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In the search of fractional quantum anomalous Hall (FQAH) effects, the conventional wisdom is
to start from a flat Chern band isolated from the rest of the Hilbert space by bandgap, so that
many-body interaction can be projected to a landscape that mimics a Landau level. Here we report
the finding of FQAH in a 2D semimetal. Described by a 2π-flux dice lattice, the model features a flat
band in touching with a dispersive lower band, where the band touching is symmetry-protected from
being gapped by electron interaction. At 1/3 and 2/3 filling of the gapless flat band, FQAH phases
are found using density matrix renormalisation group calculations taking into accounts all bands.
Symmetry breaking to gap the band touching can turn the semimetal into a Chern insulator while
keeping the Chern band nearly flat, but counter-intuitively this suppresses the FQAH, as the gap
opening introduces strong inhomogeneity to the quantum geometry. We show an optical scheme to
realize the 2π-flux dice lattice for cold atoms. Our finding uncovers a new arena for the exploration
of fractional quantum Hall physics in addition to the Landau levels and Chern insulators.

Quantum anomalous Hall effects are the zero-
magnetic-field analog of the quantum Hall effects, widely
explored in magnetic topological insulators [1–3]. These
insulators host Bloch bands of nonzero Chern number
that resemble Landau levels in applied magnetic field [4],
giving rise to observations of integer quantum anomalous
Hall (IQAH) effects [5–8]. Besides topology, another im-
portant aspect of Landau levels is their flatness in disper-
sion and quantum geometry, as well as effective isolation
by energy gaps. This underlies the emergence of frac-
tional quantum Hall effects when many-body interaction
projected to individual Landau level dominates the elec-
tron correlation at fractional fillings [9]. The search for
fractional quantum anomalous Hall (FQAH) effect has
therefore naturally started from insulators having a flat
Chern band well isolated from all other bands by energy
gaps. There has been a remarkable surge of research
to engineer such flat band Chern insulators in various
lattice models [10–19], where FQAH phases (or frac-
tional Chern insulators [16]) are revealed under short-
range interactions by exact diagonalization or density
matrix renormalization group (DMRG) calculations. In
certain models, FQAH states can exist even when the in-
teraction strength far exceeds the band gap [20, 21]. Most
notably, experimental observations of FQAH effects are
recently reported in the isolated Chern band of twisted
rhombohedral bilayers of MoTe2 [22–25] and pentalayer
graphene/hBN moiré [26], which are significantly advanc-
ing the research field.

In this work we report the finding of FQAH effect in the
gapless flat band of a semimetal. Described by a dice lat-
tice with a flux of 2π per cell, the model features a band
touching between a flat band and a lower dispersive band,
protected by a ‘dark-state symmetry’. At ν = 1, i.e. dis-
persive (flat) band filled (empty), self-consistent Hartree
phase diagram consists of two semimetal phases at weak
and intermediate strengths respectively of the nearest-
neighbor repulsion U1 and a trivial insulator phase at
larger U1. In both semimetal phases, DMRG calcula-

tions show integer quantized charge pump characteris-
tic of IQAH. Semimetal phase I at weak U1 retains the
symmetry protected band flatness and band touching,
while semimetal II and insulating phases have sponta-
neous pseudospin polarization that breaks the symmetry.

Most interestingly, at ν = 4/3 and 5/3, corresponding
to 1/3 and 2/3 fillings of the gapless flat band respec-
tively, FQAH phases are demonstrated using real-space
DMRG calculations taking into account all bands. At
ν = 4/3, FQAH phase is found over a small range of U1

that falls in the semimetal I region, while at ν = 5/3
FQAH phase spans over a broad range of U1 across all
three regions of the ν = 1 phase diagram. In partic-
ular, due to symmetry protection on the band flatness,
FQAH exists under weak interaction strength, for which
a lower bound on U1 is not observed within our compu-
tation capacity. Symmetry breaking can gap the band
touching and turn the semimetal into a Chern insula-
tor while keeping the topological band nearly flat, but
counter-intuitively this tends to suppress the FQAH, as
such gap opening introduces strong inhomogeneity to the
otherwise nearly flat quantum geometry.

Topological properties of 2π-flux dice lattice –
The lattice model concerned [Fig. 1(a)] is a variant of the
tight-binding model proposed for holes in twisted rhom-
bohedral bilayer MoTe2 [27], consisting of three spatially
separated orbitals [Fig. 1(a)]. In that context, B and C
are moiré orbitals separated to opposite layers, so their
mutual hopping (t′) is in general much weaker compared
to their hopping (t) to A orbitals that occupy both lay-
ers. The spatial variation of carriers’ layer distribution
also leads to a real space Berry flux of 2π per supercell
[see Fig. 1(a)]. We consider here the t′ = 0 limit of such
a flux lattice,

Ĥ0 =
∑
l

EA Â†
l Âl

−
∑
⟨l,m⟩

(
t eiϕ

l,m
1 Â†

l B̂m + t eiϕ
l,m
2 Â†

l Ĉm + h.c.
), (1)
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FIG. 1. Topological properties of 2π-flux dice lattice. (a) Schematic of the lattice, with red color in the background
denoting a pseudo-magnetic field (see Fig. 4). The lattice constant is equal to 1. Inset: at an arbitrary wave vector k, coupling
between the three orbitals realizes a Lambda level scheme [see Eq. (2)]. (b) Band structure in non-interacting limit. The dark
states of the Lambda level scheme form an exactly flat band. Its Chern number can be defined regardless of the band touching
(see text). (c, d) k-space distribution of Berry curvature Ω and trace of quantum metric tensor G of the flat band, respectively.
(e) Berry curvature distribution in the flat band, when the band touching is gapped by a small hopping t′ or energy offset δ
between B and C orbitals. (f, g) Bandgap (∆g) between the two lower bands, their gap at Γ point (∆Γ), and bandwidth of the
flat band (w), as functions of t′ and δ. All energies here and hereafter are measured in units of the hopping amplitude t.

where the onsite energy at B and C has been set to zero,
and ⟨l,m⟩ denote nearest-neighbors. With direct hop-
ping between B and C vanishing, it has a bipartite ge-
ometry of a dice lattice [28, 29]. After Fourier transform,
Ĥ0(k) = EA Â†

kÂk+ t f(k)Â†
kB̂k+ t g(k)Â†

kĈk+h.c.. At
each wavevector k, Ĥ0 is of a Lambda level scheme hav-
ing two degenerate lower levels without direct coupling
[Fig. 1(a) inset], which we refer as ‘dark-state symme-
try’, as it allows a linear superposition g(k)B̂†

k − f(k)Ĉ†
k

decoupled from Â†
k, known as the dark state in quantum

optics. The coefficients

f(k) = −eik·d1 − e−i2π/3eik·d2 − ei2π/3eik·d3 , (2)
g(k) = e−ik·d1 + e−i2π/3e−ik·d2 + ei2π/3e−ik·d3 ,

where d1,2,3 are nearest-neighbor lattice vectors related
by 120◦ rotations. The dark states at various k form an
exact flat band [Fig. 1(b)]. At the Γ point, f(0) = g(0) =
0, leading to the band touching with the lower dispersive
band.

The Berry curvature Ω and trace of the quantum met-
ric tensor G in the flat band is smooth everywhere ex-
cept at the Γ point [Fig. 1(c, d)], and the improper in-
tegral of Ω over the Brillouin zone yields a Chern num-
ber C =

∫
BZ

dk
2πΩ(k) = 1. Likewise, the dispersive low-

est band has a Chern number −1. Their band touch-
ing point can be gapped by either adding the hopping

t′(B̂†
l Ĉm+h.c.), or an energy offset δ between the B and

C sublattices, both of which break the dark-state symme-
try. For small δ and t′, the gapped bands always display
the same set of Chern numbers as given above, regardless
of the values of t′ and δ. And in such parameter regime,
the width and gaps of the flat band are linear functions
of t′ and δ with modest slopes [see Fig. 1(f, g)]. δ can
only open a gap locally at Γ, but not a global bandgap.
Notably, both terms introduce a strong inhomogeneity in
the Berry curvature [Fig. 1(e) vs Fig. 1(c)].

Semimetals and IQAH at ν = 1 filling – For many-
body interaction, we consider here the nearest-neighbor
repulsion Hint =

∑
⟨l,m⟩ U

l,m
1 n̂ln̂m of spinless fermions

[see Methods]. Figure 2(a) presents the self-consistent
Hartree (scHartree) phase diagram at ν = 1. Phase I
exists at small U1 or small A-orbital energy EA, where
scHartree bands retain all the qualitative features of the
non-interacting ones [Fig. 2(b)]. The Berry curvature dis-
tribution and Chern number in the flat band also remain
identical to the non-interacting case. With the increase
of U1, pseudospin polarization between the B and C or-
bitals, p ≡ (ρB −ρC)/(ρB +ρC), spontaneous appears at
some point, which gives rise to an effective δ that breaks
the dark-state symmetry of Ĥ0. Consequently, the band
touching at Γ is gapped, but the global band gap remains
zero and the Chern numbers unchanged [Fig. 2(c)], which
characterize a semimetal phase II. Further increase of U1
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FIG. 2. IQAH and quasiparticle bands at integer
fillings. (a) Self-consistent Hartree (scHartree) phase dia-
gram at filling factor ν = 1, consisting of two topological
nontrivial semimetal phases (I and II) and a trivial insula-
tor phase (III). Color denotes the pseudospin polarization
p = (ρB−ρC)/(ρB+ρC). (b, c) scHartree quasiparticle bands
in semimetal phase I and II respectively. Red (black) color de-
notes occupied (empty) bands. (d) Examples of charge pump
between the two sides of the lattice upon adiabatic change
of an inserted flux Φ from DMRG calculations (see Meth-
ods), demonstrating IQAH effect in both semimetal phases I
and II, and trivial insulating nature of III. QL is the charge
polarization modulo 1 across a fixed cut in the middle. (e)
Entanglement spectrum flow of state I in (d) upon the flux
insertion, with different charge sectors distinguished by col-
ors. (f) An example of scHartree bands at filling factor ν = 2.
The band touching and exact flatness of middle band are pre-
served over the entire range of U1 explored. In (b, c, f),
EA = 8. The insets show the Berry curvature distribution
of the middle band, which has Chern number 1 in all three
cases. The Berry curvature distributions in (b) and (f) are
identical to the non-interacting case in Fig. 1(c).

turns the system into a trivial insulating phase III.
The band Chern numbers in the two semimetal phases

point to an unusual IQAH effect in the absence of a
bandgap. This is indeed confirmed in our DMRG cal-
culations on a cylinder geometry with periodic boundary
condition along y and open boundary condition along
x direction [see Methods]. Upon the adiabatic inser-
tion of one flux quantum, an integer quantized charge
pumping between the two sides of the lattice is observed
in both semimetal phases I and II [Fig. 2(d)], and the
entanglement spectrum is shifted by one charge sector.
These are signatures of a quantized Hall conductivity of
e2/h [21, 30, 31], consistent with the Chern number −1
in the lowest scHartree band. In comparison, phase III
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FIG. 3. FQAH at ν = 5/3 from DMRG calculations.
(a, b) Charge pumping and entanglement spectrum flow upon
flux insertion. EA = 10, U1 = 1.5. (c) U1–EA phase diagram
at t′ = δ = 0. (d) U1–δ phase diagram. t′ = 0, EA = 15. (e)
U1–t′ phase diagram. δ = 0, EA = 15. FQAH phase, metallic
phase and CDW phase are denoted by magenta, light blue
and dark blue colors respectively. (f) Examples of charge
distributions of FQAH phase and CDW phase. Particle pop-
ulations on each orbitals are denoted by the size of the blue
circles. Red diamond denotes the

√
3 ×

√
3 supercell in the

CDW state.

does not exhibits net charge pumping upon the flux in-
sertion. From the charge pumping and the pseudospin
polarization, DMRG calculations can also determine the
phase diagram, which is in agreement with the scHartree
diagram in Fig. 2(a) except for some quantitative differ-
ences on the phase boundaries, which can be attributed
to the finite lattice size in the DMRG and the mean-field
approximation in the scHartree calculations.

FQAH at ν = 5/3 and ν = 4/3 filling – We find
FQAH phases at both these filling factors that corre-
spond to 2/3 and 1/3 filling of the flat band respec-
tively. These phases are signified by fractionally quan-
tized charge pumping upon the adiabatic flux insertion
from the DMRG calculations. Figure 3(a) presents an
example of the charge pumping at ν = 5/3. One charge
quantum is pumped per three flux periods, signaling a
fractionally quantized Hall conductivity of e2/(3h) [32].
The entanglement spectrum flow in Fig. 3(b) also pro-
vides evidence for a 1/3 quantized charge pumping per
cycle: the spectrum is shifted by one particle sector after
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6π flux insertion.
Figure 3(c) presents the DMRG phase diagram at

ν = 5/3 in the parameter space spanned by the inter-
action strength U1 and A-orbital energy EA. It consists
of the FQAH phase characterized by the 1/3 quantized
charge pumping, and a metallic phase characterized by a
vanishing charge gap. Scan of the entanglement spectrum
also shows a discontinuity at the phase boundary [33, 34]
(c.f. Supplementary Figure S1 for the scans along the ver-
tical and horizontal dashed lines in Fig. 3(c)). A larger
EA is favorable for stabilizing the FQAH phase in a wider
range of U1.

We also examined the evolution of charge gap as a func-
tion of U1, which first increases, then decreases, reaching
zero at the phase boundary and remaining vanishing in
the metallic phase [see Supplementary Fig. S2 (a-c)]. The
initial rise in the many-body charge gap can be attributed
to the stronger interaction. After a critical U1 within the
FQAH phase, we find weak pseudospin polarization p
spontaneously emerges [see Supplementary Fig. S2 (d)].
This breaks the dark-state symmetry and introduces in-
homogeneity to the quantum geometry of the flat band,
as already shown by the scHartree calculation at ν = 1
[Fig. 2(c)]. As a result, the charge gap of the FQAH state
decreases. Upon a significant increase in p [see Supple-
mentary Fig. S2 (d)], the transition from FQAH to the
metallic phase occurs, which is reminiscent of the topo-
logical transition at ν = 1 from IQAH semimetal phase
II to the topologically trivial phase III [Fig. 2(a)].

At ν = 4/3 filling, we find FQAH phase only in a
narrow region where both EA and U1 are small [see Sup-
plementary Fig. S3]. It falls entirely in the region of
semimetal phase I of the ν = 1 diagram. Unlike the
case of Fig. 3(c), at ν = 4/3, a smaller EA stabilizes
the FQAH phase in a wider range of U1. In the FQAH
phase here, two charge quanta are pumped upon 6π flux
insertion, corresponding to a fractionally quantized Hall
conductivity of 2e2/(3h). Notably, at both ν = 5/3 and
4/3, we did not observe the lower boundary of FQAH
phase as function of interaction strength U1 within our
computation capacity. The phase diagrams start from
U1 = 0.1 − 0.2, below which the small charge gap de-
mands larger bond dimension for convergence.

The stark difference between the ν = 5/3 and ν = 4/3
FQAH phase regions, specifically in their upper bound-
ary as function of U1, is not entirely unexpected. The
former can be considered as 1/3 hole added on top of
ν = 2 filling, while for the latter 1/3 particle is added on
top of the ν = 1 filling. From the scHartree calculation,
we find that at ν = 2, over the entire parameter space
explored in Fig. 3(c), the system retains the dark-state
symmetry of Ĥ0, and therefore all qualitative features of
the single-particle bands, including the exact flatness of
the middle band and its nearly uniform quantum geom-
etry [Fig. 2(f)]. In contrast, at ν = 1, such features are
retained only in its semimetal phase I. Interaction renor-

malized quasiparticle band at the closest integer fillings
indeed provides precursor for the FQAH here. Remark-
ably, whenever the renormalized band retains the desired
dispersion and quantum geometry, the band touching is
also preserved as a consequence of dark-state symme-
try [Fig. 2(b, f)]. This is in contrast to the pentalayer
graphene/hBN system where band touching in the single
particle limit is completely lifted by Coulomb interaction
at the relevant integer fillings [35–38], and a fully gapped
flat Chern band then serves as the ground for FQAH.

Gapping this band touching by symmetry breaking
can turn the semimetal into an insulator with nearly flat
Chern band. However, this tends to quench the FQAH
since the band touching is inherently associated with the
uniformity of quantum geometry [39]. We demonstrate
this at ν = 5/3 by adding the single particle hopping
t′ and energy offset δ between B and C orbitals. As dis-
cussed in Fig. 1(e-g), both terms will gap the band touch-
ing point without affecting the Chern numbers, while in-
troducing inhomogeneity to the Berry curvature.

Figure 3(d) shows the phase diagram in U1–δ space, fix-
ing EA = 15. Like in the δ = 0 diagram in Fig. 3(c), only
FQAH and metallic phases are identified within the pa-
rameter window. At larger δ, the transition from FQAH
to metallic phase occurs at smaller U1. As onsite energy
difference induces pseudospin polarization, the above
trend is consistent with the observation at δ = 0 where
spontaneous pseudospin polarization quenches FQAH.

Figure 3(e) shows the phase diagram in U1–t′ space at
EA = 15. A transition from FQAH to metallic phase at
large U1 is also observed when t′ is small, as a contin-
uation of the t′ = 0 phase diagram. It is interesting to
note that a small t′ can push the FQAH to metal transi-
tion towards a larger U1. Additionally, increasing t′ can
drive a phase transition from FQAH to a

√
3×

√
3 charge

density wave (CDW). Figure 3(f) shows examples of the
carrier distributions in FQAH and CDW phases. The
CDW phase exhibits no pseudospin polarization.

Optical 2π-flux dice lattice for ultracold atoms –
We generalize here the optical flux lattice scheme initially
proposed by Cooper [40], for atoms of two long-lived lev-
els moving in optical fields:

Ĥ =
p̂2

2m
− V (r) · σ̂ =

p̂2

2m
− V (r)n̂(r) · σ̂, (3)

where σ̂ is the vector of Pauli matrices, V and n̂ are
the magnitude and direction of V . The off-diagonal
Vx,y are the interspecies optical coupling generated with
three travelling waves [40]: Vx = V0

∑3
i=1 cos(gi ·

r), Vy = −V0

∑3
i=1 sin(gi · r). Vz corresponds to

a species-dependent optical potential, which we con-
sider a form generated by three standing waves: Vz =
−V1

∑3
i=1 sin(Gi ·r). The wavevectors G1 = −( 1√

3
, 1) 2πL

and g1 = −(0, 2
3 )

2π
L [Fig. 4(d)], and G2,3 and g2,3 are

their 120◦ degree rotations respectively.
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FIG. 4. 2π-flux dice lattice for ultracold atoms. (a)
Potential landscape in units of Er = ℏ2

2m
|G1|2. The energy

has been shifted to place the barrier height between A and
B/C sites at 0. (b) Pseudo-magnetic field. The flux per cell
is 2π. (c) Spatial texture of n̂. Background color denotes nz,
and arrows for in-plane vector (nx, ny). (d) Energy bands
and Chern numbers obtained with V0 ≈ −19.75Er and V1 ≈
−23.8Er. The energies have been shifted to place the flat
band around zero energy.

Adiabatic motion on the local ground states with Bloch
vectors along n̂(r) is then governed by an effective Hamil-
tonian:

Ĥadb =
1

2m
[p̂+ eA(r)]2 − V (r) +G(r), (4)

where atoms experience a periodic scalar potential with
geometric correction G = ℏ2

8m (∇n̂)2 [41], and a pseudo-
magnetic field B = ∇ × A = ℏ

2e n̂ · (∂xn̂ × ∂yn̂)z. The
magnetic flux threading a unit cell equals 2π, as deter-
mined by the solid angle enclosed by n. For the example
in Fig. 4(a–d), the three local minima in the potential
landscape define the orbitals, where tunneling between
the degenerate B and C sites is suppressed by a signif-
icant barrier [Fig. 4(a)], realizing a 2π flux dice lattice.
The lowest three energy bands and their Chern num-
bers [Fig. 4(d)] indeed reproduce all features of the tight-
binding Hamiltonian in Eq. (1).

Methods – DMRG calculations are performed for
spinless fermions with the many-body tight-binding
Hamiltonian Ĥ = Ĥ0+

∑
⟨l,m⟩ U

l,m
1 ĉ†mĉmĉ†l ĉl on a lattice

of the cylinder geometry with open boundary condition
in the x direction and periodic boundary condition in the
y direction. A flux Φ threading the cylinder is introduced
through the twisted boundary condition [32]. The total
number of lattice sites N = Ny × Nx × 3, Ny = 4 and

Nx = 24 being the number of unit cells in the y and
x directions. We have checked convergence by confirm-
ing that larger values of bond dimension D give identical
results. Calculations at integer filling used bond dimen-
sions up to D = 256. At ν = 5/3 filling, a maximal bond
dimension of D = 300 is used. At ν = 4/3 filling, the
maximal D = 500 due to the smaller charge gap. The
DMRG simulation is performed using the ITensor library
with U(1) symmetry [42].

Self-consistent Hartree calculations at integer fillings
are performed with the mean-field Hamiltonian: Ĥ =
Ĥ0 +

∑
⟨l,m⟩ U

l,m
1

〈
ĉ†mĉm

〉
ĉ†l ĉl, where the Hartree poten-

tial in the second term is determined from the wavefunc-
tions. By comparing the total energies of solutions with
different site-occupation configurations, ground states
are obtained.

In the calculations, nearest-neighbor repulsion between
B and C orbitals is set slightly different (0.9U1) from
their repulsion with A orbital (U1), to reflect the different
nature of these orbitals, whereas the choice only have
minor quantitative effect on the phase boundaries.
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ENTANGLEMENT SPECTRUM SCANS ACROSS THE PHASE BOUNDARY

The entanglement spectrum, ϵα, is obtained using the relation ϵα = −ln(Λ2
α) [33], where Λα denote Schmidt values

obtained from the Schmidt decomposition at the bond connecting left and right halves of the lattice. As shown in
Fig. S1, for both entanglement spectrum scans marked by the yellow dashed lines in Fig. 3(c) of the main text, there
is a sharp discontinuity at the phase boundary, signaling the transition between the FQAH phase and the metallic
phase.
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FIG. S1. (a, b) Entanglement spectrum as a function of EA and U1. Different charge sectors are distinguished by different
colors [34]. The transition points are marked by the dashed vertical lines where sharp discontinuities of entanglement spectrum
can be observed, signaling the transition between the FQAH phase and the metallic phase. ν = 5/3.

EVOLUTION OF THE CHARGE GAP AND PSEUDOSPIN POLARIZATION AT ν = 5/3

The particle-hole excitation gap (charge gap) of the system is given by:

∆c = µp − µh. (S1)

where µp (−µh) is the energy of adding a particle (hole) to the system [43]:

µp = Ep − E0

−µh = Eh − E0

, (S2)
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FIG. S2. (a-c) Charge gap as a function of U1 for different EA, at ν = 5/3. The dashed vertical lines mark the boundary
separating the FQAH and metallic phases. (d) Evolution of pseudospin polarization, p = ρB−ρC

ρB+ρC
, as a function of U1, at

ν = 5/3.

E0 here is the ground state energy without the particle and hole, and Ep (Eh) is the total energy of the state with
an additional particle (hole), both of which are computed using DMRG calculations.

As shown in Fig. S2 (a)-(c), FQAH phase has a finite charge gap which first increases then decreases as a function
of U1, reaching zero at the phase boundary and remaining vanishing in the metallic phase. The initial rise in
the charge gap can be attributed to the stronger interaction. After a critical U1 within the FQAH phase, weak
pseudospin polarization p spontaneously emerges [Fig. S2 (d)]. A finite p breaks the dark-state symmetry and
introduces inhomogeneity to the quantum geometry of the flat band. As a result, the charge gap of the FQAH state
decreases. The transition from FQAH to the metallic phase occurs upon a significant increase in p.

PHASE DIAGRAM AT ν = 4/3

The ν = 4/3 phase diagram in the U1 −EA parameter space is shown in Fig. S3(a). It consists of the FQAH phase
characterized by the fractionally quantized charge pumping, and metallic phase characterized by vanishing charge
gap. FQAH phase only exists in a narrow region where U1 is small. Fig. S3(b) shows examples of the charge pumping
simulations of the FQAH phase and metallic phase respectively.
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FIG. S3. (a) U1 − EA phase diagram at ν = 4/3 filling. (b) Charge pumping simulation results of the FQAH state (U1 = 0.1,
EA = 7) and metallic state (U1 = 0.5, EA = 8).
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