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The bifurcation measure is exponentially mixing

Henry De Thélin

Abstract

We prove general mixing theorems for sequences of meromorphic maps on compact

Kähler manifolds. We deduce that the bifurcation measure is exponentially mixing

for a family of rational maps of Pq(C) endowed with suitably many marked points.
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phisms, bifurcation measure.
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Introduction

Given a holomorphic endomorphism of Pk(C), f , of degree d ≥ 2, Fornæss and Sibony
defined the Green current T associated with f (see [12] and [13]), whose support is the
Julia set of f , that is, the set of points x ∈ P

k(C) for which the sequence (fn(x))n is
not normal in some neighborhood of x. This current has a continuous potential: we can
therefore define its self-intersection µ = T k (see [12]). The measure µ obtained in this way
is mixing (see [12]), it is the unique measure of maximal entropy k log(d) (see [3]), and its
Lyapunov exponents are bounded from below by log(d)

2 (see [2]).

In a similar way, let now Λ be a complex Kähler manifold and f̂ : Λ×P
1 −→ Λ×P

1 an
algebraic family of rational maps of degree d ≥ 2: f̂ is holomorphic and f̂(λ, z) = (λ, fλ(z))
where fλ is a rational map of degree d. Let a be a marked point, i.e., a rational function
a : Λ −→ P

1. As for holomorphic endomorphisms, a fundamental question is to study the
bifurcation locus, that is, the set of parameters λ0 ∈ Λ for which the sequence (fnλ (a(λ)))n
is not normal in some neighborhood of λ0. For example, in the historical example, fλ(z) =
zd + λ with λ ∈ C and a(λ) = λ, the bifurcation locus is the Mandelbrot set.

DeMarco introduced in [4] a current of bifurcation Tbif on Λ: it is a positive closed
current of bidegree (1, 1) whose support is exactly the bifurcation locus and Bassanelli and
Berteloot ([1]) then defined its self-intersections T lbif . The maximal intersection µbif :=

T
dim(Λ)
bif is known as the bifurcation measure and in the mentioned historical example, it

corresponds to the harmonic measure of the Mandelbrot set. For this harmonic measure,
Graczyk and Światek (see [16]) proved that the Lyapounov exponent of µbif is equal to
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log(d). In [6], we partially extended this result to the case of any pair (f, a) and with
a quasi-projective variety Λ of dimension 1 by showing that the Lyapounov exponent is
bounded from below by log(d)

2 . Moreover, we extended the notion of entropy to the context
of more general parameter families in [5], and proved that the measure µbif has maximal
entropy.

In this article, we continue the analogy with endomorphisms, showing that the measure
µbif is mixing in a very general setting. In [15], Ghioca, Krieger and Nguyen proved that
the Mandelbrot set is not the Julia set of a polynomial map (also refer to [17] for another
similar result). So let us clarify the context and what we mean by "mixing".

Let Λ be a smooth complex quasi-projective variety and let f̂ : Λ × P
q −→ Λ × P

q

be an algebraic family of endomorphisms of P
q of degree d ≥ 2: f̂ is a morphism and

f̂(λ, z) = (λ, fλ(z)) where fλ is an endomorphism of Pq of algebraic degree d.
Assume that the family f̂ is endowed with k marked points a1, . . . , ak : Λ −→ P

q where
the ai are morphisms and suppose that dim(Λ) = qk. As in the case k = q = 1, we can
define Tbif and µbif = T

kq
bif (see the paragraph 2.1 for more details, or refer to [5] and [10]).

For n ∈ N, define

an(λ) = (fnλ (a1(λ)), · · · , f
n
λ (ak(λ))) , λ ∈ Λ.

Let ι : Λ →֒ P
m be an embedding of Λ into a complex projective space. We identify

Λ with ι(Λ) and we denote by Λ the closure of Λ in P
m. Let pn : Λ −→ (Pq)k be the

meromorphic map obtained by taking the closure of the graph of an in Λ× (Pq)k.
In this context, we first have (see paragraph 1.1 for a review of notions used here, such

as dsh functions, locally moderate measures and PB probability measures)

Theorem 1. We assume that µbif 6= 0 and dim(Λ) = qk. Take U ⊂ (Pq)k an open set and
µ a locally moderate positive measure in U .

Let V ⋐ U and W ⋐ Λ be relatively compact sets. Then for s ∈]1,+∞[ and 0 ≤ ν ≤ 2,
there exists a positive constant C such that

∣∣∣∣∣

∫
ψ(pn)ϕ

p∗n(µ|V )

dkqn
−

∫
ψdµ|V

∫
ϕdµbif

∣∣∣∣∣ ≤ Cd−nν/2|ψ|Ls(µ|V )|ϕ|Cν

for every n ∈ N, ψ ∈ DSH((Pq)k) and ϕ ∈ Cν with compact support in W .

We have µbif = T
kq
bif where the Tbif has locally Hölder potentials, hence the measure

µbif is locally moderate (see [9]), and we deduce

Corollary 1. We assume that µbif 6= 0 and that Λ is a Zariski open set in (Pq)k.
Let V ⋐ Λ = U be a relatively compact set. Then for s ∈]1,+∞[ and 0 ≤ ν ≤ 2, there

exists a positive constant C such that

∣∣∣∣∣

∫
ψ(pn)ϕ

p∗n(µbif |V )

dkqn
−

∫
ψdµbif |V

∫
ϕdµbif |V

∣∣∣∣∣ ≤ Cd−nν/2|ψ|Ls(µbif |V )|ϕ|Cν
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for every n ∈ N, ψ ∈ DSH((Pq)k) and ϕ ∈ Cν with compact support in V .

This means that the bifurcation measure is exponentially mixing.
To prove the Theorem 1, we first establish a very general mixing theorem for sequences

of meromorphic maps. The proof follows the approach used by Dinh, Nguyen and Sibony
to prove stochastic properties for holomorphic endomorphisms in P

k(C) (see [9] and also
[8]). Let us explain the context.

Let (X,ω) and (X ′, ω′) be compact Kähler manifolds of dimension l and consider a
sequence of dominant meromorphic maps pn : X −→ X ′.

Fix U ⊂ X ′ an open set, and let µ be a locally moderate positive measure on U .
Then, we have

Theorem 2. Let V ⋐ U be a relatively compact set and take λ a PB probability measure
on X ′ . Then for s ∈]1,+∞[ and 0 ≤ ν ≤ 2, there exists constants C1, C2 such that

∣∣∣∣∣

∫
ψ(pn)ϕ

p∗n(µ|V )

δl(pn)
−

∫
ψdµ|V

∫
ϕ
p∗n(λ)

δl(pn)

∣∣∣∣∣ ≤ C1
δl−1(pn)

δl(pn)
|ψ|Ls(µ|V )|ϕ|DSH

for every n ∈ N, ψ ∈ DSH(X ′) and ϕ ∈ DSH(X) and

∣∣∣∣∣

∫
ψ(pn)ϕ

p∗n(µ|V )

δl(pn)
−

∫
ψdµ|V

∫
ϕ
p∗n(λ)

δl(pn)

∣∣∣∣∣ ≤ C2

(
δl−1(pn)

δl(pn)

)ν/2
|ψ|Ls(µ|V )|ϕ|Cν

for every n ∈ N, ψ ∈ DSH(X ′) and ϕ ∈ Cν(X).
Here δl(pn) =

∫
p∗n(ω

′l) and δl−1(pn) =
∫
p∗n(ω

′l−1) ∧ ω.

Here is the outline of this paper: In the first paragraph, we review the various notions
used in these statements (locally moderate measures, PB probability measures, etc.) and
explain why the integrals in Theorem 2 are well-defined. Then we will demonstrate Theo-
rem 2. In the second paragraph, we begin with some background about parameter families
and we will prove Theorem 1, using crucially Theorem 2 and pluripotential theory.

Acknowledgments: Thanks to Gabriel Vigny for many useful discussions on this
article.

1 Proof of Theorem 2

1.1 Preliminaries

Let (X,ω) be a compact Kähler manifold. We start with some reminders about dsh
functions, PB measures and locally moderate measures (see [8]).

A function ϕ is quasi-plurisubharmonic (qpsh) if it is locally written as the sum of a
psh function and a C∞ one. Such a function verifies ddcϕ ≥ −cω in the sense of currents
for a constant c ≥ 0. A set of X is said to be pluripolar if it is contained in {ϕ = −∞}
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where ϕ is a qpsh function. We call dsh function, any function defined outside a pluripolar
set, which is written as the difference of two qpsh functions. Let us denote DSH(X) the set
of dsh functions on X. If ϕ is a dsh function, there are two positive closed currents T± of
bidegree (1, 1) such that ddcϕ = T+ − T−. We can then define a norm (see [9] paragraph
3):

‖ϕ‖DSH := ‖ϕ‖L1(X) + inf ‖T±‖

with T± as above.
A positive measure µ is PB if qpsh functions are integrable with respect to this measure.

In particular, PB measures have no mass on pluripolar sets. Let µ be a non-zero PB positive
measure on X. For ϕ ∈ DSH(X), define

‖ϕ‖µ := |〈µ,ϕ〉| + inf ‖T±‖

with T± as above.
The semi-norm ‖.‖µ is in fact a norm on DSH(X) which is equivalent to ‖.‖DSH (see

Proposition A.4.4 in [8]).
The measure µ is said to be locally moderate (see [9]) if for any open set U ⊂ X, any

compact set K ⊂ U and any compact family F of psh functions on U , there are constants
α > 0 and c > 0 such that

∫

K
e−αϕdµ ≤ c for ϕ ∈ F .

By using Proposition 2.1 in [7] and Cauchy-Schwarz inequality, if µ is locally moderate,
for any open set U ⊂ X, any compact set K ⊂ U and any compact family D of dsh
functions on X, there are constants α > 0 and c > 0 such that

∫

K
eα|ϕ|dµ ≤ c for ϕ ∈ D.

1.2 About the definition of the integrals in Theorem 2

We begin by showing that all the integrals in Theorem 2 are well-defined.
Take ξ ≤ 0 a qpsh function and K a compact set. Then, since µ is locally moderate,

there exists α > 0 such that
∫
K −αξdµ ≤

∫
K e

−αξdµ < +∞. It implies that µ gives no
mass to analytic subsets in X ′ and integrates dsh functions (µ is PB).

Let Γpn be the graph of pn in X×X ′ and α1, α2 the projections of Γpn onto X and X ′,
respectively. Take ϕ a continuous map, then α2∗(α

∗
1ϕ) is continuous outside an analytic

subset of X ′. Hence, if λ is a PB positive measure on X ′, as it gives no mass to analytic
subset in X ′, we can define a positive measure p∗nλ with the formula:

〈p∗nλ, ϕ〉 := 〈λ, α2∗(α
∗
1ϕ)〉.

4



Now, let ϕ be a DSH function in X. With the above notations, pn∗ϕ = α2∗(α
∗
1ϕ) is

DSH (see paragraphs 2.3 and 2.4 in [7]). By definition, since λ is a PB probability measure,
qpsh functions are λ-integrable, hence 〈p∗nλ, ϕ〉 := 〈λ, pn∗ϕ〉 is well-defined.

Finally, let ψ1, ψ2 be two negative qpsh functions in X ′. We have

∫
|ψ1ψ2| dµ|V ≤

(∫
|ψ1|

2dµ|V

)1/2(∫
|ψ2|

2dµ|V

)1/2

≤
2

α2

(∫
eα|ψ1|dµ|V

)1/2(∫
eα|ψ2|dµ|V

)1/2

< +∞

where we used that µ is locally moderate and the inequality α2x2

2 ≤ eαx for x ≥ 0.

We deduce that
∫
ψ(pn)ϕ

p∗n(µ|V )

δl(pn)
:=
∫
ψ
pn∗(ϕ)
δl(pn)

dµ|V is well defined for ψ ∈ DSH(X ′)

and ϕ ∈ DSH(X), since pn∗ϕ is DSH in X ′.

1.3 Proof of Theorem 2:

In this paragraph, we prove Theorem 2. We follow the ideas of Dinh-Sibony-Nguyen
used in [9] to prove that the measure of maximal entropy for a holomorphic endomorphism
of P

k(C) is exponentially mixing. In particular, in what follows, we use their notation
Λn(ϕ) :=

pn∗(ϕ)
δl(pn)

. For ψ ∈ DSH(X ′) and ϕ ∈ DSH(X), we have

∣∣∣∣∣

∫
ψ(pn)ϕ

p∗n(µ|V )

δl(pn)
−

∫
ψdµ|V

∫
ϕ
p∗n(λ)

δl(pn)

∣∣∣∣∣ =
∣∣∣∣
∫
ψΛn(ϕ)dµ|V −

∫
ψdµ|V

∫
Λn(ϕ)dλ

∣∣∣∣

=

∣∣∣∣
∫
ψ

(
Λn(ϕ)−

∫
Λn(ϕ)dλ

)
dµ|V

∣∣∣∣

=

∣∣∣∣
∫
ψΛ̃n(ϕ)dµ|V

∣∣∣∣

where we denote Λ̃n(ϕ) = Λn(ϕ) − 〈Λn(ϕ), λ〉. We can estimate the norm of this
function by using the following Lemma.

Lemma 1. There exists a constant r > 0 which depends only on X such that

∣∣∣Λ̃n(ϕ)
∣∣∣
DSH(λ)

≤ r|ϕ|DSH
δl−1(pn)

δl(pn)

for every ϕ ∈ DSH(X).

Proof. Write ddcϕ = S+ − S− with S± positive closed (1, 1)-currents. We have

ddcΛ̃n(ϕ) = ddcΛn(ϕ) =
pn∗(dd

cϕ)

δl(pn)
=
pn∗(S

+)

δl(pn)
−
pn∗(S

−)

δl(pn)
.
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In the above, the push-forward pn∗(S
±) is well-defined using Meo’s result (see [18]) and

the projections from the graph of pn (taking a desingularization if necessary), since S± are
positive (1, 1)-currents.

By definition
∣∣∣Λ̃n(ϕ)

∣∣∣
DSH(λ)

=
∣∣∣〈Λ̃n(ϕ), λ〉

∣∣∣ +min ‖R±‖

where the minimum is taken on positive closed (1, 1)-currents R± such that ddcΛ̃n(ϕ) =
R+ −R−. Hence,

∣∣∣Λ̃n(ϕ)
∣∣∣
DSH(λ)

≤

∥∥∥∥
pn∗(S

±)

δl(pn)

∥∥∥∥

and it remains to estimate the norm of the term on the right.
By using Proposition 2.2 in [7], there exists a constant r > 0 that depends only on X

such that S+ = β + ddcu with β a smooth (1, 1)-form, u a qpsh function and

−r‖S+‖ω ≤ β ≤ r‖S+‖ω.

Finally,

∥∥∥∥
pn∗(S

+)

δl(pn)

∥∥∥∥ = 〈
pn∗(S

+)

δl(pn)
, ω′l−1〉 = 〈β,

pn
∗(ω′l−1)

δl(pn)
〉 ≤ r‖S+‖

δl−1(pn)

δl(pn)

and the Lemma follows.

We continue the proof of Theorem 2.
Take r > 0 such that 1

s +
1
r = 1. By using Proposition A.4.4 in [8], the sequence

(
Λ̃n(ϕ)

δl(pn)

δl−1(pn)

)
=

(
(Λn(ϕ)− 〈Λn(ϕ), λ〉)

δl(pn)

δl−1(pn)

)

is bounded in DSH(X) for ϕ ∈ DSH(X) with |ϕ|DSH ≤ 1 (recall that λ is a PB
probability measure). Hence, since µ is locally moderate and V is a compact set, there
exist positive constants α,C such that 〈eα|ψ|, µ|V 〉 ≤ C for every ψ in the above sequence.

By using the inequalities xr ≤ r!ex ≤ rrex for x ≥ 0 (consider integer parts of r, if
necessary), we obtain

〈(
α|Λn(ϕ)− 〈Λn(ϕ), λ〉|

δl(pn)

δl−1(pn)

)r
, µ|V

〉
≤ Crr

for ϕ ∈ DSH(X) with |ϕ|DSH ≤ 1. Thus,

|Λn(ϕ)− 〈Λn(ϕ), λ〉|Lr(µ|V ) ≤
rC1/r

α

δl−1(pn)

δl(pn)
|ϕ|DSH (1)

for every ϕ ∈ DSH(X).
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We deduce,

∣∣∣∣∣

∫
ψ(pn)ϕ

p∗n(µ|V )

δl(pn)
−

∫
ψdµ|V

∫
ϕ
p∗n(λ)

δl(pn)

∣∣∣∣∣ =
∣∣∣∣
∫
ψ

(
Λn(ϕ)−

∫
Λn(ϕ)dλ

)
dµ|V

∣∣∣∣

≤ |ψ|Ls(µ|V )|Λn(ϕ)− 〈Λn(ϕ), λ〉|Lr(µ|V )

≤
rC1/r

α

δl−1(pn)

δl(pn)
|ψ|Ls(µ|V )|ϕ|DSH

which proves the first inequality.

Remark 1. As mentioned above, if ψ is DSH with |ψ|DSH ≤ 1, we have |ψ|s ≤
(
s
α

)s
eα|ψ|

and 〈eα|ψ|, µ|V 〉 ≤ C. Hence, there exists a positive constant C ′ which does not depend on
ψ such that |ψ|Ls(µ|V ) ≤ C ′|ψ|DSH . It means that we can replace |ψ|Ls(µ|V ) with |ψ|DSH
in the first inequality of Theorem 2.

The second inequality follows classically from the theory of interpolation between the
Banach spaces C0 and C2 (see [8] p.34).

Let L : C0 −→ Lr(µ|V ) be the linear operator L(ϕ) = Λn(ϕ)− 〈Λn(ϕ), λ〉. We have

|Λn(ϕ)− 〈Λn(ϕ), λ〉|Lr(µ|V ) ≤ 2|ϕ|C0µ(V )1/r

for ϕ ∈ C0. Since |ϕ|DSH . |ϕ|C2 for ϕ ∈ C2, by using the inequality (1), we deduce

|Λn(ϕ)− 〈Λn(ϕ), λ〉|Lr(µ|V ) ≤
rC1/r

α

δl−1(pn)

δl(pn)
|ϕ|DSH

≤ C ′′ δl−1(pn)

δl(pn)
|ϕ|C2 .

By applying the theory of interpolation to L, for 0 ≤ ν ≤ 2, there exists a positive
constant Aν , independent of L such that

|Λn(ϕ)− 〈Λn(ϕ), λ〉|Lr(µ|V ) ≤ Aν

(
2µ(V )1/r

)1−ν/2(
C ′′ δl−1(pn)

δl(pn)

)ν/2
|ϕ|Cν .

We obtain

∣∣∣∣∣

∫
ψ(pn)ϕ

p∗n(µ|V )

δl(pn)
−

∫
ψdµ|V

∫
ϕ
p∗n(λ)

δl(pn)

∣∣∣∣∣ =
∣∣∣∣
∫
ψΛn(ϕ)dµ|V −

∫
ψdµ|V

∫
Λn(ϕ)dλ

∣∣∣∣

=

∣∣∣∣
∫
ψ (Λn(ϕ) − 〈Λn(ϕ), λ〉) dµ|V

∣∣∣∣ ≤ |ψ|Ls(µ|V )|Λn(ϕ) − 〈Λn(ϕ), λ〉|Lr(µ|V )

≤ C2

(
δl−1(pn)

δl(pn)

)ν/2
|ψ|Ls(µ|V )|ϕ|Cν .
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This gives the second inequality in the Theorem. Notice that we can replace |ψ|Ls(µ|V )

with |ψ|DSH as in the previous remark.

2 Proof of Theorem 1

2.1 Background in bifurcation theory:

In this paragraph, we follow the presentation of [5] (see also [11] and [10]).
Let Λ be a smooth complex quasi-projective variety and let f̂ : Λ × P

q −→ Λ × P
q

be an algebraic family of endomorphisms of P
q of degree d ≥ 2: f̂ is a morphism and

f̂(λ, z) = (λ, fλ(z)) where fλ is an endomorphism of Pq of algebraic degree d.
Assume that the family f̂ is endowed with k marked points a1, . . . , ak : Λ −→ P

q where
the ai are morphisms.

Let ωPq be the Fubini-Study form on P
q, πΛ : Λ×P

q −→ Λ and πPq : Λ×P
q −→ P

q be
the canonical projections.

If we denote ω̂ := (πPq)∗ωPq , we have f̂∗ω̂
d = ω̂ + ddcu with u a smooth function (see

[11] Proposition 3.1). In the classical manner, the sequence

(f̂n)∗ω̂

dn
= ω̂ +

n−1∑

i=0

ddc
u ◦ f̂ i

di
= ω̂ + ddcun

(where un =
∑n−1

i=0
u◦f̂ i

di
) converges to a closed positive (1, 1)-current T̂ = ω̂ + ddcu∞ on

Λ× P
q and this current has locally Hölder potential (see [8] Proposition 1.2.3).

For j = 1, · · · , k, let Γaj be the graph of the marked point aj and we consider

a = (a1, · · · , ak) : Λ −→ (Pq)k.

Definition 1. For 0 ≤ j ≤ k, the bifurcation current Taj of the point aj is the positive
closed (1, 1)-current on Λ defined by

Taj = (πΛ)∗(T̂ ∧ [Γaj ])

and we define the bifurcation current Ta of the k-uple a as

Ta = Ta1 + ·+ Tak .

For n ∈ N, write

an(λ) = (fnλ (a1(λ)), · · · , f
n
λ (ak(λ))) = (a1,n(λ), · · · , ak,n(λ)) , λ ∈ Λ.

Lemma 2. (See [11] Proposition 3.1 and [5] Lemma 3.2).
For 1 ≤ j ≤ k, the support of Taj is the set of parameters λ0 ∈ Λ such that the sequence

(λ −→ fnλ (aj(λ))) is not a normal family at λ0.

8



Moreover, there exists a locally uniformly bounded family of continuous functions (uj,n)
on Λ such that

a∗j,n(ωPq) = dnTaj + ddcuj,n on Λ.

To prove the last assertion, observe that

a∗j,n(ωPq) = πΛ∗((f̂
n)∗ω̂ ∧ Γaj ) = πΛ∗(d

nT̂ ∧ Γaj ) + πΛ∗(dd
c(un − u∞) ∧ Γajd

n).

For 1 ≤ j ≤ k and i ≥ 1, it follows that

a∗j,n(ω
i
Pq ) = dniT iaj + ddcO(d(i−1)n)

on compact subset of Λ and in particular T q+1
aj = 0 on Λ (see [14] and [10] too).

Assume that dΛ := dim(Λ) = qk. Using the last property, the measure T dΛa is equal to
a constant multiplied by T qa1 ∧ · · · ∧ T qak and we define

µbif := T qa1 ∧ · · · ∧ T qak .

This is the bifurcation measure of the k-uple a = (a1, · · · , ak).
Let ι : Λ →֒ P

m be an embedding of Λ into a complex projective space. We identify
Λ with ι(Λ) and we denote by Λ the closure of Λ in P

m. Let pn : Λ −→ (Pq)k be the
meromorphic map obtained by taking the closure of the graph of an in Λ× (Pq)k.

We can now proceed to the proof of Theorem 1, by using Theorem 2 and pluripotential
theory.

2.2 Proof of Theorem 1

Pick ψ ∈ DSH((Pq)k) and ϕ ∈ Cν with compact support in W .
Let prj : (Pq)k −→ P

q be the projection onto the j-th factor of the product (Pq)k

(j = 1, · · · , k) and consider Ω =
∑k

j=1 pr
∗
jωPq . We will apply Theorem 2 with λ equal to

Ωqk normalized to be a probability, i.e., Ωqknor = pr∗1ω
q
Pq ∧ · · · ∧ pr∗kω

q
Pq (ωj

Pq = 0 for j > q

and take the normalization
∫
ω
q
Pq = 1).

In particular, we need estimates on δl(pn) and δl−1(pn) with l = kq, which are stated
in the following Lemma:

Lemma 3. Suppose µbif 6= 0. Then there exists a positive constant ǫ such that

ǫdkqn ≤ δkq(pn) ≤
1

ǫ
dkqn and δkq−1(pn) ≤

1

ǫ
dkqn−n

for every n ∈ N. Here, δkq(pn) :=
∫
p∗n(Ω

qk) and δkq−1(pn) :=
∫
p∗n(Ω

qk−1) ∧ ω, where
ω is the Fubini-Study form on P

m(C).

9



The proof of this Lemma is given at the end of the paragraph.
By using it with Theorem 2, there exists a positive constant C (independent of n ∈ N,

ψ ∈ DSH((Pq)k) and ϕ ∈ Cν) such that
∣∣∣∣∣

∫
ψ(pn)ϕ

p∗n(µ|V )

dkqn
−

∫
ψdµ|V

∫
ϕ
p∗n(Ω

qk
nor)

dkqn

∣∣∣∣∣ ≤ Cd−nν/2|ψ|Ls(µ|V )|ϕ|Cν ,

so it remains to prove
∣∣∣∣∣

∫
ψdµ|V

∫
ϕ
p∗n(Ω

qk
nor)

dkqn
−

∫
ψdµ|V

∫
ϕdµbif

∣∣∣∣∣ ≤ C ′d−nν/2|ψ|Ls(µ|V )|ϕ|Cν ,

for a positive constant C ′ (independent of n ∈ N, ψ ∈ DSH((Pq)k) and ϕ ∈ Cν with
compact support in W ). We will again use interpolation theory between C0 and C2.

So, fix ϕ ∈ C2(Λ) with compact support in W . We have

∫
ϕ
p∗n(Ω

qk
nor)

dkqn
=

∫

W
ϕ
p∗n(Ω

qk
nor)

dkqn
=

∫

W
ϕ
a
∗
n(pr

∗
1ω

q
Pq ∧ · · · ∧ pr∗kω

q
Pq)

dkqn

=

∫

W
ϕ
a∗1,nω

q
Pq ∧ · · · ∧ a∗k,nω

q
Pq

dkqn

=

∫
ϕ
(dnTa1 + ddcu1,n)

q ∧ · · · ∧ (dnTak + ddcuk,n)
q

dkqn

where the uj,n are uniformly bounded on W (split W independently of ϕ and use cut-off
functions if necessary).

By Stokes’ formula, the last integral is equal to

∫
ϕTa1 ∧ (Ta1 + ddc

u1,n

dn
)q−1 ∧ · · · ∧ (Tak + ddc

uk,n

dn
)q+

∫
u1,n

dn
ddcϕ ∧ (Ta1 + ddc

u1,n

dn
)q−1 ∧ · · · ∧ (Tak + ddc

uk,n

dn
)q = A+B

with obvious notations.
Let 0 ≤ θ1 ≤ · · · ≤ θqk ≤ 1 be smooth functions with compact support, θ1 ≡ 1 on a

neighborhood of W and θi+1 ≡ 1 on a neighborhood of support(θi) for i = 1, · · · , qk − 1.
There exists a positive constant C1 such that −C1θ1|ϕ|C2ω ≤ u1,ndd

cϕ ≤ C1θ1|ϕ|C2ω

for every n, where ω is the Fubini-Study form of Pm. Hence

|B| ≤
|ϕ|C2

dn

∫
C1θ1ω ∧ (Ta1 + ddc

u1,n

dn
)q−1 ∧ · · · ∧ (Tak + ddc

uk,n

dn
)q.

Now, we prove that the previous integral is bounded by a constant independent of n.
Indeed, write it as

10



C1

∫
θ1ω ∧ Ta1 ∧ (Ta1 + ddc

u1,n

dn
)q−2 ∧ · · · ∧ (Tak + ddc

uk,n

dn
)q+

C1

∫
u1,n

dn
ddcθ1 ∧ ω ∧ (Ta1 + ddc

u1,n

dn
)q−2 ∧ · · · ∧ (Tak + ddc

uk,n

dn
)q.

As above, there exists a positive constant C2 such that −C2θ2ω ≤ u1,ndd
cθ1 ≤ C2θ2ω

and we iterate this process for both integrals, by using θ1, · · · , θqk−1 successively.
At the end the integral

∫
θ1ω ∧ (Ta1 + ddc

u1,n
dn )q−1 ∧ · · · ∧ (Tak + ddc

uk,n
dn )q is bounded

above by a sum of terms like

C1 · · ·Cl

∫
θlω

l ∧ Tα1

a1 ∧ · · · ∧ Tαk
ak

with α1 + · · · + αk = qk − l and l = 1, · · · , qk. All these integrals are bounded by a
constant independent on n since the potentials of the Taj are continuous.

Hence there exists a positive constant D such that

|B| ≤
D

dn
|ϕ|C2 .

Now for A we follow the same method and we have

A =

∫
ϕT qa1 ∧ · · · ∧ T qak + ǫn

with |ǫn| ≤
D′

dn |ϕ|C2 .
We obtain

∣∣∣∣∣

∫
ϕ
p∗n(Ω

qk
nor)

dkqn
−

∫
ϕT qa1 ∧ · · · ∧ T qak

∣∣∣∣∣ ≤
D′′

dn
|ϕ|C2 (2)

for C2(Λ) maps ϕ with compact support in W .
When ϕ is C0(Λ), applying Lemma 3, we have

∣∣∣∣∣

∫
ϕ
p∗n(Ω

qk
nor)

dkqn
−

∫
ϕT qa1 ∧ · · · ∧ T qak

∣∣∣∣∣ ≤
(c
ǫ
+ µbif(Λ)

)
|ϕ|C0

where the constant c > 0 is such that Ωqknor = cΩqk.
Using interpolation theory for the linear operator

L : {ϕ ∈ C0 with compact support in W} −→ Lr(µ|V )

defined by
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L(ϕ) =

∫
ϕ
p∗n(Ω

qk
nor)

dkqn
−

∫
ϕT qa1 ∧ · · · ∧ T qak ,

we obtain that there exists a constant Aν such that
∣∣∣∣∣

∫
ϕ
p∗n(Ω

qk
nor)

dkqn
−

∫
ϕT qa1 ∧ · · · ∧ T qak

∣∣∣∣∣
Lr(µ|V )

is bounded above by

Aν

((c
ǫ
+ µbif(Λ)

)
µ(V )1/r

)1−ν/2
(
D′′µ(V )1/r

dn

)ν/2
|ϕ|Cν ,

for ϕ ∈ Cν with compact support in W .
Finally,

∣∣∣∣∣

∫
ψdµ|V

∫
ϕ
p∗n(Ω

qk
nor)

dkqn
−

∫
ψdµ|V

∫
ϕdµbif

∣∣∣∣∣ =
∣∣∣∣∣

∫
ψ

(∫
ϕ
p∗n(Ω

qk
nor)

dkqn
−

∫
ϕdµbif

)
dµ|V

∣∣∣∣∣

≤ |ψ|Ls(µ|V )

∣∣∣∣∣

∫
ϕ
p∗n(Ω

qk
nor)

dkqn
−

∫
ϕT qa1 ∧ · · · ∧ T qak

∣∣∣∣∣
Lr(µ|V )

≤ C ′d−nν/2|ψ|Ls(µ|V )|ϕ|Cν

for ϕ ∈ Cν with compact support in W , and Theorem 1 follows.

It now remains to prove Lemma 3.

Proof of Lemma 3:

Since µbif 6= 0 by assumption, there exists a smooth function 0 ≤ θ0 ≤ 1 with compact
support in Λ and

∫
θ0dµbif > 0.

Following the same method as in the previous proof with ϕ = θ0 and W = Λ, we
obtain, as in inequality (2),

∣∣∣∣∣

∫
θ0
p∗n(Ω

qk
nor)

dkqn
−

∫
θ0T

q
a1 ∧ · · · ∧ T qak

∣∣∣∣∣ ≤
C

dn
.

Therefore, using Ωqknor = cΩqk, we have

δkq(pn) :=

∫
p∗n(Ω

qk) =
1

c

∫
p∗n(Ω

qk
nor) ≥

1

c

∫
θ0p

∗
n(Ω

qk
nor)

≥
1

c

(∫
θ0T

q
a1 ∧ · · · ∧ T qak −

C

dn

)
dkqn ≥ ǫdkqn
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where ǫ = 1
2c

∫
θ0T

q
a1 ∧ · · · ∧ T qak and n large enough (so for every n, up to reducing ǫ).

To find the upper bounds of δkq(pn) and δkq−1(pn), we use Bezout’s theorem like in
[19].

First, δkq(pn) :=
∫
p∗n(Ω

qk) = 1
c

∫
p∗n(Ω

qk
nor), so it is equal to the cardinal of p−1

n (b) with
b generic in (Pq)k multiplied by the constant 1

c . Thus, to compute it, we need to find
the number of solutions to the equation pn(λ) = b, or equivalently (by genericity), to the
equation

an(λ) = (fnλ (a1(λ)), · · · , f
n
λ (ak(λ))) = b.

Let b = (b1, · · · , bk) ∈ (Pq)k be a generic point. For j = 1, · · · , k, write

bj = [bj,0 : · · · : bj,q]

and

fnλ (aj(λ)) = [Fnλ,0(aj(λ)) : · · · : F
n
λ,q(aj(λ))]

where Fnλ,0, · · · , F
n
λ,q are homogeneous polynomials of degree dn in z0, · · · , zq which

define fnλ (here [z0 : · · · : zq] are the coordinates in P
q).

We are reduced to k systems of equations as





Fnλ,0(aj(λ)) =
bj,0
bj,q

Fnλ,q(aj(λ))
...

Fnλ,q−1(aj(λ)) =
bj,q−1

bj,q
Fnλ,q(aj(λ))

(3)

(there is always a bj,ij 6= 0 and we assumed here ij = q to simplify the exposition).
The above equations are of degree dj,0(λ)dn, · · · , dj,q−1(λ)d

n in λ0, · · · , λm, where [λ0 :
· · · : λm] are coordinates in P

m. The number of solutions to an(λ) = b is finite since pn

is dominant (
∫
Λ
p∗n(Ω

qk
nor)

dkqn
> 0), so Bezout’s inequality (Λ can have complete intersection or

not) in P
m implies

δkq(pn) ≤ d(λ)dkqn ≤
1

ǫ
dkqn

for every n, up to reducing ǫ if necessary.
Now, we have to bound δkq−1(pn) :=

∫
p∗n(Ω

qk−1)∧ω =
∫
a
∗
n(Ω

qk−1)∧ω where ω is the
Fubini-Study form on P

m(C) (let us recall that ι : Λ →֒ P
m and that we identify Λ with

ι(Λ)).
Since Ωqk−1 = (

∑k
j=1 pr

∗
jωPq)qk−1 = c(k, q)

∑k
j=1 pr

∗
1ω

q
Pq ∧ · · · ∧ pr∗jω

q−1
Pq ∧ · · · ∧ pr∗kω

q
Pq ,

we obtain

δkq−1(pn) = c(k, q)
k∑

j=1

∫
a∗1,nω

q
Pq ∧ · · · ∧ a∗j,nω

q−1
Pq ∧ · · · ∧ a∗k,nω

q
Pq ∧ ω.
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For cohomological reasons, to compute the integral above, we are left to bound the
number of points in

E = Λ ∩ a−1
1,n(b1) ∩ · · · ∩ a−1

j−1,n(bj−1) ∩ a
−1
j,n(L) ∩ a

−1
j+1,n(bj+1) ∩ · · · ∩ a−1

k,n(bk) ∩H

where b1, · · · , bj−1, bj+1, · · · , bk are generic points in P
q, L is a generic line in P

q and
H is a generic hyperplan in P

m. Notice that this set is finite, since this is the intersection
of a curve in Λ (as the preimage of a generic line of (Pq)k by pn, which is a dominant map)
with a generic hyperplan H.

First, the points in E satisfy k−1 systems of equations as (3). Then, the line L is given
by the intersection of q−1 hyperplans, so by q−1 equations of the type αi0z0+· · ·+αiqzq = 0

in P
q (for i = 1, · · · , q−1). Thus, the algebraic subset a−1

j,n(L) is given by the q−1 equations
of the type

αi0F
n
λ,0(aj(λ)) + · · ·+ αiqF

n
λ,q(aj(λ)) = 0

which have degree d′j,i(λ)d
n (for i = 1, · · · , q − 1).

In conclusion, by Bezout’s inequality, the number of points in E is bounded above by
d′(λ)d(k−1)qn+(q−1)n = d′(λ)dkqn−n, and the Lemma follows.
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