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Abstract. For hyperbolic surfaces with geodesic boundary, we study the orthosystole, i.e.
the length of a shortest essential arc from the boundary to the boundary. We recover and

extend work by Bavard completely characterizing the surfaces maximizing the orthosystole

in the case of a single boundary component. For multiple boundary components, we con-
struct surfaces with large orthosystole and show that their orthosystole grows, as the genus

goes to infinity, at the same rate as Bavard’s upper bound.

1. Introduction

Systoles – shortest closed geodesics – of closed hyperbolic surfaces have been widely studied
and have been fundamental in understanding hyperbolic surfaces and their moduli spaces. A
simple area argument provides an upper bound on the systole length which is asymptotic to
2 log g, as the genus g goes to infinity. Surprisingly, this naive bound provides the correct
order of growth, as various authors have constructed sequences of closed hyperbolic surfaces
with systole length growing logarithmically in the genus ([6], [9], [13], [21], [22], [16]). The
best constructions ([9], [13]) have systole length growing at least as 4

3 log g. It is a well known
open problem to understand the gap between the best construction and the best known upper
bound (see also [4] and [11] for improvements on the naive bound).

In analogy with sphere packing problems in Euclidean space, Schmutz Schaller introduced
and studied kissing numbers – numbers of systoles – of hyperbolic surfaces. Also for kissing
numbers, upper bounds ([20], [10], [11]) and constructions of surfaces with large kissing numbers
([24], [25], [26], [7], [2]) are known. Furthermore, it is known ([23], [24]) that surfaces with
large systole must have large kissing number as well.

If we consider compact hyperbolic surfaces with boundary, it is natural to consider another
collection of geodesics, instead of closed ones: those starting and ending at the boundary
components. Given a hyperbolic surface X with geodesic boundary, we define the orthosystole
to be the length of a shortest geodesic from boundary to boundary, and we denote it by
osys(X). Moreover, we call orthokissing number (and we denote it by okiss(X)) the number
of geodesics from boundary to boundary having minimal length.

The first observation is that there are no interesting upper and lower bounds for osys depend-
ing only on the topology of the surface: if S has negative Euler characteristic, the orthosystole
can be arbitrarily small and arbitrarily large (see Lemma 4.1). As a consequence, we will dis-
cuss bounds on the orthosystole for surfaces with restrictions on the boundary lengths. Two
natural possibilities are to fix each boundary length or to fix their sum, and it turns out that
the two situations are quite different.

If we fix the sum of the boundary lengths, a sharp upper bound has been proven by Bavard
in [3]:

Theorem 1.1 (Bavard). Let X be a surface of signature (g, n) and total boundary length L.
Then

osys(X) ≤ 2 sinh−1

 1

2 sinh
(

L
24g−24+12n

)

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with equality if and only if okiss(X) = 6g − 6 + 3n. Moreover, the bound is attained for every
L.

Note that Bavard’s work is more general and is phrased quite differently. The theorem just
stated corresponds to parts (1), (3) and (4) [3, Théorème 1], for c = ∂X and considering only

r. In this case, r = osys(X)
2 and one can verify that the condition for equality of part (3)

corresponds to okiss(X) = 6g − 6 + 3n. We refer to the Appendix for an explanation of the
correspondence between Bavard’s formulation and the theorem above.

If, instead of fixing the sum, we fix each boundary length, we cannot always find surfaces
with okiss(S) = 6g − 6 + 3n (as discussed at the beginning of Section 6), so Bavard’s result is
not always sharp. Of course, if a surface has a single boundary component, fixing its length
or the total boundary length is the same, so in this case Bavard’s result completely classifies
the global maxima for the orthosystole function. Our first result extends Bavard’s work, by
showing that global and local maxima for the orthosystole function coincide in the case of a
single boundary component.

Theorem A. Let X be a surface of signature (g, 1) and boundary length ℓ. The following are
equivalent:

(1) X is a global maximum for the orthosystole function;
(2) X is a local maximum for the orthosystole function;
(3) okiss(X) = 6g − 3;

(4) osys(X) = 2 sinh−1

(
1

2 sinh(ℓ/(24g − 12))

)
.

Moreover, for any g ≥ 1 the number of local (or global) maxima in each moduli space is exactly

2(6g − 5)!

12gg!(3g − 3)!
.

We remark that our proof is very different from Bavard’s — in particular, we do not rely
on his work to prove Theorem A.

Note that for the analogous problem for the systole function, global maxima are not known
(except in a few low complexity cases) and it is a hard problem even to construct local maxima
(see [12]).

For multiple boundary components, while we cannot completely describe global maxima,
we are able to show that the orthosystole admits a global maximum and to construct examples
of surfaces with large orthosystole.

Theorem B. Let S be a surface of signature (g, n) and negative Euler characteristic. Fix
0 < ℓ1 ≤ · · · ≤ ℓn.

(1) The function osys : M(S; ℓ1, . . . , ℓn) → R admits a maximum.
(2) Suppose g ≥ n ≥ 2. Then there is a surface X ∈ M(S; ℓ1, . . . , ℓn) with

osys(X) ≥ cosh−1


cosh

(
ℓn

6
⌊
g
n

⌋)

cosh

(
ℓn

6
⌊
g
n

⌋)− 1

 .

While the fact osys admits a maximum might seem a triviality, it is more subtle than in
the case of the systole. Indeed, continuity of the systole function and Mumford’s compactness
theorem readily imply the existence of global maxima for the systole function in each moduli
space. On the other hand, we cannot replace the systole by the orthosystole in Mumford’s
criterion (see Lemma 6.3). So to prove (1) we will need to apply a length-expansion result
([27],[19],[18]).
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Note furthermore that if n and the ℓi are fixed and we let the genus go to infinity, the surfaces
we construct have orthosystole length growing as 2 log g, which matches the asymptotics of the
upper bound given in Theorem 1.1.

On the other hand (see Section 6), the surfaces constructed in Theorem B aren’t even
local maximizers for the orthosystole. While we have some examples of surfaces with larger
orthosystole (Lemma 6.2), for multiple boundary components we are not able to exhibit global
maximizers for the orthosystole.

The length-expansion result mentioned before allows us also to show that local maxima of
the orthosystole function have relatively large orthokissing number, that is:

Proposition C. Let S be a surface of signature (g, n) and negative Euler characteristic. Fix
0 < ℓ1 ≤ · · · ≤ ℓn. Then if X ∈ M(S; ℓ1, . . . , ℓn) is a local maximum for osys, okiss(S) ≥
2g − 2 + n.

This article is structured as follows: after defining the objects we are interested in and
recalling or proving some facts we will need (Section 2), in Section 3 we will discuss maximal
collections of pairwise disjoint and pairwise non-homotopic arcs, which will play a fundamental
role in our work. Section 4 is dedicated to proving some basic facts about orthosystoles and
orthokissing numbers and part (1) of Theorem B (see Corollary 4.6). Section 5 is concerned
with the case of surfaces with a single boundary component and the proof of Theorem A. The
case of surfaces with more than one boundary component and part (2) of Theorem B is proven
in Section 6. Finally, in Section 7 we show Proposition C.
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2. Prerequisites

Given a compact surface S of signature (g, n), we denote by Teich(S) the Teichmüller space
of surfaces with boundary, where the boundary length is allowed to vary. Given L > 0,
Teich(S;L) is the subspace of surfaces whose total boundary length is L. For ℓ1, . . . , ℓn > 0,
Teich(S; ℓ1, . . . , ℓn) is the subspace of surfaces whose i-th boundary components has length ℓi,
for i = 1, . . . , n. We denote similarly the moduli spaces M(S), M(S;L) and M(S; ℓ1, . . . , ℓn).
Moreover, Mε(S; ℓ1, . . . , ℓn) denotes the subset of M(S; ℓ1, . . . , ℓn) given by surfaces all of
whose closed geodesics have length at least ε – the so-called (ε-)thick part of moduli space,
which is a compact set by Mumford’s compactness theorem [17].

Let X ∈ Teich(S). Its systole sys(X) is the length of a shortest closed geodesic which is not
a boundary component. Its orthosystole osys(X) is the length of a shortest orthogeodesic. We
will regularly abuse notation and use the terms systole and orthosystole also for a simple closed
geodesic (not boundary parallel) or an orthogeodesic of minimal length. Its kissing number
kiss(X) is the number of systoles and its orthokissing number okiss(X) is the number of its
orthosystoles.

Given a homotopically nontrivial simple closed curve γ, we denote by ℓγ(X) the length of
the unique shortest closed curve in the free homotopy class of γ, i.e. of the unique simple closed
geodesic in the class.

Denote by A the collection of essential arcs from boundary to boundary, up to homotopy
relative to the boundary. For any α ∈ A, we denote by ℓα(X) the length of the unique shortest
arc in the class, i.e. of the unique orthogeodesic in the class.

By using Fermi coordinates [8, Chapter 1], it is easy to prove:

Lemma 2.1. Let F be a hyperbolic funnel with boundary curve γ. The area of the collar about
γ of width w is ℓγ(F ) sinh(w).
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Moreover:

Lemma 2.2. Consider a right-angled hexagon of sides (read counterclockwise) a, γ, b, α, c, β
and let ha be the orthogonal between a and α. Abusing notation we conflate the names of the
arcs with their lengths. Let A = cosh(a), B = cosh(b) and C = cosh(c) and set

s(A,B,C) := cosh−1

(
A+BC√

(B2 − 1)(C2 − 1)

)
+

+ cosh−1

(
B +AC√

(A2 − 1)(C2 − 1)

)
+ cosh−1

(
C +AB√

(A2 − 1)(B2 − 1)

)
.

Then:

(1) α = cosh−1

(
A+BC√

(B2 − 1)(C2 − 1)

)
;

(2) α+ β + γ = s(A,B,C);

(3)
∂s

∂A
(A,B,C) =

A− 1−B − C

(A− 1)
√
A2 +B2 + C2 + 2ABC − 1

;

(4) lim
A→1

s(A,B,C) = +∞ = lim
A→+∞

s(A,B,C);

(5) cosh(ha) =

√
A2 +B2 + C2 + 2ABC − 1√

A2 − 1
; if b = c, sinh(ha) =

cosh(b)

sinh(a/2)
.

Proof. Standard formulas (see for instance [8, Chapter 2]) give us the lengths of α, β, and γ and
hence their sum s(A,B,C). The formula for the derivative of s follows by explicit computation.

If A → 1, then a → 0, i.e. one side of the hexagon converges to a point in the boundary of
the hyperbolic plane, so the length of its adjacent sides goes to infinity. If A → ∞

s(A,B,C) ≥ cosh−1

(
A+BC√

(B2 − 1)(C2 − 1)

)
→ ∞.

The expressions for ha follow again from standard hyperbolic trigonometry ([8, Chapter
2]), by looking at the two right-angled pentagons obtained by cutting the hexagon along the
orthogonal from the side of length a to the opposite side. □

a

b
c

α

β
γ

ha

Figure 1. A right-angled hexagon

We will also use the Collar Lemma ([14]; see also [8, Chapter 4]):

Lemma 2.3 (Collar Lemma). A simple closed geodesic α in a hyperbolic surface X has an
embedded collar of width

w(α) = sinh−1

 1

sinh
(

ℓα(X)
2

)
 .

In particular any simple closed geodesic or orthogeodesic intersecting α has length at least w(α)
(2w(α) if α is not a boundary component).
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The following is due to Wolpert ([29]; see also [15, Theorem 2.1]):

Theorem 2.4. If f : X → Y is a K-quasiconformal homeomorphism of surfaces with boundary
and γ ⊂ X is either an essential simple closed curve or an essential arc from boundary to
boundary, then

ℓf(γ)(Y )

ℓγ(X)
≤ K.

We will also use a length-expansion result (see [27], [19] and [18]):

Theorem 2.5. Let X be a surface of signature (g, n), n > 0, and let γ1, . . . , γn be the boundary
geodesics of X. For every (ε1, . . . , εn) ∈ Rn where εi ≥ 0 for all i, and at least one εi is not
zero, there exists a surface Y with boundary geodesics of lengths ℓγ1

(X) + ε1, . . . , ℓγn
(X) + εn

such that all corresponding simple closed geodesics in Y are of length strictly greater than those
of X.

Remark 2.6. For surfaces X,Y as in Theorem 2.5, if εi = εj = 0 and α is an orthogeodesic
from γi to γj , ℓα(Y ) > ℓα(X). This follows by the proof of the theorem given in [19].

3. Hexagon decompositions

A hexagon decomposition H of a topological surface S with boundary is a maximal collec-
tion of pairwise non-homotopic and disjoint essential arcs. If X ∈ Teich(S), the orthogeodesic
representatives of the arcs in H cut X into a union of right-angled hexagons. By Euler char-
acteristic considerations, a hexagon decomposition of a surface of signature (g, n) contains
3|χ(S)| = 6g − 6 + 3n arcs and cuts the surface into 2|χ(S)| = 4g − 4 + 2n (topological) disks.

Given a surface S and a hexagon decomposition H = {α1, . . . , α6g−g+3n}, denote by ∂H the
collection of triples {i, j, k} (where two indices might coincide) of indices such that αi, αj , αk ∈
H are three sides of some hexagon defined by H. Define the function1

FH : R6g−6+3n → R

x 7→
∑

{i,j,k}∈∂H

s(cosh(xi), cosh(xj), cosh(xk)).

Ushijima [28] showed:

Theorem 3.1. Let S be a surface of signature (g, n) and H = {α1, . . . α6g−6+3n} a hexagon
decomposition. Then

φH : Teich(S) → R6g−6+3n
>0

X 7→ (ℓαi(X))6g−6+3n
i=1

is a homeomorphism.

Remark 3.2. Note that hexagon decompositions in [28] are called truncated triangles.

For the sake of completeness, we provide here an alternative proof:

Proof. Since right-angled hexagons are determined by the lengths of three alternating sides,
and any three positive lengths determine a right-angled hexagon, the map is a bijection.
Theorem 2.4 implies that φH is continuous. Conversely, Bishop [5] shows that given two
right-angled hexagons of alternating side lengths a, b, c and a′, b′, c′, there is a quasiconformal
homeomorphism from one to the other, sending the side of length a (respectively b, c) to the
side of length a′ (respectively, b′, c′), linear on the sides, whose quasiconformal constant de-
pends on a, b, c,max{|a− a′|, |b− b′|, |c− c′|} and goes to one as max{|a− a′|, |b− b′|, |c− c′|}
goes to zero. By using these maps on each hexagon determined by H, we get a quasicon-
formal map φ−1

H (x1, . . . , x6g−6+3n) → φ−1
H (x′

1, . . . , x
′
6g−6+3n), whose quasiconformal constant

1Here we are slighlty abusing notation, since {i, j, k} is an unordered triple, so s(cosh(xi), cosh(xj), cosh(xk))

is technically not defined, but since s is symmetric, we can choose any ordering for i, j, k to compute s.
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depends on x1, . . . , x6g−6+3n,max{|xi − x′
i| | i = 1, . . . , 6g − 6 + 3n} and goes to one as

max{|xi − x′
i| | i = 1, . . . , 6g − 6 + 3n} goes to zero. This proves continuity of φ−1

H . □

Note that this means in particular that for every arc α ∈ A, the function

Teich(S) → R
X 7→ ℓα(X)

is continuous.

Moreover:

Lemma 3.3. Let S be a surface of signature (g, n) and H = {α1, . . . α6g−6+3n} a hexagon
decomposition. For every L > 0

φH(Teich(S;L)) =
{
x ∈ R6g−6+3n

>0

∣∣∣ FH(x) = L
}
.

Proof. This is a consequence of Lemma 2.2 and the fact that the boundary of S is the union
of all the sides not belonging to H in the hexagons in the decomposition given by H. □

4. Orthosystoles and orthokissing number: general bounds

This section is dedicated to proving some basic properties of orthosystoles and part (1) of
Theorem B. We start by showing that there are no bounds on the orthosystole depending only
on the geometry of the surface:

Lemma 4.1. Let S be a compact surface with nonempty boundary. Then

inf
X∈M(S)

osys(X) = 0 and sup
X∈M(S)

osys(X) = ∞.

Proof. Given a pair of pants of boundary lengths a, b, b, the length of the shortest orthogeodesic
from and to the boundary component of length a goes to zero if a → ∞ and b → 0. By either
gluing the two boundary components of length b to each other or attaching a subsurface to
them, we get surfaces in each moduli space with arbitrarily short orthosystole. The fact that
the supremum is infinite follows from the Collar Lemma, by letting all the boundary lengths
go to zero. □

Just as systoles, orthosystoles are simple. On the other hand, while two systoles can inter-
sect, we prove that orthosystoles are disjoint, which will imply the bound on the orthokissing
number mentioned in the introduction.

Lemma 4.2. Orthosystoles are simple and disjoint. In particular, a surface X of signature
(g, n) satisfies okiss(X) ≤ 6g − 6 + 3n.

Proof. Simplicity and disjointness follow from a standard surgery argument: if an orthosystole
is not simple or two orthosystoles intersect, we can construct a shorter orthogeodesic using
subarcs determined by some (self-)intersection point.

As there are at most 6g − 6 + 3n pairwise disjoint orthogeodesics on a surface of signature
(g, n), the bound on okiss(X) follows immediately. □

The following criterion to detect orthosystoles will be crucial in the proofs of Theorems A
and B.

Lemma 4.3. Let X be a hyperbolic surface with a hexagon decomposition of orthogeodesics
of the same length. Then the orthogeodesics in the hexagon decomposition are precisely the
orthosystoles.
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Proof. Denote by a the length of the arcs in the hexagon decomposition and let α be the length
of the other sides of a hexagon with alternating sides of length a.

Let γ be an orthogeodesic of X not in the hexagon decomposition. It starts at some point
p ∈ ∂X, which needs to be contained in the interior of a side of length α in some hexagon, and
it is split into arcs a1, . . . , ak by the orthogeodesics in the hexagon decomposition, where k ≥ 2
(since γ is not in the hexagon decomposition). As there are no hyperbolic triangles with two
right angles, a1 and ak need to join opposite sides of a hexagon. In particular they both have
length at least h, where h is the orthogonal between opposite sides of a hexagon, so ℓ(γ) ≥ 2h.
Moreover by Lemma 2.2

sinh(h) =
cosh(a)

sinh(a/2)
=

2 sinh2(a/2) + 1

sinh(a/2)
> sinh(a/2)

i.e. 2h > a, proving that the orthogeodesics in the hexagon decomposition are the unique ones
of minimal length. □

Next we show that the orthosystole function is locally the minimum of finitely many con-
tinuous functions, and thus continuous.

Lemma 4.4. The orthosystole function

osys : Teich(S) → R
X 7→ osys(X)

is locally the minimum of the lengths of finitely many orthogeodesics, i.e. for every X ∈
Teich(S) there is an open neighborhood U of X and a finite collection A ⊂ A such that if
Y ∈ U

osys(Y ) = min{ℓα(Y ) | α ∈ A}.
Up to restricting U , we can assume

A = {α ∈ A | ℓα(X) = osys(X)}.

In particular, osys is a continuous function.

Proof. LetX ∈ Teich(S) andK > 1. Let dT be the Teichmüller distance on Teich(S). Then for
every Y ∈ Teich(S) such that dT(X,Y ) ≤ logK we have osys(Y ) ≤ K osys(X) (by Theorem
2.4), so

osys(Y ) = min{ℓα(Y ) | α ∈ A : ℓα(Y ) ≤ K osys(X)}.
Again by Theorem 2.4

{α ∈ A | ℓα(Y ) ≤ K osys(X)} ⊂ {α ∈ A | ℓα(X) ≤ K2 osys(X)} =: A.

So for every Y ∈ Teich(S) such that dT(X,Y ) ≤ logK

osys(Y ) = min{ℓα(Y ) | α ∈ A}.

Moreover, A is finite by discreteness of the orthospectrum.

Let M(X) = {α ∈ A | ℓα(X) = osys(X)}; note that M(X) ⊂ A. By discreteness of the
orthospectrum and Theorem 2.4 there is K ′ ≤ K such that if U = {Y ∈ Teich(S) | dT(X,Y ) ≤
logK ′} and Y ∈ U , for every α ∈ A∖M(X) and every β ∈ M(X)

ℓα(Y ) ≤ K ′ℓα(X) <
1

K ′ ℓβ(X) ≤ ℓβ(Y ),

so

osys(Y ) = min
γ∈A(X,K)

ℓγ(Y ) = min
γ∈M(X)

ℓγ(Y ),

as required.

As lengths of orthogeodesics are continuous functions, osys is continuous as well. □
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In the case of simple closed geodesics, it follows directly from Mumford’s compactness crite-
rion and continuity of the systole function that there are global systole maximizers in moduli
or Teichmüller space. One might wonder if one could show an analogue of Mumford’s criterion
using orthogeodesic lengths, i.e. proving that for every ε > 0, the set

{X ∈ M(S; ℓ1, . . . , ℓn) | osys(X) ≥ ε}
is a compact subset of moduli space. Unfortunately, this is not the case, as we will show in
Section 6. This is the reason why we need a different approach to show that the orthosystole
function has a global maximum. To this end, we prove:

Proposition 4.5. For every S of signature (g, n) and for every ℓ1, . . . , ℓn > 0 there is ε > 0
such that if X ∈ M(S; ℓ1, . . . , ℓn) satisfies sys(X) < ε, then there is Y ∈ M(S; ℓ1, . . . , ℓn) with
sys(Y ) ≥ ε and osys(Y ) > osys(X).

Proof. Choose ε < min
{
sinh−1(1), 2 sinh−1

(
2 sinh

(
ℓ(∂X)

24g−24+12n

))}
.

Suppose sys(X) < ε. Let

Cε = {γ ∈ C(S) | ℓγ(X) < ε}.
Note that if an orthogeodesic crosses a curve in of length at most ε, by Lemma 2.3 it has length
at least

2 sinh−1

(
1

sinh(ε/2)

)
> 2 sinh−1

 1

2 sinh
(

ℓ(∂X)
24g−24+12n

)
 .

So by Theorem 1.1 any orthosystole is disjoint from Cε.

Let X ′ be the surface obtained by cutting X along Cε. Apply Theorem 2.5 and Remark
2.6 to X ′ to get a surface Y ′ where all curves corresponding to curves in Cε have length ε and
such that all curves in Y ′ are longer than those in X ′ and all orthogeodesics of Y ′ joining two
curves corresponding to boundary components of X are longer or equal to the corresponding
in X ′. Glue the boundary components of Y ′ which corresponded to the same curve in X to
get a surface Y . Let A ⊂ A be a finite set such that

osys(X) = min{ℓα(X) | α ∈ A} and osys(Y ) = min{ℓα(Y ) | α ∈ A}.
Since orthosystoles are disjoint from Cε, we can assume that A contains only arcs disjoint from
Cε. By construction sys(Y ) = ε and for every α ∈ A,

ℓα(X) < ℓα(Y ),

so osys(X) < osys(Y ). □

An immediate consequence is the following:

Corollary 4.6. The function osys restricted to M(S; ℓ1, . . . , ℓn) admits a maximum.

Proof. By Proposition 4.5, there is ε > 0 such that

sup{osys(X) | X ∈ M(S; ℓ1, . . . , ℓn)} = sup{osys(X) | X ∈ Mε(S; ℓ1, . . . , ℓn)}.
As Mε(S; ℓ1, . . . , ℓn) is compact and osys is continuous on moduli space (since it is a mapping
class group invariant continuous function on Teichmüller space), osys admits a maximum □

5. Surfaces with one boundary component

This section is dedicated to the case of surfaces with a single boundary component and the
proof of Theorem A. The main reason why having a single boundary component is an advantage
is the fact that in this case we can always construct surfaces with a hexagon decomposition
of orthosystoles and we can explicitly compute their orthosystole length. The main difficulty
in the proof of Theorem A is showing that local maxima for the orthosystole function need to
have a hexagon decomposition of orthosystoles.

We start by showing the existence of surfaces with a hexagon decomposition of orthosystoles.
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Lemma 5.1. Let S be a surface of signature (g, 1) and H a hexagon decomposition of S. Let
ℓ > 0. There is a unique X ∈ Teich(S; ℓ) such that all arcs in H have the same length and

osys(X) = f(g, ℓ) := 2 sinh−1

(
1

2 sinh(ℓ/(24g − 12))

)
.

Proof. Uniqueness of the hyperbolic structure follows from Theorem 3.1, so we just need to
check existence. Suppose then that all orthogeodesic representatives of arcs in H have length
a. All hexagons have three alternating sides of length a; the other three sides have the same
length α given by

cosh(α) =
cosh(a) + cosh2(a)

sinh2(a)
=

cosh(a) + cosh2(a)

cosh2(a)− 1
=

cosh(a)

cosh(a)− 1
.

The boundary of X is given by 3(4g − 2) α-sides (since there are 4g − 2 hexagons), i.e.

ℓ = (12g − 6)α.

So

cosh(a) =
cosh

(
ℓ

12g−6

)
cosh

(
ℓ

12g−6

)
− 1

and since the right-hand side is bigger than one, there is a (unique) solution a, and standard
computations show that

a = 2 sinh−1

(
1

2 sinh(ℓ/(24g − 12))

)
.

By Lemma 4.3, the arcs in H are precisely the orthosystoles, so the statement about osys(X)
follows. □

Remark 5.2. The function f(g, ℓ) is independent of the hexagon decomposition. In partic-
ular non-homeomorphic hexagon decompositions yield non-isometric surfaces with the same
orthosystole (indeed, an isometry between surfaces with hexagon decompositions of ortho-
geodesics of minimal length needs to send the hexagon decomposition of a surface to the
hexagon decomposition of the other surface, since the arcs in the hexagon decompositions are
the only ones of minimal length).

To show that local maxima for the orthosystole function have a hexagon decomposition of
orthosystole, we will need the following technical lemma.

Lemma 5.3. Let X ∈ Teich(S) and H = {α1, . . . , α6g−3} a hexagon decomposition.

(1) If ℓαi
(X) = minj ℓαj

(X), then ∂FH

∂xi
(φH(X)) < 0.

(2) If ∂FH

∂xj
(φH(X)) = 0, then ℓαj

(X) is a global minimum or an inflection point of the

function

FH,X,i : R+ → R
y 7→ FH(ℓα1

(X), . . . , ℓαj−1
(X), y, ℓαj+1

(X), . . . ℓα6g−6+3n
(X)).

Proof. We have

FH : R6g−6+3n → R

x 7→
∑

{i,j,k}∈∂H

s(cosh(xi), cosh(xj), cosh(xk)).

For any i, xi appears in exactly two terms in the sum, those corresponding to the two hegaxons
containing the orthogeodesic αi. Suppose the two terms correspond to triples {i, j, k} and
{i, l,m}. Then

∂FH

∂xi
=

∂s(cosh(xi), cosh(xj), cosh(xk))

∂xi
+

∂s(cosh(xi), cosh(xl), cosh(xm))

∂xi
.
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Using the expression for the derivative of s (Lemma 2.2), we get

∂FH

∂xi
=

sinh(xi)

(
cosh(xi)− 1− cosh(xj)− cosh(xk)

(cosh(xi)− 1)
√
cosh(xi)2 + cosh(xj)2 + cosh(xk)2 + 2 cosh(xi) cosh(xj) cosh(xk)− 1

+
cosh(xi)− 1− cosh(xl)− cosh(xm)

(cosh(xi)− 1)
√
cosh(xi)2 + cosh(xl)2 + cosh(xm)2 + 2 cosh(xi) cosh(xl) cosh(xm)− 1

)
So if xi ≤ xj , xk, xl, xm the derivative is negative. In particular, this holds if ℓαi

(X) =
minj ℓX(αj), proving (1).

If ∂FH

∂xj
(φH(X)) = 0, then ℓαi

(X) is a zero of the derivative of FH,X,i. Denote by cj , ck, cl, cm
the hyperbolic cosines of ℓαj (X), ℓαk

(X), ℓαl
(X), ℓαm(X). A point y ∈ (0,∞) is a zero of the

derivative of FH,X,i if and only if

cosh(y)− 1− cj − ck

(cosh(y)− 1)
√
cosh(y)2 + c2j + c2k + 2 cosh(y)cjck − 1

+

cosh(y)− 1− cl − cm

(cosh(y)− 1)
√
cosh(y)2 + c2l + c2m + 2 cosh(y)clcm − 1

= 0

which implies

(cosh(y)− 1− cj − ck)
√
cosh(y)2 + c2l + c2m + 2 cosh(y)clcm − 1 =

−(cosh(y)− 1− cl − cm)
√
cosh(y)2 + c2j + c2k + 2 cosh(y)cjck − 1

which in turn implies

(cosh(y)− 1− cj − ck)
2(cosh(y)2 + c2l + c2m + 2 cosh(y)clcm − 1) =

(cosh(y)− 1− cl − cm)2(cosh(y)2 + c2j + c2k + 2 cosh(y)cjck − 1).

This is a third degree equation in z = cosh(y) (the coefficients of cosh(y)4 cancel out), which
has three solutions, z = 1, z = z1 and z = z2. Since z = 1 implies that y = 0, which is
impossible, there are at most two zeroes of the derivative of FH,X,i in the interval (0,∞).
Since by Lemma 2.2

lim
y→0

FH,X,i(y) = +∞ = lim
y→+∞

FH,X,i(y),

there should be at least one zero of the derivative, which is a global minimum, and if there are
two the second zero can only be an inflexion point. □

Proposition 5.4. Let ℓ > 0 and S be a surface of signature (g, 1). Then if X ∈ Teich(S; ℓ) is
a local maximum for the orthosystole, then okiss(X) = 6g − 3 (i.e. okiss(X) is maximal).

Proof. Let X ∈ Teich(S; ℓ) be a surface with okiss(X) = k < 6g − 3. Let M = {α1, . . . , αk}
be the collection of orthosystoles of X. Complete M to a hexagon decomposition H =
{α1, . . . , α6g−3}. Our goal is to show that X is not a local maximum.

The idea of the proof is to define surfaces arbitrarily close to X by increasing the lengths of
all arcs in M and varying the length of α6g−3 in such a way that the boundary still has length
ℓ. We want to vary all these lengths by a sufficiently small amount so that, by Lemma 4.4, the
orthosystole of the new surfaces is the minimum of the lengths of the curves inM , which in turn
implies that the surfaces we construct all have orthosystole strictly longer than osys(X). For
this, we need to know that if we keep the boundary length fixed and we continuously all lengths
of arcs in H but one, the length of the last arc varies continuously in terms of the other lengths.
Since the boundary length of a surface is defined by a quite explicit function of the lengths of
the arcs in H (the function FH from Section 3), we would want to use the implicit function
theorem to show this continuity property. For this, we need the derivative ∂FH

∂x6g−3
(φH(X)) to
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be nonzero, which is unfortunately not always the case. So when this derivative is zero, we will
instead increase the lengths of α2, . . . , αk and α6g−3 by small controlled amounts and prove
that to keep the boundary length fixed we need to increase the length of α1 as well.

Let us formalize the argument. Note first that by Lemma 4.4 and Theorem 3.1 there is
ε1 > 0 such that if Y ∈ Teich(S) and

max
i∈{1,...,6g−3}

|ℓαi
(Y )− ℓαi

(X)| < ε1,

then

osys(Y ) = min
i∈{1,...,k}

ℓαi
(Y ).

We assume that ε1 is small enough so that for every i, ℓαi
(X)− ε1 > 0.

Let a = (a1, . . . , a6g−3) := φH(X).

Case 1: ∂FH

∂x6g−3
(a) ̸= 0.

By the implicit function theorem there is ε2 > 0 and a continuous function

h : U =

{
(y1, . . . , y6g−4) ∈ R6g−4

∣∣∣∣ max
1≤i≤6g−4

|yi − ai| < ε2

}
→ R

such that FH(y1, . . . , y6g−4, h(y1, . . . , h6g−4)) = ℓ. We can assume that ε2 is small enough so
that U ⊂ (R+)

6g−4 and h(U) ⊂ (a6g−3 − ε1, a6g−3 + ε1).

For every ε < min{ε1, ε2} define

Xε = φ−1
H (a1 + ε, . . . , ak + ε, ak+1, . . . , a6g−4, h(a1 + ε, . . . , ak + ε, ak+1, . . . , a6g−4)).

In other words, Xε is the surface where the lengths of the orthogeodesics in M are all increased
by ε and the length of α6g−3 is adjusted so that the length of the boundary of Xε is ℓ. By the
choice of ε1, ε2 and ε

osys(Xε) = min
1≤i≤k

ℓαi(Y ) = min
1≤i≤k

ai + ε = osys(X) + ε.

Since Xε converges to X, X is not a local maximum of osys.

Case 2: ∂FH

∂x6g−3
(a) = 0.

By Lemma 5.3, ∂FH

∂xi
(a) < 0 for every 1 ≤ i ≤ k and a6g−3 is a global minimum or an inflexion

point of the function

y 7→ FH(a1, . . . , a6g−4, y).

In case it’s an inflexion point, let us assume that the function is locally monotone increasing
around a6g−3; the case in which the function is locally decreasing is analogous.

By the implicit function theorem, there is ε2, ε3 > 0 and a continuous function

h : U =

{
(y2, . . . , y6g−3) ∈ R6g−4

∣∣∣∣ max
2≤i≤6g−3

|yi − ai| < ε2

}
→ R

such that FH(h(y2, . . . , y6g−3), y2, . . . , y6g−3) = ℓ. We can assume that ε2, ε3 are small enough
so that U ⊂ (R+)

6g−4, h(U) ⊂ (a1 − ε3, a1 + ε3), for some ε3 < ε1, and

∂FH

∂x1
(z, y2, . . . , y6g−3) < 0

for all (y2, . . . , y6g−3) ∈ U and z ∈ (a1 − ε3, a1 + ε3).

For every ε < min{ε1, ε2} there is δ > 0, δ < min{ε1, ε2}, such that the length of the
boundary of the surface obtained by increasing2 the length of α6g−3 by ε and the lengths of
α2, . . . , αk by δ is more than ℓ. This holds since the boundary length is a continuous function
of the lengths of arcs in H and by Lemma 5.3, if we increase the length of α6g−3, the boundary

2If instead the function y 7→ FH(a1, . . . , a6g−4, y) is locally monotone decreasing around a6g−3, we decrease

the length of α6g−3 by ε.
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length increases, while if we increase the length of any arc in M , the boundary length decreases.
Now let Xε,δ be the surface such that:

ℓαi
(Xε,δ) = ai + δ ∀ i ∈ {2, . . . , k}

ℓαi(Xε,δ) = ai ∀ i ∈ {k + 1, . . . , 6g − 4}
ℓα6g−3(Xε,δ) = a6g−3 + ε
ℓα1

(Xε,δ) = h(a2 + δ, . . . , ak + δ, ak+1, . . . , a6g−4, a6g−3 + ε)

that is,

φH (Xε,δ) =

(h(a2 + δ, . . . , ak + δ, ak+1, . . . , a6g−4, a6g−3 + ε), a2 + δ, . . . , ak + δ, ak+1, . . . , a6g−4, a6g−3 + ε).

Note that h(a2 + δ, . . . , ak + δ, ak+1, . . . , a6g−4, a6g−3 + ε) > a1 because

FH(a1, a2 + δ, . . . , ak + δ, ak+1, . . . , a6g−4, a6g−3 + ε) > ℓ

and by the assumption on ε2 (and its consequence on the derivative with respect to x1) we
need to increase a1 to decrease ℓ. So

osys(Xε,δ) = min
1≤i≤k

ℓαi
(Xε,δ) > osys(X).

As ε tends to zero, so does δ and thus Xε,δ converges to X, showing again that X is not a
local maximum. □

We can now prove the equivalence of the statements in Theorem A:

Proof of Theorem A. Recall that the four equivalent conditions are:

(1) X is a global maximum for the orthosystole function;
(2) X is a local maximum for the orthosystole function;
(3) okiss(X) = 6g − 3;

(4) osys(X) = 2 sinh−1

(
1

2 sinh(ℓ/(24g − 12))

)
.

It is clear that (1) implies (2). Proposition 5.4 shows that (2) implies (3) and Lemma 5.1 show
that (3) implies (4).

To prove that (4) implies (1), we note that all local maxima have the same orthosystole length
(since (2) implies (4)) and thus, as we know that osys admits a global maximum (Proposition
5.4), all local maxima are also global maxima. Moreover, this also shows that

sup
X∈M(S;ℓ1,...,ℓn)

osys(X) = 2 sinh−1

(
1

2 sinh(ℓ/(24g − 12))

)
)

hence (4) implies (1). □

Note that the equivalence of (1), (3) and (4) follow from Bavard’s work, though we’ve given
here alternative proofs. The following Corollary will finish the proof of Theorem A.

Corollary 5.5. For every g ≥ 1, the function osys : M(S; ℓ) → R has exactly

2(6g − 5)!

12gg!(3g − 3)!

local maxima (which are all global maxima).

Proof. This follows from Theorem A, Remark 5.2, the fact that homeomorphism classes of
hexagon decomposition are in correspondence with homeomorphism classes of ideal triangula-
tions of a surface with one puncture, and the computation of the number of homeomorphism
classes of such triangulations from [1]. □
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6. Surfaces with multiple boundary components

Understanding local and global maxima of the orthosystole function in the case of multiple
boundary components seems significantly harder. The main reason is that we cannot in general
guarantee that there is a surface with a hexagon decomposition of orthosystoles. Indeed, if a
surface X of signature (g, n) has a hexagon decomposition of orthosytoles, then each boundary
component is a union of arcs of length α, where α is the length of any other side of a right-angled
hexagon of alternating sides of length osys(X). In particular, if the boundary lengths are not
rational multiples of each other there won’t be any hexagon decomposition of orthosystoles.
But even when the boundary lengths are rational multiples of each other it is not clear if it is
always possible to have a hexagon decomposition of orthosystoles.

As mentioned before, in [3] it is the sum of the boundary lengths to be fixed, instead of the
individual lengths. Note that for every signature and every sum of boundary lengths we can
find a hyperbolic surface with a hexagon decomposition of orthosystoles, which means that it
attains the bound in Theorem 1.1.

One case in which we can show the existence of such a hexagon decomposition is the case of
surfaces with two boundary components of the same length. We will then use this construction
to construct surfaces with large orthosystole and prove Theorem B.

Lemma 6.1. Let Sg,2 be a surface of signature (g, 2). For any ℓ > 0 there is X ∈ M(Sg,2; ℓ, ℓ)
with a hexagon decomposition of orthosystoles and

osys(X) = cosh−1

 cosh
(

ℓ
6g

)
cosh

(
ℓ
6g

)
− 1

 = max
Y ∈M(Sg,2;ℓ,ℓ)

osys(Y ).

Proof. Color one boundary component of Sg,2 blue and the other red. We will first show, by
induction on the genus, that Sg,2 has a hexagon decomposition such that half of the hexagons
have two red sides and one blue side and half of the hexagons have two blue sides and one red
side.

In the base case, g = 1, an example of such a hexagon decomposition is given in Figure 2.

Figure 2. A hexagon decomposition on S1,2

For the induction step, assume H is a hexagon decomposition with the required properties
on Sg,2. Choose a hexagon H1 with two red sides and a hexagon H2 with two blue sides.
Remove a disk from the interior of H1 and one from the interior of H2 and glue the two new
boundary components together. We now have a surface of signature (g+1, 2) with a collection
of disjoint arcs. We add arcs as in Figure 3 to get a hexagon decomposition with the required
properties.

So for every g ≥ 1 we can choose a hexagon decomposition with the properties above; if
we choose all arcs in this hexagon decomposition to have the same length a we get a hyper-
bolic surface X with a hexagon decomposition of orthosystoles (Lemma 4.3), whose boundary
components have the same length, equal to 6gα, where α is the length of the other sides of a
hexagon with alternating sides of length a, a, a. So the boundary lengths are ℓ if and only if

ℓ = 6g cosh−1

(
cosh(a)

cosh(a)− 1

)



14 ARA BASMAJIAN AND FEDERICA FANONI

Figure 3. From genus g to genus g + 1

i.e.

cosh(a) =
cosh

(
ℓ
6g

)
cosh

(
ℓ
6g

)
− 1

and as the right-hand side is bigger than one, there is a unique solution and by Lemma 4.3

osys(X) = cosh−1

 cosh
(

ℓ
6g

)
cosh

(
ℓ
6g

)
− 1

 .

By Theorem [3], X is a global maximum for osys. □

Using Lemma 6.1, we can prove part (2) of Theorem B:

Proof of Theorem B, part (2). Suppose first n = 2 and the genus is odd. Let X1 and X2 be hy-
perbolic surfaces of signature

(
g−1
2 , 2

)
and boundary components γ1, δ1 and γ2, δ2 respectively,

such that:

• ℓγi
(Xi) = ℓδi(Xi) = ℓi, and

• Xi has a hexagon decomposition of orthogeodesics of minimal length as in Lemma 6.1.

Let Y be a two-holed torus, with boundary components η1 and η2 of lengths ℓ1 and ℓ2 respec-
tively. Let X be a surface obtained from the Xi and Y by gluing, for every i, δi to ηi. Note
that any orthogeodesic α in X is either contained in a Xi or it contains a subarc joining two
boundary components of a Xi. By construction each Xi contains an orthogeodesic from γi to
itself of length osys(Xi), which gives an orthogeodesic on X of the same length. Thus

osys(X) = min{osys(X1), osys(X2)} = osys(X2) =

= cosh−1

 cosh
(

ℓ2
3g−3

)
cosh

(
ℓ2

3g−3

)
− 1

 = cosh−1


cosh

(
ℓ2

6
⌊
g
2

⌋)

cosh

(
ℓ2

6
⌊
g
2

⌋)− 1

 ,

where the second equality follows from the monotonicity of

x 7→ cosh−1

(
cosh(x)

cosh(x)− 1

)
for x > 0.

The case n = 2 and even genus is similar; the only difference is that we choose S1 to have
signature

(
g
2 , 2
)
and S2 to have signature

(
g
2 − 1, 2

)
. We then get a surface with orthosystole

cosh−1

 cosh
(

ℓ2
3g−6

)
cosh

(
ℓ2

3g−6

)
− 1

 ≥ cosh−1


cosh

(
ℓ2

6
⌊
g
2

⌋)

cosh

(
ℓ2

6
⌊
g
2

⌋)− 1

 ,
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where again we are using the motononicity of

x 7→ cosh−1

(
cosh(x)

cosh(x)− 1

)
for x > 0.

Suppose now n ≥ 3. Let q = ⌊ g
n⌋ and let r be such that g = qn+ r. Consider:

• Xi a hyperbolic surface of signature q, 2, with boundary components γi, δi of length ℓi
and with a hexagon decomposition as in Lemma 6.1;

• Y a hyperbolic surface of signature q, n and boundary components η1, . . . ηn of lengths
ℓ1, . . . , ℓn respectively.

Let X be a surface obtained from the Xi to Y by gluing, for every i, δi to ηi with any choice
of twist. Note that X ∈ Teich(S; ℓ1, . . . , ℓn); furthermore, the same argument as above shows
that

osys(X) = osys(Yn) = cosh−1


cosh

(
ℓn

6
⌊
g
n

⌋)

cosh

(
ℓn

6
⌊
g
n

⌋)− 1

 .

□

With similar techniques to those used in the proof of Proposition 5.4, we can show that
the surfaces constructed in the previous proof aren’t even local maxima for the orthosystole
function. It is actually possible to find sequences of surfaces in different moduli space whose
orthosystole is longer than that of the surfaces in Theorem B. We can for example prove the
following:

Lemma 6.2. Fix n ≥ 1; for any m ≥ 0 let Sm be a surface of signature (nm+1, n). Then for
every ℓ > 0 there is Xm ∈ Teich(Sm; ℓ, . . . , ℓ) with a hexagon decomposition of orthogeodesics
of minimal length. Moreover

osys(Xm) = cosh−1

 cosh
(

ℓ
12m+6

)
cosh

(
ℓ

12m+6

)
− 1

 .

Proof. Fix m ≥ 0; the choice of genus allows us to find an order n symmetry φ of Sm, such
that a fundamental domain for the action is a subsurface F of signature (m, 3), as in Figure 4.

Figure 4. The case n = 5; the fundamental domain is shaded.

We then construct a hexagon decomposition of Sm as follows.

Look first at F and denote by γ its boundary component which is also a boundary component
of Sm. Let F̂ be the surface obtained by gluing two disks to the two other boundary components
of F . Fix a hexagon decomposition of F̂ and homotope the arcs so that they are contained in
F and that the two disks in F̂ ∖ F are contained in different hexagons. Look now at F ; for
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Figure 5. The sides in blue are subarcs of γ; the arcs in purple are to be added.

each hexagon containing a boundary component add two new essential arcs from γ to itself, as
in Figure 5.

We now have a collection of 6m−3+4 = 6m+1 arcs on F . Take all the arcs in their φ-orbit,
so that we have 6mn + n arcs on Sm. It is not hard to see that there are n complementary
components Ci, for i = 0, . . . , n − 1, which are not hexagons, where Ci contains φi(γ) and
φi+1(γ). For every i, add two arcs in Ci, each joining φi(γ) to φi+1(γ). The union of all these
arcs is a hexagon decomposition Hm of Sm with the property that each boundary component
of Sm is split into the same number of subarcs. This implies that if all arcs in Hm are given
the same length, all boundary components of Sm will have the same length. To conclude the
proof we just need to show that for every ℓ > 0 we can choose a length a = a(ℓ, n,m) > 0 so
that if all arcs in Hm have length a, each boundary component of Sm has length ℓ. Since Hm

contains 4nm+ 2n hexagons, by Lemma 2.2 we know that a needs to satisfy

nℓ = (4nm+ 2n)s(cosh(a), cosh(a), cosh(a))

i.e.

nℓ = (12nm+ 6n) cosh−1

(
cosh(a)

cosh(a)− 1

)
which implies

cosh(a) =
cosh

(
ℓ

12m+6

)
cosh

(
ℓ

12m+6

)
− 1

.

As the right-hand side is bigger than one, there is a unique solution. Then Xm can be chosen to
be the surface where the arcs inHm have length a and by Lemma 4.3 they are the orthosystoles.

□

On the other hand, we are not able to prove (or disprove) that the surfaces from Lemma
6.2 are local, let alone global, maximizers of the orthosystoles.

We end this section by using Lemma 6.1 to show that there is no version of Mumford’s
compactness theorem that can be stated using orthosystoles instead of systoles:

Lemma 6.3. Let ℓ > 0. For every ε > 0 there is g0 ≥ 1 so that for every g ≥ g0, if S is a
surface of signature (g, 1), the set

{X ∈ M(S; ℓ) | osys(X) ≥ ε}
is not compact.

Proof. By Lemma 6.1, there is a surface Xg of signature (g − 1, 2) and boundary lengths ℓ, ℓ
with a hexagon decomposition of orthosytoles and

osys(Xg) = cosh−1

 cosh
(

ℓ
6(g−1)

)
cosh

(
ℓ

6(g−1)

)
− 1

 .

For any one-holed torus T of boundary length ℓ, we can construct a surface Yg,T by gluing T
to a boundary component of Xg with any choice of twist parameter. Note that

osys(Yg,T ) ≥ osys(Xg),
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because any orthogeodesic in Yg,T is either an orthogeodesic of Xg or it contains an arc joining
two boundary components of Xg.

Since osys(Yg,T ) → ∞ as g → ∞, for every ε > 0 there is g0 so that osys(Yg,T ) > ε for every
g ≥ g0. It is sufficient to choose a sequence Tn of one-holed tori with a curve shrinking to zero
to get a sequence Yg,T leaving every compact. □

7. Orthosystole maximizers and orthokissing number

In this section we prove a bound on the orthokissing number of a surface which is a local
maximizer for the orthosystole. The main result we need is the following:

Proposition 7.1. Let S be a surface of signature (g, n) and let 0 < ℓ1, . . . , ℓn. If X ∈
Teich(S; ℓ1, . . . , ℓn) is a local maximum for the orthosystole function, the collection of orthosys-
toles of X fill the surface, i.e. every essential simple closed geodesic on X intersects at least
one orthosystole.

Proof. By contradiction, suppose not. Denote by γ1, . . . , γn the boundary components of S.
Let α be a simple closed geodesic disjoint from all orthosystoles of X. Cut X along α to
get a (possibly disconnected) surface Y with n+ 2 boundary components, n corresponding to
γ1, . . . , γn and two new ones, which we denote by α1 and α2. By Theorem 2.5, for every ε > 0
there is a surface Yε satisfying

ℓγi
(Yε) = ℓγi

(Y ) ∀i = 1, . . . , n

and

ℓαi
(Yε) = ℓαi

(Y ) + ε ∀i = 1, 2

and such that, by Remark 2.6 and since orthosystoles of X are disjoint from α, for any or-
thosystole β of X

ℓβ(Yε) > ℓβ(Y ).

Glue back Yε, with the same twist parameter about α as X, to get a surface Xε such that for
any orthosystole β of X

ℓβ(Xε) > ℓβ(X).

For ε small enough, the set of orthosystoles of Xε is a subset of the set of orthosystoles of X
(by discreteness of the orthogeodesic spectrum), for every ε small enough we get

osys(Xε) > osys(X),

contradicting local maximality of X. □

A consequence of the proposition is that local maximizers of the orthosystole functions lie
in a compact subset of moduli space.

Corollary 7.2. Let S be a surface of signature (g, n) and let 0 ≤ ℓ1 ≤ · · · ≤ ℓn. Then there
is ε > 0 such that any local maximum for the orthosystole function lies Mε(S; ℓ1, . . . , ℓn). We
can choose

ε = 2 sinh−1

(
2 sinh

(
ℓ(∂X)

24g − 24 + 12n

))
.

Proof. If X is a local maximum, its orthosystoles fill. So the systole of X intersects an or-
thosystole of X and thus

osys(X) ≥ 2w(sys(X)) = 2 sinh−1

(
1

sinh(sys(X)/2)

)
.

By Theorem 1.1

osys(X) ≤ 2 sinh−1

 1

2 sinh
(

ℓ(∂X)
24g−24+12n

)
 .

Combining the two inequalities yields the result. □
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To deduce the lower bound on the orthokissing number of a local maximizer for the or-
thosystole function from Proposition 7.1 we just need to compute how many disjoint arcs are
needed to fill:

Lemma 7.3. Let S be a surface of signature (g, n). Let A be a filling collection of disjoint
arcs of S. Then

|A| ≥
{

2g − 2 + n if n ≥ 2
2g if n = 1

and the bound is sharp.

Proof. Suppose |A| = k. As A is filling, it cuts S into N1 topological disks and N2 peripheral
annuli. Denote the disks by D1, . . . , DN1 and the annuli by A1, . . . , AN2 .

Each disk Di is a polygon with sides alternating between arcs of A and arcs of the boundary.
Let di be the number of arcs of A, so that Di is a 2di-gon.

One boundary component of an annulus Ai is a boundary component of S and the other is
a polygon with sides alternating between arcs of A and arcs of the boundary. Let ai be the
number of arcs on A in the boundary of Ai. Pick an arc βi from one boundary component of
Ai to the other, so that it intersects the polygonal boundary component of Ai in the middle
of an arc of the boundary of S (see Figure 6). Cutting Ai along βi yields a polygon Bi with
2(ai + 2) sides, half of which are arcs of the boundary of S.

Figure 6. A disk and an annulus in S ∖ A. The green sides are arcs of A,
the black ones are arcs of the boundary of S and the orange one is a βi.

We now compute the Euler characteristic using the CW-complex decomposition of S given
by the Di and the Bi. Note that each arc of A appears in exactly two polygons, so

N1∑
i=1

di +

N2∑
i=1

ai = 2k.

Each vertex of a Di or Bi is identified with another vertex, so the number of 0-cells is

1

2

(
N1∑
i=1

(2di) +

N2∑
i=1

(2(ai + 2)

)
=

N1∑
i=1

di +

N2∑
i=1

ai +

N2∑
i=1

2 = 2k + 2N2.

The edges of Di or Bi not coming from arcs of the boundary of S are identified in pairs,
while the other edges are not identified with any other edge. Thus the number of 1-cells is

1

2

(
N1∑
i=1

di +

N2∑
i=1

(ai + 2)

)
+

N1∑
i=1

di +

N2∑
i=1

(ai + 2) = k +N2 + 2k + 2N2 = 3k + 3N2.

Finally, the number of 2-cells is N1 +N2. So

2− 2g − n = 2k + 2N2 − (3k + 3N2) +N1 +N2 = −k +N1,

which implies that k ≥ 2g − 2 + n+N1.

If n = 1, all arcs start and end at the unique boundary component, so there cannot be
annuli in the complement of A, i.e. N2 = 0 and N1 ≥ 1. So k ≥ 2g, with equality if and only
if N1 = 1.

If n ≥ 2, k ≥ 2g − 2 + n, with equality if and only if N1 = 0.

To prove that the two bounds are sharp, we just need to exhibit:
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• if n = 1, a collection of arcs whose complement is a single polygon;
• if n ≥ 2, a collection of arcs whose complement is a union of annuli.

These are given in Figure 7.

n = 1

a1
b1

a−1
1

b−1
1

n ≥ 2

a1
b1

a−1
1

b−1
1

Figure 7. Filling collections of arcs of minimal size

□

Proposition C is now an easy corollary of the results of this section:

Corollary 7.4. Let S be a surface of signature (g, n), for n ≥ 2, and let 0 < ℓ1 ≤ · · · ≤ ℓn.
Then if X ∈ Teich(S; ℓ1, . . . , ℓn) is a local maximum for the orthosystole function, okiss(S) ≥
2g − 2 + n.

Proof. This follows from Proposition 7.1, Lemma 4.2 and Lemma 7.3. □

Appendix A. Orthosystole and injectivity radius of the boundary

The goal of this appendix is to explain why Bavard’s result in [3] can be stated in terms of
orthosystoles and orthokissing numbers.

Let us start with the setup by Bavard. He considers a compact hyperbolic surface X and
a collection c of pairwise disjoint simple closed geodesics, which is assumed to contain the
boundary components of X, if there are any. For such a collection, he defines Σ ⊂ X to be the
union of all points x ∈ X such that there are at least two (geodesic) paths from x to c realizing
the distance of x from c. He proves ([3, Lemme 1]) that Σ is a graph whose edges are geodesic
segments. The injectivity radius of c is

inj(c) := min
x∈Σ

d(x, c).

We recall here the statements from (1), (3) and (4) of [3, Théorème 1] for the injectivity
radius of c = ∂X.

Theorem A.1. Let X be a compact hyperbolic surface with non-empty boundary of signature
g, b and let L be the sum of its boundary lengths. If r is the injectivity radius of ∂X, then

sinh(r) sinh

(
L

12(6g − 6 + 3n)

)
≤ 1

2
,

with equality if and only if all edges of Σ have the same length and meet at 2π
3 angles. Moreover,

for every L, there is a hyperbolic surface attaining the bound.

The equivalence of this theorem and Theorem 1.1 follows from the next two lemmas:

Lemma A.2. If c = ∂X, inj(c) = osys(X)
2 .

Proof. If α is an orthosystole, the midpoint x of α belongs to Σ and thus osys(X)
2 ≥ inj(c).

Conversely, if x ∈ Σ realizes the injectivity radius of c, look at two distance-realizing paths a1
and a2 from x to c. The concatenation a2 ∗ a−1

1 is an essential arc from the boundary to the
boundary, so if α is the orthogeodesic in the homotopy class, we have

osys(X) ≤ ℓα(X) ≤ ℓa1
(X) + ℓa2

(X) = 2d(x, c) = 2 inj(c).

□
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Lemma A.3. Suppose c = ∂X; then Σ has edges of the same length which meet at 2π
3 angles

if and only if okiss(X) = 6g − 6 + 3n.

Proof. Suppose first that Σ has edges of the same length which meet at 2π
3 angles. Drop the

perpendiculars from the vertices of Σ to c; by [3, Lemme 1], we get a decomposition of X
into isometric quadrilateral with angles π

2 ,
π
2 ,

π
3 ,

π
3 , where the side between the right angles

is a segment of a boundary component and the opposite one is an edge of Σ. In particular,
for every edge of Σ, there is an orthogeodesic which intersects it once orthogonally at its
midpoint. By construction of Σ, this orthogeodesic has length 2 inj(c), so by Lemma A.2 it
is an orthosystole. As observed after the statement of [3, Théorème 1], since X deformation
retracts onto Σ, 2− 2g − n = v − e, where v is the number of vertices of Σ and e the number
of edges. As Σ is trivalent, v = 2

3e. So there are at least

e = 6g − 6 + 3n

orthosystoles, and by Lemma 4.2 this means that okiss(X) = 6g − 6 + 3n.

Conversely, okiss(X) = 6g−6+3n, X admits a hexagon decomposition of orthosystoles, and
it is not hard to show that Σ is the graph obtained by gluing one tripod per hexagon, and the
tripod is given by the barycenter and the three perpendiculars from the barycenter to the three
orthosystoles. As all hexagons are isometric, Σ satisfies the conditions in the statement. □
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