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Endpoints of smooth plane dendroids

In memory of professors Gary Gruenhage and Piotr Minc

David S. Lipham

ABSTRACT. Let X be a smooth dendroid in the plane. We prove that the endpoints
of X are arcwise accessible from R? \ X, and that the space of endpoints E(X) has
the property of a circle. Also if F(X) is totally disconnected and 1-dimensional, then
X must contain a Cantor set of arcs. An example is constructed to show that this is
false outside the plane.

1. Introduction

Dendroids form an important class of uniquely arcwise connected continua. They
can be defined as hereditarily arcwise connected continua without simple closed curves.
Every contractible 1-dimensional continuum is a dendroid [3|, and all dendroids are tree-
like [5]. Plane dendroids are non-separating and have the fixed point property [15, 2|.
For a nice survey with open problems, see [16].

The focus of this paper is on smooth plane dendroids; equivalently, plane dendroids
which admit radially convex metrics [4]. We will show that each endpoint of a smooth
plane dendroid X is accessible from R?\ X, with at most one exception (§3). From here
we find that the space of endpoints E(X) is circle-like, in that every two of its points are
separated by two other points (§4). Bellamy constructed in [1] a smooth plane dendroid
with connected endpoint set which he observed to have this property.

We also examine the dimension of endpoints. It is well-known that the endpoints of
a smooth plane dendroid can be 1-dimensional even when they are totally disconnected.
The endpoints of the Lelek fan have this property [11]. Apparently, the Lelek fan has
an uncountable collection of pairwise-disjoint arcs, meaning that it is non-Suslinian.
Using the result of §4, we will show that if X is any smooth plane dendroid, and E(X)
is totally disconnected and 1-dimensional, then X must be non-Suslinian (§5). Here
planarity is critical: We construct in §6 a (non-planar) Suslinian smooth dendroid D
such that F(D) is homeomorphic to the endpoints of the Lelek fan.

Acknowledgements. The example presented in §6 is attributed to Ed Tymchatyn
and Piotr Minc, although it was not published until now. I am grateful to Ed Tymchatyn
for sharing with me the ideas for its construction.
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prove accessibility of endpoints.

2020 Mathematics Subject Classification. 54F15, 54F45, 54F50.
Key words and phrases. dendroid, smooth, endpoint, totally disconnected, zero-dimensional, Suslinian,
plane, accessible.

1



2 D.S. LIPHAM

2. Basic notions

A continuum is a compact connected metric space.

A continuum is hereditarily unicoherent if every two of its subcontinua have
connected intersection. A dendroid is a hereditarily unicoherent, arcwise connected
continuum. If X is a dendroid and x,y € X then we let a(z,y) denote the unique arc
in X with endpoints x and y.

A dendroid X is smooth if there exists p € X such that if x, — x in X, then
a(x,,p) = a(x,p) in the Hausdorff distance. The point p is called an initial point of
X; alternatively we say that X is smooth at p. If X is a dendroid smooth at p, then
there exists an equivalent metric d on X such that d(z,p) = d(z,y) + d(y, p) whenever
y € a(x,p); see |4, 9]. Such a metric is called radially convex with respect to p.

A point e € X is an endpoint if e is an endpoint of every arc in X that contains it.
We let E(X) denote the set of all endpoints of X. Note that by [19, Lemma 3|, each
arc in X is contained in a maximal arc in X, each of whose endpoints must belong to
E(X). The endpoint set of a smooth dendroid is always G [20].

A fan is a dendroid X with a point p such that each component of X \ {p} is
homeomorphic to (0, 1]. The Cantor fan is the quotient of C' x [0, 1] that takes C' x {0}
to a point. The Lelek fan is a smooth fan with dense set of endpoints [11].

A continuum is Suslinian if X contains no uncountable collection of non-degenerate,
pairwise-disjoint subcontinua [12|. The following helps to understand the Suslinian
structure of a smooth dendroid.

PROPOSITION 1. Let X be a smooth dendroid. The following are equivalent.
(1) X is Suslinian,
(2) X \ E(X) is the union of an increasing sequence of dendroids X1 C Xo C ...
such that E(X,) is countable;
(3) X \ E(X) is a countable union of arcs.

PROOF. (1)=-(2): Suppose that X is Suslinian. Let d be a radially convex metric
on X. Define f,, : X — X by f,(x) is the unique point y of a(x, p) such that

d(y,p) = (1 =) -d(z,p).

By continuity of f,,, the image X,, = f,,[X] is a dendroid. If e € F(X,,), then there is
an arc o, C X such that a, N X,, = {e}. Note that if e # ¢’ then a. Ny = & or
ae Nae = {e}. Since X is Suslinian this means that F(X,) must be countable.

(2)=(3): It suffices to show that each X, is a countable union of arcs. Let n be given.
Assuming that E(X,,) is countable, M = {a(e,¢’) : e,¢’ € E(X,,)} is also countable.
Given any x € X, there is a maximal arc M C X,, containing x. Then z € M € M.
Therefore X,, = |J M.

(3)=(1): Suppose that X \ E(X) = [J 7, a, is a countable union of arcs. Let Q,, be
a countable dense subset of v,. We claim that the countable set @ = [J 7, @, intersects
each subcontinuum of X. Clearly this will imply that X is Suslinian. Let K be any
subcontinuum of X. Then K contains an arc 5 C X \ E(X). By Baire’s theorem, there
exists n such that «,, contains an arc of 3. Then Q, NG # &. So QN K # &. O

3. Accessibility of endpoints

If U is an open subset of R? then a point z € R? \ U is accessible from U if there
is an arc @ C R? such that o \ U = {z}. When a continuum X is understood from
context, we will say that x € X is accessible if z is accessible from R? \ X.
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A continuum X is colocally connected at x € X if for every open set V' containing
x there is an open U C V such that x € U and X \ U is connected.

A simply connected domain is a bounded open subset of the plane which is
connected and simply connected (and therefore homeomorphic to R?).

LEMMA 2. Let X be a dendroid in the plane. Let U be an open set in the plane
such that X \ U is connected. If W is any connected component of U, then X \ W is
connected.

PROOF. Let z,y € X \ W. Let f, : [0,1] < X such that f,(0) =z and f,(1) € W.
Let a = inf{t € [0,1] : f(t) ¢ U}. Define f, and b similarly for y. Let a be an arc in
X\ U from f,(a) to fy(b). Then g = f,[0,a]Ua U £,[0,b] is an arc in X \ W from z to
y. This shows that X \ W is connected. O

LEMMA 3. Let X be a dendroid in the plane. Let S C R? be a circle with comple-
mentary components U bounded and V' unbounded, such that X meets V. Suppose that
W is a connected open subset of U such that X \W is connected. Then there is a simply
connected domain W' C U such that W C W' and X \ W' is connected

PROOF. Let W’ be the union of W with all of its bounded complementary compo-
nents. Clearly W C W’ C U. By [18, Theorem 5.4|, each complementary component
of W meets OW. So W’ is connected. Also W' is open and has connected complement
(R*\ WV’ is just the unbounded component of R*\ V). Therefore W’ is simply connected.
Note that X \ W lies wholly in the unbounded component of R? \ W because X \ W is
connected and meets V. Thus X \ W/ = X \ W is connected. O

LEMMA 4. Let X be a dendroid in the plane. Let W C R? be simply connected
domain. If X \ W is connected, then W \ X is connected.

PROOF. Suppose that X \ W is connected but W\ X is not. Then X/(X \ W) is a
dendroid that separates the 2-sphere R?/(R? \ W), a contradiction. O

THEOREM 5. Let X be a plane dendroid. If X is colocally connected at x, then x is
accessible.

PROOF. Let § = diam(X) and for each n = 1,2,3,... let S,, be the circle of radius
d/2n centered at e. Note that X meets the unbounded component of each R?\ S,,. Let
U, be an open set in the bounded component of R?\ S, such that e € U,, and X \ U,
is connected. Let W,, be the connected component of e in U,,. By Lemma 2, X \ W, is
connected. By Lemma 3 there is a simply connected domain W, C U, such that e € W,
and X \ W/ is connected. By Lemma 4, W/ \ X is (path-)connected.

Now let yp € R?\ X. Let ap C R?*\ X be an arc from g, to some y; € W]\ X. Let
yo € WiN W]\ X. Let ay € W]\ X be an arc from y; to y;. Continue this process,
letting v, be an arc in W), \ X from y, to a new point y,4+1 € W, NW;_; \ X. The arcs
a,, form a null sequence, and their only limit point is e. Hence the (locally connected)

continuum |J~ ; o, contains an arc « from y, to e, with a N X = {e}. O

COROLLARY 6. Let X be a smooth plane dendroid with initial point p. Then every
endpoint e € E(X) \ {p} is accessible.

PROOF. By [10, Theorems 3.1 and 3.5], X is colocally connected at e. By Theorem
5, e is accessible. O

REMARK 1. The point p could be an inaccessible endpoint. See Figure 1.

REMARK 2. In Bellamy’s dendroid [1], the endpoints are the only accessible points.
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FIGURE 1. A smooth plane dendroid in which p is an inaccessible endpoint.

4. Separation of endpoints

We show that the space of endpoints of a smooth plane dendroid has the circle-like
property described in §1.
The following is based on the #-curve theorem.

PROPOSITION 7. Let O be a simple closed curve in the plane. Let a,b,c,d € O in
cyclic order. Let U and V be the components of R*\ O. Let a and 3 be arcs in U\ {b,d}

and V' \ {b, d}, respectively, from a to c. Then aU 3 separates b and d.

THEOREM 8. Let X be a plane dendroid, smooth at p. Let e € E(X) \ {p}. For
every v € X \ ale,p) there is a simple closed curve o C R? which separates e from x
and has the property |o N E(X)] < 2.

PROOF. Let ¢/ # p be an endpoint of a maximal arc in X extending a(x,p). Let v
be an arc from e to € such that vy N X = {e, €'}, as provided by Corollary 6 and the
fact that R?\ X is path-connected. Let ¢ € D such that a(q, p) = a(e, p) Na(x,p). The
simple closed curve yUa(e, q) Ua(€’, q) separates the plane into two components U and
V. Assume p € U. Let b € 7.

Claim 1: There is an arc o in U from p to b which misses e and =, and contains
at most one endpoint. We may assume that there exists a sequence of points x, €
UN X\ a(p,q) such that z,, — p. Otherwise p is accessible from U \ X and the claim
becomes trivial. Since X is smooth at p we know a(z,,p) — p and so eventually
a(x,,p) misses e and x. Let oy be a maximal arc in X containing «(z,,p). Then oy
has an endpoint e; € U \ {p}. By Corollary 6, there is an arc as from e; to b such that
as N X ={e}. Put a = a(ey,p) Uas.

Claim 2: There is an arc 8 in 'V from q to b which misses e and =, and contains
at most one endpoint. The proof is similar to that of Claim 1. Note that X NV is a
dendroid smooth at ¢. So in the non-trivial case that there exists z,, € V N X such that
x, — q, eventually a(x,,q) misses e and x. The arc a(x,,q) extends to an arc 3; with
an endpoint e; € V' \ {p}. By Corollary 6, there is an arc 5 from b to es such that
By N X = {ea}. Put B = afez,q) U S

By Proposition 7, 0 = a U U a(p, q) separates e and x. See Figure 2. O

COROLLARY 9. Let X be a smooth dendroid in the plane with initial point p. Within
the space E(X)\ {p}, every two points are separated by two other points.

5. Dimension of endpoints

A space X is totally disconnected if for every two points of X are contained in
disjoint clopen sets. A space X is zero-dimensional if X has a basis of clopen sets.
A space X is almost zero-dimensional if X has a basis of neighborhoods which are
intersections of clopen sets |7]. Observe that:
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FIGURE 2. Proof of Theorem 8.

zero-dimensional = almost zero-dimensional = totally disconnected.
A function ¢ : Z — [0, 00) is upper semi-continuous (USC) if ¢~1[0,¢) is open
for every t > 0. If Z is first countable, then this is equivalent to saying that if z, — 2
and ¢(z,) > p(z) for all n, then ¢(z,) — ¢(z).

PROPOSITION 10 (|7, Theorem 4.15]). A space X is almost zero-dimensional if
and only if X is homeomorphic to the graph of a USC function with zero-dimensional
domain.

LEMMA 11. Let X be a smooth dendroid in the plane and e € E(X) \ {p}. Let U,
be the collection of all open subsets U of X such that e € U and OU N E(X) = &. Put

F(e) = ﬂ U.
Ue Ue
If E(X) is totally disconnected, then F(e) C a(e,p).
PROOF. Suppose z € X\ a(e,p). By Theorem 8 there is an open set U 5 e such that
x ¢ U and F = 0U N E(X) has at most two points. Since F(X) is totally disconnected,

there is an open set V' 3 e such that OVNE(X) =@ and VNF = &. Then UNV € U,
and x ¢ U NV. Therefore x ¢ F(e). O

THEOREM 12. Let X be a smooth plane dendroid with initial point p. If E(X) is
totally disconnected, then E(X) \ {p} is almost zero-dimensional.

PROOF. Suppose that Y = E(X)\ {p} is totally disconnected. For each e € Y there
exists Uy (e), Us(e), ... € U, such that

F(e) = () Un(e).

The collection {U,(e) : e € Y, n > 1} is a basis for a first countable, zero-dimensional
topology Won Y. Let Z = (Y, W). Let d be a radially convex metric on X, and define
v :Z —[0,00) by

() = d(z,p).
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Claim 1: ¢ is USC. Suppose e, — e in Z, and ¢(e,) > ¢(e) for each n. Let = be
any accumulation point of (e,,) in X. Then x € F(e). By Lemma 11, x € a(e,p). And
d(en,p) > d(e,p) implies d(x,p) > d(e, p) by continuity of d. Since d is radially convex
d(e,p) = d(e,x) +d(z,p). So d(e,x) = 0 and x = e. Therefore e,, - e in Y.

Claim 2:'Y 1is homeomorphic to the graph of p. Consider the graph

Gr(p) = {(e,p(e)) e € Y}
as a subspace of Z x [0,00). Apparently, e — (e, p(e)) defines a continuous one-to-one
mapping of Y onto Gr(y). We show that its inverse is continuous. To that end, suppose
that e, — e in Z and ¢(e,) — ¢(e). If x is any accumulation point of (e,) in X, then
x € afe,p) by Lemma 11. Also ¢(z) = ¢(e). So z = e. Therefore ¢, — e in Y.
By Proposition 10, Y is almost zero-dimensional. U

A space X is zero-dimensional at x € X if the point x has a neighborhood basis
of clopen sets. Put

Q(X) = {z € X : X is zero-dimensional at z}
and A(X) =X\ QX).

PROPOSITION 13 ([14, Theorem A]). Let X be a Suslinian plane continuum. If Y
is any totally disconnected Borel set in X, then A(Y') is countable.

PROPOSITION 14 (|13, Theorem 1|). Let Y be an almost zero-dimensional space. If
A(Y) is countable, then Y is zero-dimensional.

THEOREM 15. Let X be a Suslinian smooth plane dendroid. If E(X) is totally
disconnected, then E(X) is zero-dimensional.

PROOF. Suppose that E(X) is totally disconnected. Let p be an initial point of X.
By Theorem 12, Y = E(X) \ {p} is almost zero-dimensional. By Proposition 13, A(Y)
is countable. By Proposition 14, Y is zero-dimensional. By [8, Corollary 1.3.5|, F(X)
is zero-dimensional. O

COROLLARY 16. Let X be a smooth plane dendroid. If E(X) is totally disconnected
and 1-dimensional, then X contains an uncountable collection of pairwise-disjoint arcs.

6. Example

We construct a Suslinian smooth dendroid D as a quotient of the Lelek fan L,
such that E(D) is homeomorphic to E(L). The example shows that Theorem 15 and
Corollary 16 are false outside the plane.

Let’s begin by understanding what a Suslinian quotient of the Cantor fan might
involve. Let C' be the middle-thirds Cantor set. For each

n=01,2,...
let €™ be the natural partition of C' into 2" disjoint closed sets of diameter 37". In
C x [0,1], put (c,0) ~ (d,0) for all ¢,d € C. For each n > 1 define (c,t) ~ (d,t) if ¢
and d are in the same member of " and
tel—-2"1-2"".

The equivalence classes under the relation ~ form an upper semi-continuous decompo-
sition of the Cantor fan, and the quotient space is the Gehman dendrite (see Figure 3).
Notice that the endpoints are untouched by the identification of arcs; the endpoint set
of the Gehman dendrite is the Cantor set.
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FIGURE 3. A quotient of the Cantor fan.

In order to apply a similar construction to the Lelek fan, we will require a few more
definitions. If ¥ and Z are partitions of a set X, then & refines ¥ if for every D € &
there exists C' € € such that D C C. If & is a collection of pairwise disjoint closed
sets, then ¥ respects 7 if for every C' € ¥ and A € &7, either C C Aor CNA=2. A
null partition of X is a countable partition of X whose elements form a null sequence
(i.e. their diameters converge to 0).

LEMMA 17. Let € = {C,, : n < w} be a closed partition of the Cantor set C, and
suppose that A, is a closed subset of C,, for each n < w. Then for any e > 0 there exists
a null partition of C' of mesh < €, which refines € and respects o/ = {A, :n < w}.

PROOF. Each A, is an intersection of clopen sets in C, so C,, \ A,, can be written
as a countable union of pairwise disjoint closed sets B, B, ... and so forth. We now
have that {A, : n < w}U{B! : n,i < w} is a countable partition of C' which can be
enumerated Dy, D1, ... and so on. Each Dy is partitioned by a finite collection & of
pairwise disjoint closed sets of diameter < ¢/k. The desired partition of C' is formed by
the members of all &,’s. O

EXAMPLE 1. There exists a Suslinian smooth dendroid D such that E(D) ~ E(L).

PROOF. Given a function ¢ : C' — [0, 1] with Cantor set domain, we define
L§ = | {e} x 10, 0(c)].
ceC

We consider the Lelek fan L as the quotient of some L that is obtained by shrinking
C x {0} to a single point (the vertex of the fan). Thus E(L) = {{c, ¢(c)) : ¢(c) > 0}.

In Lg, put (c,0) ~ (d,0) for all ¢,d € C. Let A4y ={c€ C:p(c) > 3}. Let € be a
null partition of C' that respects A;. For each ¢ € C let

Cc) =
71 0 otherwise.

If c and d belong to the same member of €, then put (c,t) ~ (d,t) for each t € [0, ¢;(c)].
We continue this procedure as follows.
Suppose n > 2, and "' = {C} : k < w} is a partition of C. Let

Al ={ce O} i p(c) > puoi(c) + £}

Put
_Jena(@) +g; ifee Ui AR
Pn(c) = .
“n-1(c) otherwise.

Let €™ be a null partition of mesh < % that refines ! and respects /™. If ¢ and d
belong to the same member of ™, put (c,t) ~ (d,t) for each t € [p,_1(c), vn(c)].
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It is easily checked that the equivalence classes under ~ form an upper semi-
continuous decomposition of L (note that a sequence of equivalence classes must con-
verge to an entire equivalence class, or to a single point of L), and moreover that D is
a Suslinian smooth dendroid with endpoint set E(L). d

REMARK 3. The dendroid D not planable by Theorem 15. In fact, since F(L) is
uncountable and 1-dimensional at each of its points, by Proposition 13 every plane
continuum that homeomorphically contains E(L) is non-Suslinian.

REMARK 4. A space is called rational if it has a basis of open sets with countable
boundaries. It is known that every rational continuum is Suslinian, and that the converse
is false. The dendroid D is another example of a Suslinian but not rational continuum,
owing to the fact that E(L) is not rational [6, Corollary 4.8|.

REMARK 5. Lelek constructed a Suslinian smooth plane dendroid which is not ra-
tional [12, Example 3.1]. Its endpoints are dense and zero-dimensional.

It is unknown whether a Bellamy dendroid (as in [1]) can be Suslinian.

QUESTION 1. Let X be a smooth plane dendroid. If X is Suslinian, then is E(X)
not connected?
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