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Abstract We discuss and develop Bayesian dynamic modelling and predictive
decision synthesis for portfolio analysis. The context involves model uncer-
tainty with a set of candidate models for financial time series with main
foci in sequential learning, forecasting, and recursive decisions for portfolio
reinvestments. The foundational perspective of Bayesian predictive decision
synthesis (BPDS) defines novel, operational analysis and resulting predictive
and decision outcomes. A detailed case study of BPDS in financial forecast-
ing of international exchange rate time series and portfolio rebalancing, with
resulting BPDS-based decision outcomes compared to traditional Bayesian
analysis, exemplifies and highlights the practical advances achievable under
the expanded, subjective Bayesian approach that BPDS defines.
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1 Introduction

Portfolio optimization is a major area of application and success of Bayesian
decision analysis, going back at least to Markowitz (1952) and arguably
earlier (de Finetti, 1940; Markowitz, 2006; Rubinstein, 2006). More recent
Bayesian literature has emphasized financial time series modelling and fore-
casting to link with portfolio decision analysis (e.g. Quintana and West,
1987; West and Harrison, 1989, chap. 15; West and Harrison, 1997, chap.
16; Aguilar and West, 2000; Karlsson, 2013; Zhao et al, 2016; Gruber and
West, 2016 and 2017; Prado et al, 2021, chap. 10), along with continuing
concern for customizing utility specifications to guide Bayesian portfolio se-
lection (e.g. Irie and West, 2019, and references therein)

Here we explicitly address portfolio decision goals when multiple forecast-
ing models are to be explored and combined. Accounting for model uncer-
tainty in pure forecasting is routine (e.g. West and Harrison, 1997; Jacobson
and Karlsson, 2004; Andersson and Karlsson, 2008; Cheng et al, 2012; Aye
et al, 2015; Wang et al, 2016; Steel, 2020; Lavine et al, 2021; Wang et al,
2023; Bernaciak and Griffin, 2024), but decision goals are not generally in-
corporated in these statistical approaches. In portfolio analysis, the main goal
of forecasting asset returns is selecting desirable portfolios; we argue that
this should be a key focus in combining relevant forecasting models. Recent
Bayesian “goal-focused” methods aim to incorporate specific prediction goals
beyond those of traditional Bayesian model averaging (e.g. Eklund and Karls-
son, 2007; Pettenuzzo and Ravazzolo, 2016; Lavine et al, 2021; Loaiza-Maya
et al, 2021; West, 2020; McAlinn, 2021; Bernaciak and Griffin, 2024). How-
ever, this literature rarely addresses explicit decision goals. A related litera-
ture concerns combining portfolio rules (e.g. Kan and Zhou, 2007; Demiguel
et al, 2009; Tu and Zhou, 2011; Fiiss et al, 2024), though without explicit
consideration of forecasting models.

Bayesian Predictive Decision Synthesis (BPDS), introduced in Tallman
and West (2023), closes these gaps. BPDS is a fully Bayesian, theoretically
founded framework to evaluate, compare, and combine sets of candidate
models based on both their anticipated and historical decision outcomes as
well as pure predictive performance and validity. We develop BPDS here in
the setting of financial forecasting for portfolio decisions. BPDS is an ex-
pansion of Bayesian Predictive Synthesis (BPS) (McAlinn and West, 2019;
McAlinn et al, 2020; McAlinn, 2021; Johnson and West, 2023), with ex-
plicit incorporation of the decision context and goals. BPDS aims to more
highly weight models and outcomes that are better-performing in both rec-
ommended (Bayesian decision-theoretic) optimal decisions and more tradi-
tional statistical forecasting accuracy metrics. The context of sequential port-
folio decision analysis is a canonical setting for the development and exploita-
tion of BPDS for improved predictive decision-making in the central practical
context of model uncertainty.
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2 Bayesian Predictive Decision Synthesis
2.1 Model Uncertainty and Portfolio Decisions

Quantities of interest and relevant notation are defined as follows, indexed
by time ¢ and implicitly representing the process of sequential analysis as
time progresses. This is a standard setting of Bayesian model uncertainty
analysis, indexed by time. We use the standard notation that D;_; represents
all information and data accrued up to and including time ¢ — 1, the point at
which a decision is to be made to target some outcome at time ¢. Relevant
quantities include:

* A forecast outcome g—vector y;. Examples are the time ¢ daily returns on
q assets, representing the percent change in price from time ¢ — 1 to time
t, or a set of returns over a multi-period path ahead from times ¢ to ¢t + h
for some portfolio horizon .

* An explicit, decision problem targeting the outcome at time ¢, in this case
selecting a set of portfolio weightings x; on the ¢ assets.

* A set of J models M;, j = 1:J, such as a set of dynamic regression
models for the asset return vector with different predictors across models,
or other distinct model forms.

* Initial model probabilities 7;; = Pr(M;|D;_1), such as from traditional
Bayesian model averaging (BMA) based on prior data and information,
and/or from historical performance in goal-focused forecasting such as
Bayesian adaptive variable selection (AVS: Lavine et al, 2021, a special
case of BPS)- or related methods (e.g. Loaiza-Maya et al, 2021).

* Predictive densities provided by each model M}, p¢;(y¢|M;, Ds—1). For
example, a one-step predictive for that day’s FX returns, or a multi-step
predictive for daily returns over the next i days.

* Model M; applies decision analysis with its utility function u;; (y:,x:) to
evaluate the model-specific, optimal portfolio x;; for time ¢. This would
be the optimal portfolio decision if the decision-maker restricted the anal-
ysis only to include M and its associated utility function.

Faced with this model uncertainty question, the decision-maker aims to syn-
thesize information across models to forecast y; and decide on a final port-
folio weight vector x; under whatever overall utility function is chosen. This
is then repeated sequentially over time.

2.2 BPDS

In the above setting, BPDS has the following ingredients. This follows and ex-
tends the main methodological developments from the BPDS theory in Tall-
man and West (2023).
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2.2.1 Initial Mixture and Baseline Model

BPDS requires a “baseline” predictive density po(y:| Mo, D:—1) based on a
notional additional model M, and a corresponding baseline optimal deci-
sion x;o. The baseline serves as an over-dispersed “safe haven” model whose
predictions more heavily favor regions of the y; outcome space than are less
well-supported by the initial mixture of the J models. The initial probabili-
ties m;; are extended and renormalized to include a non-zero - an initially
“small” probability on My, representing the concern that “all (initial .J) mod-
els are wrong”, i.e., the issue of model set incompleteness.

We thus have the density yo (yt7 Mj |Dt_1) = T¢jPtj (yt|Mj7Dt—1) defined
over models j = 0:J and outcomes y; jointly. The margin for y,;, simply
pe(ye|Di—1) = ZFOJ 7P (Y| M, Di—1), is the called the initial mixture.

This framework reduces to the traditional (sequential, dynamic) Bayesian
model uncertainty analysis when 7, = 0 and if the other 7;; are appropri-
ately based on historical data (West and Harrison, 1997, Sect. 12.2). In that
special case, the initial mixture p;(y:|D;—1) is simply that based on standard
BMA.

2.2.2 BPDS Model Probabilities and Densities

BPDS modifies the initial density p;(y:, M;|D;—1) to an updated BPDS den-
sity fi(ye, M;|Di—1) o ouj(ye)pe(ye, M;|Di—1) where the ay;(y:) are posi-
tive, model and outcome-dependent weights. That is,

J(ye, Mj|Di_1) = ki (ye)pej (ye My, Di—1), ye €RY, j =00, (1)

with k; normalizing over both outcomes and models, i.e.,

kit = Z mjar;  where ay; Z/ i (ye)pj (ye| M, De—1)dy.  (2)
§=0:J yi€R?

The implied margin for y; is the BPDS mixture

FilDe) = D Fjfiy (vel My, Deon) 3)

7=0:J
where, for each model j = 0:J,
fii (Ve MG, Dicv) = agj o (yo)p; (vl M;, De—q)  and 7y = kymyjag. (4)

The f;;(:|-) are BPDS model predictive densities, the 7;; are BPDS model prob-
abilities, and the mixture f(y;|D;_1) is the BPDS predictive density.
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2.2.3 Portfolio BPDS Scores and Relaxed Entropic Tilting
BPDS model weights are generally and uniquely defined as

;i (ye) = exp{Tis; (ye, %) } (5)

with ingredients discussed below. The model-specific optimal portfolio vec-
tors x;; play critical roles in these BPDS model weightings.

First, s;;(y:, x;) is a vector of scores depending on outcome y, and the op-
timal portfolio x;; under M. Here x,; is generated by optimizing whatever
utility function is chosen for the decision analysis under M. The elements of
st;(y+, X¢;) are realized values of £ utility functions at the M ;—optimal port-
folio x;; were y; to be the actual outcome. These utility functions are chosen
so that higher scores are desirable. This allows for scoring models based on
multiple metrics, expanding to multi-criteria decision analysis. Restrictions
on score functions depend on the context and models involved. An example
of a class of relevant score functions is given in the following section.

Second, 7, is a BPDS tilting vector that defines relative weights and the
directional impact of changes in score elements. Larger values in 7, lead to
more appreciable BPDS weightings, while 7, = 0 recovers the prior mix-
ture. The term tilting relates to the Bayesian decision-theoretic foundation
and derivation of eqn. (5) which is based on relaxed entropic tilting (RET:
see Tallman and West, 2022; 2023, section 3; West, 2023, sect. 2.3).

The specification of 7, references expected scores. Taking expectations
over (y:, M;) jointly, the initial model p;(y;, M;|D;—1) has initial expected
score Ep[sy;(y+, %) Di—1]. High scores are desirable. The RET framework
aims to achieve scores higher than initial, asking for the BPDS distribution
ft(yt, M;|Di—1) to have expected score at least Ep[s;;(y:,%t;)|Di—1] + €
for some non-negative k—vector €; with at least one positive element. With
this constraint, RET chooses f(:|-) to minimize the the Kiillback-Leibler (KL)
divergence of p(:|-) from f(-|-), yielding two key results: (i) f(-|-) is de-
fined in eqn. (1) with weighting function precisely as in eqn. (5); (i) f(|-)
achieves exactly the expected score improvement bound specified by ¢, i.e.,
E¢[stj(ye,%x¢5)|De—1] = Eplstj(yt,%¢j)|De—1] + €:. The RET theory shows that
any feasible choice of €; corresponds to a unique ;. The decision-maker has
the liberty to choose ¢, in each specific portfolio context; various choices are
explored in the portfolio examples below.

3 Risk: Return Score Functions for Portfolios

The section temporarily drops the time index ¢ from the notation, for clarity.
Thus y is a vector of asset returns, and s;(y, x;) a vector score on M using
model-specific portfolio vector x; were y to be the observed outcome.
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3.1 Utility Theory, Bivariate Scores and Risk Tolerance

Consider k£ = 2 score dimensions and the class of vector scores s;(y,x;) =
(e, —€3/2)" where e; = r; — r* with portfolio return r; = x/;y and a chosen
target portfolio return r*.

These bivariate scores are motivated by the classic, bounded-above risk-
averse exponential utility function for return r given by U(r) = — exp(—r/d)
for some risk tolerance level parameter d > 0. A second-order Taylor series
approximation around r = r* gives U(r) ~ U,(r) with quadratic function
U,(r) = U(r*){1 — e/d + €?/(2d*)} and e = r — r*. This is a very accurate
approximation across ranges of r,r* that correspond to realistic models for
return prediction in portfolio analyses, especially for daily returns. Up to con-
stants, U,(r) essentially reduces to the Markowitz function e — €% /(2d), max-
imized at r = r* + d. Were we to consider BPDS based on only a univariate
score, then s;(y,x;) = e; — €7 /(2d) is faithful to this natural utility function
and theoretical considerations. This has the contextual interpretation of d as
a chosen level of risk tolerance. The implied BPDS weight function would
then be o (y, x;) = exp{7(e; — €7 /(2d))}.

In contrast, choosing the suggested and more general bivariate score
sj(y,%;) = (ej, —e3/2)" allows flexibility in addressing risk tolerance. This
leads to o(y,x;) = exp{me; — T2€7/2} which agrees with the univariate
case above if/when 7 = 7, and d = 7, /79; this defines a maximizing target
return r* + d at this level of risk tolerance. Hence the bivariate score allows
more flexibility in the role of the return/risk elements and their impact on
the BPDS analysis while overlaying and replicating the classical exponential
utility-based example as a special case. Operationally, it also yields the direct
interpretation of 71 /7 as the implied level of risk tolerance.

3.2 Bivariate Scores and Tilting Vectors

In this section, we step aside from the mixture context to focus on generating
portfolio-relevant insights from RET applied to a single model. This aids in
understanding the roles of implied tilting vectors in the portfolio context and
the relation to risk tolerance, among other details.

For this, consider predictions from any initial model y ~ p(y) such that
the implied return » = x’y ~ p(r) has mean E,(r) = r* + f, where f can be
positive or negative, and variance V,(r) = ¢g. We highlight aspects of the im-
plied distribution of the bivariate score s(y,x) = (e, —e?/2)’ involving excess
return e = r — r*, and practical implications for BPDS analysis.
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3.2.1 Distributions of Scores

Whatever the distribution of r and the score vector under p(y) may be, know-
ing only E,(r) = r* + f and V, (r) = q implies B, [s(y,x)] = (f,—(f>+q)/2)"
To explore the distribution of s(y, x) further, useful insights arise in assuming
a normal approximation to p(r).

With daily returns on FX and stock indices, f and ¢'/? are typically of the
order of 0.01 or less; this is relevant in exploring score uncertainty via the
variance matrix V,, = V,[s(y,x)]. Were p(r) to be normal, then it is easy to
show that V,,(—e?/2) = (f? + q/2)V,(e). Hence, e is more uncertain than
—e2/2if f? + q/2 < 1. With practical levels of small % returns, this is very
likely, and V,,(—e?/2) is typically much smaller than V, (e). That is, we expect
to be much more uncertain about the first score element than the second.

While the two score elements are deterministically related, their joint dis-
tribution is not wholly degenerate since knowing —e?/2 does not precisely
determine e. In fact, the covariance is easily be shown to be C(e, —€?/2) =
—fq. The implied score correlation is then p = Cor(e, —€?/2) = —fo(fZ +
0.5)"1/2 where fo = f/./g. Note that: (i) p has the sign of —f and depends
only on fy, the expected excess return in standardized N (0, 1) units; (ii) p is
a decreasing function of f; and |p| is an increasing function of fy; (iii) over
the range fo = —1 to fo = 1, the correlation decreases from roughly 0.8 to
—0.8; (iv) for any given ¢, the absolute value |p| is an increasing function of
|f|; (v) for any given f, the value |p| is a decreasing function of q.

3.2.2 RET Distribution and Tilting Vector in the Normal Example

Suppose that p(y) is normal. For a given tilting vector 7 = (71, 72)’ and any x,
the resulting RET distribution f(y) x exp{7's(y,x)}p(y) is then also normal
with easily computed moments. The implied f(r) on the return r = x’y alone
is then normal with moments that are easily shown to be

Ef(r) =r"+(f +qn)/(1+qr) and Vi(r) =q/(1+q72).
Hence the expected score m = (mq,ms)’ under f(-) has elements

my = Ef(r—r*) = (f +qm)/(1 +qm2),

6
mo = —Ef[(r — r)?/2 = —{q+ (1 + qr2)m3}/{2(1 + qm2)}. (©)

These equations are easily solved for 7 as a function of m to give analytic
evaluation of the tilting vector. This can be shown to give

—myiq —m3f — 2mo
q(m? + 2mo f)

—m? —2mg — q
q(m? + 2my)

= and 7 =
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With m; > f and 7; > 0 it follows that 75 > 0 as is desirable. Then eqn. (6)
leads to 71 > 7of or d > f where d = 7 /7, has, as noted earlier, interpreta-
tion in terms of risk tolerance. We also easily have that

d=11/m2 = (m1q+mif+2maf)/(m]+2ms + q). (7)

Some examples below choose r* so that E,(r) = r*, i.e., f = 0 in the above.
In that case, eqn. (7) reduces to the simple form d = mq/(m3+2ma+q). This
special case leads to p = 0, i.e., the two score dimensions are uncorrelated.
The above expressions for d relate to our earlier comment about the bi-
variate score allowing the analysis to more flexibly reflect actual attitudes to
risk through the direct specification of expected target scores (mi, ms)’, any
choice of which directly determines risk tolerance. Some examples follow.

3.2.3 Examples: Tilting Vectors and Risk Tolerance

Numerical examples highlight the relationships between taget expected scores
and the implied tilting vector 7 and associated risk tolerance d = 71 /7.
Specifying target expected scores m under f(-|-) can be simply addressed
through utilizing percent improvements over the initial expectations under
p(+]-). Figures 1, 2 and 3 display values of 71, 72 and d = 7/, for a few

m =0.01,q=0.27 m = 0.08, = 0.06

1.0
0.9
0.8
0.7
* N
IS m = 0.15, g = 0.30 m = 0.09, q = 0.69
07. .
0.0 0.2 0.4 0.0 0.2 0.4
.
my

Fig. 1: 7, across ranges of score improvement percentages m} and mj, and
m=E(r),q=V(r).



8 Tallman & West

m=0.01,q = 0.27

m =0.08, q = 0.06

1.0

0.7 : ' ‘ ' '
£ Lo = 0.15.a = 0.30 m = 0.09, q = 0.69
0.9
0.8
0.7 ‘ ' | ' '
0.0 0.2 0.4 0.0 0.2 0.4

.
my

Fig. 2: 7 across ranges of score improvement percentages mj and m3, and
m=E(r),q=V(r).

/T2
m=001,q=0.27 m = 0.08, q = 0.06
1.0
- >-4
* :
£ Lo. M=0154a=030 m =0.09, q = 0.69
0.9
0.8
0.7
0.0 0.2 0.4 0.0 0.2 0.4

*

my

Fig. 3: 71 /72 across ranges of score improvement percentages mj and m3,
and m = E(r),q =V (r).
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practical values of m = r* = E,(r) and ¢ = V,(r) and against different levels
of percent target improvements in each of the score dimensions; the percent
levels are denoted by mj and mJ5, where 100m/] is the percent improvement
in expected return over m and 100m} is the percent improvement in —E,,[(r—
r*)2]/2. The general lack of correlation between the two score dimensions is
due to the lack of prior score correlation. Then, the risk tolerance level 7 /75
may become large for small values of m3 and large values of mj, indicating
that these values should be carefully set to properly constrain risk.

4 Case Study: Data, Models and Portfolio Construction
4.1 Setting and Data

The study involves an extension of the example applying BPDS to portfolio
analysis in Tallman and West (2023), with more recent data, adapted models,
and an in-depth investigation of the BPDS hyperparameters used.

The data set includes daily returns for ¢ = 9 currencies beginning in Jan-
uary 2001 and ending in December 2021. The motivation for this asset set
is to ensure model performance is not anchored in the performance of the
market indices used in Tallman and West (2023), with the goal of providing
additional value beyond the market return. The ¢ = 9 FX assets are noted in
Table 1 with cumulative returns over the time period in Figure 4.

4.2 Models and Model-Specific Portfolios

The M are time-varying vector autoregressive (TV-VAR) models applied
to log FX prices. Details of these standard models are in Tallman and West
(2023, Appendix) with full theory in Prado et al (2021, sect. 10.8). On day
t — 1 each model predicts the vector log(p;) where p; is the vector of asset
prices on day ¢. These transform to returns via y; = p:/pt—1 — 1.

Ticker Currency Ticker Currency

AUD Australian Dollar JPY Japanese Yen

EUR Euro NOK Norwegian Krone
NZD New Zealand Dollar ZAR South African Rand
GBP UK Pound Sterling CHF Swiss Franc

CAD Canadian Dollar

Table 1: FX series in the portfolio case study.
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Fig. 4: Cumulative FX returns for the ¢ = 9 currencies.

The dataset is divided into 3 time periods. The period to the beginning of
2015 is used to fit a large set of models, the next 4 years (2015-2018 inclu-
sive) is used to select a subset of “better-performing models”, and the final
3 years (2019-2021 inclusive) defines a hold-out data test period. The larger
initial set contains models of AR order p € {1, 2, 3}, reflecting potential 1—3
day momentum effects in FX prices. In each model, each univariate series
yy; is predicted by all values of y;_,.,—1 with differing coefficients for each
asset. These coefficients evolve over time as multivariate random walks; each
model uses a state evolution discount factor 6 = 0.9995 to govern the degree
of these changes. The model set is further expanded with a range of possi-
ble discount factors 3 governing the evolution of the time-varying volatility
matrix in each model (Aguilar and West, 2000; Irie and West, 2019; Prado
et al, 2021, chaps. 9 & 10). Discount factor values 5 € {.94,.98,.995} define
differing degrees of change in levels of volatility of each of the assets over
time, as well as— critically for portfolio analysis— in the inter-dependencies
among the assets as represented by time-varying covariances, with smaller
values allowing for more adaptation. This gives 9 different model parameter
(8,p) combinations.

In each TV-VAR model M, standard Bayesian forward-filtering analy-
sis applies, and forecasting for daily portfolio rebalancing uses Monte Carlo
samples of the predictive distributions for log-prices mapped to the mean
vector and covariance matrix on the percent return scale. Model-specific de-
cisions x.; use standard Markowitz mean-variance optimization: these min-
imize predicted portfolio variances among sum-to-one portfolios with daily
expected returns constrained to specified target levels r* (e.g. Prado et al,
2021, sect. 10.4.7). The initial set of J = 27 BPDS model/decision pairs is
completed by the use of 3 different benchmark targets »* € {0.05,0.10,0.15}
coupled with each of the 9 TV-VAR models. The actual target return for each
model M; on any day ¢ is r;; = min{max(f;;,107°),7*} where f;; is the
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mean vector of predicted returns. This adaptive return target helps down-
weight desired returns when the predictions favor small values; this helps to
prevent large portfolio positions that would result from using the benchmark
target. It also ensures that a portfolio that will lose money is never targeted
in expectation. On each day, the resulting optimized portfolio weight vector
x¢; is thus a vector of asset weights that has two constraints: they sum to one,
i.e,, x;;1 = 1, and they have the specified target E,, (x;,y:|M;,D;—1) = r};
for the expected return that day.

4.3 Selection of Models for BPDS Analysis

From the initial set of 27 models, a greedy strategy is used to select a subset
of “good” models from analysis over the initial time period 2015-2018. This
is to reduce cross-model dependencies in the resulting smaller set and to fo-
cus on some of the potentially more useful predictive and decision models.
This is done sequentially, reducing from the full model set at each step. At
each step: (i) consider the set of remaining models that have historical daily
returns whose empirical correlation with those of each of the models already
selected are lower than a defined correlation bar taken as 0.95; (i) among
these, identify the model with the highest realized 1-day portfolio Sharpe
ratio (SR- computed as realized daily mean return divided by realized daily
return standard deviation over the historical data, multiplied /252 to trans-
form to the annual scale); (iii) add this model to the selected set until there
are no models left with a positive Sharpe ratio or small enough correlation.

As the models share the same mathematical foundation, there is a high
level of cross-model dependence in the initial set so a rather high correlation
bar is used to yield several models in the selected set. The bar at 0.95 led
to J = 7 selected models with variability in the defining model order and
volatility matrix discount factor parameters. This suffices for our study; the
goal is not necessarily to create an optimal model set that will lead to the
highest returns, but rather a well-performing model set for demonstrating
aspects and benefits of BPDS in portfolio decisions.

One relevant detail to note is that the returns for January 15th, 2015
were removed from the analysis. That was the day the Swiss Franc (CHF)
was decoupled from the Euro, which resulted in an immediate gain of nearly
30% relative to the US dollar. This led to extreme returns across all models,
and greatly down-weighted the impact of performance throughout the rest of
the test period. To avoid biasing model selection on this single-day event, this
day is ignored in the analysis. The selected models, their Sharpe ratios, and
maximum return correlations with other selected models over 2015-2018
are shown in Table 2. Cumulative returns and Sharpe ratios from portfolios
under each of these models over the entire period are shown in Figure 5.
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B r p SR p B r* p SR p
0.995 0.15 1 041 0.89 098 015 2 0.20 0.95
0.97 015 1 040 0.89 0.995 0.05 3 0.11 0.95
0995 01 2 025 095 097 01 3 010 0.92
0.995 0.15 3 022 095

Table 2: Annualized values of realized Sharpe ratios (SR) and maximum daily
return correlation p with other selected models within the set for the J = 7
models selected based on data over 2015-2018.

—— B=.995,r=.15p=3,0.43
201 —— B=.995,r=.1,p=2,0.39
B=.995r=.15p=1,0.35
c B=.98,r=.15p=2,028
2 101 B=.97,r=.1,p=3,022
& B=.995r=.05p=3,022
X —— B=.97,r=.15,p=1,02
0_
_10_

B 0 P P 9

Fig. 5: Cumulative portfolio returns over 2015-2018 for the J = 7 selected
models. The empirical SR for each is displayed after the label in the legend
indicating the model-specific parameters (3, = r*,p) .

5 Initial BPDS Analysis
5.1 Portfolio Setting: Forecast Horizon and Portfolio Targets

The initial example replicates the set-up of the portfolio example in Tallman
and West (2023) but with the new data set and expanded model set. The
score function is s;(y:, x4j) = [x},ye, —(xi,;y: — r7)?/2]', with further rel-
evant details discussed in Section 2 above. The r; in the first dimension is
dropped for simplicity and ease of specification for the target score improve-
ment in terms of a percentage. As r* is just a constant with respect to y;
and x.;, this does not change any previous results and has no effect on the
resulting analysis. Note that, unlike the settings in Tallman and West (2023),
r; now depends on ¢, selected such that ry = >, ; m;ry;, a dynamic tar-
get based on the specified targets in the underlying models. This does not
affect the mechanics of the BPDS methodology; it simply ensures that BPDS
is more adaptive to exploit the fact that the model targets are now changing
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over time. Several BPDS specifications are evaluated to help understand how
BPDS is applied and to explore robustness.

One main variant explored is the portfolio forecast horizon. With this mo-
tivation, results from evaluating both h = 1 and h = 5 day ahead portfolios
are included. The 1-day portfolios are the portfolios introduced previously,
calculated using the predicted next-day returns. The 5-day portfolios are
made by fitting each TV-VAR model to daily returns, as in the 1-day case,
but then forecasting asset returns 5 days into the future. This gives predic-
tions py;(y¢|M;, D;—1) where now y; is redefined as y, = ps44/p+—1 — 1. The
moments of this distribution are then used to define 5-day ahead portfolios
with the same sum-to-one constraint along with the revised target expected

return in M; as min{max(fff), 10*6),7“;‘]»} where ft(]?r)) is the mean forecast
vector 5-days ahead. Though calculated using a 5-day portfolio, these port-
folios will still be updated each day; a given portfolio will only be held for a
single day before rebalancing. The interest in 5-day ahead analyses is partly
contextual in that such portfolios can have better risk profiles and smaller
movements in portfolio weights. Also, models might be more easily differen-
tiated, as single-day forecasts tend to be more similar across models while
the longer horizon can show more distinctions.

Further explorations consider ranges of chosen percent target score im-
provements, with BPDS target expected scores set as the element-wise prod-
uct vector m; = my * m*, where m; = E,[s;;(y¢,%¢;)|Di—1] and m* =
(mj, m}) for all combinations of m} € {1.05,1.3} and mj € {.8,.90,.95,.99}.
The initial probabilities are set using discounted BMA probabilities (Zhao
et al, 2016); that is, m; o nﬁ_lvjpj(yt,ﬂl)t,g) at each t. The discount factor
«a = 0.8 provides discounting of historical model weights between days and
hence- relative to standard BMA which has « = 1- analysis avoids the even-
tual degeneration of model probabilities. The BPDS portfolio is calculated
using Markowitz optimization, just as in each of the models, but now with a
target return of r; + d; with risk tolerance d; = 741 /72. This is the value of
r that maximizes 7}s:(r) = 7.7 — T12/2(r — r;)?, the weighted sum of the
score function utilizing BPDS weighting vector ;. We additionally restrict
the tilting vector such that d; < r; so that the portfolio target can be at most
doubled; this is in order to obviate large values earlier seen in Figure 3, and
is enforced in the computations to evaluate 7, at each time point.

5.2 Some Summary Results

Comparative results involving cumulative returns and Sharpe ratios are seen
in Figure 6. Additional comparisons come from the standard BMA analy-
sis (myp = 0, 7, = O for all ¢, and target return r;). Then, in an effort to
advantage BMA through a modified specification of the portfolio setup, we
added extensions for potential improvements on BMA using target returns
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Fig. 6: Cumulative returns under BPDS with discounted BMA initial proba-
bilities and return target r; + 741 /742 for a variety of score targets and subject
to 741 /7t2 < r;. This analysis covers the secondary testing period 2019-2021
with portfolio horizon h = 1 (upper) and h = 5 (lower). Annualized values
of realized Sharpe ratios are displayed after the model labels in the legends.
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(1 + m3)r; and 2rf, labelled as “improved BMA’ and “BMA 2” respectively.
These connect to the fact that m7] is the desired percent return score improve-
ment in BPDS, and 2r; is the upper bound on r; + 741 /7¢2 which defines the
target return for BPDS.

BPDS is able to achieve superior cumulative returns and Sharpe ratios
compared to BMA and “improved BMA”, across all settings of m;. The 5-day
portfolios improve over BMA comparisons but generally see relatively lack-
luster results compared to the 1-day portfolios. This is mainly due to the use
of initial BMA-based weights. BMA focuses wholly on 1-step ahead predic-
tive accuracy, so the initial probabilities used here in BPDS generally favour
models based on predictive performance at this short-term horizon. This rep-
resents a disconnect in BPDS when focused on 5-day portfolios. A relevant ex-
tension would be weighting models using 5-day forecast accuracy/likelihood
weightings. Then, there is no obvious pattern of improvement across differ-
ent values of mj; and mj,, partly due to the restriction placed on d; = 741 /72
that emphasizes control on the risk:reward behavior regardless of the target
setting and drives most of the results.

BPDS outcomes are generally close to those of BMA 2, but do not em-
pirically improve upon the latter in this first set of comparisons. This indi-
cates that most of the performance gains come from the target increase and
that the tilting and variation in the target increase are not as helpful. How-
ever, note that the methodology for setting the score improvement here is
rather simplistic, using a grid of percent improvements. In particular, this
does not consider the underlying distribution of the score function which im-
plies, for example, that a 10% decrease in variance could be a fairly large
jump, whereas a 5% increase in the target return itself is a fairly small im-
provement. This observation is key to the methodological extension in the
next section that explicitly involves consideration of aspects of the predictive
distributions for scores in setting the BPDS targets— and yields substantial
advances in BPDS performance and dominance over the BMA extensions.

6 Practicable Portfolio BPDS: Structured Score Targets
6.1 Score Standardization and Eigenscore Targets

Recent use of BPDS in economic applications in Chernis et al (2024) intro-
duced target expected score specifications that reflect the importance of rel-
ative scales and dependencies among the elements of each s;;(y, x;;) under
the initial distribution p,(y:, M;|D;_1) at each time ¢t — 1. We have discussed
aspects of this above in Section 3.2.1 and revisit it here. A key point is to
exploit aspects of the distribution of scores to guide choices of relevant tar-
gets that are not wildly inconsistent with the distribution. This aids in avoid-
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ing overly aggressive or inconsistent targets such as those highlighted in the
naive score targets used in the previous section.

At each time ¢ —1, write my, and V, for the mean vector and variance ma-
trix of sy (ye, x45) = [X},ye, —(X},;y¢ — r7)?/2] under p;(y¢, M;|D;_1). With
eigendecomposition V, = E;D7E} where D, = diag(d;1, d;2) with positive
elements, the eigenscore D 'Ej[s;; (y, Xt;) — 1My,) is a standardized score vec-
tor with zero mean vector and identity variance matrix. Specified shifts in
each dimension of the standardized score vector are now on the same scale
and so directly comparable, while the orthogonality implies that there will
be limited interaction between them in the ensuing BPDS analysis. Hence it
is natural and intuitive to define BPDS analysis based on the specification
of standardized expected scores that then map back to the original score scale.
That is, with a specified target vector m;. = (my1, mtc2)’ on the standardized
scale the implied target score on the original scale is m; = m; + E,D,m,..

We know from Section 3.2.1 that Vy, is typically close to diagonal (and
exactly diagonal in some cases) with a much larger variance on the first score
element than the second. That is, E; ~ I or exactly I, and §;; > d;2. Hence
m; =~ (or exactly =) m; + Dymye = (m4e18e1, Mee2di2)’. So, with compa-
rable values of the two standardized score targets, the fact that §;; > ;9
implies a much greater— and undesirable- increase of the target expected
return (first element of m;) than the risk (second element of m;). Further
insights come from theoretical results in Tallman and West (2023, sect. 3.4)
that define approximate expressions for 7; when specified target scores are
“small deviations” from my,. In the current setting that theory leads to
Ti ~ Dy mye = (41 /011, Muca/ds2)'. This shows that, for given m;, and
knowing d;1 > 2, there is much greater shrinkage towards zero of 7; than
of 745. This implies that a much larger improvement is needed in the return
dimension to achieve a similar level of tilting as in the risk dimension.

An initial use of the standardization concept in this setting explores m;. =
€l for some small ¢ > 0 defining equal increments in each score dimension.
To assess relevant values of ¢, we begin with a focus on the target excess
return itself. Set my; = my + ¢|lmy| for some ¢ such that 0 < ¢ < 1,
so that 100¢ represents the percent target increase over the initial expected
return. Equating this to m¢; = M + €04 yields the (small) e; = ¢y 1/04.
The implication for the target for the risk element of the score vector is that
Mo + @My dea/0r1- This target score strategy is now used in FX reanalysis.

6.2 FX Portfolio Analysis Revisited

6.2.1 Example Analysis with Eigenscores

The analysis of Section 5 is repeated, now setting BPDS score targets with the
eigenscore strategy. We compare results under a range of percent improve-
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ments 100¢ on the expected return. Note that in this setting there is the result
that the implied risk tolerance level d; = 71 /72 & d:2/d:1. As a result, the
BPDS target return improvement will generally be constant across ¢ and any
improvements for two different values of ¢ will be the result of the tilting
and not due to different increases in the BPDS target return.

The analysis is repeated for all ¢ € {0.01,0.025,0.05,0.1,0.15,0.2}. Cumu-
lative returns and Sharpe ratios are shown in Figure 7. Results are shown
from analysis using the approximation 7; ~ (myc1/d:1, Mee2/d+2)’ as well as
from exact calculations; this aids in empirical investigation of the accuracy of
the approximation. Resulting differences in d; = 7; /72 and 7; between the
approximate and exact analyses are in Figures 8 and 9.

Portfolio results under all BPDS specifications far exceed those under BMA
and the improved BMA approaches, using either the exact or approximate
calculations of 7. The 1-day portfolios have superior results in terms of
both returns and Sharpe ratios, again mainly due to the lack of connection
between the initial weights and the BPDS score in the 5-day case. There
are some small differences between the exact and approximate versions for
larger values of ¢. This is expected as higher ¢ correspond to higher values
of ¢, and the theoretical approximation is for “small ¢”. The high increases in
returns are partly explained by Figure 8; the return target is drastically in-
creased, leading to a target of a nearly 0.35% daily return. This aggression in
terms of seeking high returns leads to the extreme returns seen in Figure 7.
Since the Sharpe ratios are normalized, this BPDS specification can be real-
istically compared with BMA despite the difference in return scales, and the
results demonstrate realistic and marked improvements using BPDS.

6.2.2 Repeat Analysis using Modified Target Scores

The above results are very positive in terms of BPDS improving decision out-
comes. However, the large values of risk tolerance d; = 741 /72 generated
overly optimistic return targets. Knowing that d; = d;2/d;1 in this setting,
and that this ratio cannot be changed by altering ¢, a modified choice of stan-
dardized target score is suggested to address this. This simple modification
replaces the standardized target €1 with €(1, ¢)’ for a chosen constant ¢ > 0.
This factor ¢ represents and induces differences in the degrees of tilting in
the return and risk dimension of the score. In particular, a value ¢ > 1 natu-
rally acts to increase the role of the risk score element and hence can balance
an overly optimistic/aggressive return target driving the first element. Some
numerical examples below explore this. In these examples, ¢ is chosen based
on the initial test data analysis; its value is determined so that the average
over the test time period of generated values of d; is equal to d*, a chosen
average threshold on the risk tolerance measure.

The examples here are based on choices d* = 0.05h and d* = 0.1h, linked
to the h = 1 and h = 5 day horizons for portfolio targets. This implies that,
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Fig. 7: Cumulative returns in BPDS eigenscore analysis for different values of
target expected return defined by ¢. Results are from the period 2019-2021,
for 1-day (upper) and 5-day (lower) portfolios, and with portfolio return
target r; + 741 /72. Annualized values of realized Sharpe ratios are displayed
after each label in each of the figure legends.
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Fig. 8: Return target increase 741 /72 (left) and the difference between the
exact 741 /7+2 and the approximation 7;; /7, (right) using eigenscore BPDS
for a variety of ¢.

T - Ty T,— Ty
0.2
1.0
0.1
< 0.5 1 — $=0.01
' \ ¢=0.025
0.01 Adatheis {ME‘M&&!J.\& 0.0 M L JL' ” [T T i ) l.ull Wi o z:g(l)s
— ¢=0.15
$=0.2
0.6 1 — ¢=03
0.2 $=05
ul? 0.4
c ol 0.2

o o N D
oY ot ot oL
) o b o b a(\,’),

0‘9 010 0’1X 07:‘
o 2 e .o 2
\’6 \6 \3 O

@ o«

Fig. 9: Difference between the exact 7; and the approximation 7} using
eigenscore BPDS for various ¢.
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on average over the initial test data set, the return target increase will be
less than either 0.05 or 0.1 for the 1-day portfolio. This will lead to a more
practically reasonable target compared to the aggressive 0.35 daily target in
the analysis of the previous section, an analysis in which the tolerance was
unconstrained. This leads to ¢ = 7.4 and ¢ = 3.7 respectively when i = 1,
and ¢ = 3.25 and ¢ = 1.625 when h = 5. Portfolio outcomes shown here are
based on analyses using the exact calculation of r; the approximate values
are now used only as starting points for the optimization to evaluate 7.
Realized cumulative returns and Sharpe ratios are shown in Figure 10.

Realized cumulative returns are now on a much more practically reason-
able scale, while still maintaining a nice risk-adjusted return. All BPDS speci-
fications for the 1-day portfolios are seen to substantially improve over BMA
relative to the initial exploration in Section 5. Note also that the empiri-
cal cumulative returns under the 5-day strategy are more comparable with
those under the 1-day strategy than in the earlier, unconstrained analysis.
That said, there is still room for improvement in the multi-day strategies
as they are here still using initial model probabilities based on variants of
BMA-based weights. As noted earlier, the latter are wholly based on 1-step
forecast accuracy. This is a main question in terms of future development
of more appropriate initial model weightings, among which will be to adapt
prior goal-focused scoring approaches to refine the specification of the initial
m¢; (Lavine et al, 2021; Loaiza-Maya et al, 2021).

There is some- though relatively limited- variation in empirical returns as
¢ is varied, again due almost wholly to differences in resulting tilting. Small
values of ¢ are empirically preferable in terms of Sharpe ratios, contrasting
with the results from the naive analysis of the previous section. This again
demonstrates the importance and value of “small” changes in BPDS target
score relative to initial predictions.

Exploration of realized characteristics of portfolio decisions is naturally
tied to the time period chosen and displayed. The cumulative return trajecto-
ries and Sharpe ratios shown in Figure 10 are for the full 3-year test period.
While not a main point in terms of developing and illustrating the BPDS
methodology, it is of contextual interest to look at outcomes over different
time periods. Our choice of 2019-2021 inclusive is contextually interesting
due to the major differences in economic and market behavior over these
years, and some insights are generated by looking at year-specific results. As
a snap-shot, Table 3 lists realized Sharpe ratios for each specific year under
the 1-day portfolio strategy. The main points to note are (i) the year-to-year
differences, with 2020 being a stand-out in terms of relatively poor outcomes
across models, and (ii) the strong consistency in Sharpe ratios within each
year as ¢ varies to define different BPDS targets.

As already emphasized, the empirical returns under BPDS as shown in Fig-
ure 10 are substantially superior under any of the BPDS variants relative to
BMA. That the Sharpe ratios per year under BMA are relatively competitive
is due to the fact that BPDS spreads the model probabilities more than BMA
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Fig. 10: Cumulative returns using standardized target improvement and re-
turn/risk upper constraint d*. Results are from the period 2019-2021, for
1-day (upper) and 5-day (lower) portfolios, and with portfolio return target
r; + dy with dy = 741 /72 constrained to be less than d*. Annualized values of
realized Sharpe ratios are displayed after each ¢ label in each legend.
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d* = 0.05 d* =0.10
2019 2020 2021 | 2019 2020 2021

¢=0.01 | 221 021 198 | 214 0.16 234
¢=20.025| 221 0.21 197 | 214 0.15 233
¢=0.05 | 219 022 197 | 214 0.16 233
¢=0.1 221 021 189 | 214 0.18 229
¢=0.15 | 220 026 190 | 212 0.16 228
¢=0.2 221 013 184 | 216 0.14 224
BMA 2.17 023 0.88 | 217 0.23 0.88

Table 3: Annual values of realized Sharpe ratios using standardized target
improvement and return/risk constraint d* for h = 1.

each time point, and always has some probability on the over-diffuse baseline
to address the model-set incompleteness question. Hence BPDS will almost
surely define heavier-tailed forecast distributions for y, that lead to higher
uncertainties on portfolios than under BMA. The latter will typically under-
estimate uncertainties as it concentrates quickly around one of the initial J
models. This helps in interpreting the realized Sharpe ratios that represent
just one aspect of “performance”, and that is balanced by the realized re-
turn outcomes under BPDS as shown in Figure 10 to emphasize this point in
this case study. Here, under BPDS the appropriately increased levels of un-
certainty are balanced by substantially increased realized returns. Additional
metrics highlighting differences between the strategies— including purely pre-
dictive comparisons in the full space of returns defined by models for y,— will
be of interest in further comparisons.

7 Summary Comments

BPDS is a foundational framework that enables the integration of expected
and historical decision outcomes in predictive model uncertainty settings. As
exemplified here, BPDS can potentially improve realized decision outcomes
and thus serve as an important tool for portfolio managers for model com-
bination, calibration, and evaluation. The case study developed in this paper
demonstrates the potential for BPDS to improve the trade-off between risk
and reward in portfolio analysis. It also provides additional methodology for
understanding relevant score functions and setting target scores in the port-
folio setting. The results further confirm and expand on the positive results
originally reported in Tallman and West (2023). The focused development
of customized BPDS target scores, and the practical results in terms of desir-
able portfolio characteristics, demonstrate the importance of incorporating
information about the underlying score distribution, and of the contextual
interpretation of the elements of the score vector. The examples show the po-
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tential for BPDS to improve on current Bayesian model averaging methods in
portfolio analysis, with the prospects for more adaptive portfolios that have
better resulting portfolio outcomes.

There are various potential future directions for applying BPDS in finance.
One is in expanding the set of score functions to include other relevant met-
rics, such as portfolio churn or skewness/kurtosis of the return distribution,
and of course other features of portfolio “paths” over multiple forecast hori-
zons (e.g. Irie and West, 2019; Tallman, 2024). Further investigation of the
questions related to setting BPDS target scores is also relevant, especially to-
wards improved understanding of how small changes in the target score lead
to changes in the resulting decisions. It is also of interest to consider utilizing
initial weights that are customized and potentially more relevant than those
based on simple, following prior literature on formal Bayesian model weight-
ing based on historical outcomes with respect to specific predictive and de-
cision goals (e.g. Eklund and Karlsson, 2007; Lavine et al, 2021; Bernaciak
and Griffin, 2024; Chernis et al, 2024, and references therein).
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