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SUMMARY

Neuronal systems maintain stable functions despite large variability in their physiological components.
Ion channel expression, in particular, is highly variable in neurons exhibiting similar electrophysiological
phenotypes, which poses questions regarding how specific ion channel subsets reliably shape neuron
intrinsic properties. Here, we use detailed conductance-based modeling to explore the origin of stable
neuronal function from variable channel composition. Using dimensionality reduction, we uncover two
principal dimensions in the channel conductance space that capture most of the variance of the observed
variability. Those two dimensions correspond to two physiologically relevant sources of variability that can
be explained by feedback mechanisms underlying regulation of neuronal activity, providing quantitative
insights into how channel composition links to neuronal electrophysiological activity. These insights
allowed us to understand and design a model-independent, reliable neuromodulation rule for variable
neuronal populations.

INTRODUCTION

A remarkable property of nervous systems is their ability to maintain stable functions despite large
variability and turnover of the underlying physiological components. This observation has led to the
understanding that neuron electrophysiological properties are shaped by the coordinated expression of
potentially large subsets of ion channels (Goaillard and Marder, 2021), which represent a substantial
challenge in any attempt to link ion channel properties with neuron electrophysiological signature.

Over the last decades, a combination of experimental and computational work has provided insights into
the relationship between ion channel densities and neuronal signaling. First, it is now clear that different
combinations of ion channels can lead to a similar activity from highly variable channel densities (Prinz
et al., 2004; Achard and De Schutter, 2006; Alonso and Marder, 2019; Taylor et al., 2009; Swensen and
Bean, 2005), due to a functional overlap in channel voltage- and time-dependent properties (Goaillard
and Marder, 2021; Drion et al., 2015a). Second, it has been experimentally shown that the ion channel
expression correlate positively in a same neuron type, and that different neuron types show different
correlation graphs (Schulz et al., 2006b, 2007; Amendola et al., 2012; Liss et al., 2001; Schultz, 2007;
Tobin et al., 2009). Such positive correlations in ion channel expression have been shown to emerge
from physiologically plausible homeostatic rules (O’Leary et al., 2014). One could therefore argue that
specific correlation graphs in channel expressions are an important neuronal signature. Third, reliable
neuromodulation has been shown to often occur through a concomitant action on several channel subtypes
(Amendola et al., 2012; Nadim and Bucher, 2014; Grashow et al., 2009; Schulz et al., 2006a; Marder and
Bucher, 2007), which highlights the importance of understanding the mechanisms linking ion channel
density and neuronal signaling.

Although this body of work has deepened our understanding of how ion channels shape neuronal activity,
many important questions remain open. First, although positive correlations in ion channel expression
have largely been reported, studies on correlation in actual conductance values show a blurrier picture.
Correlations in conductance values are observed, but they can be more or less strong and either positive
or negative depending on ion channel subtypes and neuron subtypes (Tapia et al., 2018; Iacobas et al.,
2019; Kodama et al., 2020; Khorkova and Golowasch, 2007). In addition, correlations in both ion channel
expression and conductance values can be activity- and neuromodulation-dependent (Santin and Schulz,
2019; Temporal et al., 2012). The emergence of negative correlations in conductance values poses the
question of what potentially complex mechanism might link channel expression and conductance value. In
this work, we tackle this question by analyzing how positive and negative conductance correlations arise
in highly degenerate parameter sets of two different conductance-based models. We show that pairwise
correlations in channel conductance are the result of two interfering mechanisms. Such interference is
activity-dependent, which results in activity-dependent correlation levels. Second, our understanding
of how ion channels shape neuronal activity remains largely qualitative to date. The lack of concrete
mechanistic understanding makes it extremely difficult to quantify how specific changes in ion channel
densities would affect neuronal output, which in turn makes the study of reliable neuromodulation an
arduous task. Here, we provide such a mechanistic understanding through a dimensionality reduction
analysis of the two degenerate parameter sets. The geometry of the principal components found by
dimensionality reduction methods is fully explained by the geometry of the sensitive directions in the
maximal conductance space, as revealed by using feedback control ideas (Drion et al., 2015a). This
analysis permits to derive a simple, physiologically plausible rule for reliable neuromodulation in highly
degenerate neurons.
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RESULTS

Neuronal degeneracy in conductance-based models is associated with variable pairwise
correlations in channel conductances

We first created variable sets of conductances leading to stable firing patterns in two different neuron
conductance-based models (Figure 1): a stomatogastric (STG) neuron model (Liu et al., 1998) (left)
and a dopaminergic (DA) neuron model (adapted from Qian et al. (2014)) (right). All simulations and
analyses were performed on these two different models to avoid uncovering model-specific features, but
rather focus on general properties. Each parameter set was created through a random sampling followed
by a post-processing procedure that selected models sharing specific firing pattern characteristics (Prinz
et al., 2004). Each model was first studied in its nominal firing pattern: burst firing for the STG neuron
model, and slow tonic spiking for the DA neuron model (see STAR★METHODS). An example of each
firing pattern is shown at the top, right of each panel of Figure 1A.

Figure 1A shows a scatter plot matrix of ion channel maximal conductances for a subset of ion channel
types in both models, as well as the correlation computed for each pair. In agreement with what has been
observed in previous experimental and computational work (Goaillard and Marder, 2021; Khorkova and
Golowasch, 2007), correlations can be highly variable between different pairs of conductances, some being
strongly positively correlated (such as ḡNa and ḡA in STG model), some negatively correlated (such as
ḡA and ḡKd in STG model), and others seemingly uncorrelated. This highlights the strong degeneracy of
both conductance-based models, although they both maintain their specific firing activity using different
types of ion channels.

To gain further insights into how conductances correlate to maintain a robust firing activity, we represent
the pairwise correlations between all conductances using correlation graphs (Figure 1B). Each node
represents a conductance, the thickness of the edges connecting each node represents the correlation
strength, and the color of each edge represents the correlation sign (red for positive and blue for negative).
These two graphs show a similar trend for both models: correlations between ion channels are dominantly
positive, but negative correlations also emerge in a small subset of conductance pairs. This observation
is intriguing for two reasons.

First, in order to maintain a similar firing activity, one would expect conductances that are sources of
currents of the same sign to correlate negatively, whereas conductances that are sources of currents of the
opposite sign to correlate positively. This would allow to maintain the global transmembrane current,
hence excitability, at a steady level. This is not what is observed in Figure 1B. If we take the example of
ḡCaS in STG model, which is a source of inward current, it can either correlate negatively or positively
with other sources of inward currents (ḡCaT and ḡNa, respectively). Likewise, outward current sources
can correlate both negatively or positively with other outward sources (i.e. ḡKd with ḡA and ḡKCa in STG
model). The same observation can be made for the DA neuron model.

Second, experimental studies on the correlation between ion channel mRNA and computational models of
neuronal homeostasis have uncovered the existence and emergence of neuron-dependent, strictly positive
correlations in channel densities (Goaillard and Marder, 2021; O’Leary et al., 2013; Tobin et al., 2009). A
similar trend emerges from our data set, where the vast majority of correlations are indeed positive. But,
in opposition to homeostasis models and in agreement with experimental data (Khorkova and Golowasch,
2007), negative correlations are also observed, which suggests that correlations emerging from homeostatic
rules are important to maintain a robust firing activity, but that some other mechanisms must be at play.
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Figure 1: Neuronal degeneracy in conductance-based models is associated with variable
pairwise correlations in channel conductances.
(A) Scatter plot matrices of random sampling populations in the conductance spaces for STG model
(left) and DA model (right), along with regression lines. The pairs depicted here do not represent all
conductances of the models and are chosen randomly to illustrate the variable correlations, expressed
by the Pearson correlation coefficient (r). All conductances are expressed in mS/cm2. Each bottom-left
corner of every scatter plot represents the origin of the conductance space, and ranges can be found in
STAR★METHODS.
(B) Correlation graphs of all conductances of the random sampling populations for the STG model (left)
and DA model (right). A blue (red) line indicates a negative (positive) pairwise correlation. The thickness
of the line represents the absolute value of the correlation. Correlations below a certain threshold,
corresponding to the inverse of the number of conductances in the considered model, are not shown.
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A few principal components capture neuronal degeneracy but do not single out channel
functions

As pairwise correlations between conductances alone did not provide much insight into how ion channels
correlate to maintain a robust firing activity, we performed a principal component analysis (PCA) of both
random sampling sets in an attempt to uncover low-dimensional subspaces in the data. We observed that
a limited number of principal components, 4 for the STG model and 3 for the DA model, accounts for
more than 80% of the total variances in the data (Figure 2A). We chose to focus our analysis on these
significant principal components. The first principal component accounted for around 40% of variance in
both models. This observation is encouraging, as it shows that the mechanisms that drive conductance
joint distribution in neuron models are low-dimensional, which is key for interpretability.

We secondly extracted the contribution of each conductance in each of the principal components, with
the hope to observe a pattern that would allow us to make predictions on the biophysics behind these
components (Figure 2B). The results were however difficult to interpret, as a variety of conductances
contributed to the different principal components for both models. Moreover, conductances that
contributed much to the first principal component in one model did not in the other (see for instance the
role of ḡNa or gleak in both models), which did not permit to extract a model-independent rule. Although
this last observation might seem unsurprising, as both models relate to different neurons exhibiting
different firing patterns from different ion channels, we still aim to find some common, general mechanisms
that might rule degeneracy in ion channel conductances.
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Figure 2: A few principal components capture neuronal degeneracy but do not single out
channel functions.
(A) Scree plot of PCA applied to the conductance spaces of random sampling populations for STG model
(left) and DA model (right).
(B) Absolute values of the entries of the PCs in the conductance space for the STG model (left) and the
DA model (right).



7

The dominant principal component captures homogeneous scaling of maximal
conductances

As the first principal component (PC1) accounted for a large portion of the variability in the data for both
models (around 40 %), we further analyzed its role by plotting the scatter plots of conductance values for
a subset of four conductances that play a dominant role in PC1 (Figure 3A). Interestingly, these scatter
plots show that all conductances that play a significant role in PC1 show a strong positive correlation
with each other in both models. This picture is very reminiscent of what is observed in channel mRNA
data or the resulting channel correlations emerging from models of neuronal homeostasis (O’Leary et al.,
2013; O’Leary et al., 2014; Marder and Goaillard, 2006). In particular, such positive correlations follow
a direction passing roughly through the origin.

Such direction is close to the homogeneous scaling direction in the maximal conductances. The direction
of homogeneous scaling corresponds to the total least squares regression direction without intercept, i.e.,
to the direction connecting the origin of the conductance space to the center of mass of the degeneracy
set. This center of mass represents the means of every type of conductance across the population. While
pairwise homogeneous scaling is only evident in a subset of ion channels, this observation extends to the
entire conductance space. The alignment between PC1 and homogeneous scaling in the full conductance
space was robustly confirmed in both the STG and DA models, with a notable 0.8 alignment in the
former and a remarkable 0.9 alignment in the latter. This alignment was computed as the cosine of the
angle between PC1 and homogeneous scaling direction. Alternatively, it can be interpreted as the cosine
of the angle formed by these two directions in the high dimensional space of conductances.

The dominant role of homogeneous scaling of conductances in neuronal degeneracy can be understood
by its functional significance. Such homogeneous scaling can emerge from homeostatic models of ion
channel expression, where the slope between a pair of conductances correlates with neuronal activity type
(O’Leary et al., 2014). This slope is determined by the ratio of regulation time constants. Homogeneous
scaling also permits to modulate the neuron response to external inputs while maintaining its intrinsic
firing pattern unaffected. Indeed, increasing all conductances by a common factor permits to increase the
global membrane permeability, hence decreasing its responsiveness to external input through a decrease
in its input resistance (Figure 3B). At the same time, it does not affect the ratio between channel
conductances, thus maintaining firing activity. Homogeneous scaling therefore has a critical role in
excitability modulation and homeostasis.
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Figure 3: The dominant principal component captures homogeneous scaling of maximal
conductances.
(A) Scatter plot matrices of random sampling populations in the conductance spaces for STG model (left)
and DA model (right) along with the direction of PC1. The scatter plots shown are associated with the
conductances having largest entries (in absolute value) in the first PC. All conductances are expressed in
mS/cm2. Each bottom-left corner of every 2D subspace represents the origin of the conductance space,
with ranges detailed in STAR★METHODS.
(B) Simulations illustrating the effect of homogeneous scaling for the STG model (left) and the DA
model (right). A random model from the scatter plot in (A) receives an inhibitory input (blue). The
same experiment is then conducted with all conductances multiplied by 2 (green) and 10 (red).
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An alternative approach to build degenerate parameter sets permits to separate the effect
of homogeneous scaling from other sources of degeneracy.

Analysis of the next meaningful principal components (PC2, PC3, and PC4 in STG model, and PC2 and
PC3 in DA model) should permit to understand the physiological origin of most of the remaining variance
in the data. However, these principal components have highly variable slopes in the different conductance
planes, which makes the analysis less straightforward than for PC1. The effect of homogeneous scaling is
intertwined with the other potential origins of degeneracy in the neuron model populations, which blur
the picture even more.

To circumvent this problem, we constructed a new dataset that allowed us to separate the effect of
homogeneous scaling from other potential effects. This dataset was constructed by leveraging the
concept of dynamic input conductances (DIC) (Drion et al., 2015a), which provides a way to link channel
conductance ratios with firing activity. In short, it was shown that the dynamical effects of ion channel
gating on neuron activity could be captured by a few voltage-dependent conductances (DIC) acting on
separate timescales. For a bursting neuron, three timescales are sufficient: a fast timescale characterizing
spike upstroke, a slow timescale characterizing spike downstroke, neuron excitability type and rest-spike
bistability, and an ultraslow timescales characterizing burst parameters such as period and duty cycle. The
value of each DIC at threshold potential on each timescale determines firing activity, and each parameter
sets leading to similar DIC values leads to similar firing activities. We exploited this last property to
build degenerate parameter sets by identifying directions of zero sensitivity in the maximal conductance
space, i.e., directions along which changes in maximal conductances do not affect DIC values at threshold,
hence lead to similar spiking behavior (Drion et al., 2015a). In practice, we created datasets of similar
firing patterns by allowing for randomness in all conductances but one per timescale, and adapting the
remaining conductances to ensure that DIC values are maintained constant (see STAR★METHODS for
further details). Importantly, in order to be able to separate the effect of homogeneous scaling from
other sources of ion channel degeneracy, we normalized DIC values by gleak. This normalization permits
to create variable conductance ratios that barely affects homogeneous scaling, which is itself mostly
captured through variability in gleak, the leak conductance being the dominant current source below
threshold potential.

The dataset constructed using this approach created neurons exhibiting similar firing activities (see
Supplementary Figure in STAR★METHODS) and showed close qualitative similarities with the dataset
produced through random sampling in both models: pairwise correlations in channel expression are
highly variable between channel pairs, with a dominance of positive correlations but also the existence
of negative correlations, the first principal component align with homogeneous scaling, and the second
principal component has highly variable slopes in the different conductance planes (Figure 4A).

To elucidate the source of the second principal component, the dataset was partitioned into two subsets
(Figure 4B): one characterized by variability solely in gleak (triangles in Figure 4B) and another exhibiting
variability exclusively in voltage-gated conductance ratios along DIC zero sensitivity directions (crosses in
Figure 4B). Variability in gleak only creates a degenerate dataset with strong, strictly positive correlations
between conductance pairs, which isolates the effect of homogeneous scaling in channel conductances.
Regression slopes of these subsets strongly align with the first principal component of the full dataset.

Variability limited to voltage-gated conductances (and fixed gleak) creates a degenerate dataset that also
shows strong pairwise correlations. However, these correlations can be either positive or negative, and
their regression slopes do not intersect the origin. Within this subset, the correlation between pairs of
conductances arises from their distinct roles in shaping DIC values at threshold, and the slow DIC in
particular. Indeed, we found that the effect of the slow DIC was dominant in our dataset, as the slow
DIC rules spiking to bursting transitions through changes in neuron excitability type and the regulation
of rest-spike bistability (see STAR★METHODS for further details). Channels that have an opposite
effect on the slow DIC show a positive correlation (ḡCaS and ḡA in STG for instance), whereas channels
that have a similar effect show a negative correlation (ḡCaL and ḡCaN in DA model for instance). The
regression slopes within this subset strongly align with the second principal component (PC2) of the
complete dataset (compare PC2 in Figure 4A with crosses in Figure 4B).

This alternative approach to build degenerate parameter sets shows that variable pairwise correlations in
channel conductances could result from the interaction of two distinct mechanisms: homogeneous scaling,
which maintain the ratio between ion channel conductances, and degenerate conductance ratio that lead
to similar DIC values, hence similar membrane dynamical properties.
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Figure 4: An alternative approach to build degenerate parameter sets permits to separate
the effect of homogeneous scaling from other sources of degeneracy.
(A) Scatter matrices of custom generated populations in the conductance spaces for STG model (left)
and DA model (right) along with the directions of PC1 and PC2. The 2D subspaces shown here do not
represent all conductances of the models and are randomly chosen. All conductances are expressed in
mS/cm2. Each bottom-left corner of every 2D subspace represents the origin of the conductance space,
and ranges can be found in STAR★METHODS.
(B) Scatter matrices of custom generated populations in the conductance spaces for STG model (left)
and DA model (right), isolating the effects of homogeneous scaling only (resp. variability in conductance
ratios) shown as triangles (resp. crosses). The 2D subspaces are the same as in (A). All conductances
are expressed in mS/cm2. Each bottom-left corner of every 2D subspace represents the origin of the
conductance space, and ranges can be found in STAR★METHODS.
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Secondary principal components also capture degenerate conductance ratios that maintain
DIC values in the original random sampling dataset

We then verified if variability in conductance ratio leading to similar DIC values was also a dominant
source of degeneracy in the original random sampling dataset by computing zero sensitivity directions of
slow DIC in both STG and DA neuron models and compare these directions with the secondary principal
components (PC2, PC3, and PC4). In both models, the zero-sensitivity directions strongly align with
one of the secondary principal components in the random sampling set (Figure 5A). This confirmed that
the second origin of degeneracy in ion channel expression can be explained by the existence of degenerate
conductance ratios that create similar membrane dynamical properties.

Degeneracy in conductance ratios is also of functional significance for robust neuronal signaling. Relying
on different conductance ratios to create a similar firing activity permits to create heterogeneity in
response to external perturbations such as changes in temperature or pH (Haley et al., 2018; Rinberg et al.,
2013), as well as specific ion channel blockades or dysfunction, which increases neuronal robustness (Figure
5B). It also creates variable responses to exogenous neuroactive drugs, and allows for compensation during
long-lasting drug exposure or genetic defect in specific channel expression.
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Figure 5: Secondary principal components also capture degenerate conductance ratios that
maintain DIC values in the original random sampling dataset.
(A) Scatter plots (top) of random sampling populations in the (ḡA, ḡCaL) 2D subspace for STG model
(left) and the (ḡCaL, ḡCaN) 2D subspace for DA model (right), along with polar plots of PC2 (dashed line)
and the zero sensitivity direction (dash-dotted line) in randomly chosen 2D subspaces of the conductance
space (bottom).
(B) Cartoon simulations illustrating the effect of conductance ratios for the STG model (left) and the
DA model (right). Three random points (blue, green, and red) in (A) undergo a disturbance in one
conductance by dividing ḡA (STG model) and ḡCaL (DA model) by 10.
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Variability from both homogeneous scaling and degenerate conductance ratios blurs the
connection between conductance correlation and their function

Our analysis so far showed that variability from homogeneous scaling creates strong positive correlations
in channel conductances. On the other hand, variability in voltage-gated conductance ratios also leads
to strong correlations in channel conductances, but which can either be positive or negative depending
on the channel pairs (Figure 6A). When both variability types are present within a neuron population,
these two correlation mechanisms interfere with each other to create highly variable correlation levels
between channel pairs (Figure 6B). If both variability types create positive correlations, the interference is
minimal, and the global correlation in channel conductance remains strong (Figure 6, left). If variability
in conductance ratios creates a negative correlation, the interference is consequential, and the global
correlation in channel conductance becomes weak (Figure 6, right). This observation is of interest, as
it shows that the variable pairwise correlation observed in channel conductance values originate from
potentially competing effects rather than from an actual uncorrelated role in our datasets.
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Figure 6: Variability from both homogeneous scaling and degenerate conductance ratios
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and the (ḡCaL, ḡCaN) 2D subspace for DA model (right).
(B) Scatter plots of the full variability custom generated populations in the same 2D subspace as in
(A) for both the STG model (left) and the DA model (right), along with regression lines and Pearson
correlation coefficients.
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Variability in pairwise correlations in conductance values is neuromodulation-dependent

The variability in channel pairwise correlation level is therefore linked to the relative slope of the
correlations created by both variability types, homogeneous scaling and degenerate conductance ratios.
This has an interesting consequence when one studies the effect of neuromodulation on correlation in
channel conductance. To illustrate this consequence, we performed a simple computational experiment
where we neuromodulated the excitability state of both models from spiking to light bursting to strong
bursting (Figure 7). In both cases, the neuromodulator affects the maximal conductance of two channel
types: ḡA and ḡCaS in STG model, and ḡCaL and ḡCaN in DA model (Figure 7A).Those conductances
are known to affect the burstiness of the respective neuron models. To create robust neuromodulation in
degenerate neurons, we modulated the datasets of Figure 4A by modifying the target threshold value for
the slow DIC and used the algorithm of Drion et al. (2015a) to compute the neuromodulated conductance
values for each neuron of the dataset (see STAR★METHODS). The resulting data points are shown in
the scatter plots at the top of Figure 7B. The dot color quantifies neuron burstiness, showing that the
three firing patterns are robustly attained and well separated.

In both models, neuromodulation of neuron excitability strongly affects the level of pairwise correlations
(Figure 7B). In STG model, the correlation between ḡA and ḡCaS is strongly positive in spiking (r =
0.93), reaches a maximum in light bursting (r = 0.97), and decreases in strong bursting (r = 0.88). In DA
model, the correlation between ḡCaL and ḡCaN is negative in spiking (r = -0.45), becomes less negative
in light bursting (r = -0.11), and both conductances appear uncorrelated in strong bursting (r = 0.03).
Pairwise correlations in ion channel conductances therefore appear neuromodulation-dependent.

The origin of these neuromodulation-dependent changes in pairwise correlations can be explained by
plotting the first two principal components (PC1 and PC2) on the scatter plots and observing the
effect of neuromodulation on these components. On the one hand, neuromodulation creates a rotation
of PC1 around the origin, which affects its slope. In the projections of Figure 7B, the slope of PC1
increases when neurons switch from spiking to bursting in both models. This effect is consistent with the
results obtained from homeostatic models of ion channel expression (O’Leary et al., 2014). On the other
hand, neuromodulation creates a translation of PC2, and the slope is barely affected. As a result, the
relative slopes between PC1 and PC2 depend on neuron neuromodulation state, which affects the global
correlation level.

In STG model, both PC components have a positive slope. In spiking, PC1 has a flatter slope than PC2,
which slightly widens the data cloud. As the model switches to bursting mode, the slope of PC1 increases
and both slopes become almost identical in light bursting. In this state, both principal components align,
which creates a strong correlation between the channel pair. As the model further increases its burstiness,
the slope of PC1 further increases and becomes greater than PC2. Both principal components disalign
again and the correlation between the channel pair decreases. A similar observation can be drawn in DA
model, except that here PC2 has a negative slope. As a result, PC1 and PC2 become more and more
orthogonal as burstiness increases, which reduces correlation level, and even destroys channel pairwise
correlation in a strong bursting state.

As identified above, PC1 relates to the homogeneous scaling of conductances, whereas PC2 relates to the
variability in the ratio between voltage-dependent conductances. To further demonstrate this link, we
reproduced the three neuromodulation states in two subsets where we isolated variability coming from
homogeneous scaling (triangles in the bottom panels of Figure 7B) from variability in conductance ratios
(crosses in the bottom panels of Figure 7B). We used the same algorithm as for the full dataset to create
robustly neuromodulated states. The results from both models clearly show that robust neuromodulation
is achieved through a rotation of the data points in the conductance space if variability comes from
homogeneous scaling, whereas it is achieved through a translation of the data points if variability is the
ratio between voltage-dependent conductances.

This observation can be interpreted physiologically and provides significant insights into the requirements
for robust neuromodulation in variable neurons. If robust neuromodulation is achieved through a
rotation in the conductance space, it means that the robust neuromodulation rule is multiplicative:
ḡi,MOD = αi · ḡi,init where αi is set by neuromodulator concentration. The rule is multiplicative in the
case of variability through homogeneous scaling, because neurons having twice the maximal conductance
values require twice the change in conductance to reach a similar firing pattern, due to the change in
input resistance. If robust neuromodulation is achieved through a translation in the conductance space,
it means that the robust neuromodulation rule is additive: ḡi,MOD = ḡi,init +βi where βi is as well set by
neuromodulator concentration. The rule is additive in the case of variability in conductance ratios only,
because a similar firing pattern is reached through a similar change in the normalized DIC values, which
is created by the same change in maximal conductances. As a result, robust neuromodulation can be
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achieved through a simple, direct rule if only one type of variability is present in the neuronal population.
A direct rule is however impossible to derive if both variability types are present in the population, which
is likely considering the physiological significance of both types. Such a rule would indeed need to be both
additive and multiplicative with a neuron-dependent ratio between both effects. Robust neuromodulation
therefore requires an indirect rule involving a second messenger in highly degenerate neurons, which is
precisely the mechanism observed in G protein-coupled receptor signaling.
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Figure 7: Variability in pairwise correlations in conductance values is neuromodulation-
dependent.
(A) Bar plot of conductance values for custom generated populations in the 3 phenotypes considered for
STG model (right) and DA model (left).
(B) Scatter plots of full variability custom generated populations in the neuromodulated 2D space for
both STG model (left) and DA model (right) across three neuromodulated states, along with PC1, PC2,
and Pearson correlation coefficients.
(C) Scatter plots of separated custom generated populations in the neuromodulated 2D space for both
STG model (left) and DA model (right) across three neuromodulated states.
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A simple indirect rule for robust neuromodulation in highly degenerate neurons

We showed that robust neuromodulation in highly degenerate cells cannot rely on a simple rule directly
targeting ion channels, but rather requires a more complex rule involving a second messenger. This raises
the questions of how complex a rule for reliable neuromodulation should be, and whether a general,
model-independent rule could be derived. To tackle this question, we used the algorithm developed
above to construct reliable neuromodulation paths in degenerate neurons for both STG and DA models,
moving from tonic spiking to bursting of increasing burstiness (Figure 8). Similarly as above, the
neuromodulation algorithm targeted ḡA and ḡCaS in STG model, and ḡCaL and ḡCaN in DA model. Many
reliable neuromodulation paths could be achieved in both models using a simple rule whose objective
is to increase the target threshold value for the slow DIC while moving from tonic spiking to bursting,
while maintaining ultraslow DIC value constant to maintain spiking and bursting periods (Drion et al.,
2015a) (see STAR★METHODS). Figure 8 plots the neuromodulation paths in the (ḡCaS, ḡA) plane (resp.
(ḡCaL, ḡCaN) plane) for the STG model (resp. DA model) and examples of neuromodulated neuronal
traces.

Interestingly, although a simple direct rule cannot be used, the indirect rule resulted in linear
neuromodulation paths for both models, where neuromodulation direction is constant and only varies
between neurons of different types. The nonlinearity occurs in the distance the neuron has to move along
that direction to switch activity, which is affected by parameter variability (see the variability in the color
transitions of Figure 8 top). These results highlight the fact that, even in the case of maximal degeneracy
in neuron parameters, the relative change in maximal conductances of ion channels targeted by the same
neuromodulatory receptor can be hard-wired in a neuron type, creating a robust neuromodulation path.
The role of the second messenger is then to control the movement along that neuromodulation path
that would lead to the target activity, strongly reducing the complexity of the reliable neuromodulation
process. Such control could for instance be implemented by sensing neuronal activity through intracellular
calcium oscillations, as already suggested in homeostatic models (Liu et al., 1998; O’Leary et al., 2014), or
by sensing membrane voltage (Santin and Schulz, 2019), creating activity-dependent changes in targeted
maximal conductances. Substantial evidence of such activity-dependent neuromodulation mechanisms
involving intracellular calcium can be found in the experimental literature (Kramer and Levitan, 1990;
Walters and Byrne, 1984; Marder et al., 2014; Raymond et al., 1992).



18

STG model DA model 

Tonic spiking Bursting

Burstiness

(mS/cm2)

(m
S

/c
m

2 )

(mS/cm2)

(m
S

/c
m

2 )

50

0
0 600

0.3

0
0 0.1

Along neuromodulation paths

300 ms 2 s
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DISCUSSION

Two physiologically relevant sources of neuronal variability rule ion channel degeneracy

Understanding how ion channel subsets shape neuronal excitability is critical to uncover how so many
different neuron types emerge, as well as the mechanisms underlying reliable neuromodulation and variable
neuronal response to neuroactive drugs (Amendola et al., 2012; Nadim and Bucher, 2014; Grashow et al.,
2009; Schulz et al., 2006a; Tobin et al., 2009). The connection between ion channels and neuronal signaling
is however a complex task due to channel degeneracy, and despite considerable advances made on the
subject through experimental, computational, and mathematical work, a mechanistic understanding of ion
channel variability and degeneracy in neurons remains elusive (Prinz et al., 2004; Achard and De Schutter,
2006; Alonso and Marder, 2019; Taylor et al., 2009; Swensen and Bean, 2005). In this work, we showed
that neuronal variability can be separated into two quantifiable, physiological components: homogeneous
scaling and variability in conductance ratios.

Homogeneous scaling refers to the fact that neurons can exhibit a similar activity if the relative difference
in their channel maximal conductances is similar for all channels expressed at the membrane, hence
maintaining conductance ratios. Such property has been observed experimentally in channel expression
and shown to emerge from homeostatic rules (O’Leary et al., 2013; O’Leary et al., 2014; Marder and
Goaillard, 2006). In this case, intrinsic characteristics are maintained, but extrinsic excitability is altered
due to differences in neuron input resistance. Variability in conductance ratios refers to the fact that
neurons having a similar input resistance can exhibit a similar activity with different ratios in their
voltage-gated conductances. In this case, intrinsic characteristics are maintained, but the response to
perturbations such as temperature as well as channel blockade or dysfunction is altered due to differences
in the relative role of each channel subtype on excitability.

Both sources of channel variability have physiological relevance. Homogeneous scaling is central for
network homeostasis, as it permits to tune neuron input/output response while maintaining neuron
intrinsic properties stable (O’Leary and Wyllie, 2011). Homogeneous scaling also permits to compensate
for changes in membrane capacitance. Variability in conductance ratios on the other hand permits to
improve robustness to external perturbations by creating an heterogeneous response to perturbations
affecting specific channel functions at the network level (Drion et al., 2015b). It could also lead to
variable inter-individual responses to neuroactive drugs.

The contributions of variability from homogeneous scaling and conductance ratios are intertwined in
any neuron degenerate dataset, making any quantification attempt difficult. Combining dimensionality
reduction analysis and recent insights on reduced dynamics of conductance-based models, we were able
to separate the contributions of both sources of variability, which permitted to construct a mechanistic
understanding of how variable ion channels can lead to a specific neuronal activity. It permitted to
understand the origin of ion channel variable pairwise correlations and derive a robust indirect rule for
reliable neuromodulation in degenerate neurons.

Variable channel correlations arise from the interference between homogeneous scaling
and variability in conductance ratios

Separating the effects of homogeneous scaling and variability in conductance ratios permitted to analyze
the role of both sources of variability on channel pairwise correlations. Homogeneous scaling creates
strictly positive correlations between all ion channels, and different firing patterns/neuron subtypes lead
to different regression slopes, as observed in channel expression data and homeostatic models of neuronal
excitability (O’Leary et al., 2014). These positive correlations come from the passive role of ion channels
on membrane properties through Ohm’s law: increasing any channel conductance increases membrane
permeability, which in turn decreases membrane input resistance. Other channels have therefore to
increase their conductance to maintain their effect on membrane potential variations.

Variability in conductance ratios on the other hand creates both positive and negative correlations
between ion channel subsets, not all ion channels. Ion channels correlate to maintain neuronal dynamics
if their gating, being either activation or inactivation, occurs on a similar timescale. The sign of the
correlation is determined by the relative feedback provided by each channel gating on membrane potential
variations, which is a key determinant of neuron dynamical properties as quantified by e.g. dynamic input
conductances (Drion et al., 2015a). Specifically, activation of inward current and inactivation of outward
current produce positive feedback, whereas activation of outward current and inactivation of inward
current produce negative feedback. Two channels producing opposite feedbacks on a similar timescale
will correlate positively (such as e.g. ḡA and ḡCaS in STG model), whereas two channels producing similar
feedbacks will correlate negatively (such as e.g. ḡCaL and ḡCaN in DA model).
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When both sources of variability exist in a neuron degenerate set, both types of correlations interfere
with each other. When the correlation emerging from variability in conductance ratio is positive,
both regression lines have a positive slope, creating an overall positive correlation whose correlation
level depends on the alignment of the regression lines. However, when the correlation emerging from
variability in conductance ratio is negative, both regression lines have opposite signs, which can lead
to an uncorrelation between two conductances even though their role in neuron dynamics and passive
properties strongly correlate. This situation could be indistinguishable from two channels that actually do
not correlate due to a lack of action on a similar timescale. Variable correlations in channel conductances
in a degenerate dataset therefore does not always relate to correlated or uncorrelated functions, but could
also arise from highly correlated functions of opposite signs.

The importance of indirect neuromodulation pathways for reliable neuromodulation in
variable neurons.

One prominent question arising from channel degeneracy is how could neuromodulation be reliable across
neurons when it acts on degenerate conductances (Nadim and Bucher, 2014; Grashow et al., 2009; Schulz
et al., 2006a; Marder and Bucher, 2007; Marder, 2012; Marder et al., 2014). We showed that a simple
direct rule for reliable neuromodulation could be derived if either homogeneous scaling or variability in
conductance ratios existed in the dataset, but not both. Indeed, homogeneous scaling requires a simple
multiplicative rule due to its effect on input resistance, whereas variability in conductance ratios requires
an additive rule. A direct rule does not exist if both variability types are present in the population, as it
would need to be both additive and multiplicative with a neuron-dependent ratio between both effects.

We showed that a simple indirect rule could produce reliable neuromodulation when both sources of
variability are present in the dataset. This rule is indirect in the sense that it uses an intermediate
signaling pathway to connect neuromodulation concentration with changes in channel conductances. In
our computational study, this intermediate pathway encodes the values of the slow and ultraslow dynamic
input conductances around threshold potential: neuromodulator concentration tunes the target values
for both dynamic conductances, and a subset of ion channels are in turn modulated to reach these new
targets. The presence of an intermediate messaging pathway is a core property of GPCR signaling, making
such indirect rule physiologically plausible. Our work provides a quantitative framework that provides a
new angle of attack to study how intermediate signaling pathways could lead to reliable neuromodulation
in degenerate neurons.

STAR★METHODS

Methods are briefly provided in the online version of this paper and include the following:

• RESOURCE AVAILABILITY

– Lead contact

– Materials availability

– Data and code availability

• CONDUCTANCE-BASED MODELS

• METHOD DETAILS

– Random sampling sets

– An efficient method to build degeneracy sets that allows to remove the effect of homogeneous
scaling.

– Neuromodulation algorithm

Mathematical details and experimental parameters can be found with this article online [DOI].
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact Further information and requests for resources should be directed to and will be fulfilled
by the lead contact, Dr. Guillaume Drion (gdrion@uliege.be).

Materials availability This study did not generate new unique reagents.

Data and code availability The Julia programming language have been used in this work (Bezanson
et al., 2017). Every code and data can be found in the first author GitHub (https://github.com/arthur-
fyon/CORR 2024). Numerical integration were realized using DifferentialEquations.jl. Regression lines
were computed using Polynomials.jl. Correlations were computed using Statistics.jl. PCA were conducted
using LinearAlgebra.jl.

CONDUCTANCE-BASED MODELS

For all experiments, single-compartment conductance-based models were employed. These models
articulate an ordinary differential equation for the membrane voltage V , where N ion channels are
characterized as nonlinear dynamic conductances, and the phospholipid bilayer is represented as a passive
resistor-capacitance circuit. Mathematically, the voltage-current relationship of any conductance-based
neuron model is expressed as follows:

IC = C
dV

dt
+ gleak(V − Eleak) = −Iint + Iext

= −
∑
ion∈I

gion(V, t)(V − Eion) + Iext.

Here, C represents the membrane capacitance, gion denotes the considered ion channel conductance and
is non-negative, gated between 0 (all channels closed) and ḡion (all channels opened), Eion and Eleak are
the channel reversal potentials, I is the index set of intrinsic ionic currents considered in the model, and
Iext is the current externally applied in vitro, or the combination of synaptic currents. Each ion channel
conductance is nonlinear and dynamic, represented by

gion(V, t) = ḡionm
a
ion(V, t)h

b
ion(V, t),

where mion and hion are variables gated between 0 and 1, modeling the opening and closing gates of
ion channels, respectively. Throughout this study, both the isolated crab STG neuron model (Liu et al.,
1998) and the adapted DA neuron model (Qian et al., 2014) (where SK channels had been blocked to
enable bursting) were employed.

The STG model consists of seven ion channels that operate on various time scales:

• fast sodium channels (ḡNa);

• delayed-rectifier potassium channels (ḡKd);

• T-type calcium channels (ḡCaT);

• A-type potassium channels (ḡA);

• slow calcium channels (ḡCaS);

• calcium controlled potassium channels (ḡKCa);

• H channels (ḡH).

The DA model consists of six ion channels that operate on various time scales:

• fast sodium channels (ḡNa);

• delayed-rectifier potassium channels (ḡKd);

• L-type calcium channels (ḡCaL);

• N-type calcium channels (ḡCaN);

• ERG channels (ḡERG);

• NMDA channels (ḡNMDA).

mailto:gdrion@uliege.be
https://github.com/arthur-fyon/CORR_2024
https://github.com/arthur-fyon/CORR_2024
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Note that, owing to the multicellular nature of NMDA channels, they were excluded from this study but
were still utilized for simulations with baseline values.

METHOD DETAILS

Random sampling sets

Random sampling sets consist of 200 neuron models with varying maximum ion channel conductances.
These sets were created by generating numerous random points in the space of maximum ion channel
conductances (within specified ranges). Subsequently, the models underwent post-processing based
on their firing patterns, with only those fitting the desired phenotype being retained. For the STG
models, post-processing involved considerations of peak and hyperpolarized voltages, intra- and interburst
frequencies, the number of spikes per burst, and burstiness (computed as in Franci et al. (2018)).
Meanwhile, the DA models were post-processed based on their peak and hyperpolarized voltages and
spike frequency.

An efficient method to build degeneracy sets that allows to remove the effect of homogeneous
scaling.

Throughout this study, a novel method for generating degenerate datasets of conductance-based models
has been developed, which proves to be significantly faster than the random sampling approach (all figures
were created using a dataset of 500 neurons). The methodology for a N -channel conductance-based model
can be summarized as follows:

(i) The leakage conductance gleak is drawn from a physiological uniform distribution: gleak ∼
U (gleakmin, gleakmax);

(ii) N − 3 maximum ion channel conductances are drawn from a physiological uniform distribution that

is proportional to gleak: ḡion ∼ gleak · UN−3(ḡunmodmin,ḡunmodmax)
(gleakmin+gleakmax)/2

;

(iii) The 3 remaining maximum ion channel conductances are computed using the algorithm described
in (Drion et al., 2015a).

The normalization by gleak in (ii) permits to combine the effects of homogeneous scaling and variability
in conductance ratios. The subsequent sets, each targeting either homogeneous scaling or conductance
ratio, were generated by using shared deterministic values for gleak or for the N−3 maximum ion channel
conductances, respectively.

The zero sensitivity directions of slow dynamical membrane properties were computed using the equations
in (Drion et al., 2015a) for the slow dynamic input conductance, where the two ion channel conductances
of interest were treated as variables along this direction.

Neuromodulation algorithm

As a result of this newly developed method for generating degenerate neuronal sets, neuromodulation of
such sets is achieved through an adaptation of the algorithm described in (Drion et al., 2015a), where two
maximum conductances are recomputed by tuning the value of the slow dynamic input conductance while
keeping the ultraslow dynamic input conductance fixed. The latest results were obtained by continuously
tuning this slow dynamic input conductance value.


