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CONVEX SURFACES WITH PRESCRIBED INDUCED METRICS IN

ANTI-DE SITTER SPACETIMES

QIYU CHEN AND JEAN-MARC SCHLENKER

Abstract. Let S be a closed surface of genus at least 2, let h be a smooth metric of curvature
K < −1 on S, and let h0 be a hyperbolic metric on S. We show that there exists a unique
quasifuchsian AdS spacetime with left metric isotopic to h0, containing a past-convex Cauchy
surface with induced metric isotopic to h.
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1. Introduction

1.1. Main result. We consider here 3-dimensional maximal globally hyperbolic and spatially
compact (MGHC) anti-de Sitter (AdS) spacetimes. If M is a MGHC AdS spacetime, it contains
closed Cauchy surfaces, which are all homeomorphic to a fixed closed surface S which we will
assume to be of genus at least 2.

Those spacetimes are known since the work of Mess [Mes07] to have many remarkable similarities
with quasifuchsian hyperbolic manifolds, and are for this reason often called “quasifuchsian AdS
spacetimes”, a terminology we will follow here. The identity component of the isometry group of
the 3-dimensional AdS space AdS3 identifies (up to finite index) with PSL(2,R)×PSL(2,R), and, if
M is a quasifuchsian AdS spacetime, its holonomy representation ρ : π1M = π1(S) → PSL(2,R)×
PSL(2,R) is the product ρ = (ρL, ρR) of two Fuchsian representations, called its left and right
representations. Those representations ρL and ρR are therefore the holonomy representations of
two hyperbolic metrics hL and hR on S, called the left and right metrics ofM , see [Mes07,ABB+07].

We denote by TS the Teichmüller space of S, which is the space of hyperbolic metrics on S
(considered up to isotopy) and denote by QFAdS(S) the deformation space of quasifuchsian AdS
spacetimes with Cauchy surfaces homeomorphic to S.

The main result here is the following statement, which gives an affirmative answer to Question
6.11 in [Sch20].
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Theorem 1.1. Let h be a complete Riemannian metric of curvature K < −1 on S, and let h0 ∈ TS
be a hyperbolic metric on S. There is a unique quasifuchsian AdS spacetime M ∈ QFAdS(S) with
left metric isotopic to h0 and containing a past-convex spacelike surface with induced metric isotopic
to h.

Tamburelli [Tam18, Proposition 7.1] showed that the existence holds, based on a topological
intersection argument. To show the uniqueness, the key point is to prove the infinitesimal rigidity
of quasifuchsian AdS metrics with respect to the left metric and the induced metric on a past-
convex Cauchy surface (see Proposition 3.1).

When h has constant curvature, Theorem 1.1 follows from the “Landslide Theorem” in [BMS13,
Theorem 1.15]. Indeed, for each constant K < −1, a quasifuchsian AdS spacetime M contains a
unique past-convex Cauchy surface SK with induced metric of constant curvature K (see [BBZ11]),
and the left (resp. right) hyperbolic metric ofM is obtained by a landslide of parameter θ (resp. −θ)
with θ ∈ (0, π) and K = −1/ cos2(θ/2), determined by the induced metric and third fundamental
form on SK , see [BMS13, Lemma 1.9]. Since there is a unique landslide map with parameter
θ ∈ (0, 2π) (resp. θ ∈ (−2π, 0)) taking a given hyperbolic metric to another one (see [BMS13,
Theorem 1.15]), there is a unique choice of M such that the induced metric on SK and the left
(resp. right) hyperbolic metric are prescribed. This argument actually extends to the case where
h has constant curvature −1, with Thurston’s Earthquake Theorem [Thu06,Mes07] used instead
of the result on landslide.

It follows from Theorem 1.1, using an elementary symmetry argument, that there also exists a
unique quasifuchsian AdS spacetime having h0 as right hyperbolic metric, and containing a past-
convex surface with induced metric h. Another direct symmetry argument shows that one can
prescribe the induced metric on a future-convex, rather than past-convex, spacelike surface.

There is a well-defined duality between locally strongly convex spacelike surfaces in quasifuchsian
AdS spacetimes (see [BBZ11, Section 11.1] or [BMS15, Section 2.6]), where by “strongly convex”
we mean that the second fundamental form is everywhere positive definite. This duality associates
to every past-convex spacelike surface Σ a surface Σ∗, defined as the space of points dual to the
oriented tangent planes of Σ. This construction defines a duality map from Σ to Σ∗. If Σ is
spacelike and strongly past-convex, then Σ∗ is spacelike and strongly future-convex, and the pull-
back by the duality map of the induced metric on one is the third fundamental form on the other.
Moreover, the curvature K∗ of the induced metric on Σ∗ at the point x∗ which is the image under
the duality map of a point x ∈ Σ is equal to K∗ = −K/(1 +K), where K is the curvature of the
induced metric on Σ at x. Through this duality, Theorem 1.1 also implies that given a hyperbolic
metric h0 and another metric h on S with curvature K < −1, there is a unique quasifuchsian AdS
spacetime with left (or right) hyperbolic metric h0, and containing a future-convex (or past-convex)
spacelike surface with third fundamental form h.

1.2. Background and motivations. Our main motivation comes from hyperbolic geometry.
As already mentioned, quasifuchsian (that is, MGHC) AdS spacetimes have deep analogies with
quasifuchsian hyperbolic manifolds. There are several questions one can consider in a quasifuchsian
hyperbolic manifold, for instance whether one can find a (unique) quasifuchsian hyperbolic manifold
containing a (unique) geodesically convex subset such that the induced metric (or third fundamental
form) on the boundary is prescribed, see [Sch20]. Here we are motivated by a slightly different type
of question, in the setting of hyperbolic ends. A prime example of hyperbolic end is a connected
component of the complement of the convex core in a convex co-compact hyperbolic manifold, but
the following definition is somewhat more general.

Definition 1.2. A hyperbolic end is a non-complete 3-dimensional hyperbolic manifold (E, g),
where E = S × (0,∞), complete on the side corresponding to ∞, and having as metric completion
a pleated concave surface at the side corresponding to 0.

Given a hyperbolic end E, we denote by ∂0E the pleated surface boundary component corre-
sponding to 0, and by ∂∞E the asymptotic boundary component corresponding to ∞.

The asymptotic boundary ∂∞E of E is naturally equipped with a conformal structure, and
more precisely with a complex projective structure. The pleated boundary ∂0E is equpped with a
hyperbolic metric and with a measured geodesic lamination measuring its “pleating”.
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Such a hyperbolic end contains many embedded surfaces S ⊂ E such that ∂0E and S bound
together a relatively compact geodesically convex subset Ω of E – we call such a surface a locally
convex surface in E.

Given such a smooth, locally convex surface S ⊂ E, the hyperbolic Gauss map – which sends a
point x ∈ S to the endpoint at infinity of the geodesic ray starting from x, normal to S, towards
the concave side – is a homeomorphism from S to ∂∞E.

We are interested in the following question and its dual, see also [Sch20].

Question 1.3. Let S be a closed surface of genus at least 2, let h be a smooth metric of curvature
K > −1 on S, and let c ∈ TS be a conformal structure on S. Is there a unique hyperbolic end E
containing a locally convex surface Σ homeomorphic to S, with induced metric isotopic to h and
such that the pull-back by the hyperbolic Gauss map of the conformal structure at infinity of E is
isotopic to c?

Question 1.4. Let S be a closed surface of genus at least 2, let h∗ be a smooth metric of curvature
K∗ < 1 on S such that all closed, contractible geodesics of (S, h∗) have length strictly larger than
2π, and let c ∈ TS be a conformal structure on S. Is there a unique hyperbolic end E containing
a locally convex surface Σ homeomorphic to S, with third fundamental form isotopic to h∗ and
such that the pull-back by the hyperbolic Gauss map of the conformal structure at infinity of E is
isotopic to c?

The answer to Question 1.3 is positive when h has constant curvature −1, this corresponds
to the main result in [SW02]. When h (resp. h∗) has constant curvature K ∈ (−1, 0) (resp.
K∗ ∈ (−∞, 0)), Questions 1.3 and 1.4 correspond to Questions 9.1 and 9.2 in [BMS13]. The
existence part is proved for both questions in Theorem 1.9 and Theorem 1.10 of [BMS15].

Question 1.4 also has a positive answer in the “limit” case where h∗ is replaced by a measured
lamination, this is the main result of [DW08]. In another limit case where h∗ corresponds to the
pleating pattern associated to a circle packing or circle pattern, Question 1.4 corresponds to a
well-known conjecture of Kojima, Mizushima and Tan, see [KMT03,KMT06b,KMT06a,SY18].

In the analogy discovered by Mess [Mes07,ABB+07], the conformal metrics at infinity of a quasi-
fuchsian hyperbolic manifold correspond to the left and right hyperbolic metrics of a quasifuchsian
(or MGHC) AdS spacetime. In this sense, Theorem 1.1 provides a positive answer to the AdS
analog of Question 1.3, and also, through the duality between strongly convex spacelike surfaces
in quasifuchsian AdS spacetimes mentioned above, to the AdS analog of Question 1.4.

1.3. Outline of the paper. Section 2 contains background definition and results on AdS geom-
etry, on quasifuchsian AdS spacetimes, as well as on geometric data on immersed surfaces in AdS
spacetimes. The proof of the main result is in Section 3, while Section 4 singles out an application.

2. Preliminaries

2.1. The 3-dimensional anti-de Sitter geometry. Let R2,2 denote the real 4-dimensional vec-
tor space R4 equipped with a symmetric bilinear form 〈·, ·〉2,2 of signature (2, 2), where 〈x, y〉2,2 :=
x1y1 + x2y2 − x3y3 − x4y4. The quadric model of the 3-dimensional anti-de Sitter (AdS) space is

AdS3 := {x ∈ R
2,2 | 〈x, x〉2,2 = −1} ,

equipped with a pseudo-Riemannian metric of signature (2, 1), which is induced by restricting the
bilinear form 〈·, ·〉2,2 to the tangent space at each point of of AdS3. It is a 3-dimensional Lorentzian
symmetric space of constant curvature −1 diffeomorphic to H

2 × S
1.

The projective model AdS3 of 3-dimensional AdS space is defined as the image of AdS3 under
the projection π : R2,2\{0} → RP

3, with the metric induced from the projection. It is clear that
the quadric model AdS3 is a double cover of the projective model AdS3.

The boundary of AdS3, denoted by ∂AdS3, is the image of {x ∈ R
2,2 : 〈x, x〉2,2 = 0} under π,

which is foliated by two families of projective lines, called the left and right leaves, respectively.
The geodesics in AdS3 are given by the intersection of projective lines in RP

3 with AdS3: the
spacelike geodesics correspond to the projective lines intersecting the boundary ∂AdS3 in two
points, while lightlike geodesics are tangent to ∂AdS3, and timelike geodesics are disjoint from
∂AdS3.
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The isometry group of AdS3 is the indefinite orthogonal group O(2, 2) of reversible linear
transformations on R

2,2 preserving the bilinear form 〈·, ·〉2,2. The group of orientation and time-
orientation preserving isometries of AdS3, denoted by Isom0(AdS

3), is the identity component of
PO(2, 2) = O(2, 2)/{±Id}, which can be identified with PSL(2,R) × PSL(2,R). One simple way
to see this is because the boundary ∂AdS3 is foliated by two families of lines, and those two fo-
liations are invariant under any element of Isom0(AdS

3), since isometries act projectively in the
projective model. The set of leaves of each foliation is equipped with a real projective structure
by the intersections with any leave of the other foliation, and the action of Isom0(AdS

3) defines in
this way two elements of PSL(2,R).

We always use the projective model AdS3 throughout the paper. It is interesting to notice that
AdS3 has a Lie group model, in which AdS3 is identified with PSL(2,R). More details about the
geometry of anti-de Sitter space can be found in e.g. [BS20,Mes07,ABB+07,BBD+12].

2.2. Quasifuchsian AdS spacetimes. An AdS spacetime is a Lorentzian 3-manifold locally
isometric to AdS3. An AdS spacetime M is maximal globally hyperbolic and spatially compact
(MGHC) if

• M is globally hyperbolic and spatially compact (GHC): M contains a closed Cauchy surface
(i.e. a spacelike surface intersecting each inextensible timelike curve exactly once).

• any isometric embedding of M into a GHC AdS spacetime is an isometry.

It is well-known that a globally hyperbolic spacetime is topologically a product of any of its
Cauchy surfaces with an interval, see e.g. [BEE96, Chapter 3]. MGHC AdS spacetimes have been
shown by G. Mess [Mes07, ABB+07] to present remarkable analogies with quasifuchsian hyper-
bolic manifolds, and they are now often called quasifuchsian AdS spacetimes in the mathematics
literature.

It was proved by Mess [Mes07] that given any MGHC AdS spacetime with Cauchy surfaces home-
omorphic to S, its holonomy representation ρ : π1(S) → Isom0(AdS

3) = PSL(2,R) × PSL(2,R)
can be written as ρ = (ρL, ρR), where ρL, ρR : π1(S) → PSL(2,R) have maximal Euler number,
and are therefore (by a result of Goldman [Gol88]) Fuchsian representations (i.e. the holonomy
representations of hyperbolic metrics on S). So the space QFAdS(S) appearing in Section 1.2 is
exactly the deformation space of MGHC AdS spacetimes with Cauchy surfaces homeomorphic to
S.

A quasifuchsian AdS spacetime M ∈ QFAdS(S) contains a non-empty closed subset N which is
geodesically convex (i.e. each geodesic segment of M connecting any two points of N is contained
in N). In particular, the smallest non-empty geodesically convex closed subset of M is called the
convex core of M , denoted by CM . The boundary of CM is the union of two (possibly identified)
spacelike surfaces. In the Fuchsian case (i.e. the left and right metrics are equal), CM degenerates
to a totally geodesic spacelike surface. In the non-Fuchsian case, each boundary component of
CM is a spacelike surface pleated along a measured geodesic lamination, whose measures record
the bending angles along totally geodesic pieces. In both cases, the induced metrics on the two
boundary components of CM are hyperbolic.

2.3. The linearized Gauss and Codazzi equations. Let (M, g) be a quasifuchsian AdS space-
time and let Σ ⊂ M be an (embedded) spacelike surface with induced metric I. The shape operator
of Σ is the bundle morphism B : TΣ → TΣ defined by

B(u) = −∇un ,

where n is the future-directed unit normal vector field on Σ, u is a tangent vector field to Σ and ∇
is the Levi-Civita connection of g. The second and third fundamental forms of Σ are respectively
defined by

II(u, v) = I(Bu, v) , III(u, v) = I(Bu,Bv) ,

for all u, v ∈ TpΣ with p ∈ Σ. We call the pair (I, B) of induced metric and shape operator of Σ
the embedding data of Σ.

It is well-known that (I, B) satisfies the following Gauss and Codazzi equations respectively:

−1− det(B) = K ,

dDB = 0 ,
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where K is the Gaussian curvature of I, D is the Levi-Civita connection of I, while the exterior
derivative dD of B (considered as a one-form with values in TΣ) is defined as

(dDB)(u, v) = Du(Bv)−Dv(Bu)−B([u, v]) ,

for any two tangent vector fields u, v on Σ.
Take the first-order derivatives of both sides of the Gauss equation and assume that B is non-

degenerate. A direct computation shows that the shape operator B satisfies the following

tr(B−1Ḃ) = 0 ,

called the linearized Gauss equation.
A spacelike surface Σ in M is said to be strongly convex if the determinant of the shape operator

B of Σ is positive definite. In particular, Σ is said to be strongly future-convex (resp. strongly past-
convex) if the principal curvatures of B are both negative (resp. positive).

2.4. The left and right metrics on a spacelike surface. Let Σ be an embedded (smooth)
spacelike surface in a quasifuchsian AdS spacetime M , with the embedding data (I, B). Let J be
the complex structure on Σ defined by I. It was shown in [KS07, Lemma 3.16] that the left and

right metrics of M , denoted by I#+ and I#− , can be defined alternatively by

I#± = I((E ± JB)·, (E ± JB)·) ,

in the sense that if I#± are defined in this manner as Riemannian metrics on Σ, they are isometric
to hL and hR, respectively.

Moreover, this definition is independent on the choice of embedded smooth spacelike surfaces.
Since the left and right metrics play symmetric roles in our question, without loss of generality, we
only consider the left metric of M here.

3. Proof of the main result

Let (M, g) ∈ QFAdS(S) be a quasifuchsian AdS spacetime M (with its metric denoted by g)
which has left metric hL and contains an embedded smooth, strongly past-convex spacelike surface

Σ with induced metric I (and with the metric I#+ isotopic to hL).

3.1. Local rigidity. In this section, we aim to show the infinitesimal rigidity of g with respect to

the left metric I#+ and the induced metric I on Σ, as stated below.

Proposition 3.1. Any first order deformation of g ∈ QFAdS(S) which preserves the left metric

I#+ and the induced metric I on the strongly past-convex spacelike surface Σ at first order is trivial.

We first consider the first-order deformation of the embedding data (I, B) of the strongly past-
convex spacelike surface Σ.

Lemma 3.2. Let (I, B) be the induced metric and shape operator of a strongly past-convex spacelike
surface Σ in a quasifuchsian AdS spacetime. Consider a first-order deformation such that I is fixed
and Ḃ satisfies the Codazzi and linearized Gauss equations and that the corresponding variation of

I#+ is trivial, i.e. induced by a vector field say v on Σ. Then Ḃ = 0.

Let (It, Bt)t∈[0,ǫ] be a smooth one-parameter family of embedding data with (I0, B0) = (I, B),

such that the first-order variation İ = I ′0 of It at t = 0 vanishes. Let Jt denote the complex

structure on Σ defined by It. It follows directly that J0 = J and J̇ = 0. The first-order variation

of the left metric I#+ satisfies that

İ#+ =
d

dt
|t=0It((E + JtBt)·, (E + JtBt)·)

= I(JḂ, (E + JB)·) + I((E + JB)·, JḂ·)

= I#+ ((E + JB)−1JḂ·, ·) + I#+ (·, (E + JB)−1JḂ·) .

Definition 3.3. We define a bundle morphism b : TΣ → TΣ as

b = (E + JB)−1JḂ .

Then the expression of İ#+ can be rewritten as

(1) İ#+ = I#+ (b·, ·) + I#+ (·, b·) .
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Lemma 3.4. Let b be the bundle morphism defined in Definition 3.3, then

(2) tr((E + JB)b) = 0 ,

(3) tr((E + (JB)−1)b) = 0 .

Proof. By definition, b = (E + JB)−1JḂ, so JḂ = (E + JB)b. Note that B is self-adjoint for I,

so since Ḃ is a first-order variation of B still satisfying this condition, Ḃ is also self-adjoint for I.
Therefore tr(JḂ) = 0, so tr((E + JB)b) = 0, which proves (2).

In addition, since Σ is strongly convex, the shape operator B of Σ is non-degenerate. Using
b = (E + JB)−1JḂ, the linearized Gauss equation tr(B−1Ḃ) = 0 then translates as

tr(−B−1J(E + JB)b) = 0 .

Since (JB)−1 = −B−1J , this can be written as

tr((E + (JB)−1)b) = 0 ,

proving (3). �

Remark 3.5. Since tr(JB) = 0, the Cayley-Hamilton theorem shows that (JB)2+det(JB)E = 0.
Since det(JB) = det(B) and using the Gauss equation −1−det(B) = K (where K is the Gaussian
curvature of I), it follows that

JB = (1 +K)(JB)−1 .

Using this remark, equations (2) and (3) can be simplified and we arrive at the following state-
ment.

Lemma 3.6. The system of equations (2) and (3) is equivalent to the following

(4) tr(b) = 0 ,

(5) tr(JBb) = 0 .

Proof. We first show that the system of equations (2) and (3) implies that of (4) and (5). Since
the surface Σ is strongly convex, we have K = −1− det(B) < −1, which ensures that K + 1 < 0.
Using Remark 3.5, equation (3) can be written as

(6) tr((E +
JB

K + 1
)b) = 0 .

Taking a linear combination of (2) and of (6) shows (4) and (5).
The other direction for the equivalence is clear using Remark 3.5. �

For the convenience of computation, we introduce the following lemma, see e.g. [KS07, Propo-
sition 3.12].

Lemma 3.7. Let Σ be a surface with a Riemann metric g. Let A : TΣ → TΣ be a bundle morphism
such that A is everywhere invertible and d∇A = 0, where ∇ is the Levi-Civita connection of g. Let
h be the symmetric (0,2)-tensor defined by h = g(A·, A·). Then the Levi-Civita connection of h is
given by

∇h
u(v) = A−1∇u(Av) ,

and its curvature is given by

Kh =
Kg

det(A)
.

Claim 3.8. The bundle morphism b defined in Definition 3.3 satisfies the Codazzi equation:

dD
#

b = 0 ,

where D# is the Levi-Civita connection of I#+ .
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Proof. By Lemma 3.7, the Levi-Civita connection of I#+ = I((E + JB)·, (E + JB)·) is

D#
u v = (E + JB)−1Du((E + JB)v) .

Combined this with the definition of dD
#

b, we obtain

(dD
#

b)(u, v) = D#
u (bv)−D#

v (bu)− b([u, v])

= (E + JB)−1Du((E + JB)bv) − (E + JB)−1Dv((E + JB)bu)− b([u, v])

= (E + JB)−1Du(JḂv)− (E + JB)−1Dv(JḂu)− (E + JB)−1JḂ([u, v])

= (E + JB)−1
(

Du(JḂv)−Dv(JḂu)− JḂ([u, v])
)

= (E + JB)−1J(dDḂ)(u, v)

= 0 .

The third equality uses the definition of b, while the last equality uses the fact that Bt satisfies the
Codazzi equation. �

Claim 3.9. Under the assumptions of Lemma 3.2, there exists a function µ : Σ → R such that the
bundle morphism b defined in Definition 3.3 satisfies

(7) b = D#v + µJ# ,

where J# is the complex structure of I#+ .

Proof. Under the assumptions of Lemma 3.2, the variation of I#+ is induced by a vector field v on

Σ, that is, İ#+ = LvI
#
+ . A direct computation shows that

LvI
#
+ = I#+ (D#

· v, ·) + I#+ (·, D#
· v) .

Combining (1): İ# = I#+ (b·, ·) + I#+ (·, b·), this means that b and D#v have the same self-adjoint

component, or in other terms b − D#v is anti-self-adjoint for I#. So there exists a function
µ : Σ → R such that

b −D#v = µJ# .

The claim follows. �

The Codazzi equation applied to b and the fact that I#+ has constant curvature −1 then lead to
the following lemma.

Lemma 3.10. The vector field v on Σ and the function µ : Σ → R in Claim 3.9 satisfy

v + J#D#µ = 0 .

Proof. We compute dD
#

of each term of the right-hand side of (7). For all x, y ∈ TpΣ with p ∈ Σ,

(dD
#

D#v)(x, y) = D#
x D#

y v −D#
y D#

x v −D#
[x,y]v

= (−K#J#v)da#(x, y)

= (J#v)da#(x, y) ,

(dD
#

µJ#)(x, y) = D#
x (µJ#y)−D#

y (µJ#x)− µJ#[x, y]

= dµ(x)J#y − dµ(y)J#x .

= −(D#µ)da#(x, y) ,

where K# is the Gaussian curvature of I#+ and da# is the area element of I#+ .
Putting the two terms together and combining with Claim 3.8 and (7), the result follows. �

Replacing this in the expression (7) of b then leads to the following.

Claim 3.11. Under the assumptions of Lemma 3.2, the bundle morphism b defined in Definition
3.3 has the following expression:

(8) b = J#(−D#D#µ+ µE) ,

where µ is the function given in Claim 3.9.
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Lemma 3.12. Under the assumptions of Lemma 3.2, we have

(9) tr(JBJ#(−D#D#µ+ µE)) = 0 .

Proof. This follows directly from Equation (5), with the expression of b in the previous claims. �

It can be noted that (8) implies that b is traceless, so (4) is always satisfied.

Lemma 3.13. The operator JBJ# in (9) is self-adjoint for I#+ and negative definite. More
precisely, if (e1, e2) is an orthonormal basis for I of eigenvectors of B, with eigenvalues k1, k2 then

((E + JB)−1(e1), (E + JB)−1(e2)) is an orthonormal basis of I#+ of eigenvectors of JBJ#, with
eigenvalues −k2,−k1.

Proof. Recall that J# = (E + JB)−1J(E + JB) and I#+ = I((E + JB)·, (E + JB)·). Since B is
self-adjoint for I, and J is the complex structure of I, a direct computation shows that

I#+ (JBJ#·, ·) = I#+ (·, JBJ#·) ,

which means that JBJ# is self-adjoint for I#+ .
Let Ei = (E + JB)−1(ei), i = 1, 2. Then

J#Ei = (E + JB)−1Jei .

However, JB commutes with E + JB and therefore also with (E + JB)−1. As a consequence,

JBJ#Ei = JB(E + JB)−1Jei = (E + JB)−1JBJei .

Clearly, JBJe1 = −k2e1 while JBJe2 = −k1e2. Then

JBJ#E1 = −k2(E + JB)−1e1 = −k2E1 ,

and

JBJ#E2 = −k1(E + JB)−1e2 = −k1E2 .

The result follows. �

Remark 3.14. Another (simpler) way to obtain the result is by checking that

JBJ# = (E + JB)−1JBJ(E + JB) .

As a consequence, the operator µ 7→ tr(JBJ#(−D#D#µ + µE)) is elliptic. This makes it
possible to apply the maximum principle and obtain the infinitesimal rigidity statement needed.

Corollary 3.15. Under the assumptions of Lemma 3.2, there is no non-zero solution of (9).

Proof. Let µ be a solution of (9). Since µ is a smooth function on a closed surface Σ, µ achieves the
maximum (resp. minimum) on Σ, say at x0 (resp. y0), and thus has a local maximum (resp. mini-
mum) at x0 (resp. y0). By Lemma 3.13, at the local maximum x0 of µ, tr(JBJ#(−D#D#µ)) ≤ 0.
Combined with (9), we have tr(JBJ#(µE)) ≥ 0 at x0. Using Lemma 3.13 again, it follows that
µ(x0) ≤ 0 and so µ ≤ 0 everywhere.

On the other hand, at the local minimum y0 of µ, tr(JBJ#(−D#D#µ)) ≥ 0. Similarly as
above, we can show that µ(y0) ≥ 0 and so µ ≥ 0 everywhere. So µ = 0. �

Proof of Lemma 3.2. Combining Corollary 3.15, Definition 3.3 and (8), we have JḂ = (E+JB)b =
0. Lemma 3.2 follows. �

Before showing Proposition 3.1, we introduce the following proposition which ensures the exis-
tence and the uniqueness (up to isometries) of the maximal extension of a GHC AdS spacetime
(see [CBG69, Theorem 3]).

Proposition 3.16. Let (M, g) be a GHC AdS spacetime. There exists a unique (considered up to
isometries) MGHC AdS spacetime (M ′, g′) with particles, called the maximal extension of (M, g),
in which (M, g) can be isometrically embedded.

We are now ready to prove Proposition 3.1.



9

Proof of Proposition 3.1. Let ġ be a first-order deformation of (M, g) ∈ QFAdS(S) which preserves

the left metric I#+ and the induced metric I on the strongly past-convex spacelike surface Σ at
first order. Assume that ġ is given by a one-parameter family (M, gt)t∈[0,ǫ] of quasifuchsian AdS

spacetimes inQFAdS(S). The induced left metrics are denoted by I#+,t, and the induced embedding
data of Σ are denoted by (It, Bt). Up to a diffeomorphism of M isotopic to the identity, we can

assume that the induced metric It on Σ is fixed at first order (i.e. İ = 0) and the first-order

variation of I#+ is induced by a vector field say v on Σ (which means that İ#+ = LvI
#
+ ). Then the

assumptions of Lemma 3.2 are satisfied and we have Ḃ = 0.
To show that ġ = 0, we first claim that the embedding data (Σ, It, Bt) uniquely determines

a quasifuchsian AdS metric (which is gt). Indeed, consider the manifold Σ × (−π
2 , 0] with the

following metric:

ht = −ds2 + It((cos(s)E + sin(s)Bt)·, (cos(s)E + sin(s)Bt)·) ,

where E is the identity isomorphism on TΣ and s ∈ (−π
2 , 0]. Note that for each s ∈ (−π

2 , 0], the
surface Σ × {s} is the equidistant surface at distance s from the surface Σ × {0} on the convex
side. The Lorentzian metric ht is a GHC AdS metric on Σ× (−π

2 , 0].
By Proposition 3.16, there exists a unique maximal extension of the AdS spacetime (Σ ×

(−π
2 , 0], ht), which is a MGHC AdS spacetime such that the restriction of its metric to the

Σ × (−π
2 , 0] (identified with a subset of M) is exactly ht. Moreover, this maximal extension is

(M, gt). Note that İ = Ḃ = 0. Taking the derivative of ht at t = 0 shows that ḣ = 0 and ġ
is therefore zero when restricted to the subset Σ × (−π

2 , 0]. By the uniqueness of the maximal
extension, ġ is therefore zero on the whole M . The proposition follows. �

3.2. Proof of Theorem 1.1. To show Theorem 1.1, we first construct the following map.
Let h be a complete Riemannian metric of curvature K < −1 on S and let V(h) ⊂ QFAdS(S)

denote the space of quasifuchsian AdS spacetimes which contains a past-convex spacelike surface
with induced metric isotopic to h.

Definition 3.17. Let Φh : V(h) → TS be the map which sends a manifold M ∈ V(h) to its left

metric hL, identified with the metric I#+ on S.

We aim to show that Φh is a homeomorphism. Note that V(h) can be alternatively interpreted
as the space of isometric equivariant embeddings of (S, h) into AdS3 (denoted by I(S, h), see

e.g. [Tam18, Section 3]), which are given by a couple (f, ρ), where f : (S̃, h̃) → AdS3 is an

isometric embedding into AdS3 with (S̃, h̃) a universal Riemannian cover of (S, h), and ρ : π1(S) →
PSL(2,R)× PSL(2,R) is the representation such that f(γx) = ρ(γ) ◦ f(x) for all γ ∈ π1(S) and

x ∈ S̃.
It was shown by Tamburelli [Tam18, Lemma 3.2] that I(S, h), and thus the space V(h) here, is

a manifold of dimension 6g− 6, where g is the genus of S, by identifying I(S, h) with the space of
solutions of Gauss-Codazzi equations and using classical techniques of elliptic operators. Moreover,
he showed that Φh is proper [Tam18, Corollary 7.4].

Proof of Theorem 1.1. Note that V(h) has (real) dimension 6g − 6, which is the same as that of
TS . Combined with 3.1, the differential dΦh is an isomorphism. So Φh is a local homeomorphism.
Combined with the fact that Φh is proper [Tam18, Corollary 7.4], Φh is a covering map of degree
say d(h). It remains to show that d(h) = 1.

Let h0 be a metric with curvature K < −1 on S, and let h1 be another metric on S, of
constant curvature K < −1. As already mentioned, it follows from [BMS13, Theorem 1.15] that
Φh1

: V(h1) → TS is one-to-one. Let (ht)t∈[0,1] be a smooth one-parameter family of Riemannian
metrics on S with curvature less than −1 (considered up to isotopy) connecting h0 to h1.

Let
V = {(t, Bt) | t ∈ [0, 1], Bt ∈ V(ht)} ,

and let Φ : V → [0, 1]× TS be the function defined by

Φ(t, Bt) = (t,Φht
(Bt)) .

We claim that at each point (t, Bt) ∈ V , dΦ is an isomorphism. Indeed, we know that dΦ|{0}×TBt
V(ht)

is an isomorphisms from {0} × TBt
V(ht) to {0} × TΦht

(Bt)TS – this is equivalent to the fact that
dΦht

is an isomorphism, as seen above. Moreover, the projection on the first factor in R× Tht
TS
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of the image under dΦ of any vector of the form (1, Ḃt) is 1. It follows that, in a suitable basis, dΦ
at (t, Bt) is block triangular, with one 1× 1 block with entry 1, and one (6g− 6)× (6g− 6) which
is invertible. So dΦ at (t, Bt) is an isomorphism.

Since each Φht
, t ∈ [0, 1] is proper, the function Φ is also proper. It is therefore a covering map.

It follows that d(h0) = d(h1) = 1. This applies to any metric h0 on S with curvature K < −1, and
concludes the proof. �

4. Application

In this subsection, we apply Theorem 1.1 to give an alternative parametrization of the space
QFAdS(S).

It is known that the deformation space QFAdS(S) of quasifuchsian AdS spacetimes can be
parameterized in several ways, such as the Mess parameterization [Mes07, BS20] by TS × TS in
terms of the left and right metrics (which is closely related to Thurston’s Earthquake Theorem for
hyperbolic metrics on S [Ker83]), and the parametrization by TS ×MLS in terms of the induced
metric and the bending lamination of the past (or future) boundary of the convex core [BS09,
Proposition 5.8].

Furthermore,QFAdS(S) can also be parameterized by the cotangent bundle T ∗TS of TS , in terms
of maximal spacelike surfaces in germs of AdS spacetimes (see [KS07, Lemma 3.3]), or by TS×TS in
terms of two hyperbolic metrics homothetic respectively to the first and third fundamental forms of
past-convex constant Gaussian curvature K-surfaces, where K ∈ (−∞,−1), see [BMS13, Lemma
1.9]. Recently, Mazzoli and Viaggi have provided shear-bend coordinates for QFAdS(S) [MV23].

Using the result of Theorem 1.1, we give an alternative parametrization of QFAdS(S) below,
which can be viewed as a mixed version of Mess parametrization and the parametrization in terms
of the first and third fundamental forms of constant Gaussian curvature surfaces. Since the left
and right metrics (resp. past-convex and future-convex spacelike surfaces, or the first and third
fundamental forms) play symmetric roles in the parametrization, we only state the parametrization
of QFAdS(S) here in terms of its left metric and the induced metric on the past-convex constant
Gaussian curvature K-surfaces.

Definition 4.1. Let K ∈ (−∞,−1). We define a map φK : QFAdS(S) → TS × TS by taking a
quasifuchsian AdS spacetime M ∈ QFAdS(S) to its left metric and the hyperbolic metric homothetic
to the induced metric on an embedded past-convex spacelike surface in M of constant curvature K.

The map φK is well-defined, by the fact given by Barbot, Béguin and Zeghib that each connected
component of the complement of the convex core CM in a quasifuchsian AdS spacetime M admits
a unique foliation by spacelike surfaces of constant curvature K, with K monotonic along the
foliation, varying from −1 near the past (resp. future) boundary component of CM and −∞ near
the initial (resp. final) singularity of M , see [BBZ11].

Proposition 4.2. For each K ∈ (−∞,−1), the map φK is a homeomorphism.

Proof. Fix K ∈ (−∞,−1). For any couple (h, h′) ∈ TS ×TS , by applying the proof of Theorem 1.1
to the manifold V((1/|K|)h′), there is a unique M ∈ QFAdS(S) which has left metric isotopic to
h and contains a past-convex spacelike surface with induced metric isotopic to (1/|K|)h′. So the
map φK is a bijection.

As the projection to the first factor of the holonomy representation ofM , the left metric depends
continuously on the geometric structures of M . Note that the induced metric on a past-convex
spacelike surface of constant curvature K depends continuously on the AdS metric of M , as can be
seen from the relation between the induced metrics on past-convex surfaces of constant curvature in
quasifuchsian AdS spacetimes and their left and right metrics, see [BMS13, section 1.7]. Moreover,
the space of isometric equivariant embeddings of (S, (1/|K|)h′) into AdS3 is identified with the
space of solutions of Gauss-Codazzi equations, which depends smoothly on the initial data h′ ∈ TS .
As a consequence, the maps φK and φ−1

K are both continuous. Combined with the above bijection
of φK , it follows that φK is a homeomorphism. �
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