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Abstract. Distance correlation is a novel class of multivariate depen-
dence measure, taking positive values between 0 and 1, and applicable to
random vectors of arbitrary dimensions, not necessarily equal. It offers
several advantages over the well-known Pearson correlation coefficient,
the most important is that distance correlation equals zero if and only
if the random vectors are independent. There are two different estima-
tors of the distance correlation available in the literature. The first one,
proposed by [27], is based on an asymptotically unbiased estimator of
the distance covariance which turns out to be a V-statistic. The second
one builds on an unbiased estimator of the distance covariance proposed
in [26], proved to be an U-statistic by [13]. This study evaluates their
efficiency (mean squared error) and compares computational times for
both methods under different dependence structures. Under conditions
of independence or near-independence, the V-estimates are biased, while
the U-estimator frequently cannot be computed due to negative values.
To address this challenge, a convex linear combination of the former es-
timators is proposed and studied, yielding good results regardless of the
level of dependence.

Keywords: Distance correlation · U-statistic· V-statistic · simulation
study.

1 Introduction

The concept of dependence among random observations plays a central role
in many fields, including statistics, medicine, biology and engineering, among
others. Given the inherent complexity of fully understanding dependencies, the
strength of these relationships is often distilled into a single metric, the corre-
lation coefficient. Numerous types of correlation coefficients exist, but perhaps
the most widely known is Pearson correlation coefficient. Additionally, alterna-
tive measures of correlation exist. For instance, rank correlation assesses the
relationship between the rankings of two variables or the rankings of the same
variable across different conditions. Examples of rank correlation coefficients in-
clude Spearman’s rank correlation coefficient, Kendall tau correlation coefficient,
and Goodman and Kruskal’s gamma.
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Pearson correlation coefficient presents some disadvantages. Firstly, the two
variables must be normally distributed. Secondly, the fact that the Pearson corre-
lation coefficient is zero does not determine independence between two variables,
as only a linear dependence between the variables can be determined and the
variables may have a nonlinear relationship. In recent years, a novel measure of
dependence between random vectors has been proposed, distance correlation, was
introduced by [27]. They point out that distance covariance and distance correla-
tion share a parallel with product-moment covariance and correlation. However,
unlike the classical definition of correlation, distance correlation is zero solely
when the random vectors are independent. Besides, the distance correlation can
be used to evaluate both linear and nonlinear correlations between variables.
Essentially, for all distributions with finite first moments, distance correlation
(R) extends the notion of correlation in two essential ways:

1. R(X,Y ) is defined for X and Y in arbitrary dimensions;
2. R(X,Y ) = 0 characterizes independence of X and Y .

Distance correlation satisfies 0 ≤ R ≤ 1, and R = 0 if and only if X and Y are
independent.

Distance correlation has been applied and extended to a great variety of
fields, such as variable selection [10,33,34,36], as well as in disciplines like biol-
ogy [1, 25] and medicine [11, 12], among others. Moreover, it has been explored
within high-dimensional contexts [15, 35]. Furthermore, the applicability of dis-
tance correlation has been expanded to address the challenge of testing indepen-
dence of high-dimensional random vectors in [29]. In a similar way, the concept of
partial distance correlation was introduced by [26]. Distance correlation has un-
dergone an extension to encompass conditional distance correlation [6,14,15,32],
and it has also been examined in the realm of survival data [3–5,7,37]. Lastly, [9]
proves that for any fixed Pearson correlation coefficient strictly between -1 and
1, the distance correlation coefficient can attain any value within the open unit
interval (0,1).

The estimation of the distance correlation relies on the estimation of the dis-
tance covariance. [28] demonstrated the uniqueness of distance covariance. [27]
proposed a sample distance covariance estimator, and they proved that it turns
out to be a V-statistic. This estimator of the distance covariance leads to the
so-called V-estimator of the distance correlation. Moreover, intermediate results
in [26] led to an unbiased estimator of the squared distance covariance. This
unbiased estimator was further identified as a U-statistic in [13]. This distance
covariance estimator results in the U-estimator of the distance correlation.

The two estimators of the distance correlation, U-estimator and V-estimator,
offer different properties. The direct implementation of the V-estimator results
in computational complexity that scales as O(n2). The computation of the U-
estimator reduces computational complexity to O(n log n). But both the U-
statistic and the V-statistic of distance correlation can be calculated inO(n log n)
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steps, the algorithm in [13] can be straightforward extended to the V-statistic
version. Both estimators exhibit good asymptotic properties; however, the U-
estimator allows for easier derivation of these properties.

One scenario of interest when working with distance correlation is that of in-
dependence, when both distance correlation and distance covariance are zero. It
is under independence or situations close to it where the two estimators exhibit
the most significant differences. Firstly, the U-estimator of the squared distance
covariance is unbiased, leading to occurrences of negative values of the squared
distance covariance, which precludes the computation of the U-estimator of the
distance correlation. Conversely, the V-estimator biased as it can only take pos-
itive values. However, to the best of our knowledge, the respective advantages
and disadvantages of each distance correlation estimator, and the use of one or
the other estimator, do not seem to be based on any specific basis. For exam-
ple, while [7] employ the U-estimator to propose an extension for right-censored
data, [32] suggest an extension for conditional distance correlation using both
estimators.

In this work, a simulation study to assess the practical behavior and effi-
ciency of each estimator with different dependency models is conducted. The
experimental results show that neither is consistently better, making the choice
of the estimator in practice a challenging task. To tackle this inconvenience a
new approach, a convex linear combination of the former estimators, is intro-
duced and studied.

The remainder of this paper is organized as follows. Section 2 introduces
the preliminaries, defining distance covariance and distance correlation. Addi-
tionally, it presents the estimators of the distance covariance and distance cor-
relation in the literature. Some of the existing packages developed in R and
Python software are introduced. Upon studying the occurrence of negative val-
ues for the squared distance covariance estimator which makes it impossible to
calculate the U-estimator of the distance correlation, two modifications of the
U-estimator are proposed to handle that problem. Section 3 introduces a convex
linear combination approach to address the estimator choice problem. Section 4
shows the results of the simulation study through three models: Farlie-Gumbel-
Morgenstern (FGM), a bivariate normal, and a nonlinear model. The results
are compared and shown in terms of efficiency, mean squared error (MSE), bias,
variance, and computational time for each estimator, moreover, a comprehensive
comparison between the original estimators and the proposed alternatives are
offered. Finally, Section 5 provides the concluding remarks.

2 Distance correlation estimation

Let X ∈ Rp and Y ∈ Rq be random vectors, where p and q are positive integers.
The characteristic function of X and Y are denoted ϕX and ϕY , respectively,
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and the joint characteristic function of X and Y is denoted ϕX,Y .

Definition 1. The distance covariance between random vectors X and Y with
finite first moments is the nonnegative square root of the number V2(X,Y ),
defined by:

V2(X,Y ) = ∥ϕX,Y (t, s)− ϕX(t)ϕY (s)∥2

=
1

cpcq

∫
Rp+q

|ϕX,Y (t, s)− ϕX(t)ϕY (s)|2

|t|1+p
p |s|1+q

q

dt ds,

where cd = π(1+d)/2

Γ ((1+d)/2) . Similarly, the distance variance is defined as the square

root of

V2(X) = V2(X,X) = ∥ϕX,X(t, s)− ϕX(t)ϕX(s)∥2.

Definition 2. The distance correlation between two random vectors X and Y
with finite first moments is the positive square root of the nonnegative number
R2(X,Y ) defined by

R2(X,Y ) =


V2(X,Y )√
V2(X)V2(Y )

, V2(X)V2(Y ) > 0

0, V2(X)V2(Y ) = 0.
(1)

On the other hand, it is showed an equivalent form to compute the distance
covariance through expectations given by [27], this is, if E|X|2p < ∞ and E|Y |2q <
∞, then E[|X|p|Y |q] < ∞, and

V2(X,Y ) = E[|X1 −X2|p|Y1 − Y2|q] + E[|X1 −X2|p]E[|Y1 − Y2|q]
−2E[|X1 −X2|p|Y1 − Y3|q], (2)

where (X1, Y1), (X2, Y2) and (X3, Y3) are independent and identically distributed
as (X,Y ). Note that with Equation (2), it is possible to compute the distance
covariance using only the density function, without needing to know the charac-
teristic function. In the same way, it is possible to compute the distance variance
of X as the square root of

V2(X,X) = V2(X) = E
[
|X1 −X2|2p

]
+ E [|X1 −X2|p]2

−2E [|X1 −X2|p|X1 −X3|p] , (3)

similarly for V2(Y ). As a result, it becomes possible to accurately determine the
exact distance correlation R(X,Y ) using (2), (3) and (1).

For an observed random sample (X,Y) = {(Xk, Yk) : k = 1, . . . , n} from
the joint distribution of random vectors X ∈ Rp and Y ∈ Rq, [27] proposed the
following empirical estimator of the distance covariance.
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Definition 3. The empirical distance covariance Vn(X,Y) is defined by the
nonnegative square root of:

V2
n(X,Y) =

1

n2

n∑
k,l=1

AklBkl, (4)

where Akl and Bkl denote the corresponding double-centered distance matrices
defined as

Akl =

{
akl − 1

n

∑n
j=1 akj −

1
n

∑n
i=1 ail +

1
n2

∑n
i,j=1 aij , k ̸= l

0, k = l,

with akl = |Xk−Xl| are the pairwise distances of the X observations. The terms
Bkl are defined similarly but using bkl = |Yk − Yl| instead of akl. In the same
way the sample distance variance Vn(X) is defined as the square root of:

V2
n(X) = V2

n(X,X) =
1

n2

n∑
k,l=1

A2
kl.

Theorem 1 in [27] proved that V2
n(X,Y) ≥ 0. Moreover, it is proved that under

independence, V2
n(X,Y) is a degenerate kernel V-statistic.

The first estimator of the distance correlation in [27], dCorV, is based on
the empirical distance variance and covariance, resulting the empirical distance
correlation.

Definition 4. The empirical distance correlation Rn(X,Y) is the square root
of

dCorV2(X,Y) = R2
n(X,Y) =


V2

n(X,Y)√
V2

n(X)V2
n(Y)

, V2
n(X)V2

n(Y) > 0

0, V2
n(X)V2

n(Y) = 0.
(5)

Likewise, [26] proposed an alternative estimator for the distance covariance
V(X,Y ) based on a U−centered matrix.

Definition 5. Let A = (akl) be a symmetric, real valued n×n matrix with zero
diagonal, n > 2. Define the U−centered matrix Ã as follows. Let the (k, l)th
entry of Ã be defined by

Ãkl =

{
akl − 1

n−2

∑n
j=1 akj −

1
n−2

∑n
i=1 ail +

1
(n−1)(n−2)

∑n
i,j=1 aij , k ̸= l;

0, k = l.

Here ”U−centered” is so named because the inner product,

U2
n(X,Y) =

(
Ã · B̃

)
=

1

n− 3

∑
k ̸=l

ÃklB̃kl, (6)
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defines an unbiased estimator of the squared distance covariance V2(X,Y ). [13]
established that the estimator in Equation (6) can be expressed as a U-statistic.
Thus, it becomes feasible to define an alternative estimator of the empirical
distance correlation through Un(X,Y) and distance variance ofX andY, Un(X),
Un(Y), respectively, in the following manner.

Definition 6. The estimator dCorU of the distance correlation R(X,Y ), based
on U-statistics, is the square root of

dCorU2(X,Y) =


U2

n(X,Y)√
U2

n(X)U2
n(Y)

, U2
n(X)U2

n(Y) > 0

0, U2
n(X)U2

n(Y) = 0,
(7)

This reformulation facilitates a fast algorithm for estimating the distance covari-
ance, which can be implemented with a computational complexity of O(n log n),
while the original estimator (Eq. (4)) has a computational complexity of O(n2).
Alternatively, [2] proposed an algorithm primarily composed of two sorting steps
for computing the estimator of the distance correlation in (7). This design ren-
ders it simple to implement and also results in a computational complexity of
O(n log n).

These results have prompted the implementation and development of many
software packages, available in R [18] and Python [31]. A comprehensive com-
parison of the performance between these packages in both languages is pre-
sented by [20]. An open-source Python package for distance correlation and
other statistics is introduced: the dcor package [19]. The studied libraries in
Python are statsmodels [23], hyppo [16], and pingouin [30]. In R, the energy [21]
package implements the dcov and dcor functions, which return Vn(X,Y) and
dCorV(X,Y), respectively. For the U-estimator, the dcovU and bcdcor functions
are implemented. These functions return the U2

n(X,Y) and dCorU2(X,Y) val-
ues, respectively; that is, they do not take the square root. On the other hand,
dcortools implements the distcov and distcor functions. The argument bias.corr
allows to use the V-estimator when the argument is FALSE, or the U-estimator
with bias.corr = TRUE. Additionally, the Rfast [17] package includes functions
as dvar, dcov, dcor, and bcdcor, using the fast method proposed by [13]. And the
bcdcor function computes the bias-corrected distance correlation of two matrices.

A notable aspect to consider, as previously mentioned, is that the computa-
tion of U2

n(X,Y) in Equation (6) can yield negative values in cases of indepen-
dence or very low levels of dependence and small sample sizes. Consequently,
it becomes impossible to calculate dCorU using the expression in Equation (7).
This precludes the computation of the dCorU estimator as the square root of
dCorU2. This issue arises from the fact that U2

n(X,Y) is an unbiased estimator
of the squared distance covariance V2(X,Y ), which is 0 under independence. To
the best of our knowledge, this problem has not been discussed in the litera-
ture. However some authors have implemented this estimator in software such
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as R and Python, giving the following alternatives to obtain the computation of
dCorU. Authors as [17, 21] return dCorU2 without computing the square root,
while others, as [8] return for dCorU the square root of the absolute value of
dCorU2, with the sign corresponding to dCorU2. However, as shown in Table
2 in Section 4.2, when working in scenarios under independence, approximately
60% of the estimates are negative values. For this reason, this study explores
two proposals to address this challenge, resulting in the following alternative
estimators of the distance correlation:

– Replace the values of U2
n(X,Y ) with their absolute value. This U-estimator

of the distance correlation is denoted by dCorU(A).
– Consider max(U2

n(X,Y ), 0) so negative values of U2
n(X,Y ) are truncated to

zero. Denote this U-estimator of R as dCorU(T).

Under an independence scenario, both dCorU and dCorU(A) yield identical
MSE. This is because the squared of the difference between the estimated value
and the real value ((dCorU−R)2) does not deviate from the difference obtained
when using the absolute value ((dCorU(A)−R)2) when R = 0.

3 New proposal for the estimation of the distance
correlation

Under independence or near-independence conditions (R ≈ 0), the V-estimator
is biased as it always provides positive results. On the other side, the U-estimator
frequently cannot be computed because of negative values of dCorU2(X,Y ). The
preference between the two estimators seems to depend also on the nature (linear,
nonlinear) of the relationship between X and Y , see results in Section 4.1. While
simulations allow for studying the behavior of estimators and gaining insight into
when to use each, in real-world scenarios, determining whether the relationship
between X and Y is linear or nonlinear, and assessing the level of dependence
or independence, can be challenging. Consequently, selecting the appropriate
estimator becomes difficult. To overcome this limitation, this paper introduces
a new estimator of teh distance correlation that overcomes this challenges. It is
a convex linear combination of both estimators (dCorU, dCorV), denoted as

dCorλ = λdCorU + (1− λ)dCorV,

where λ ∈ [0, 1] serves as a weighting parameter determining the balance between
the two estimators. It is proposed to use the optimal value λ0 for the parameter
λ, which minimizes the Mean Squared Error (MSE) of this new estimator. This
optimal value λ0, as provided in Lemma 1, relies on various unknown quantities
such as the covariance, variance, and bias of dCorU and dCorV.

Lemma 1. Let X ∈ Rp and Y ∈ Rq be random vectors, where p and q are
positive integers and define θ̂U =dCorU(X,Y) and θ̂V =dCorV(X,Y). Given the
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convex linear combination λθ̂U +(1−λ)θ̂V , then, in the sense of minimizing the
MSE, the optimal value of λ is given by λ0 defined as:

λ0 =
−Cov

(
θ̂U , θ̂V

)
+Var

(
θ̂V

)
+ Bias

(
θ̂V

)(
Bias

(
θ̂V

)
− Bias

(
θ̂U

))
Var

(
θ̂U

)
+Var

(
θ̂V

)
− 2Cov

(
θ̂U , θ̂V

)
+

(
Bias

(
θ̂U

)
− Bias

(
θ̂V

))2 . (8)

Proof. Let θ̂Cλ0
= λ0θ̂

U + (1− λ0)θ̂
V be the convex linear combination, then

MSE
(
θ̂Cλ0

)
= Var

(
λ0θ̂

U + (1− λ0)θ̂
V
)
+Bias

(
λ0θ̂

U + (1− λ0)θ̂
V
)2

,

where

Var
(
θ̂Cλ0

)
= λ2

0Var
(
θ̂U
)
+ (1− λ0)

2Var
(
θ̂V
)
+ 2λ0(1− λ0)Cov

(
θ̂U , θ̂V

)
and

Bias
(
θ̂Cλ0

)
= λ0Bias

(
θ̂U
)
+ (1− λ0)Bias

(
θ̂V
)
.

Therefore,

MSE
(
θ̂Cλ0

)
= λ2

0Var
(
θ̂U
)
+ (1− λ0)

2Var
(
θ̂V
)
+ 2λ0(1− λ0)Cov

(
θ̂U , θ̂V

)
+
[
λ0Bias

(
θ̂U
)
+ (1− λ0)Bias

(
θ̂V
)]2

,

where the optimal value of λ is given by the solution to the following equation:

∂

∂λ0
MSE

(
θ̂Cλ0

)
= λ0

[
Var

(
θ̂U
)
+Var

(
θ̂V
)
− 2Cov

(
θ̂U , θ̂V

)
+
(
Bias

(
θ̂U
)
− Bias

(
θ̂V
))2]

−Var
(
θ̂V
)

+Cov
(
θ̂U , θ̂V

)
+Bias

(
θ̂V
) [

Bias
(
θ̂U
)
− Bias

(
θ̂V
)]

= 0.

Solving the previous equation yields the expression of λ0 in Equation (8).

Due to the unavailability of the exact values of each term in the expression
of λ0 in Equation (8), it is proposed to estimate λ0 using bootstrap, specifically,
the smoothed bootstrap, see Algorithm 1.

The smoothed bootstrap relies onK, a kernel function (typically a symmetric
density around zero), and h > 0, a smoothing parameter referred to as the band-
width. In this case, h1, h2. The bandwidth regulates the size of the environment
used for estimation. It is customary to stipulate that the kernel function K be
non-negative and have an integral of one. Additionally, it is often expected for
K to be symmetric. While the selection of the function K does not significantly
influence the properties of the estimator (aside from its regularity conditions
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Algorithm 1 Bootstrap procedure for computing λ̂0

1: Input a sample {(Xi, Yi)}ni=1.
2: Select the bandwidths h1, h2

3: Compute θ̂ = dCorV(X,Y).
4: for b = 1 to B do {Generate B bootstrap samples}
5: Sample n values, U1, . . . , Un, from [1, . . . , n] with replacement.
6: Generate W 1

1 , . . . ,W
1
n iid and W 2

1 , . . . ,W
2
n with common density K.

7: for i = 1 to n do

X∗
i = X[Ui] + h1W

1
i

Y ∗
i = Y[Ui] + h2W

2
i

8: end for
9: Compute θ̂Ub = dCorU(X∗,Y∗) and θ̂Vb = dCorV(X∗,Y∗).
10: end for
11: Compute Var

(
θ̂U

)
, Var

(
θ̂V

)
, Bias

(
θ̂U

)
= 1

B

∑B
b=1 θ̂

U
b − θ̂, Bias

(
θ̂V

)
=

1
B

∑B
b=1 θ̂

V
b − θ̂ and Cov

(
θ̂U , θ̂V

)
.

12: Obtain λ̂0 using the expression in Equation (8).

like continuity, differentiability, etc.), the choice of the smoothing parameter is
crucial for accurate estimation. In essence, the size of the environment utilized
for nonparametric estimation must be appropriate-not excessively large nor too
small.

In R it is possible to use the density() function of the base package to obtain
a kernel-like estimate of the density (with the bandwidth determined by the
bw parameter), some of the methods implemented include Silverman’s [24] and
Scott’s [22] rules of thumb, unbiased and biased cross-validation methods and
direct plug-in methods, among others. Although it is possible to use implemen-
tations from other packages.

4 Simulation study

The simulation study employs the dcortools package, specifically utilizing the
distcor function. To estimate the distance correlation through dCorU, the code
used is distcor(X,Y,bias.corr = T). For computing dCorV, there are two options:
distcor(X,Y,bias.corr = F) or simply distcor(X,Y). The study is divided into three
main parts. First, a comparison is conducted between the original estimators.
Subsequently, a comparison is made between the dCorU estimator and the pro-
posed alternatives to mitigate negative values when dealing with dependence or
very low dependence and small sample sizes. Finally, a comprehensive compari-
son is performed, encompassing all scenarios. This includes the original estima-
tors, comparisons of the proposed alternatives for dCorU, and estimates for the
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proposed convex linear combination.

For each scenario, the mean, bias, variance and mean squared error (MSE) are
computed (see Appendix 5). Each simulation is repeated for 1000 Monte Carlo
iterations, along with three sample sizes: 100, 1000, and 10000. To compare
the efficiency (MSE) and computational time of each estimator, three models
with varying levels of dependence are considered, FGM, bivariate normal and a
nonlinear models, defined as follows.

4.1 Models

FGM model. The first model corresponds to a copula. One of the most popular
parametric families of copulas is the Farlie-Gumbel-Morgenstern (FGM) family,
which is defined by

CFGM (x, y) = xy[1 + θ(1− x)(1− y)], θ ∈ [−1, 1]

with copula density given by

cFGM (x, y) = 1 + θ(2x− 1)(2y − 1), θ ∈ [−1, 1], (9)

where fX(x), fY (y) ∼ U(0, 1). A well-known limitation of this family is that
it does not allow the modeling of high dependences since Pearson correlation
coefficient is limited to ρ = θ

3 ∈
[
− 1

3 ,
1
3

]
. Accurate calculation of the distance

covariance is achieved using Equation (2), where the density function corre-
sponds to Equation (9). Similarly, calculations were performed for V(X) and

V(Y ). As a result, R(X,Y ) = |θ|√
10

is obtained. It is important to note that the

dependence is not strong, specifically, 0 ≤ R ≤ 0.31622 (see Figure 1).

Bivariate normal model. The exact result for the distance correlation in
this case is provided by [27] and is expressed as a function of the Pearson corre-
lation coefficient. If (X,Y ) has bivariate normal distribution with unit variance
each, then, the squared distance correlation is given by:

R2(X,Y ) =
ρ arcsin ρ+

√
1− ρ2 − ρ arcsin ρ/2−

√
4− ρ2 + 1

1 + π/3−
√
3

.

In contrast to the previous model, the bivariate normal model allows com-
plete dependence, resulting in R = 1 when ρ = 1 or ρ = −1. This feature
facilitates examining the performance of the estimators under high levels of de-
pendence.

Nonlinear model. Let (X,Y ) be a bivariate random variable with density

fX,Y (x, y) = c

1−(y − 4

(
x− 1

2

)2
)2
k

I[0,1](x)I[0,1](y),
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with k ∈ Z, controls the degree of dependence (it increases with k), and c is a
fixed value that depends on the value of k. For this model the k’s used are 0
(independence), 2, 4, 8 and 16 (strong dependence). An initial observation is that
even at a relatively low level of dependence, such as k = 4, the model’s behavior
becomes discernible (see Figure 1). It is important to notice that, in this model,
he value of the distance correlation when X and Y are totally dependent (i.e.
when k → ∞) is not 1, but R ≈ 0.41. So, unlike the linear models (FGM
and normal bivariate), in this model low values of R (0.22 ≤ R ≤ 0.41) could
indicate a strong relationship between X and Y . Figure 1 displays four samples
drawn along with their respective distance correlation. The lines represent the
conditional mean E[Y |X = x].

θ = 0 , dCor = 0 θ = 0.5 , dCor = 0.15811 θ = 0.75 , dCor = 0.23717 θ = 1 , dCor = 0.31622

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

X

Y

ρ = 0 , dCor = 0 ρ = 0.5 , dCor = 0.45413 ρ = 0.75 , dCor = 0.70162 ρ = 1 , dCor = 1

−2 0 2 −2 0 2 −2 0 2 −2 0 2

−2

0

2

X

Y

k = 0 , dCor = 0 k = 2 , dCor = 0.16705 k = 4 , dCor = 0.23888 k = 8 , dCor = 0.30673

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

X

Y

Fig. 1: Samples (n = 300) generated for each model: FGM in the first row, bi-
variate normal in the second row, and nonlinear in the last row, across different
values of θ, ρ, and k, respectively, along with their corresponding distance cor-
relation.
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4.2 Comparison between dCorU and dCorV estimators

In this part of the simulation study, the original estimators, dCorU and dCorV,
are compared. Firstly, the comparison for the MSE of dCorU and dCorV across
the different sample sizes for each distance correlation for the three models is
shown in Figure 2. Each simulation is repeated for 1000 Monte Carlo iterations,
along with three sample sizes: 100, 1000, and 10000. Since the dcortools package

is being used, then dCorU turns out to be dCorU = sign(dCorU2)
√

|dCorU2|.

For the FGM model the differences between the two estimators become more
significant across all values of θ. Under independence (R = 0), dCorU outper-
forms dCorV in terms of MSE for all three sample sizes. However, when there is
dependence, dCorV shows better results, even in the presence of a small degree
of dependence. As the level of dependence increases, the MSE of both estimators
decreases and the differences fade away.

The MSE obtained for the bivariate normal model is shown in Figure 2b. The
conclusions are similar to the previous case. Under independence (R = 0), dCorU
emerges as the superior estimator. However, as soon as there is no independence,
the conclusion is exchanged, and dCorV is the best option. As dependence gets
stronger (R ≥ 0.454), the sample size becomes less influential, and both esti-
mators tend to converge and provide the same value. Furthermore, for larger
sample sizes, a moderate dependence (R > 0.224) is sufficient to observe similar
behavior between the estimators. It is worth noting that under complete depen-
dence (R = 1), the estimates were the same for each sample size.

The results for the nonlinear model are shown in Figure 2c. Similar to the pre-
vious models, under independence the optimal estimate is provided by dCorU.
However, dCorV estimator does not systematically emerge as the superior choice
at any specific level of dependence. Both estimators exhibiting similar behavior
with large sample sizes and at dependence holds true for this model as well.

The results of the bias and variance of both estimators are presented in Ap-
pendix 5. They provide information that is consistent with the conclusions drawn
from the MSE analysis. In particular, the most substantial difference between
the two estimators arises in the case of a small sample size (n = 100) and weak
dependence or independence. It is observed that dCorU shows a negative bias
that approaches zero with increasing levels of dependence. Similarly, dCorV also
shows a decreasing bias, although always positive. On the other hand, the vari-
ance of dCorV is comparatively smaller than the variance of dCorU. In contrast,
for larger sample sizes (n = 1000, 10000), the results show insignificant differ-
ences between the two estimators.

The computational times for each estimator are in Table 1. The character-
istics of the computer equipment used are the following ones: CPU 12th Gen
Intel(R) Core(TM) i7-1280P 2.00 GHz and RAM 16 GB. Note that there are
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(a) FGM-Model for distance correlation values from R = 0 (θ = 0) to R = 0.316 (θ =
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n =  100 n =  1000 n =  10000

0.000
0.224

0.454
0.702

1.000
0.000

0.224
0.454

0.702
1.000

0.000
0.224

0.454
0.702

1.000

0e+00

1e−04

2e−04

3e−04

0.000

0.001

0.002

0.003

0.00

0.01

0.02

0.03

dCor

M
S

E

(b) Bivariate normal model for distance correlation values from R = 0 (ρ = 0) to
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(c) Nonlinear model for distance correlation values from R = 0 (k = 0) to R =
0.36 (k = 16).

Fig. 2: MSE of dCorU and dCorV under the different models with sample sizes
n = 100 (left), n = 1000 (center) and n = 10000 (right) for different distance
correlation values.
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no significant differences in the computation times between estimators. It is im-
portant to highlight that these times were obtained with the dcortools package.
Where both the U-statistic and the V-statistic of distance correlation can be cal-
culated in O(n log n) steps. In fact, the algorithm in [13] can be straightforward
extended to the V-statistic version. If another package were used, for example
the energy package, the computation times of both methods will be different.

n = 100 n = 1000 n = 10000
dCorU dCorV dCorU dCorV dCorU dCorV

Time 0.36 0.33 0.63 0.58 2.22 2.51

Table 1: Computational time in secs for 1000 samples.

4.3 Alternatives to dCorU

As mentioned above, when working under independence or with very low depen-
dencies, then the dCorU estimator frequently cannot be computed because of
negative estimates of the squared covariance. Table 2 provides the percentage of
negative values obtained for different sample sizes across the three models under
varying levels of dependence. This section compares the dCorU estimator to the
alternatives proposed in Section 2, dCorU(A) and dCorU(T). Figure 3 illustrates
the comparison of the MSE between dCorU and the proposed methods for each
model.

FGM-Model Bivariate Normal Nonlinear model

% of negative values % of negative values % of negative values
n n n

θ R 100 1000 10000 ρ R 100 1000 10000 k R 100 1000 10000

0 0 65.4 65.6 62.3 0 0 59.2 62.6 64.3 0 0 60.6 65.4 62.7
0.25 0.079 50.3 5.1 0 0.25 0.224 9.3 0 0 2 0.167 4.7 0 0
0.5 0.158 26 0 0 0.5 0.454 0 0 0 4 0.239 0.1 0 0
0.75 0.237 6.5 0 0 0.75 0.702 0 0 0 8 0.307 0 0 0
1 0.316 1 0 0 1 1 0 0 0 16 0.360 0 0 0

Table 2: Percentage of negative values for U2
n(X,Y ) obtained when computing

dCorU2 in (7) for each of the models across different scenarios.

The FGM-Model presents negative values across all the studied values of θ
when n = 100. As the sample size increases, the problem of negative values only
appears when the dependence is very weak (n = 100) or just under independence
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(n = 10000), see Table 2. Despite the notably high percentage of negative val-
ues in the case of independence, the differences between the estimators are not
substantial. However, the most accurate estimation is achieved using dCorU(T),
given that R = 0. Conversely, under dependence, dCorU(A) provides a more
accurate estimation. Nevertheless, as the level of dependence strengthens, the
MSE values for all three estimations tend to the same value.

In the case of the bivariate normal model (Figure 3), negative values are
encountered only under independence (R = 0) or low levels of dependence
(R = 0.22), both with n = 100. Under strong dependence or large sample
sizes, the computation of dCorU does not exhibit the issue of negative values (at
least with n ≥ 100). The conclusions are parallel to those of the previous model.
In the case of independence, dCorU(T) emerges as the optimal estimator, while
in another scenario, it is dCorU(A). In the remaining cases, all three estima-
tors yield comparable MSE. Furthermore, for n = 10000, the issue of negative
values arises in the independence scenario (Table 2), but the differences remain
insignificant.

Finally, in the case of the nonlinear model, negative values are observed for
weak dependence scenarios (k = 0, 2, 4) with n = 100. However, as the sample
size increases (n = 1000, 10000), the problem only arises under independence
(k = 0). Note that the conclusions are similar to the two previous cases. Under
independence, the optimal estimator is dCorU(T), whereas in one of the other
cases, it is dCorU(A). For the remaining cases, all three estimators yield the
same MSE (Figure 3).

4.4 New estimator for the distance correlation

This section explores and compares the original estimators (dCorU and dCorV)
with proposed variations, including dCorU(A) and dCorU(T), along with their
corresponding convex combinations computed with the optimal value of the pa-
rameter, λ0 (Eq. 8), as follows:

dCorλ0
= λ0dCorU + (1− λ0)dCorV,

dCor(A)λ0
= λ0dCorU(A) + (1− λ0)dCorV,

dCor(T)λ0
= λ0dCorU(T) + (1− λ0)dCorV.

The comparisons are conducted across two scenarios for the convex linear
combination. The first scenario involves estimating the optimal λ0 (Eq. (8)) us-
ing Algorithm 1, while the second scenario utilizes the optimal value of λ0 in
Lemma 1, where the bias, variance covariance terms in Equation (8) are approx-
imated using 1000 Monte Carlo repetitions. The study focuses on the behavior
of the MSE in each model under different levels of dependence and sample size
n = 100 (see Figure 4).
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Fig. 3: MSE values for dCorU, dCorU with absolute value (dCorU(A)), and trun-
cated value (dCorU(T)) across three sample sizes (n) and three different models:
the FGM model in the first row, the bivariate normal model in the second row,
and the nonlinear model in the last row. The corresponding distance correlation
values are also presented.
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The value of λ̂0 was obtained using Algorithm 1 with 1000 bootstrap iter-
ations. The bandwidths, considered h1 = h2 for simplicity, were chosen as the
value of the grid between 0.0025 and 0.32 with the lowest MSE. A simulation
study showing the effect of the bandwidths is included in Appendix 5. It is
evident that the bandwidth has an effect only under independence conditions,
with lower bandwidth values corresponding to lower MSE. When the level of
dependence is moderate, the impact of the bandwidth becomes less significant,
and under high dependence, the results for different bandwidth values tend to
converge.
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Fig. 4: Comparison of the MSE between the different estimators and their respec-
tive convex linear combination and sample size n = 100. Specifically, dCorλ̂0

de-

notes the combination λ̂0dCorU +
(
1− λ̂0

)
dCorV with λ̂0 estimated using 1000

bootstrap replications. Similarly, dCorλ0
denotes the combination λ0dCorU +

(1−λ0)dCorV using the real optimal value of λ0 (Eq. (8)). The same naming con-
vention applies to dCorU(A) and dCorU(T), each representing their respective
combinations. The values of R shown are rounded values of the corresponding
ones from each model.

In Figure 4, the maximum value of the distance correlation considered is
R = 0.31, which corresponds to the maximum level achievable in the FGM-
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Model. It is notable that, even though R is approximately the same for all three
models, the degree of dependence associated to each value of R is different for
each scenario, especially for the nonlinear model. This causes the behavior of
the estimators is not comparable over the models for a fixed value of R. Among
the main observations that can be made: under independence (R = 0), the pro-
posed estimator dCorλ0 outperforms dCorU and dCorV when using the optimal
λ0. The performance of the proposed estimator worsens slightly when λ0 is esti-
mated, but it still gives much better results than dCorV. As soon as there is no
independence (R > 0), the proposed estimator with estimated λ0 gives compa-
rable results to the one with the optimal λ0, and it improves both dCorU and
dCorV

These conclusions can be observed for each of the models in Figure 9, where it
is noticeable that the most significant differences with each of the estimators oc-
cur under conditions of independence. Conversely, as dependence increases, the
estimates tend to become more comparable. Specifically, the nonlinear model
exhibits a decrease in MSE as R increases, while the linear models do not show
such a significant decrease.

Figure 5 displays the MSE for each of the models under varying levels of de-
pendence, from independence (R = 0) up to the maximum dependence allowed
by each model. It is worth noting that the nonlinear model reaches a maximum
R value of around 0.4134, indicating complete dependence between X and Y .
Note that the behavior observed in the nonlinear model is also evident in the
normal bivariate model, wherein the MSE remains quite similar across all cases
starting from R = 0.75. Furthermore, the reduction in MSE becomes evident
for each of the cases as R increases, eventually reaching 0 in the case of com-
plete dependence (R = 1). However, this is not the case for the nonlinear model,
where the MSE does not reach zero for the full dependence scenario (R = 0.41).

It is important to mention that in cases of independence or very low depen-
dence, dCorU(T) and its combination with λ0 exhibit the lowest MSE. Addition-
ally, it is worth noting that the bootstrap approximation of λ0 shows larger dis-
crepancies from the actual value in scenarios of independence or low dependence
(see Appendix 5). However, when dependence is low (approximately R = 0.1),

dCorU(A) and its convex combinations
(
dCor(A)λ0

and dCor(A)λ̂0

)
result in

a lower MSE. Under moderate or high dependence (R ≥ 0.24), convex linear
combinations tend to converge to the same MSE, consistently approaching the
best estimate provided by the individual estimators (dCorU, dCorV, dCorU(A),
dCorU(T)).

It becomes evident that the convex linear combination using the value λ̂0

obtained through 1000 bootstrap repetitions consistently approximates the best
estimates provided by the original estimators (dCorU, dCorV) across all scenar-
ios examined. While it is true that under specific conditions, some alternative
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combinations appear to yield slightly smaller errors, it is important to note that
distinguishing between working under independence or with very low dependence
may not always be feasible.
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Fig. 5: Comparison of the MSE among the different estimators and their respec-
tive convex linear combinations performed for the provided models across various
levels of dependence, from independence (R = 0) to the strongest dependence
supported by each model for n = 100.

5 Conclusions

This research addressed the problem of choosing the best method to estimate
distance correlation between two vectors X and Y . Under independence, dCorU
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looks preferable over dCorV for all the models and sample sizes analyzed. How-
ever, U2

n(X,Y) might be negative in scenarios of independence or low depen-
dence, particularly with small sample sizes. Consequently, this leads to an in-
ability to calculate dCorU. This observation has led to the development of two
alternative proposals, based on truncating or computing the absolute value of
U2
n(X,Y). Under independence, the superior estimation is in general when trun-

cating.

On the other hand, under dependence, the conclusions differ. The dCorV es-
timator aligns with the best results in terms of MSE for the linear models (FGM
and bivariate normal). While, in the case of the nonlinear model, the dCorU
estimator provides better estimates, however the differences are not relevant.
Moreover, when considering the provided approaches, dCorU(A) and dCorU(T),
the optimal estimator appeared to be dCorU(A), especially in cases of weak de-
pendence. Now, in terms of computational time, both estimators, dCorU and
dCorV, are similar.

In practice, it is difficult to choose the best estimator for the distance corre-
lation, as the choice depends on whether the relationship between X and Y is
linear or no, and whether there is independence or not, questions than remain
unknown in real-life studies. To address these complexities, a new estimator
has been proposed involving the convex linear combination of the two estima-
tors, dCorU and dCorV, as well as their respective extensions, dCorU(A) and
dCorU(T). In the majority of the cases, the proposed estimator with the param-
eter λ0 estimated using bootstrap, dCorλ̂0

, give better results than compared
to using only dCorU or dCorV. However, it is necessary to take into account
that the computation time will increase as the number of bootstrap iterations
increases.
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27. Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by
correlation of distances. Annals of Statistics 35(6), 2769–2794 (Dec 2007). https:
//doi.org/10.1214/009053607000000505

28. Székely, G.J., Rizzo, M.L.: On the uniqueness of distance covariance. Statistics &
Probability Letters 82(12), 2278–2282 (Dec 2012). https://doi.org/10.1016/j.
spl.2012.08.007
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Appendix Simulation study

This appendix showcases the outcomes investigated and discussed in Section 4.
These results are illustrated through various plots depicting bias, variance, and
Mean Squared Error (MSE) across the different comparisons explored. Addition-
ally, numerical summaries for the mean, variance, bias, and MSE are provided
in tabular format for each model across various scenarios.

Bias and variance

This section presents the bias and variance results for each model across five
levels of dependence and three sample sizes (n = 100, 1000, 10000). These results
have been discussed in detail in Section 4 of the paper. Figure 6 illustrates the
results obtained under the FGM model, while Figure 7 depicts the outcomes
under the bivariate normal model. Similarly, Figure 8 showcases the results for
the nonlinear model.
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Fig. 6: Bias and variance of dCorU and dCorV under the FGM-Model with dif-
ferent sample sizes (n) and distance correlation, from R = 0 (θ = 0) to R = 0.32
(θ = 1).
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Fig. 7: Bias and variance of dCorU and dCorV under bivariate normal model
with different sample sizes (n) and distance correlation, from R = 0 (ρ = 0) to
R = 1 (ρ = 1).
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Fig. 8: Bias and variance of dCorU and dCorV under the nonlinear model with
different sample sizes (n) and distance correlation, from R = 0 (k = 0) to
R = 0.36 (k = 16).
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Convex linear combination

Figure 9 displays the MSE results for various bandwidth values (h = 0.0025,
0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32) across different models and levels of
dependence. The comparison was made through the three convex linear combi-
nations: dCorλ̂0

, dCor(A)λ̂0
and dCor(T)λ̂0

.

Figure 10 presents the MSE results for each model using different estima-
tors, including the original estimators (dCorU, dCorV), alternatives to dCorU
(dCorU(A), dCorU(T)), and their convex linear combinations. Specifically, dCorλ̂0

=

λ̂0dCorU +
(
1− λ̂0

)
dCorV with λ̂0 estimated using 1000 bootstrap replications.

Similarly, dCorλ0
= λ0dCorU + (1 − λ0)dCorV using the real optimal value of

λ0 computed with 1000 Monte Carlo repetitions.



26 Monroy-Castillo et al.
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(b) Bivariate normal model

k = 0 , dCor = 0 k = 2 , dCor = 0.167 k = 4 , dCor = 0.3067 k = 8 , dCor = 0.3067 k = 16 , dCor = 0.36

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

0.
00

25

0.
00

5

0.
01

0.
02

0.
04

0.
08

0.
16

0.
32

0.005

0.010

0.015

0.020

h

M
S

E

Method dCorU dCorU(A) dCorU(T)

(c) Nonlinear model

Fig. 9: MSE values for the different bandwidths (h) across three models under
different levels of dependence. The corresponding distance correlation values are
also presented.
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Fig. 10: Comparison of the mean squared error (MSE) among the different esti-
mators and their corresponding convex linear combinations for each model with
a sample size of n = 100, along with the approximated distance correlation.

Numerical results

This appendix presents the complementary results of the simulation study. The
tables show the mean, bias, variance, mean squared error (MSE) for each model
with different parameters, using a sample size of n.

For n = 100, the proposed dCorU(A) and dCorU(T) estimators are exam-
ined. Also the results for the convex linear combinations are provided. These
tables include the mean, bias, variance and MSE for each combination, along
with the bootstrap-estimated λ̂0 value. Since the real λ0 can be obtained, the
results for these combinations are also provided. This demonstrates the differ-
ences between the estimators of the distance correlation dCorλ with the boot-
strap estimate λ̂0 and the real value λ0.

For n = 1000 and n = 10000, only results for the original estimators (dCorU,
dCorV) are presented. Since the negative values for these sample sizes are only
observed under specific conditions and does not exhibit significant differences
from the original estimators, then these results are not presented.
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dCorU dCorV dCorU(A) dCorU(T) ldCor LdCor ldCor(A) LdCor(A) ldCor(T) LdCor(T)

λ̂0/λ0 0.2737 0.7167 0.5065 1 0.3807 1

Mean -0.0191 0.1524 0.0923 0.0366 0.1055 0.0295 0.1220 0.0923 0.1083 0.0366
θ = 0 Bias -0.0191 0.1524 0.0923 0.0366 0.1055 0.0295 0.1220 0.0923 0.1083 0.0366
R = 0 Var 0.0100 0.0016 0.0018 0.0038 0.0031 0.0068 0.0012 0.0018 0.0022 0.0038

MSE 0.0103 0.0248 0.0103 0.0051 0.0142 0.0077 0.0161 0.0103 0.0140 0.0051

λ̂0/λ0 0.2661 0.5693 0.4930 1 0.3705 0.9538

Mean -0.0128 0.1546 0.0924 0.0398 0.1101 0.0593 0.1239 0.0924 0.1121 0.0451
θ = 0.1 Bias -0.0444 0.1230 0.0608 0.0082 0.0785 0.0277 0.0923 0.0608 0.0805 0.0135

R = 0.032 Var 0.0103 0.0016 0.0020 0.0040 0.0032 0.0056 0.0013 0.0020 0.0023 0.0038
MSE 0.0123 0.0168 0.0057 0.0041 0.0093 0.0064 0.0098 0.0057 0.0088 0.0040

λ̂0/λ0 0.2312 0.3766 0.4327 1 0.3233 0.6531

Mean 0.0175 0.1672 0.1018 0.0597 0.1326 0.1108 0.1389 0.1018 0.1324 0.0969
θ = 0.25 Bias -0.0615 0.0881 0.0227 -0.0194 0.0535 0.0318 0.0598 0.0227 0.0533 0.0179
R = 0.079 Var 0.0130 0.0023 0.0030 0.0059 0.0040 0.0524 0.0022 0.0030 0.0032 0.0044

MSE 0.0168 0.0101 0.0035 0.0062 0.0068 0.0063 0.0058 0.0035 0.0061 0.0047

λ̂0/λ0 0.0844 0.1006 0.2692 0.5212 0.1973 0.2479

Mean 0.1040 0.2087 0.1438 0.1239 0.1999 0.1982 0.1912 0.1749 0.1920 0.0969
θ = 0.5 Bias -0.0541 0.0506 -0.0143 -0.0342 0.0417 0.0400 0.0331 0.0167 0.0339 0.0179

R = 0.158 Var 0.0163 0.0043 0.0064 0.0100 0.0049 0.0051 0.0047 0.0051 0.0052 0.0044
MSE 0.0192 0.0068 0.0066 0.0112 0.0067 0.0067 0.0058 0.0054 0.0063 0.0047

λ̂0/λ0 0.0078 0 0.0850 0.0970 0.0158 0

Mean 0.2049 0.2679 0.2148 0.2098 0.2674 0.2679 0.2634 0.2627 0.2670 0.2679
θ = 0.75 Bias -0.0323 0.0307 -0.0224 -0.0274 0.0302 0.0307 0.0262 0.0255 0.0298 0.0307
R = 0.237 Var 0.0131 0.0057 0.0089 0.0106 0.0058 0.0057 0.0059 0.0060 0.0058 0.0057

MSE 0.0141 0.0067 0.0094 0.0113 0.0067 0.0067 0.0066 0.0066 0.0067 0.0067

λ̂0/λ0 0.0009 0 0.0055 0 0.0019 0

Mean 0.2966 0.3364 0.2980 0.2973 0.3364 0.3364 0.3362 0.3364 0.3363 0.3364
θ = 1 Bias -0.0197 0.0202 -0.0182 -0.0189 0.0201 0.0202 0.0200 0.0202 0.0201 0.0202

R = 0.316 Var 0.0093 0.0060 0.0085 0.0088 0.0060 0.0060 0.0061 0.0060 0.0060 0.0060
MSE 0.0097 0.0065 0.0088 0.0092 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065

Table 3: Results under the FGM-Model for different values of θ and R. Specif-

ically, ldCor denotes the combination dCorλ̂0
= λ̂0dCorU +

(
1− λ̂0

)
dCorV

with λ̂0 obtained through bootstrap. Similarly for dCorU(A) and dCorU(T). In
the same way LdCor represents dCorλ0

= λ0dCorU + (1− λ0)dCorV, with λ0

approximated using Monte Carlo, similarly for dCorU(A) and dCorU(T) with
n = 100.
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dCorU dCorV dCorU(A) dCorU(T) ldCor LdCor ldCor(A) LdCor(A) ldCor(T) LdCor(T)

λ̂0/λ0 0.4923 0.7707 0.5982 1 0.5486 1

Mean -0.0102 0.1738 0.0936 0.0417 0.0832 0.0320 0.1258 0.0936 0.1014 0.0417
ρ = 0 Bias -0.0102 0.1738 0.0936 0.0417 0.0832 0.0320 0.1258 0.0936 0.1014 0.0417
R = 0 Var 0.0106 0.0013 0.0019 0.0038 0.0047 0.0076 0.0012 0.0019 0.0025 0.0038

MSE 0.0107 0.0316 0.0107 0.0056 0.0116 0.0086 0.0170 0.0107 0.0128 0.0056

λ̂0/λ0 0.3968 0.4193 0.5359 1 0.4950 0.6782

Mean 0.0310 0.1906 0.1088 0.0699 0.1273 0.1237 0.1468 0.1088 0.1309 0.1087
ρ = 0.1 Bias -0.0581 0.1014 0.0197 -0.0192 0.0381 0.0346 0.0576 0.0197 0.0417 0.0196

R = 0.089 Var 0.0142 0.0026 0.0033 0.0065 0.0057 0.0059 0.0024 0.0033 0.0040 0.0048
MSE 0.0176 0.0126 0.0037 0.0069 0.0071 0.0071 0.0058 0.0037 0.0058 0.0052

λ̂0/λ0 0.2228 0.2169 0.4191 0.6113 0.3914 0.3764

Mean 0.1099 0.2272 0.1482 0.1290 0.2011 0.2018 0.1941 0.1789 0.1888 0.1903
ρ = 0.18 Bias -0.0508 0.0665 -0.0125 -0.0317 0.0404 0.0411 0.0334 0.0182 0.0281 0.0296
R = 0.158 Var 0.0163 0.0038 0.0064 0.0100 0.0057 0.0056 0.0046 0.0051 0.0058 0.0057

MSE 0.0189 0.0082 0.0066 0.0110 0.0073 0.0073 0.0057 0.0055 0.0066 0.0066

λ̂0/λ0 0.0512 0.0829 0.3009 0.3462 0.1655 0.1920

Mean 0.1891 0.2710 0.2035 0.1963 0.2668 0.2642 0.2507 0.2477 0.2587 0.2567
ρ = 0.25 Bias -0.0346 0.0473 -0.0202 -0.0274 0.0431 0.0405 0.0270 0.0240 0.0350 0.0330
R = 0.224 Var 0.0140 0.0049 0.0084 0.0106 0.0052 0.0054 0.0058 0.0059 0.0057 0.0058

MSE 0.0152 0.0071 0.0088 0.0114 0.0071 0.0071 0.0065 0.0065 0.0069 0.0069

λ̂0/λ0 0.0010 0 0.0660 0.0658 0.0157 0.0190

Mean 0.2948 0.3453 0.2964 0.2956 0.3452 0.3453 0.3401 0.3421 0.3445 0.3444
ρ = 0.35 Bias -0.0198 0.0307 -0.0183 -0.0191 0.0306 0.0307 0.0274 0.0275 0.0299 0.0297
R = 0.315 Var 0.0096 0.0056 0.0087 0.0091 0.0056 0.0056 0.0058 0.0058 0.0057 0.0057

MSE 0.0100 0.0066 0.0090 0.0094 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066

λ̂0/λ0 0 0 0 0 0 0

Mean 0.4420 0.4713 0.4420 0.4420 0.4713 0.4713 0.4713 0.4713 0.4713 0.4713
ρ = 0.5 Bias -0.0122 0.0172 -0.0122 -0.0122 0.0172 0.0172 0.0172 0.0172 0.0172 0.0172

R = 0.454 Var 0.0065 0.0052 0.0065 0.0065 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052
MSE 0.0066 0.0055 0.0066 0.0066 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055

λ̂0/λ0 0 0 0 0 0 0

Mean 0.6951 0.7075 0.6951 0.6951 0.7075 0.7075 0.7075 0.7075 0.7075 0.7075
ρ = 0.75 Bias -0.0066 0.0059 -0.0066 -0.0066 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059
R = 0.702 Var 0.0028 0.0024 0.0028 0.0028 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024

MSE 0.0028 0.0025 0.0028 0.0028 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025

λ̂0/λ0 0 0 0 0 0 0

Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ρ = 1 Bias 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R = 1 Var 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4: Results under the bivariate normal model for different values of θ
and R. Specifically, ldCor denotes the combination dCorλ̂0

= λ̂0dCorU +(
1− λ̂0

)
dCorV with λ̂0 obtained through bootstrap. Similarly for dCorU(A)

and dCorU(T). In the same way LdCor represents dCorλ0 = λ0dCorU
+ (1− λ0)dCorV, with λ0 approximated using Monte Carlo, similarly for
dCorU(A) and dCorU(T) with n = 100.
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dCorU dCorV dCorU(A) dCorU(T) ldCor LdCor ldCor(A) LdCor(A) ldCor(T) LdCor(T )

λ̂0/λ0 0.2734 0.7391 0.5017 1 0.3787 1

Mean -0.0109 0.1548 0.0932 0.0411 0.1095 0.0323 0.1239 0.0932 0.1117 0.0411
k = 0 Bias -0.0109 0.1548 0.0932 0.0411 0.1095 0.0323 0.1239 0.0932 0.1117 0.0411
R = 0 Var 0.0102 0.0015 0.0017 0.0038 0.0031 0.0072 0.0011 0.0017 0.0021 0.0038

MSE 0.01036 0.0255 0.0104 0.0055 0.0151 0.0082 0.0165 0.0104 0.0147 0.0055

λ̂0/λ0 0.3020 0.3971 0.4242 0.8322 0.3621 0.5994

Mean 0.0648 0.1847 0.1056 0.0852 0.1484 0.1371 0.1511 0.1189 0.1487 0.1250
k = 1 Bias -0.0404 0.0796 0.0005 -0.0199 0.0434 0.0320 0.0460 0.0138 0.0436 0.0200

R = 0.105 Var 0.0104 0.0019 0.0034 0.0056 0.0036 0.0043 0.0023 0.0030 0.0030 0.0038
MSE 0.0120 0.0082 0.0034 0.0060 0.0055 0.0054 0.0044 0.0032 0.0049 0.0042

λ̂0/λ0 0.3755 0.4697 0.4150 0.6292 0.3962 0.5562

Mean 0.1524 0.2260 0.1576 0.1550 0.1984 0.1914 0.1976 0.1830 0.1979 0.1865
k = 2 Bias -0.0147 0.0590 -0.0095 -0.0121 0.0313 0.0244 0.0306 0.0159 0.0308 0.0195

R = 0.167 Var 0.0057 0.0020 0.0041 0.0047 0.0031 0.0035 0.0028 0.0032 0.0029 0.0034
MSE 0.0059 0.0055 0.0042 0.0049 0.0041 0.0041 0.0037 0.0035 0.0039 0.0037

λ̂0/λ0 0.0512 0.6556 0.3009 0.6687 0.1655 0.6630

Mean 0.2318 0.2806 0.2318 0.2318 0.2587 0.2486 0.2587 0.2480 0.2587 0.2483
k = 4 Bias -0.0071 0.0417 -0.0070 -0.0071 0.0198 0.0097 0.0198 0.0091 0.0198 0.0094

R = 0.239 Var 0.0024 0.0015 0.0024 0.0024 0.0019 0.0021 0.0019 0.0021 0.0019 0.0021
MSE 0.0025 0.0033 0.0024 0.0025 0.0023 0.0022 0.0023 0.0022 0.0023 0.0022

λ̂0/λ0 0.4672 0.7673 0.4672 0.7673 0.4672 0.7673

Mean 0.3039 0.3408 0.3039 0.3039 0.3235 0.3124 0.3235 0.3124 0.3235 0.3124
k = 8 Bias -0.0029 0.0341 -0.0029 -0.0029 0.0168 0.0057 0.0168 0.0057 0.0168 0.0057

R = 0.307 Var 0.0017 0.0012 0.0017 0.0017 0.0015 0.0016 0.0015 0.0016 0.0015 0.0016
MSE 0.0017 0.0025 0.0017 0.0017 0.0018 0.0016 0.0018 0.0016 0.0018 0.0016

λ̂0/λ0 0.4681 0.7673 0.4681 0.7673 0.4681 0.7673

Mean 0.3576 0.3883 0.3576 0.3576 0.3739 0.3637 0.3739 0.3637 0.3739 0.3637
k = 16 Bias -0.0024 0.0283 -0.0024 -0.0024 0.0140 0.0038 0.0140 0.0038 0.0140 0.0038

R = 0.360 Var 0.0012 0.0010 0.0012 0.0012 0.0011 0.0012 0.0011 0.0012 0.0011 0.0012
MSE 0.0012 0.0018 0.0012 0.0012 0.0013 0.0012 0.0013 0.0012 0.0013 0.0012

λ̂0/λ0 0.4055 0.8397 0.4055 0.8397 0.4055 0.8397

Mean 0.4122 0.4345 0.4122 0.4122 0.4255 0.4158 0.4255 0.4158 0.4255 0.4158
k → ∞ Bias -0.0012 0.0210 -0.0012 -0.0012 0.0120 0.0023 0.0120 0.0023 0.0120 0.0023

R = 0.414 Var 0.0008 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008
MSE 0.0008 0.0012 0.0008 0.0008 0.0009 0.0008 0.0009 0.0008 0.0009 0.0008

Table 5: Results under the nonlinear model for different values of k andR. Specif-

ically, ldCor denotes the combination dCorλ̂0
= λ̂0dCorU +

(
1− λ̂0

)
dCorV

with λ̂0 obtained through bootstrap. Similarly for dCorU(A) and dCorU(T). In
the same way LdCor represents dCorλ0 = λ0dCorU + (1− λ0)dCorV, with λ0

approximated using Monte Carlo, similarly for dCorU(A) and dCorU(T) with
n = 100.
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n = 1000 n = 10000

dCorU dCorV dCorU dCorV

Mean -0.0064169473 0.0479105949 -0.0011028850 0.0155715700
θ = 0 Bias -0.0064159473 0.0479105949 -0.001102885 0.0155715700
R = 0 Var 0.0009284552 0.0001375106 0.0001047187 0.0000169218

MSE 0.0009696196 0.0024329357 0.0001058408 0.0002593804

Mean 0.0718297971 0.0907165625 0.0781968300 0.0797945300
θ = 0.25 Bias -0.0072271444 0.0116596210 -0.0008601117 0.0007375874
R = 0.079 Var 0.0013098307 0.0006638111 0.0001020316 0.0000977523

MSE 0.0013620623 0.0007997579 0.0001026795 0.0000982084

Mean 0.1565371293 0.1643796570 0.1575798101 0.1583507120
θ = 0.5 Bias -0.0015767537 0.0062657740 -0.0005340999 0.0002367772

R = 0.158 Var 0.0008823790 0.0007892589 0.0000966199 0.0000955250
MSE 0.0008848652 0.0008285188 0.0000968182 0.0000955811

Mean 0.2367121489 0.2416617704 0.2367525010 0.2372453021
θ = 0.75 Bias -0.0004586757 0.0044909459 -0.0004183631 0.0000744719
R = 0.237 Var 0.0008060114 0.0007675352 0.0000898021 0.0000893724

MSE 0.0008062218 0.0007877038 0.00008989635 0.0000892975

Mean 0.3162854420 0.3197722210 0.3158737320 0.3162222222
θ = 1 Bias 0.0000576462 0.0035444680 -0.0003540643 -0.0000055621

R = 0.316 Var 0.0007237377 0.0007034444 0.0000805072 0.0000802804
MSE 0.0007237410 0.0007160077 0.0000805601 0.0000802081

Table 6: Results under the FGM-Model for different values of θ and R with
n = 1000, 10000.
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n = 1000 n = 10000

dCorU dCorV dCorU dCorV

Mean -0.0053249323 0.0549054026 -0.0020787712 0.0172301836
ρ = 0 Bias -0.0053249323 0.0549054026 -0.0020787710 0.0017230182
R = 0 Var 0.0009774654 0.0001230894 0.0000938972 0.0000119813

MSE 0.0010058203 0.0031376926 0.0000981340 0.0003088498

Mean 0.2214106074 0.2282662084 0.2232344402 0.2239136213
ρ = 0.25 Bias -0.0022892763 0.0045663247 -0.0004654878 0.0002137027
R = 0.224 Var 0.0007963065 0.0007410121 0.0000778305 0.00007722296

MSE 0.0008015473 0.0007618635 0.0000779771 0.00007726863

Mean 0.4529598924 0.4558117978 0.4538119229 0.4540965165
ρ = 0.5 Bias -0.0011666120 0.0016852934 -0.0003146241 -0.0000300164

R = 0.454 Var 0.0005685453 0.0005568162 0.0000562083 0.0000560411
MSE 0.0005699063 0.0005596564 0.0000562567 0.0000560420

Mean 0.7009988519 0.7022233490 0.7014272263 0.7015496102
ρ = 0.75 Bias -0.0006204699 0.0006040272 -0.0001920802 -0.0000697245
R = 0.702 Var 0.0002495016 0.0002464804 0.0000245757 0.0000245234

MSE 0.0002498865 0.0002468452 0.0000245905 0.0000245283

Mean 1.0000000000 1.0000000000 1.0000000000 1.0000000000
ρ = 1 Bias 0.0000000000 0.0000000000 0.0000000000 0.0000000000
R = 1 Var 0.0000000000 0.0000000000 0.0000000000 0.0000000000

MSE 0.0000000000 0.0000000000 0.0000000000 0.0000000000

Table 7: Results under the bivariate normal model for different values of ρ and
R with n = 1000, 10000.
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n = 1000 n = 10000

dCorU dCorV dCorU dCorV

Mean -0.0066496747 0.0478197476 -0.0013400740 0.01548219120
k = 0 Bias -0.0066496747 0.0478197476 -0.001340074 0.0154821901
R = 0 Var 0.0009092382 0.0001394757 0.0001027066 0.00001687763

MSE 0.0009534563 0.0024262040 0.0001044099 0.0002565608

Mean 0.1656174161 0.1729610014 0.1670618410 0.1677996200
k = 2 Bias -0.0014285839 0.0059150014 0.0000157970 0.0007536394

R = 0.167 Var 0.0001989045 0.0001817651 0.0000156266 0.0000154994
MSE 0.0002009454 0.0002167524 0.0000156268 0.0000160534

Mean 0.2382283115 0.2432708574 0.2388520100 0.2393590100
k = 4 Bias -0.0006506885 0.0043918574 -0.0000269810 0.0004799890

R = 0.239 Var 0.0001398824 0.0001335897 0.0000132147 0.0000131658
MSE 0.0001403058 0.0001528781 0.0000132154 0.0000133844

Mean 0.3062829011 0.3101043201 0.3067652000 0.3071486210
k = 8 Bias -0.0004511185 0.0033703360 0.0000311962 0.0004145721

R = 0.307 Var 0.0000974818 0.0000948144 0.0000096070 0.0000095890
MSE 0.0000976853 0.0001061736 0.0000096080 0.0000097520

Mean 0.3599418001 0.3630928010 0.3599973100 0.3603135011
k = 16 Bias -0.0000112450 0.0031398350 0.0000442949 0.0003605299

R = 0.360 Var 0.0000677156 0.0000663919 0.0000068125 0.0000067988
MSE 0.0000677158 0.0000762504 0.0000068083 0.0000069227

Table 8: Results under the nonlinear model for different values of k and R with
n = 1000, 10000.
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