of the efficient quantum
simulator into the active learning algorithm will provide an
efficient optimization process for metamaterial designs.

C. Performance Analysis of HPC-Enhanced TMM

We investigate the performance of HPC-enhanced TMM for
simulating complex structures (1,000-layered structures) with
numerous simulation conditions. We first study to determine
the optimal number of processors used for MPI on the HPC
system (OLCF Frontier) across different numbers of simula-
tion conditions. As presented in Figure 8A, the required time
for simulations varies depending on the number of processors
used, with a notable decrease observed as more processors are
used. The simulation time almost converges when using more
than 20 processors; thus, we fix the number of processors to
20 for the rest of the TMM-related studies unless otherwise
noted.

Figure 8B illustrates the simulation time with different
numbers of simulation conditions, run on a local computer
with a single processor and the Frontier using MPI with
20 processors. When a computational workload is relatively
low, such as a simulation number of 50, the local computer
can solve the given optics problem in 18.13 s. However, the
computation time grows rapidly on the local computer (from
18.13 to 2619.87 s) when increasing complexity (simulation
numbers from 50 to 350). Note that the local computer cannot
handle a highly complex case, such as a simulation number
of 400 or more, due to the computational limitation. On the
other hand, such complex problems can be efficiently solved
on the Frontier owing to the parallel computing capability. It
needs much less time than the local computer especially when



involving numerous simulations; Simulation time linearly in-
creases from 5.52 s to 39.16 s for the number of simulations
increases from 50 to 350. The discrepancy in simulation time
between the local computer and HPC system is exponentially
increasing for highly complex problems, showing the HPC
system’s remarkable acceleration capability from 328% (50
simulation conditions) to ∼67 times (350 simulation condi-
tions) compared to the local computer.

Furthermore, the HPC system can solve problems beyond
the limits that the local computer cannot handle, such as
the number of simulation conditions of 400, 700, and 1,000.
Figure 8C further demonstrates the HPC system’s linearly
increasing time scale in the domain of large-scale problems.
Assuming the active learning for the 1,000-layered structure
requires 5,000 iterations where each iteration involves 10 s
for ML and 1 s for solving a given surrogate model, it is
estimated that total optimization takes 40.46 h on the local
computer and 22.95 h on the Frontier (number of simulation
conditions: 50). However, when considering 350 simulation
conditions, the local computer requires 3,653.99 h, which is
unrealistic, while the Frontier completes the take only in 69.67
h making ∼52 times speedup. Moreover, as shown in Figure
8D, the Frontier can be used for significantly large problems
(e.g., number of simulation conditions: 400, 700, and 1,000),
enabling the optimization to be completed in 174.91 h for the
1,000 case.

Figure 8. Elapsed time to complete simulations. (A) Simulation time with
different numbers of simulation conditions as a function of the number of
processors, run on the Frontier. (B) Simulation time as a function of the
number of simulation conditions, run on the local computer and Frontier (using
MPI with 20 processors). (C) Simulation time on the Frontier for large-scale
problems. (D) Estimated time to complete the iterative optimization process
on the local computer and Frontier as a function of simulation numbers.

We further test the performance of HPC-enhanced TMM
using more nodes while keeping the total number of MPI
processors to 20. Figure 9 indicates that HPC-enhanced TMM
shows further improvement in simulation time under numerous
simulation conditions by employing multi-nodes, showing
∼29% acceleration. However, this improvement is not that dra-
matic compared to utilizing more processors, as we observed
similar results in multi-node FM studies (Figure 5). Hence,

it can be concluded that utilizing more MPI processors is the
first option to accelerate TMM simulation on the HPC system,
and using more nodes is the second option to further accelerate
the simulation.

Figure 9. Elapsed time to complete simulations when using more nodes while
keeping the total number of MPI processors to 20.

The results clearly illustrate the significant acceleration of
wave-optics simulation (∼67 times) achieved by the HPC-
enhanced TMM using MPI parallelization. This acceleration
not only enhances the efficiency of solving complex opti-
mization problems but also enables the efficient handling of
highly large-scale problems that are intractable in a conven-
tional computing system. Therefore, researchers can tackle
challenging optical simulation tasks with unprecedented speed
and scalability by leveraging the computational power and
parallel processing capabilities of HPC systems. As such, the
integration of the HPC-enhanced simulation approach into
the active learning algorithm will be crucial in overcoming
the current limitations of optimization for highly complex
metamaterials.

V. CONCLUSION

In this work, we have analyzed the performance of the active
learning algorithm for metamaterial design on the integrated
HPC and quantum system. We have demonstrated the sig-
nificant advantages in computational time by leveraging MPI
parallelization on the HPC system, achieving ∼54% accelera-
tion for ML tasks and ∼67 times acceleration for wave-optics
simulation. In addition, we have analyzed the performance
of QAOA designed for solving combinatorial optimization
problems with various quantum simulators. It should be noted
that running the quantum algorithm on the integrated HPC and
quantum hybrid system leads to ∼24 times speedup in solving
a given combinatorial optimization problem. These findings
highlight the efficacy of HPC-enhanced ML and simulation
by taking advantage of MPI parallelization for distributing
a heavy workload to multi-processors. Moreover, our results
reveal the time advantages provided by the HPC-quantum
system in solving optimization problems. Therefore, we expect
that this optimization algorithm on the integrated HPC and



quantum system will be applicable to various material designs
that have highly complex and large design spaces, such as
metamaterials, electronic devices, and energy materials.
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