
Reverse Influential Community Search Over Social Networks
(Technical Report)

Qi Wen

East China Normal University

Shanghai, China

51265902057@stu.ecnu.edu.cn

Nan Zhang

East China Normal University

Shanghai, China

51255902058@stu.ecnu.edu.cn

Yutong Ye

East China Normal University

Shanghai, China

52205902007@stu.ecnu.edu.cn

Xiang Lian

Kent State University

Kent, Ohio, USA

xlian@kent.edu

Mingsong Chen

East China Normal University

Shanghai, China

mschen@sei.ecnu.edu.cn

ABSTRACT
As an important fundamental task of numerous real-world ap-

plications such as social network analysis and online advertis-

ing/marketing, several prior works studied influential community

search, which retrieves a community with high structural cohesive-

ness and maximum influences on other users in social networks.

However, previous works usually considered the influences of the

community on arbitrary users in social networks, rather than spe-

cific groups (e.g., customer groups, or senior communities). Inspired

by this, we propose a novel Reverse Influential Community Search
(RICS) problem, which obtains a seed community with the max-

imum influence on a user-specified target community, satisfying
both structural and keyword constraints. To efficiently tackle the

RICS problem, we design effective pruning strategies to filter out

false alarms of candidate seed communities, and propose an effec-

tive index mechanism to facilitate the community retrieval. We

also formulate and tackle an RICS variant, named Relaxed Reverse
Influential Community Search (R

2
ICS), which returns a subgraph

with relaxed structural constraints and having the maximum influ-

ence on a user-specified target community. Comprehensive experi-

ments have been conducted to verify the efficiency and effectiveness

of our RICS and R
2
ICS approaches on both real-world and synthetic

social networks under various parameter settings.

PVLDB Reference Format:
Qi Wen, Nan Zhang, Yutong Ye, Xiang Lian, and Mingsong Chen. Reverse

Influential Community Search Over Social Networks (Technical Report).

PVLDB, 18(1): XXX-XXX, 2025.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Luminous-wq/RICS.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

0.6

target community Q User Keyword Set

𝟏 {Food, Clothes}

𝟐 {Food, Movies}

𝟑 {Food, Cat}

𝟒 {Food, Health}

𝟓 {Music, Clothes}

𝟔 {Food Safety, Fishing}

𝟕 {Food, Shopping}

𝟖 {Rap, Food}

𝟗 {Health, Food}

𝟏𝟎 {Cat, Food}

𝟏𝟏 {Football , Food}

𝟏𝟐 {Books, Shopping}

0.7

0.8
0.7 0.5

0.5

0.6

0.8

0.6
0.5 0.8

0.7

0.7
0.9

0.8

0.6

0.5
0.7

0.6

0.9

0.6
0.60.8

0.9

0.70.7

0.8
0.8

0.8
0.7

0.6
0.8

0.50.6

0.8

0.7

(a) soical network G (b) keyword sets of vertices

information propagation

𝟓
𝟏

𝟑

𝟒

𝟐

𝟏𝟐

𝟕

𝟖

𝟔

𝟏𝟎

𝟗

𝟏𝟏

Figure 1: An RICS example over social network 𝐺 .

1 INTRODUCTION
For the past decades, the community search has attracted much

attention in various real-world applications such as online adver-

tising/marketing [1–4], social network analysis [5–8], and many

others. Prior works on the community search [9–12] usually re-

trieved a community (subgraph) of users from social networks with

high structural and/or spatial cohesiveness. Several existing works

[11, 13, 14] considered the influences of communities and studied

the problem of finding communities with high influences on other

users in social networks.

In this paper, we propose a novel problem, named Reverse In-
fluential Community Search (RICS) over social networks, which

obtains a community (w.r.t. specific interests such as sports, food,

etc.) that has high structural cohesiveness and the highest influence

on a targeted group (community) of users (instead of arbitrary users

in social networks). The resulting RICS communities are useful for

various real applications such as online advertising/marketing in

social media [15] and disease spread prevention in contact networks

[16]. Below, we give motivation examples of our RICS problem.

Example 1. (Online Advertising and Marketing Over Social
Networks) In social networks (e.g., Twitter), a sales manager wants to
ensure the optimal advertisement dissemination of some products to a
targeted group of users through social networks. Figure 1(a) shows an
example of social network𝐺 , where each user vertex 𝑣𝑖 (1 ≤ 𝑖 ≤ 12)
is associated with a set of keywords (indicating the user’s interests, as

ar
X

iv
:2

40
5.

01
51

0v
3

 [
cs

.S
I]

 7
 M

ay
 2

02
4

https://doi.org/XX.XX/XXX.XX
https://github.com/Luminous-wq/RICS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

depicted in Fig. 1(b)). For example, user 𝑣3 is interested in delicious food
and cute cats. In this scenario, the sales manager can specify a group of
targeted customers (e.g., 𝑣1 ∼ 𝑣4) for online advertising and marketing
(forming a target community 𝑄), and issue an RICS query to identify
a seed community, 𝑆 , of users who have the highest impact on the
targeted customers in 𝑄 (e.g., via tweets/retweets in Twitter). Users
in the returned seed community 𝑆 will be given coupons or discounts
to promote the products on social networks, and most importantly,
indirectly affect the targeted customers’ purchase decisions. ■

Example 2. (Disease Spread Prevention viaContact Networks)
In real application of infectious disease prevention, there exists some
community of vulnerable people (e.g., senior/minor people) who are
either reluctant or unable to take preventive actions such as vaccines,
due to religion, age, and/or health reasons. The health department
may want to identify a group of people (e.g., relatives, or colleagues)
through contact networks [16] who are most likely to spread infec-
tious diseases to such a vulnerable community, and persuade them
to use preventive means (e.g., COVID-19 vaccine). In this case, the
health department can exactly perform an RICS query to obtain a
seed community, 𝑆 , of people who have the highest disease spreading
possibilities to the targeted vulnerable community 𝑄 . ■

The RICS problem has many other real applications such as

finding a group of researchers with the highest influence on another

target research community in bibliographical networks.

Inspired by the examples above, in this paper, we consider the

RICS problem, which obtains a community (called seed community)
that contains query keywords (e.g., food and clothing) and has

the highest influence on a target user group. The resulting RICS

community contains highly influential users to whom we can pro-

mote products for online advertising/marketing, or suggest taking

vaccines for protecting vulnerable people in contact networks.

Note that, efficient and effective answering of RICS queries is

quite challenging. A straightforward method is to enumerate all

possible communities (subgraphs), compute the influence score of

each community with respect to the target group, and return a com-

munity with the highest influence score. However, this approach

is not feasible in practice, due to the large number of candidate

communities.

To the best of our knowledge, previous works have not con-

sidered the influences on a target user group. Therefore, previous

techniques cannot work directly on our RICS problem. To address

the challenges of our RICS problem, we propose a two-stage RICS

query processing framework in this paper, including offline pre-

computation and online RICS querying. In particular, we propose

effective pruning strategies (w.r.t., query keyword, boundary sup-

port, and influence score) to safely filter out invalid candidate seed

communities and reduce the RICS problem search space. Further-

more, we design an effective indexing mechanism to integrate our

pruning methods seamlessly and develop an efficient algorithm for

RICS query processing.

In this paper, we make the following major contributions.

(1) We formally define the reverse influential community search
(RICS) problem and its variant, relaxed reverse influential
community search (R

2
ICS), on social networks in Section 2.

(2) We design an efficient query processing framework for

answering RICS queries in Section 3.

(3) We propose effective pruning strategies to reduce the RICS

problem search space in Section 4.

(4) We devise offline pre-computation and indexing mecha-

nisms in Section 5 to facilitate pruning and online RICS

algorithms in Section 6.

(5) We develop an efficient online R
2
ICS processing algorithm

to retrieve community answers with the relaxed constraints

in Section 7.

(6) We demonstrate through extensive experiments the effec-

tiveness and efficiency of our RICS/R
2
ICS query processing

algorithms over real/synthetic graphs in Section 8.

2 PROBLEM DEFINITION
This section first gives the data model for social networks with the

information propagation in Section 2.1, then provides the defini-

tions of target and seed communities in social networks in Section

2.2, and finally formulate a novel problem of Reverse Influential
Community Search (RICS) over social networks in Section 2.3.

2.1 Social Networks
In this subsection, we model social networks by a graph below.

Definition 1. (Social Network, 𝐺) A social network 𝐺 is a con-
nected graph in the form of a triple (𝑉 (𝐺), 𝐸 (𝐺),Φ(𝐺)), where𝑉 (𝐺)
and 𝐸 (𝐺) represent the sets of vertices (users) and edges (relationships
between users) in the graph 𝐺 , respectively, and Φ(𝐺) is a mapping
function: 𝑉 (𝐺) × 𝑉 (𝐺) → 𝐸 (𝐺). Each vertex 𝑣𝑖 ∈ 𝑉 (𝐺) has a
keyword set 𝑣𝑖 .𝐿, and each edge 𝑒𝑢,𝑣 ∈ 𝐸 (𝐺) is associated with an
activation probability 𝑃𝑢,𝑣 .

In a social-network graph 𝐺 (given by Definition 1), each user

vertex 𝑣𝑖 contains topic keywords (e.g., user-interested topics like

movies and sports) in a set 𝑣𝑖 .𝐿, and each edge 𝑒𝑢,𝑣 is associated with

an activation probability, 𝑃𝑢,𝑣 , which indicates the influence from

user 𝑢 to user 𝑣 through edge 𝑒𝑢,𝑣 . Here, the activation probability,

𝑃𝑢,𝑣 , can be obtained based on node attributes (e.g., interests, trust-

worthiness, locations) [17], network topology (e.g., node degree,

connectivity) [18, 19], or machine learning techniques [15].

Information Propagation Model: In social networks𝐺 , we con-

sider an information propagation model defined below.

Definition 2. (Information Propagation Model) Given an
acyclic path 𝑃𝑎𝑡ℎ𝑢,𝑣 = 𝑢1 → 𝑢2 → · · · → 𝑢𝑚 between vertices 𝑢
(= 𝑢1) and 𝑣 (= 𝑢𝑚) in the social network 𝐺 , we define the influence
propagation probability, Pr (𝑃𝑎𝑡ℎ𝑢,𝑣), from 𝑢 to 𝑣 as:

Pr (𝑃𝑎𝑡ℎ𝑢,𝑣) =
𝑚−1∏
𝑖=1

𝑃𝑢𝑖 ,𝑢𝑖+1 , (1)

where 𝑃𝑢𝑖 ,𝑢𝑖+1 is the activation probability from vertex 𝑢𝑖 to vertex
𝑢𝑖+1.

Following themaximum influence path (MIP) model [20], an MIP,

MIP𝑢,𝑣 , is a path from 𝑢 to 𝑣 with the highest influence propagation

probability (among all paths 𝑃𝑎𝑡ℎ𝑢,𝑣), which is:

MIP𝑢,𝑣 = argmax

∀𝑃𝑎𝑡ℎ𝑢,𝑣
Pr (𝑃𝑎𝑡ℎ𝑢,𝑣). (2)

2

The influence score, inf _score𝑢,𝑣 , from vertex 𝑢 to vertex 𝑣 in the

social network 𝐺 is given by:

inf _score𝑢,𝑣 = 𝑃𝑟 (MIP𝑢,𝑣). (3)

2.2 Community
In this subsection, we formally define two terms, target and seed
community, as well as the influence from a seed community to a

target community, which will be used for formulating our RICS

problem.

Target Community:A target community is a group of users whom

we would like to influence. For example, in the real application

of online advertising/marketing, the target community contains

the targeted customers to whom we would like to promote some

products; for disease prevention, the target community may contain

vulnerable people (e.g., senior/minor people) whom we want to

protect from infectious diseases.

Formally, we define the target community as follows.

Definition 3. (Target Community) Given a social network 𝐺 ,
a center vertex 𝑣𝑞 , a list, 𝐿𝑞 , of query keywords, and the maximum
radius 𝑟 , a target community,𝑄 , is a connected subgraph of𝐺 (denoted
as 𝑄 ⊆ 𝐺), such that:

• 𝑣𝑞 ∈ 𝑉 (𝑄);
• for any vertex 𝑣𝑖 ∈ 𝑉 (𝑄), we have 𝑑𝑖𝑠𝑡 (𝑣𝑞, 𝑣𝑖) ≤ 𝑟 , and;
• for any vertex 𝑣𝑖 ∈ 𝑉 (𝑄), its keyword set 𝑣𝑖 .𝐿 contains at

least one query keyword in 𝐿𝑞 (i.e., 𝑣𝑖 .𝐿 ∩ 𝐿𝑞 ≠ ∅),
where 𝑑𝑖𝑠𝑡 (𝑥,𝑦) is the shortest path distance between 𝑥 and 𝑦 in 𝑄 .

Seed Community: In addition to directly influence the target

community (e.g., advertising to targeted users in social networks,

or protecting vulnerable people in contact networks), we can also

find a group of other users in𝐺 (for advertising or protecting, resp.)

that indirectly and highly influence the target community. Such a

group of influential users forms a seed community.

Definition 4. (Seed Community) Given a social network𝐺 , a
set, 𝐿𝑞 , of query keywords, a center vertex 𝑣𝑠 , an integer parameter 𝑘 ,
the maximum number, 𝑁 , of community users, and the maximum
radius 𝑟 , a seed community, 𝑆 , is a connected subgraph of 𝐺 (denoted
as 𝑆 ⊆ 𝐺), such that:

• 𝑣𝑠 ∈ 𝑉 (𝑆);
• |𝑉 (𝑆) | ≤ 𝑁 ;
• 𝑆 is a 𝑘-truss [21];
• for any vertex 𝑣𝑖 ∈ 𝑉 (𝑆), we have 𝑑𝑖𝑠𝑡 (𝑣𝑠 , 𝑣𝑖) ≤ 𝑟 , and;
• for any vertex 𝑣𝑖 ∈ 𝑉 (𝑆), its keyword set 𝑣𝑖 .𝐿 contains at

least one query keyword in 𝐿𝑞 (i.e., 𝑣𝑖 .𝐿 ∩ 𝐿𝑞 ≠ ∅).

In Definition 4, the seed community 𝑆 follows the 𝑘-truss struc-

tural constraint [21, 22], that is, two ending vertices of each edge

in the community 𝑆 have at least (𝑘 − 2) common neighbors (in

other words, each edge is contained in at least (𝑘 − 2) triangles).
This 𝑘-truss requirement indicates the dense structure of the seed

community.

The Calculation of the Community-to-Community Influ-
ence:We next define the community-level influence, 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 ,

from a seed community 𝑆 to a target community 𝑄 (w.r.t. topic

keywords in 𝐿𝑞) in social networks 𝐺 .

Definition 5. (Community-to-Community Influence) Given
a target community 𝑄 , a seed community 𝑆 , the community-to-
community influence, inf _score𝑄,𝑆 , of seed community 𝑆 on target
community 𝑄 is defined as:

inf _score𝑆,𝑄 =
∑︁

𝑢∈𝑉 (𝑆)

∑︁
𝑣∈𝑉 (𝑄)

inf _score𝑢,𝑣, (4)

where inf _score𝑢,𝑣 is the influence of vertex 𝑢 on vertex 𝑣 (as given
in Equation (3)).

Intuitively, in Definition 5, the community-to-community influ-

ence inf _score𝑆,𝑄 (as given in Equation (4)) calculates the summed

influence for all user pairs (in other words, collaborative influence

from users in seed community 𝑆 to that in target community 𝑄).

2.3 The Problem Definition of Reverse
Influential Community Search Over Social
Networks

In this subsection, we propose a novel problem, named Reverse
Influential Community Search (RICS) over social networks, which

retrieves a seed community 𝑆 with the highest influence on a given

target community in a social network 𝐺 .

The RICS Problem Definition: Formally, we have the following

RICS problem definition.

Definition 6. (Reverse Influential Community Search Over
Social Networks, RICS) Given a social network𝐺 = (𝑉 (𝐺), 𝐸 (𝐺),Φ(𝐺)),
a set, 𝐿𝑞 , of query keywords, an integer parameter 𝑘 , the maximum
number, 𝑁 , of community users, and a target community 𝑄 (with
center vertex 𝑣𝑞 , radius 𝑟 , and query keywords in 𝐿𝑞), the problem
of reverse influential community search (RICS) returns a connected
subgraph (community), 𝑆 , from the social network 𝐺 , such that:

• 𝑆 satisfies the constraints of a seed community (as given in
Definition 4), and;

• the community-to-community influence, inf _score𝑆,𝑄 , is max-
imized (i.e., 𝑆 = argmax

𝑆⊆𝐺
inf _score𝑆,𝑄).

Intuitively, the RICS problem retrieves a keyword-aware seed

community 𝑆 that has the highest influence on the target commu-

nity 𝑄 . In real applications such as online advertising/marketing,

we can issue the RICS query over the social network 𝐺 and ob-

tain a seed community 𝑆 of users to whom we can give group

buying coupons or discounts to (indirectly) influence the targeted

customers in the target community 𝑄 .

A Variant, R2ICS, of the RICS Problem: In Definition 6, our

RICS problem will return the maximum influential seed community,

where a seed community needs to fulfill some structural require-

ments (e.g., 𝑘-truss and radius constraint, as given in Definition 4).

In this paper, we also consider a variant of the RICS, named Relaxed
Reverse Influential Community Search (R

2
ICS), which obtains a set

of communities with the relaxed structural constraints and having

the highest influence.

Definition 7. (RelaxedReverse Influential Community Search,
R2ICS) Given a social network 𝐺 = (𝑉 (𝐺), 𝐸 (𝐺),Φ(𝐺)), a set, 𝐿𝑞 ,
of query keywords, the maximum number, 𝑁 , of community users,
and a target community𝑄 (with center vertex 𝑣𝑞 , radius 𝑟 , and query

3

Table 1: Symbols and Descriptions
Symbol Description
𝐺 a social network

𝑉 (𝐺) a set of vertices 𝑣𝑖
𝐸 (𝐺) a set of edges 𝑒 (𝑢, 𝑣)
Φ(𝐺) a mapping function𝑉 (𝐺) × 𝑉 (𝐺) → 𝐸 (𝐺)
𝑆 (or𝑄) a seed community (or target community) in𝐺

𝐿𝑞 a set of query keywords

𝑣𝑖 .𝐿 a set of keywords associated with user 𝑣𝑖
𝑣𝑖 .𝐵𝑉 a bit vector with the hashed keywords in 𝑣𝑖 .𝐿

𝑃𝑎𝑡ℎ𝑢,𝑣 an acyclic path from user 𝑢 to user 𝑣

𝑃𝑟 (𝑃𝑎𝑡ℎ𝑢,𝑣) the propagation probability that user 𝑢 activates user 𝑣

through an acyclic path 𝑃𝑎𝑡ℎ𝑢,𝑣
𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑢,𝑣 the influence score of vertex 𝑢 on vertex 𝑣

𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 the community-to-community influence of 𝑆 on𝑄

𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) a subgraph in𝐺 with 𝑣𝑖 as the vertex and 𝑟 as the radius

𝑟 the user-specified radius of target and seed communities

𝑘 the support parameter in 𝑘-truss for the seed community

𝑠𝑢𝑝 (𝑒𝑢,𝑣) the support of edge 𝑒𝑢,𝑣
𝜃 the influence threshold

keywords in 𝐿𝑞), the problem of the relaxed reverse influential com-
munity search (R2ICS) returns a subgraph, 𝑆 , from the social network,
𝐺 , such that:

• 𝑆 is a subgraph of 𝐺 with size |𝑉 (𝑆) | ≤ 𝑁 ,
• for any vertex 𝑣𝑖 ∈ 𝑉 (𝑆), its keyword set 𝑣𝑖 .𝐿 contains at

least one query keyword in 𝐿𝑞 (i.e., 𝑣𝑖 .𝐿 ∩ 𝐿𝑞 ≠ ∅),and;
• the community-to-community influence, inf _score𝑆,𝑄 , is max-

imized (i.e., 𝑆 = argmax

𝑆⊆𝐺
inf _score𝑆,𝑄).

Different from retrieving the seed community in the RICS prob-

lem (as given in Definition 6), the variant, R
2
ICS, in Definition 7

returns a subgraph community 𝑆 without the structural constraints

such as 𝑘-truss and radius 𝑟 .

Table 1 lists the commonly used notations and their descriptions

in this paper.

3 THE RICS FRAMEWORK
Algorithm 1 presents our framework for efficiently processing

the RICS query, which consists of two phases, that is, offline pre-
computation and online RICS-computation phases.

During the offline pre-computation phase, we pre-calculate some

data from social networks (for effective pruning) and construct an

index over the pre-computed data, which can be used for subse-

quent online RICS processing. Specifically, for each vertex 𝑣𝑖 in

the social network 𝐺 , we first hash its set, 𝑣𝑖 .𝐿, of keywords into a

bit vector 𝑣𝑖 .𝐵𝑉 (lines 1-2). We also pre-calculate a distance vector,

𝑣𝑖 .𝐷𝑖𝑠𝑡 , which stores the shortest path distances from vertex 𝑣𝑖 to

pivots 𝑝𝑖𝑣 ∈ 𝑆𝑝𝑖𝑣 , where 𝑆𝑝𝑖𝑣 is a set of 𝑑 carefully selected pivot

vertices (line 3). Next, we pre-compute the support bounds, bound-

ary influence upper bound, and influence set for 𝑟 -hop subgraphs

(centered at vertex 𝑣𝑖 and with radii 𝑟 ranging from 1 to 𝑟𝑚𝑎𝑥), in

order to facilitate the pruning (lines 4-7). Afterward, we construct

a tree index I on the pre-computed data (line 8).

During the online RICS-computation phase, for each user-specified

RICS query, we traverse the index I and apply our proposed prun-

ing strategies (w.r.t. keywords, support, and influence score) to

obtain candidate seed communities (lines 9-10). Finally, we calcu-

late the influence scores between candidate seed communities and

𝑄 to obtain the best seed community (line 11).

Algorithm 1: The RICS Processing Framework
Input: i) a social network𝐺 , ii) a set, 𝐿𝑞 , of query keywords, iii) the

maximum radius, 𝑟 , of each community, iv) an integer parameter, 𝑘 ,

of the 𝑘-truss, v) the maximum user number, 𝑁 , for each seed

community, vi) the query center vertex 𝑣𝑞 , and vii) a set, 𝑆𝑝𝑖𝑣 , of

pivots

Output: a seed community, 𝑆 , with the highest influential score

// offline pre-computation phase
1 for each 𝑣𝑖 ∈ 𝑉 (𝐺) do
2 hash keywords in 𝑣𝑖 .𝐿 into a bit vector 𝑣𝑖 .𝐵𝑉

3 compute a vector, 𝑣𝑖 .𝐷𝑖𝑠𝑡 , of distances from 𝑣𝑖 to all pivots 𝑝𝑖𝑣 ∈ 𝑆𝑝𝑖𝑣
4 for 𝑟 = 1 to 𝑟𝑚𝑎𝑥 do
5 extract 𝑟 -hop subgraph 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺)
6 compute the upper bound of support 𝑢𝑏_𝑠𝑢𝑝 (.) in 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺)
7 compute the upper bound of boundary influence

𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 (.) in 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺)

8 build a tree index I over graph𝐺 with pre-computed data as aggregates

// online RICS-computation phase
9 for each RICS query do
10 traverse the tree index I by applying keyword, support, and influence

score pruning strategies to retrieve candidate seed communities

11 calculate the influence scores of candidate seed communities and return

the one with the highest influential score

4 PRUNING STRATEGIES
In this section, we present effective pruning strategies that reduce

the problem search space during the online RICS-computation

phase (lines 9-11 of Algorithm 1).

4.1 Keyword Pruning
According to Definitions 3 and 4, each vertex in the target/seed

community 𝑄 or 𝑆 must contain at least one keyword from the

query keyword set 𝐿𝑞 . Therefore, our keyword pruning method can

filter out those candidate subgraphs that do not meet this criterion.

Lemma 4.1. (Keyword Pruning) Given a set, 𝐿𝑞 , of query key-
words and a candidate subgraph (community) 𝑆 , any vertex 𝑣𝑖 ∈ 𝑉 (𝑆)
can be safely pruned from 𝑆 , if it holds that: 𝑣𝑖 .𝐿∩𝐿𝑞 = ∅, where 𝑣𝑖 .𝐿
is the keyword set associated with vertex 𝑣𝑖 .

Proof. If 𝑣𝑖 .𝐿 ∩ 𝐿𝑞 = ∅ holds for any user vertex 𝑣𝑖 in a candi-

date community 𝑆 , it indicates that user 𝑣𝑖 is not interested in any

keyword in the query keyword set 𝐿𝑞 . Thus, user vertex 𝑣𝑖 does not

satisfy the keyword constraint in Definition 4, and vertex 𝑣𝑖 can be

safely pruned from 𝑆 , which completes the proof. □ □

4.2 Support Pruning
From Definition 4, the seed community 𝑆 needs to be a k-truss
[21]. Denote the support, 𝑠𝑢𝑝 (𝑒𝑢,𝑣) of an edge 𝑒𝑢,𝑣 as the number

of triangles containing 𝑒𝑢,𝑣 . Each edge 𝑒𝑢,𝑣 in the seed community

𝑆 , is required to have its support 𝑠𝑢𝑝 (𝑒𝑢,𝑣) greater than or equal

to (𝑘 − 2). If we can obtain an upper bound, 𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣), of the
support for each edge in the candidate seed community 𝑆 , then

we can employ the following lemma to eliminate candidate seed

communities with low support.

Lemma 4.2. (Support Pruning) Given a candidate seed com-
munity 𝑆 and a positive integer 𝑘 (> 2), an edge 𝑒𝑢,𝑣 in 𝑆 can be
discarded safely from 𝑆 , if it holds that 𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣) < 𝑘 − 2, where
𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣) is an upper bound of the edge support 𝑠𝑢𝑝 (𝑒𝑢,𝑣).

4

Proof. In the definition of the 𝑘-truss [21], the support value,

𝑠𝑢𝑝 (𝑒𝑢,𝑣), of the edge 𝑒𝑢,𝑣 is determined by the number of triangles

that contain edge 𝑒𝑢,𝑣 . In a 𝑘-truss, each edge must be reinforced

by at least (𝑘 − 2) such triangle structures. Since we have the

conditions that 𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣) < 𝑘 − 2 (lemma assumption) and

𝑠𝑢𝑝 (𝑒𝑢,𝑣) ≤ 𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣) (support upper bound property), by the

inequality transition, we have 𝑠𝑢𝑝 (𝑒𝑢,𝑣) < 𝑘 − 2. Therefore, based

on Definition 4, the 𝑘-truss seed community 𝑆 cannot include the

edge 𝑒𝑢,𝑣 due to its low support (i.e., < 𝑘 − 2). We thus can safely

rule out edge 𝑒𝑢,𝑣 from 𝑆 , which completes the proof. □ □

4.3 Influence Score Pruning
In this subsection, we provide an effective pruning method to filter

out candidate seed communities with low influence scores.

Since the exact calculation of the influence score between two

communities (given by Equation (4)) is very time-consuming, we

can take the maximum influence from candidate seed communities

that we have seen as an influence score upper bound (denoted as an

influence threshold 𝜃). This way, we can apply the influence score

pruning in the lemma below to eliminate those seed communities

with low influences.

Lemma 4.3. (Influence Score Pruning) Let an influence thresh-
old 𝜃 be the maximum influence from candidate seed communities we
have obtained so far to the target community 𝑄 . Any candidate seed
community 𝑆 can be safely pruned, if it holds that𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 <

𝜃 , where 𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 is an upper bound of the influence score
𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 (given by Equation (4)).

Proof. Since 𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 is an upper bound of the influ-

ence score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 , we have 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 ≤ 𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 .

Due to the lemma assumption that 𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 < 𝜃 , by the

inequality transition, it holds that 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 < 𝜃 , which indi-

cates that the candidate community 𝑆 has lower influence on 𝑄 ,

compared with some communities we have obtained so far (i.e.,

with influence 𝜃), and 𝑆 cannot be our RICS answer. Therefore, we

can safely prune candidate seed community 𝑆 , which completes the

proof. □ □

5 OFFLINE PRE-COMPUTATION
In this section, we discuss how to offline pre-compute data over

social networks, and construct a tree index I on pre-computed data

(lines 1-8 of Algorithm 1).

5.1 Offline Pre-Computed Data
In order to facilitate online RICS computation, we first conduct

offline pre-computations on the social network 𝐺 in Algorithm

2, which can obtain aggregated information about candidate seed

communities (later used for pruning strategies to reduce the on-

line search cost). Specifically, for each vertex 𝑣𝑖 , we hash a set,

𝑣𝑖 .𝐿, of its keywords into a bit vector 𝑣𝑖 .𝐵𝑉0 of size 𝐵, and ini-

tialize a pre-computed set, 𝑣𝑖 .𝐴𝑢𝑥 , of auxiliary data with 𝑣𝑖 .𝐵𝑉0
(lines 1-3). Then, we compute the distances from 𝑣𝑖 to 𝑑 pivots in

𝑆𝑝𝑖𝑣 , forming a distance vector 𝑣𝑖 .𝐷𝑖𝑠𝑡 of size 𝑑 , and add 𝑣𝑖 .𝐷𝑖𝑠𝑡

to 𝑣𝑖 .𝐴𝑢𝑥 (lines 4-5). Next, we compute a support upper bound,

𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣), for each edge 𝑒𝑢,𝑣 in a subgraph, 𝑟𝑚𝑎𝑥 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺),
centered at vertex 𝑣𝑖 and with radius 𝑟𝑚𝑎𝑥 (lines 6-7). Then, for

Algorithm 2: Offline Pre-Computation
Input: i) a social network𝐺 ; ii) the maximum radius, 𝑟𝑚𝑎𝑥 , of each

community, and; iii) a set, 𝑆𝑝𝑖𝑣 , of 𝑑 pivots

Output: pre-computed auxiliary data 𝑣𝑖 .𝐴𝑢𝑥 for each vertex 𝑣𝑖
1 for each 𝑣𝑖 ∈ 𝑉 (𝐺) do

// the keyword bit vector

2 hash keywords in 𝑣𝑖 .𝐿 into a bit vector 𝑣𝑖 .𝐵𝑉0

3 𝑣𝑖 .𝐴𝑢𝑥 = {𝑣𝑖 .𝐵𝑉0 }
// the distance vector to pivots

4 compute a vector, 𝑣𝑖 .𝐷𝑖𝑠𝑡 , of distances from vertex 𝑣𝑖 to 𝑑 pivots in 𝑆𝑝𝑖𝑣
5 add 𝑣𝑖 .𝐷𝑖𝑠𝑡 to 𝑣𝑖 .𝐴𝑢𝑥

// edge support upper bounds

6 for each 𝑒𝑢,𝑣 ∈ 𝐸 (𝑟𝑚𝑎𝑥 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺)) do
7 compute on edge support upper bound 𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣)

8 for each 𝑣𝑖 ∈ 𝑉 (𝐺) do
9 for 𝑟 = 1 to 𝑟𝑚𝑎𝑥 do
10 𝑣𝑖 .𝐵𝑉𝑟 =

∨
∀𝑣𝑙 ∈𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) 𝑣𝑙 .𝐵𝑉

11 𝑣𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 = max∀𝑒𝑢,𝑣 ∈𝐸 (𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺)) 𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣)
12 𝑣𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 =𝑚𝑎𝑥 {collapse_calculate(𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺)) }
13 add 𝑣𝑖 .𝐵𝑉𝑟 , 𝑣𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 and 𝑣𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 to 𝑣𝑖 .𝐴𝑢𝑥

14 return 𝑣𝑖 .𝐴𝑢𝑥

each vertex 𝑣𝑖 and possible radius 𝑟 ∈ [1, 𝑟𝑚𝑎𝑥], we pre-compute a

keyword bit vector (lines 8-10), an edge support upper bound (line

11), and an upper bound, 𝑣𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 , of boundary influence

scores (line 12) for 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) subgraph. Finally, we add these

pre-computed aggregated information to 𝑣𝑖 .𝐴𝑢𝑥 in the following

format: {𝑣𝑖 .𝐵𝑉0, 𝑣𝑖 .𝐷𝑖𝑠𝑡, 𝑣𝑖 .𝐵𝑉𝑟 , 𝑣𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 , 𝑣𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 } (line
13).

To summarize, 𝑣𝑖 .𝐴𝑢𝑥 contains the following information:

• a bit vector, 𝒗𝒊 .𝑩𝑽0, of size 𝑩, which is obtained by using

a hashing function 𝑓 (𝑙) to hash each keyword 𝑙 ∈ 𝑣𝑖 .𝐿 to an
integer between [0, 𝐵 − 1] and set the 𝑓 (𝑙)-th bit position

to 1 (i.e., 𝑣𝑖 .𝐵𝑉0 [𝑓 (𝑙)] = 1);

• a distance vector, 𝒗𝒊 .𝑫 𝒊𝒔𝒕 , of size 𝒅, which is obtained by

computing the shortest path distances, 𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑝𝑖𝑣), from
𝑣𝑖 to 𝑑 pivots 𝑝𝑖𝑣 𝑗 ∈ 𝑆𝑝𝑖𝑣 ; (i.e., 𝑣𝑖 .𝐷𝑖𝑠𝑡 [𝑗] = 𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑝𝑖𝑣 𝑗)
for 0 ≤ 𝑗 < 𝑑);

• a bit vector, 𝒗𝒊 .𝑩𝑽𝒓 (for 1 ≤ 𝒓 ≤ 𝒓𝒎𝒂𝒙), which is obtained
by hashing each keyword in keyword set 𝑣𝑙 .𝐿 of a vertex

𝑣𝑙 in the subgraph 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) into a position in the bit

vector (i.e., 𝑣𝑖 .𝐵𝑉𝑟 =
∨

∀𝑣𝑙 ∈𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) 𝑣𝑙 .𝐵𝑉);
• a support upper bound, 𝒗𝒊 .𝒖𝒃_𝒔𝒖𝒑𝒓 , which is obtained by

taking the maximum of all support bounds𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣) for
edges 𝑒𝑢,𝑣 in the subgraph 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) (i.e., 𝑣𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 =

max∀𝑒𝑢,𝑣 ∈𝐸 (𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺))) 𝑢𝑏_𝑠𝑢𝑝 (𝑒𝑢,𝑣)), and;
• an upper bound, 𝒗𝒊 .𝒖𝒃_𝒃𝒐𝒖𝒏𝒅_𝒊𝒏𝒇𝒓 , of boundary influ-

ence scores, which is obtained by computing the virtual

collapse of a subgraph 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) discussed below (i.e.,

𝑣𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 =𝑚𝑎𝑥{collapse_calculate(𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺))}),
where function collapse_calculate(·) returns a set, 𝑣𝑖 .𝐵𝐼𝑆 ,
of influence scores through boundary vertices.

Discussions on How to Implement collapse_calculate(·): Col-
lapse calculations are divided into target collapse and seed collapse.
The difference between the two collapses is that the information

propagation is in different directions. As shown in Figure 2, a seed

community consisting of 𝑣1, 𝑣2, 𝑣3, and 𝑣4 sends influence to the

5

Seed Community

𝒗𝟏

𝒗𝟐 𝒗𝟑

𝒗𝟒

𝒗𝟓

𝒗𝟕𝒗𝟔

𝒗𝟖

𝒗𝒄

𝒗𝟓

𝒗𝟖

𝒗𝟕𝒗𝟔

Super Vertex

collapse

Boundary Vertex

Figure 2: An example of seed community virtual collapse
operation. The blue arrows represent the information propa-
gation. 𝑣𝑐 represents a virtual super vertex after the commu-
nity has collapsed. The red vertices represent the boundary
vertices.

1-hop boundary vertices (i.e., 𝑣5, 𝑣6, 𝑣7, and 𝑣8). According to Equa-

tion (3) and (4), we aggregate the influence of seed communities

towards their external boundary vertices. For a virtual collapsed

vertex 𝑣𝑐 of a seed community 𝑆 , through any 1-hop subgraph

boundary vertex 𝑣𝑖 , we have inf _score𝑣𝑐 ,𝑣𝑖 =
∑

𝑣∈𝑉 (𝑆) inf _score𝑣,𝑣𝑖 .
Finally, we store the set of boundary influence scores 𝑣𝑖 .𝐵𝐼𝑆 in the

center vertex 𝑣𝑖 of the community.

Complexity Analysis: As shown in Algorithm 2, for each vertex

𝑣𝑖 ∈ 𝑉 (𝐺) in the first loop, the time complexity of computing a

keyword bit vector 𝑣𝑖 .𝐵𝑉 is given by 𝑂 (|𝐿 |) (lines 2-3). And the

time complexity of computing a distance vector 𝑣𝑖 .𝐷𝑖𝑠𝑡 is given

by𝑂 ((|𝑉 (𝐺) | + |𝐸 (𝐺) |) · 𝑙𝑜𝑔|𝑉 (𝐺) |) (lines 4-5). Let 𝑎𝑣𝑔_𝑑𝑒𝑔 denote
the average number of vertex degrees. Since there are 𝑎𝑣𝑔_𝑑𝑒𝑔𝑟𝑚𝑎𝑥

edges in 𝑟𝑚𝑎𝑥 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) and the cost of the support upper bound

computation is a constant (counting the common neighbors), so the

time cost of obtaining all edge support upper bounds is𝑂 (𝑎𝑣𝑔_𝑑𝑒𝑔𝑟𝑚𝑎𝑥)
(lines 6-7). Thus, the complexity of the first loop (lines 1-7) is given

by𝑂 (|𝑉 (𝐺) | · (|𝐿 | + (|𝑉 (𝐺) | + |𝐸 (𝐺) |) · 𝑙𝑜𝑔 |𝑉 (𝐺) | +𝑎𝑣𝑔_𝑑𝑒𝑔𝑟𝑚𝑎𝑥)).
In the second loop, for each 𝑣𝑖 ∈ 𝑉 (𝐺), there are 𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1

vertices in the 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) w.r.t. 𝑟 . Then, for each 𝑟 ∈ [1, 𝑟𝑚𝑎𝑥], the
time complexity of computing 𝑣𝑖 .𝐵𝑉𝑟 and 𝑣𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 is given by

𝑂 (𝐵 ·𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1) and𝑂 (𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1), respectively (lines 10-11). As
described in Section 5.1, the time complexity of collapse_calculate(·)
is𝑂 ((𝑎𝑣𝑔_𝑑𝑒𝑔𝑟 + 𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1) · 𝑙𝑜𝑔(𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1)), and so, the time

complexity of 𝑣𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 is given by𝑂 (𝑛·(𝑎𝑣𝑔_𝑑𝑒𝑔𝑟+𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1)·
𝑙𝑜𝑔(𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1)). Therefore, the time cost of the second loop (lines

8-13) is𝑂 (|𝑉 (𝐺) |·𝑟𝑚𝑎𝑥 ·(𝐵·𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1+𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1+𝑛·(𝑎𝑣𝑔_𝑑𝑒𝑔𝑟+
𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1) · 𝑙𝑜𝑔(𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1))).

In summary, the total time complexity of the total offline pre-

computation is given by𝑂 (|𝑉 (𝐺) |·(|𝐿 |+(|𝑉 (𝐺) |+|𝐸 (𝐺) |)·𝑙𝑜𝑔|𝑉 (𝐺) |+
𝑎𝑣𝑔_𝑑𝑒𝑔𝑟𝑚𝑎𝑥 +𝑟𝑚𝑎𝑥 · (𝐵 ·𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1 +𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1 +𝑛 · (𝑎𝑣𝑔_𝑑𝑒𝑔𝑟 +
𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1) · 𝑙𝑜𝑔(𝑎𝑣𝑔_𝑑𝑒𝑔𝑟−1)))).

5.2 Indexing Mechanism
In this subsection, we show the details of offline construction of a

tree index I on a social network 𝐺 to support online RICS query

processing.

The Data Structure of Index I:We will build a tree index I on

the social network𝐺 , where each index node, N includes multiple

entriesN𝑖 , each corresponding to a subgraph of𝐺 . Specifically, the

tree index I contains two types of nodes, leaf and non-leaf nodes.

Leaf Nodes: Each leaf node N contains multiple vertices 𝑣𝑖 in the

corresponding subgraph. The community subgraph centered at 𝑣𝑖
is denoted by 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺). Moreover, each vertex 𝑣𝑖 is associated

with the following pre-computed data in 𝑣𝑖 .𝐴𝑢𝑥 (some of them are

w.r.t. each possible radius 𝑟 ∈ [1, 𝑟𝑚𝑎𝑥]):
• a keyword bit vector 𝑣𝑖 .𝐵𝑉𝑟 ;

• a distance vector 𝑣𝑖 .𝐷𝑖𝑠𝑡 ;

• a support upper bound 𝑣𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 , and;

• a boundary influence upper bound 𝑣𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 .

Non-Leaf Nodes: Each non-leaf nodeN hasmultiple index entries,

N𝑖 , each of which is associated with the following aggregates (w.r.t.

each possible radius 𝑟 ∈ [1, 𝑟𝑚𝑎𝑥]):
• a pointer to a child node N𝑖 .𝑝𝑡𝑟 ;

• an aggregated keyword bit vectorN𝑖 .𝐵𝑉𝑟 =
∨

∀𝑣𝑙 ∈N𝑖
𝑣𝑙 .𝐵𝑉𝑟 ;

• the distance lower bound vectorN𝑖 .𝑙𝑏_𝐷𝑖𝑠𝑡 (i.e.,𝑁𝑖 .𝑙𝑏_𝐷𝑖𝑠𝑡 [𝑗] =
min∀𝑣𝑙 ∈N𝑖

𝑣𝑙 .𝐷𝑖𝑠𝑡 [𝑗], for 1 ≤ 𝑗 ≤ 𝑑);
• the distance upper bound vectorN𝑖 .𝑢𝑏_𝐷𝑖𝑠𝑡 (i.e.,𝑁𝑖 .𝑢𝑏_𝐷𝑖𝑠𝑡 [𝑗] =

max∀𝑣𝑙 ∈N𝑖
𝑣𝑙 .𝐷𝑖𝑠𝑡 [𝑗], for 1 ≤ 𝑗 ≤ 𝑑);

• the maximum support upper bound N𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 =

max∀𝑣𝑙 ∈N𝑖
𝑣𝑙 .𝑢𝑏_𝑠𝑢𝑝𝑟 , and;

• themaximumboundary influence upper boundN𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 =

max∀𝑣𝑙 ∈N𝑖
𝑣𝑙 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 .

Index Construction: To construct the tree index I, we will utilize
cost models to first partition the graph into (disjoint) subgraphs of

similar sizes to form initial leaf nodes, and then recursively group

subgraphs (or nodes) into non-leaf nodes on a higher level, until

one final root of the tree is obtained.

Cost Model for the Graph Partitioning: Specifically, we use

METIS [23] for graph partitioning, guided by our proposed cost

model. Our goal of designing a cost model for the graph partitioning

is to reduce the number of cases that candidate communities are

across subgraph partitions (or leaf nodes), and in turn achieve low

query cost.

Assume that a graph partitioning strategy, P, divides the graph

into𝑚 subgraph partitions 𝑃1, 𝑃2, ..., and 𝑃𝑚 . We can obtain the

number,𝐶𝑟𝑜𝑠𝑠_𝑃𝑎𝑟_𝑆𝑖𝑧𝑒 (P), of cross-partition vertices for candidate
communities as follows.

𝐶𝑟𝑜𝑠𝑠_𝑃𝑎𝑟_𝑆𝑖𝑧𝑒 (P) (5)

=

𝑚∑︁
𝑗=1

∑︁
∀𝑣𝑖 ∈𝑃 𝑗

|𝑉 (𝑟𝑚𝑎𝑥 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) − 𝑃 𝑗) |

Since we would like to have the subgraph partitions of similar

sizes, we also incorporate the maximum size difference of the re-

sulting partitions in P, and have the following target cost model,

𝐶𝑀 (P).

𝐶𝑀 (P) = argmin

P
(𝐶𝑟𝑜𝑠𝑠_𝑃𝑎𝑟_𝑆𝑖𝑧𝑒 (P) + (|P𝑚𝑎𝑥 | − |P𝑚𝑖𝑛 |)), (6)

where |P𝑚𝑎𝑥 | and |P𝑚𝑖𝑛 | represent the numbers of users in the

largest and smallest partitions in P, respectively.

Intuitively, we would like to obtain a graph partitioning strat-

egy P that minimizes our cost model 𝐶𝑀 (P) (i.e., with low cross-

partition search costs and of similar partition sizes, as given in

Equation (6)).

Cost-Model-Guided Graph Partitioning for Obtaining Index
Nodes: In Algorithm 3, we illustrate how to obtain a set, S𝑝 , of

6

𝑚 graph partitions for creating index nodes, in light of our pro-

posed cost model above. First, we randomly select𝑚 initial vertex

pivots and form an initial set, S𝑝𝑖𝑣 (line 1). Then, we use S𝑝𝑖𝑣 to

perform the graph clustering and obtain𝑚 partitions in S𝑝 (line 2).

We invoke calculate_cost(Sp) in Algorithm 4 to calculate the cost,

𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 , of the partitioning S𝑝 (i.e., via 𝐶𝑀 (S𝑝) in Equation (6)

of our cost model; line 3).

Algorithm 3: Cost-Model-Guided Graph Partitioning
for Index Nodes
Input: i) a social network𝐺 , ii) the number𝑚 of center vertices for

partitioning, and iii) the maximum number of iterations 𝑖𝑡𝑒𝑟𝑚𝑎𝑥

Output: a set, S𝑝 , of𝑚 graph partitions for creating index nodes

1 randomly select𝑚 initial vertex pivots and form S𝑝𝑖𝑣

2 use S𝑝𝑖𝑣 clustering to form𝑚 partitions S𝑝

3 calculate the cost of the partitioning: 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 = calculate_cost(Sp)
4 for 𝑖𝑡𝑒𝑟 = 1 to 𝑖𝑡𝑒𝑟_𝑚𝑎𝑥 do
5 select a random pivot 𝑝𝑖𝑣 ∈ S𝑝𝑖𝑣

6 randomly select a new vertex 𝑝𝑖𝑣𝑛𝑒𝑤 that satisfies the requirements of

S𝑝𝑖𝑣

7 S
′
𝑝𝑖𝑣 = S𝑝𝑖𝑣 − {𝑝𝑖𝑣} + {𝑝𝑖𝑣𝑛𝑒𝑤 }

8 use S
′
𝑝𝑖𝑣 clustering to form𝑚 partitions S

′
𝑝

9 calculate the cost of new partitions: 𝑐𝑜𝑠𝑡𝑛𝑒𝑤 = calculate_cost(S′
p)

10 if 𝑐𝑜𝑠𝑡𝑛𝑒𝑤 < 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 then
11 S𝑝𝑖𝑣 = S

′
𝑝𝑖𝑣

12 S𝑝 = S
′
𝑝

13 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡𝑛𝑒𝑤

14 return S𝑝

Next, we perform 𝑖𝑡𝑒𝑟_𝑚𝑎𝑥 iterations to find the best pivot set

S𝑝𝑖𝑣 and graph partitioning S𝑝 with low cost 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 (lines 4-13).

In each iteration, we randomly replace one of vertex pivots, 𝑝𝑖𝑣 , in

S𝑝𝑖𝑣 with a new non-pivot vertex 𝑝𝑖𝑣𝑛𝑒𝑤 , forming a new pivot set,

S′
𝑝𝑖𝑣

(lines 5-7). This way, we can use S′
𝑝𝑖𝑣

to perform the graph

clustering and obtain𝑚 new partitions in S′
𝑝 , so that we invoke

the function calculate_cost(S′
p) to calculate a new cost, 𝑐𝑜𝑠𝑡𝑛𝑒𝑤 , of

partitioning S′
𝑝 (lines 8-9). Correspondingly, if 𝑐𝑜𝑠𝑡𝑛𝑒𝑤 is less than

𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 , we accept the new partitioning strategy by updating

S𝑝𝑖𝑣 , S𝑝 , and 𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑠𝑡 with S′
𝑝𝑖𝑣

, S′
𝑝 , and 𝑐𝑜𝑠𝑡𝑛𝑒𝑤 , respectively

(lines 10-13). Finally, we return𝑚 subgraph partitions, S𝑝 , to create

𝑚 index nodes, respectively (line 14).

Algorithm 4: calculate_cost(·) Function
Input: a set, S𝑝 , of partitions over social network𝐺

Output: a cost score,𝐶𝑀 (P) , for the partitioning in𝐺
1 𝐶𝑀 (P) = 0

2 for each 𝑃 ∈ S𝑝 do
3 for each 𝑣𝑖 ∈ 𝑉 (𝑃) do
4 count the number of vertices that cross the partition 𝑃 ’s range:

𝑁 _𝑐𝑟𝑜𝑠𝑠 = |𝑉 (𝑟𝑚𝑎𝑥 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) − 𝑃) |
5 𝐶𝑟𝑜𝑠𝑠_𝑃𝑎𝑟_𝑆𝑖𝑧𝑒 (𝑃) = ∑

∀𝑣𝑖 ∈𝑃 𝑁 _𝑐𝑟𝑜𝑠𝑠

6 add the value of𝐶𝑟𝑜𝑠𝑠_𝑃𝑎𝑟_𝑆𝑖𝑧𝑒 (𝑃) to𝐶𝑀 (P)
7 add | P𝑚𝑎𝑥 | − | P𝑚𝑖𝑛 | to𝐶𝑀 (P)
8 return𝐶𝑀 (P)

Complexity Analysis: For the tree indexI, let𝛾 denote the fanout
of each non-leaf node N . In I, since the number of leaf nodes is

equal to the number of vertices |𝑉 (𝐺) |, the depth of tree index I is

⌈log𝛾 |𝑉 (𝐺) |⌉ + 1. The time complexity of cost-model-guided graph

partitioning for index nodes is given by 𝑂 ((|𝑉 (𝐺) | ·𝑚 + |𝑉 (𝐺) |) ·
𝑖𝑡𝑒𝑟_𝑚𝑎𝑥). On the other hand, the time complexity of recursive tree

index construction is𝑂 ((𝛾𝑑𝑒𝑝−1)/(𝛾−1) ·𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔). Therefore,
the time complexity of our tree index construction is given by

𝑂 ((𝛾 ⌈log𝛾 |𝑉 (𝐺) | ⌉+1 − 1)/(𝛾 − 1) · |𝑉 (𝐺) | · (𝑚 + 1) · 𝑖𝑡𝑒𝑟_𝑚𝑎𝑥).

6 ONLINE RICS COMPUTATION
In this section, we provide our online RICS computation algorithm

in Algorithm 5, which traverses our constructed tree index I and

retrieves the RICS community answer that has the highest influence

on the target community 𝑄 , by seamlessly integrating our effective

pruning strategies.

Section 6.1 presents effective pruning strategies on the node

level of the tree index. Section 6.2 details our proposed online RICS

query processing procedure.

6.1 Index Pruning
In this subsection, we present effective pruning methods on the

index level, which are used to prune index nodes containing (a

group of) community false alarms.

Keyword Pruning for Index Entries: The idea of our keyword
pruning over index entries is as follows. If all the 𝑟 -hop subgraphs

under an index entryN𝑖 do not contain any keywords in the query

keyword set 𝐿𝑞 , then the entire index entryN𝑖 can be safely filtered

out.

Below, we provide the index keyword pruning method that uses

the aggregated keyword bit vector N𝑖 .𝐵𝑉𝑟 stored in N𝑖 .

Lemma 6.1. (Index Keyword Pruning) Given an index entry
N𝑖 and a bit vector, 𝐿𝑞 .𝐵𝑉 , for the query keyword set 𝐿𝑞 , the index
entry N𝑖 can be safely pruned, if it holds that N𝑖 .𝐵𝑉𝑟 ∧ 𝐿𝑞 .𝐵𝑉 = 0.

Proof. IfN𝑖 .𝐵𝑉𝑟 ∩ 𝐿𝑞 .𝐵𝑉 = ∅ holds, which means that all com-

munities inN𝑖 do not contain any of the keywords in 𝐿𝑞 . According

to Definition 4,N𝑖 cannot be a candidate seed community, so it can

be safely pruned. □ □

Support Pruning for Index Entries: Next, we present the index
support pruning method, which utilizes the maximum upper bound

support N𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 of the index entry N𝑖 and the given support 𝑘

to rule out the entry with low support.

Lemma 6.2. (Index Support Pruning) Given an index entry N𝑖

and a support parameter 𝑘 , the index entry N𝑖 can be safely pruned,
if it holds that N𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 < 𝑘 , where N𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 is the maximum
support upper bound for all 𝑟 -hop subgraphs under N𝑖 .

Proof. N𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 is the maximum support upper bound in all

𝑟 -hop subgraphs under index entry N𝑖 . If N𝑖 .𝑢𝑏_𝑠𝑢𝑝𝑟 < 𝑘 holds,

then all support upper bounds of 𝑟 -hop subgraphs under N𝑖 are

less than 𝑘 . By the inequality transition, all the supports of 𝑟 -hop

subgraphs under entry N𝑖 are thus less than 𝑘 . Based on Defini-

tion 4, all 𝑟 -hop subgraphs under N𝑖 cannot be a candidate seed

community. Therefore, index entryN𝑖 can be safely pruned, which

completes the proof of this lemma. □
□

7

6.2 The RICS Algorithm
In this subsection, we illustrate our online RICS processing algo-

rithm by traversing the tree index I in Algorithm 5.

Algorithm 5: Online RICS Processing
Input: i) a social network𝐺 , ii) a set, 𝐿𝑞 , of query keywords, iii) the

maximum radius, 𝑟 , of each community, iv) an integer parameter, 𝑘 ,

of the truss for each seed community, v) an integer parameter, 𝑁 , of

the maximum number of users for each seed community, vi) the query

center vertex, 𝑣𝑞 , and vii) the index I
Output: a seed community, 𝑆 , with the highest influential score

// initialization

1 hash all keywords in the query keyword set 𝐿𝑞 into a query bit vector 𝐿𝑞 .𝐵𝑉

2 obtain the target community𝑄 = 𝑟 -ℎ𝑜𝑝 (𝑣𝑞 ,𝐺)
3 𝑆 = 𝑑𝑢𝑚𝑚𝑦,𝑀 = ∅,𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 = 0

// index traversal

4 initialize a minimum heap H accepting index entries in the form (N, 𝑘𝑒𝑦)
5 insert all entries N in the root of index I into heap H
6 while H is not empty do
7 (N, 𝑘𝑒𝑦) = H.𝑝𝑜𝑝 ()
8 if𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 ≥ 𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑢𝑏 (H) then
9 terminal the loop

10 if N is a leaf node then
11 for each vertex 𝑣𝑖 ∈ N do
12 obtain the candidate community𝐶 = N.𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺)
13 if 𝐶 cannot be pruned by Lemma 4.1, 4.2, or 4.3 then
14 if 𝐶 is closer to𝑄 than 𝑆 and is larger than 𝑆 then
15 compute the influence score

𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄 = calculate_influence(𝐶,𝑄)
16 if 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄 >𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 then
17 if |𝑉 (𝐶) | ≤ 𝑁 then
18 𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟=𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄

19 𝑆 = 𝐶

20 else
21 update𝐶 to be the 𝑘-truss subgraph of𝐶

of size 𝑁 with maximal influence score

𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄

22 if 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄 >𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟
then

23 𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟=𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄

24 𝑆 = 𝐶

25 else
26 if 𝑣𝑖 .𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑟 >𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 then
27 add𝐶 to𝑀

28 else
// N is a non-leaf node

29 for each entry N𝑖 ∈ N do
30 if N𝑖 cannot be pruned by Lemma 6.1 or 6.2 then
31 insert (N𝑖 , 𝑘𝑒𝑦) into heap H

// refinement of candidate communities

32 update𝑀 by sorting on influence score upper bounds

33 for each candidate community𝐶 ∈ 𝑀 do
34 if𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 > 𝐶.𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑟 then
35 terminal the loop

36 select no more than 𝑁 vertices to form a community𝐶′
from𝐶

37 compute the influence score

𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶′,𝑄 = calculate_influence(C′,Q)
38 if 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶′,𝑄 >𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 then
39 𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 = 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶′,𝑄
40 𝑆 = 𝐶′

41 return 𝑆

Initialization: First, our RICS algorithm obtains a query bit vector

𝐿𝑞 .𝐵𝑉 by hashing all keywords from the query keyword set 𝐿𝑞

(line 1). Then, according to the given query center vertex 𝑣𝑞 , the

algorithm determines the target community 𝑄 (line 2). After that,

we initialize an initially dummy community 𝑆 to store the best

seed community we have searched so far. Moreover, we maintain

an initially empty set, 𝑀 , which keeps a set of potential candi-

date communities for delayed refinement. We also set a variable,

𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 , to 0, which indicates the highest influence score

we have encountered so far for the early termination of the index

traversal (line 3).

Index Traversal: To facilitate the index traversal, we maintain a

minimum heapH , which accepts heap entries in the form (N , 𝑘𝑒𝑦),
whereN is an index node, and 𝑘𝑒𝑦 is the minimum lower bound of

the distances from vertices under node N to query vertex 𝑣𝑞 (line

4). To start the index traversal, we insert all entries in the root of

index I into heapH (line 5). Then, we traverse the index by access-

ing entries from H in ascending order of distance lower bounds

(intuitively, communities closer to 𝑣𝑞 will have higher influences

on 𝑄 ; lines 6-31).

Specifically, each time we pop out an index entry (N , 𝑘𝑒𝑦) with
the minimum key from heap H (line 7). If 𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 ≥
𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑢𝑏 (H) holds, which indicates that all the candidate com-

munities in the remaining entries ofH cannot have higher influ-

ences than the communities we have already obtained, then we can

terminate the index traversal (lines 8-9); otherwise, we will check

the entries in the node N .

When N is a leaf node, for each vertex 𝑣𝑖 ∈ N , we first obtain

its candidate community 𝐶 = 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) centered at 𝑣𝑖 (line 12).

Then, for the candidate community 𝐶 , we apply the Keyword Prun-
ing (Lemma 4.1), Support Pruning (Lemma 4.2), and Influence Score
Pruning (Lemma 4.3) (lines 13). If 𝐶 cannot be ruled out by these

three pruning methods, we will check whether 𝐶 will be larger

and closer to 𝑄 than 𝑆 (line 14). This is because, intuitively, such

candidate communities have more influence on 𝑄 . After that, we

calculate the exact influence, 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄 , from 𝐶 to target com-

munity𝑄 , by invoking the function calculate_influence(𝐶,𝑄) (line
15). If the influence 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄 is higher than the highest influ-

ence score,𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 , and the seed community𝐶 is of small

scale (i.e., ≤ 𝑁), we will update the current answer 𝑆 and its influ-

ence score𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 (lines 16-19). If the seed community 𝐶

is of large scale (i.e., > 𝑁), we will update 𝐶 to be the 𝑘-truss sub-

graph of 𝐶 of size 𝑁 with the largest influence score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄
of all 𝑘-truss subgraphs (lines 20-21). Then, like the small scale,

if the influence 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶,𝑄 is higher than the highest influence

score,𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 , we will update the current answer 𝑆 and

the highest influence score𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 (lines 22-24). On the

other hand, although𝐶 is not better than 𝑆 in terms of position and

size, it also has the potential to have the highest influence on 𝑄 .

If its influence score upper bound (for any subgraphs of size 𝑁) is

greater than the highest influence, we will add 𝐶 to the candidate

set𝑀 for later refinement (lines 25-27).

When N is a non-leaf node, we will consider each child node

N𝑖 ∈ N (lines 28-29). If entryN𝑖 cannot be pruned by Index Keyword
Pruning (Lemma 6.1) and Index Support Pruning (Lemma 6.2), we

insert the entry (N𝑖 , 𝑘𝑒𝑦) into heap H for further investigation

(lines 30-31).

8

When either the heapH is empty (line 6) or the remaining index

entries in H cannot contain candidate communities (line 8), we

will terminate the index traversal.

Refinement of Candidate Communities: After the index traver-
sal, we update𝑀 by sorting candidate communities in descending

order of influence score upper bounds (line 32). Then, for each candi-

date community𝐶 in the list𝑀 , if it holds that𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 >

𝐶.𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑟 , then we can stop checking the remaining candi-

dates in𝑀 (as all candidates in𝑀 have influence upper bounds less

than highest influence so far; lines 34-35). Next, we compute a seed

community𝐶′
of size no more than 𝑁 from𝐶 (i.e.,𝐶′ ⊂ 𝐶) with the

highest influence, 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶′,𝑄 , on target community 𝑄 (lines 36-

37). If it holds that 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶′,𝑄 > 𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 , then we need

to update the RICS answer 𝑆 with 𝐶′
(replacing𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟

with 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝐶′,𝑄 as well; lines 38-40). Finally, after refining 𝑀 ,

we return the seed community 𝑆 as our RICS answer (line 41).

Discussions on the Computation of calculate_influence(C,Q):
To exactly calculate the community-to-community influence score

(via Equation (3) and (4)), we need to obtain the influence of each

user in the seed community𝐶 on the target community𝑄 , the whole

process is similar to the single-source shortest path algorithm. For

each point 𝑣𝑐 in C, we first visit its 1-hop neighbors 𝑣𝑏 and the

influence score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑐,𝑣𝑏 = 𝑃𝑣𝑐,𝑣𝑏 . Then, each time, we extend

1-hop neighbors 𝑣𝑛𝑒𝑤 forward and compute the current influence

score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑐,𝑣𝑛𝑒𝑤 = max∀𝑣𝑖 ∈𝑣𝑛𝑒𝑤 (𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑛𝑒𝑤 ,𝑣𝑖 · 𝑃𝑣𝑛𝑒𝑤 ,𝑣𝑖),
of 𝑣𝑐 , until we get the maximum influence score on all node of 𝑄 .

Discussions on the Online Computation of Influence Up-
per Bound 𝑣𝑖 .𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑟 : Since we get the upper bound of

boundary influence score, 𝑣𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 , of collapse_calculate
data for a subgraph 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺), and for a target community, 𝑄 ,

with query center vertex, 𝑣𝑞 , we can get the distance lower bound

𝑙𝑏_𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣𝑞) = min([|𝑣𝑖 .𝐷𝑖𝑠𝑡 [𝑗] −𝑣𝑞 .𝐷𝑖𝑠𝑡 [𝑗] |], for 1 ≤ 𝑗 ≤ 𝑑) be-
tween 𝑣𝑖 and 𝑣𝑞 by triangle inequality [24]. Then, we can get the up-

per bound of influence score, 𝑣𝑖 .𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑟 = 𝑣𝑖 .𝑢𝑏_𝑏𝑜𝑢𝑛𝑑_𝑖𝑛𝑓𝑟 ·
|𝑉 (𝑄) | ·max(𝑃)𝑙𝑏_𝑑𝑖𝑠𝑡 (𝑣𝑖 ,𝑣𝑞)−2·𝑟 , where max(𝑃) denotes the maxi-

mum neighbor activation probability in 𝐺 .

Complexity Analysis: Let 𝑛𝑟 be the average number of users in

the target community 𝑄 . The cost of obtaining 𝐿𝑞 .𝐵𝑉 and 𝑄 takes

𝑂 (𝑛𝑟). Let 𝑃𝑃 𝑗 be the pruning power (i.e., the percentage of node
entries that can be pruned) on the 𝑗-th level of the tree index I,
where 0 ≤ 𝑗 ≤ ℎ and ℎ is the height of the tree. Denote 𝑓 as the

average fanout of nodes in index I. For the index traversal, the

number of visited nodes is given by 𝑂 (∑ℎ
𝑗=1 𝑓ℎ− 𝑗+1 · (1 − 𝑃𝑃 𝑗)).

We label a subgraph 𝑟 -ℎ𝑜𝑝 (𝑣𝑖 ,𝐺) as 𝑔. Each time, the function of

calculate_influence need𝑂 ((𝑉 |𝑔| +𝐸 |𝑔|) ·𝑛𝑟). Let 𝑛𝑑 be the average

number of iterations updated due to the closest distance. Then, the

updating 𝑆 and𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 takes𝑂 ((𝑉 |𝑔|+𝐸 |𝐺 |) ·𝑛𝑟 ·𝑛𝑑). And,
updating𝑀 takes 𝑂 (1). For the refinement process, let 𝑛𝑚 be the

average number of calculate influence in𝑀 , and the updating 𝑆 and

𝑚𝑎𝑥_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 take 𝑂 (1). Therefore, the total time complexity

of Algorithm 5 is given by 𝑂 (∑ℎ
𝑗=1 𝑓ℎ− 𝑗+1 · (1 − 𝑃𝑃 𝑗) + ((𝑉 |𝑔| +

𝐸 |𝑔|) · (𝑛𝑑 + 𝑛𝑚) + 1) · 𝑛𝑟).

7 ONLINE COMPUTATION FOR R2ICS
In this section, we design an effective pruning strategy w.r.t. vertex-

to-community influence score to reduce the search space of our

R
2
ICS problem, and develop an efficient algorithm for retrieving

the R
2
ICS community answer.

Effective Pruning Strategy w.r.t. Vertex-to-Community In-
fluence Score: In order to R

2
ICS community answer 𝑆 in 𝐺 with

the highest influence 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 , a straightforward method is

to enumerate all the vertex combinations and find a community

that meets the requirements, which is however rather inefficient.

Instead, we observed that the community-to-community influence

score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 (as given in Eq. (4)) is given by summing up

vertex-to-community influences, 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 , for all 𝑣 ∈ 𝑉 (𝑆).
Based on this observation, our basic idea about the R

2
ICS algorithm

is to retrieve those vertices 𝑣 with high vertex-to-community influ-

ences on 𝑄 first and early terminate the search to prune or avoid

accessing those low-influence vertices.

Therefore, to enable the pruning of low-influence vertices, we

propose an effective vertex-to-community influence score pruning
strategy as follows.

Lemma 7.1. (Vertex-to-Community Influence Score Prun-
ing) Let 𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 be the minimum vertex-to-community
influence from vertices in the best-so-far candidate R2ICS commu-
nity 𝑆 of size 𝑁 to the target community 𝑄 . Any vertex 𝑣 can be
safely pruned, if it holds that 𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 < 𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 ,
where 𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 is an upper bound of the influence score
𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 .

Proof. Since 𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 is an upper bound of the influ-

ence score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 , we have 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 ≥ 𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 .

If𝑢𝑏_𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 < 𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 holds, means 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣,𝑄 <

𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 , which indicates that the vertex 𝑣 has a lower in-

fluence on𝑄 , compared with some vertices we have obtained so far

(i.e., with influence𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟), and 𝑣 cannot be our R2ICS

answer. Therefore, we can safely prune candidate vertex 𝑣 , which

completes the proof. □

A Framework for the R2ICS Algorithm: Algorithm 6 illustrates

the pseudo code of our R
2
ICS algorithm over a social network 𝐺 ,

which consists of initialization, index traversal, and candidate vertex
refinement phases. We first initialize the data/variables that will be

used in Algorithm 6 (lines 1-3). Then, for each user-specified R
2
ICS

query, we traverse the index I to obtain candidate vertices, by ap-

plying our proposed keyword pruning strategies in Sections 4.1 and

6.1 (lines 4-23). Finally, we refine candidate vertices and return an

actual R
2
ICS community 𝑆 with the highest influence 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄

(lines 24-41).

Initialization: In the initialization phase, the algorithmfirst hashes

all the query keywords in 𝐿𝑞 into a query keyword bit vector 𝐿𝑞 .𝐵𝑉 ,

and then obtain the target community 𝑄 (i.e., 𝑟 -hop subgraph with

center vertex 𝑣𝑞) (lines 1-2). Next, we prepare an initially dummy

community 𝑆 to store the best community we have searched so far,

an initially empty set, 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡 , to store vertex-to-community

influence scores of each vertex in 𝑆 on 𝑄 , and an empty candidate

vertex set, 𝑉𝑐𝑎𝑛𝑑 , for later refinement (line 3).

Index Traversal:We utilize aminimum heapH with heap entries

(N , 𝑘𝑒𝑦) for the index traversal, whereN is an index node, and 𝑘𝑒𝑦

is defined as the lower bound of distances from vertices under node

N to query vertex 𝑣𝑞 (line 4). To start the index traversal, we insert

all entries N in the root of index I into heapH (line 5).

9

Each time we pop out an index entry (N , 𝑘𝑒𝑦) with the minimum

key from heapH (lines 6-7). WhenN is a leaf node, for each vertex

𝑣𝑖 ∈ N , we apply the keyword pruning (Lemma 4.1) (lines 8-10). If 𝑣𝑖
cannot be ruled out by this pruning method, we will decide whether

we add 𝑣𝑖 to 𝑆 or 𝑉𝑐𝑎𝑛𝑑 (lines 11-19). If the candidate community

𝑆 has not reached its maximum size 𝑁 and 𝑣𝑖 ∈ N is closer to 𝑣𝑞
than all vertices in 𝑆 (i.e., potentially having higher influence on𝑄),

we will compute the exact vertex-to-community influence score

𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 , add vertex 𝑣𝑖 to 𝑆 , and update set 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡 by

adding 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 (lines 11-15); otherwise (i.e., |𝑉 (𝑆) | = 𝑁 or 𝑣𝑖
is far away from 𝑣𝑞), we will add vertex 𝑣𝑖 to the vertex candidate

set 𝑉𝑐𝑎𝑛𝑑 for later refinement (lines 16-19).

When N is a non-leaf node, we will consider each child node

N𝑖 ∈ N (lines 20-21). IfN𝑖 cannot be pruned by Lemma 6.1, then we

insert entry (N𝑖 , 𝑘𝑒𝑦) into heapH for further investigation (lines

22-23).

Candidate Vertex Refinement: Next, we will further check candi-

date vertices in 𝑉𝑐𝑎𝑛𝑑 and see whether any of them can be added

to or replace some vertices in 𝑆 to achieve higher influence. Specifi-

cally, we first sort candidate vertices in 𝑉𝑐𝑎𝑛𝑑 in descending order

of influence score upper bounds, and let an influence threshold,

𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 , be the minimum influence score in 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡

we have searched so far (lines 24-25).

After that, we consider each candidate vertex 𝑣𝑖 ∈ 𝑉𝑐𝑎𝑛𝑑 in

descending order of their influence score upper bounds (line 26).

There are two cases below:

• Case 1 (Community 𝑆 reaches its maximum size 𝑁): We

will use Lemma 7.1 to determine whether to terminate the

loop early (lines 27-28). If 𝑣𝑖 can be pruned via vertex-to-

community influence, then all the remaining entries (ver-

tices) in heapH will have influences below𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟

and we can terminate the search safely (lines 33-35). If

𝑣𝑖 cannot be pruned, then we will calculate the exact in-

fluence score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 of 𝑣𝑖 on 𝑄 . If 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 is

greater than𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 , we will replace one vertex

in 𝑆 which has the smallest vertex-to-community influ-

ence with 𝑣𝑖 (lines 30-31). Correspondingly, we update

𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡 , upon the replacement of vertex 𝑣𝑖 and set

𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 to the updatedminimumvalue in 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡

(lines 32-33).

• Case 2 (Community 𝑆 does not reach its maximum size 𝑁):
In this case, |𝑉 (𝑆) | < 𝑁 holds, which indicates that we can

still include more vertices for higher influence. Then, we

will compute the influence score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 of 𝑣𝑖 on 𝑄 ,

add 𝑣𝑖 and 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 to 𝑆 and 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡 , respectively,

and update the threshold𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 (lines 36-40).

After the refinement, we obtain a community 𝑆 of up to 𝑁 ver-

tices with the highest influence, and return 𝑆 as the R
2
ICS answer

(line 41).

Discussions on the Correctness of the R2ICS Algorithm: Since
we only use the keyword pruning during the index traversal phase,

we can obtain a best-so-far community 𝑆 (i.e., 1 ≤ |𝑉 (𝑆) | ≤ 𝑁)

and a set, 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡 , containing all candidate vertices that meet

the keyword requirement. Thus, we do not miss any vertices with

high influences on 𝑄 in this step. In Definition 5, the community-

to-community influence is given by the summation of vertex-to-

community influences. From our R
2
ICS algorithm in Algorithm 6),

we always include in 𝑆 those vertices 𝑣𝑖 with the highest vertex-

to-community influence 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 (lines 30-33). Thus, the re-

sulting R
2
ICS community 𝑆 is guaranteed to achieve the highest

community-to-community influence score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 .

Complexity Analysis: As the same Algorithm 5, the initializa-

tion and index traversal phase of our R
2
ICS takes 𝑂 (∑ℎ

𝑗=1 𝑓ℎ− 𝑗+1 +
(𝑉 |𝑔| + 𝐸 |𝑔| + 1) · 𝑛𝑟 · 𝑁). For refinement, let 𝐺𝑃𝑃 be the vertex-

to-community influence score pruning power (i.e., the percentage

of vertices that can be pruned). And, updating 𝑆 , 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡 and

𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 takes 𝑂 (1). Therefore, the total time complexity

of Algorithm 6 is given by 𝑂 (∑ℎ
𝑗=1 𝑓ℎ− 𝑗+1 + ((𝑉 |𝑔| + 𝐸 |𝑔 |) · (𝑁 +

|𝑉 (𝐺) | ·𝐺𝑃𝑃) + 1) · 𝑛𝑟)

8 EXPERIMENTAL EVALUATION
8.1 Experimental Settings
We evaluate the performance of the online RICS algorithm (i.e.,

Algorithm 5) on both real and synthetic graph data sets.

Real-World Graph Data Sets: We use three real-world graphs,

Facebook [25], Amazon [26], and DBLP [27], whose statistics are de-

picted in Table 2. Facebook is a social network, where two users are

connected if they are friends. Amazon is an Also Bought network,

where two products are connected if they are purchased together.

DBLP is a co-authorship network, where two authors are connected

if they publish at least one paper together.

Synthetic Graph Data Sets: We construct synthetic social net-

works by generating small-world graphs 𝐺 [28]. Specifically, we

first create a ring of size |𝑉 (𝐺) |, and then connect𝑚 nearest neigh-

bor nodes for each vertex 𝑢. Next, for each generated edge 𝑒𝑢,𝑣 ,

we add a new edge 𝑒𝑢,𝑤 with probability 𝜇 that connects 𝑢 to a

random vertex 𝑤 . Here, we take 𝑚 = 5 and 𝜇 = 0.251. For each

vertex, we randomly generate a keyword set 𝑣𝑖 .𝐿 from the keyword

domain Σ, following 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚, 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, and 𝑍𝑖𝑝 𝑓 distributions,

to obtain three synthetic graphs, denoted as 𝑈𝑛𝑖 , 𝐺𝑎𝑢, and 𝑍𝑖𝑝 𝑓 ,

respectively. Next, for each edge 𝑒𝑢,𝑣 in the generated graphs, we

produce a random value within an interval [0.5, 0.6) as the edge
activation probability 𝑃𝑢,𝑣 .

Competitors: To our best knowledge, no prior works studied the

RICS problem and its variant, R
2
ICS, by considering the influence

of a connected community on a user-specified target community

(instead of the entire graph). Therefore, we compare our RICS ap-

proach with a straightforward method, called baseline. The baseline
method first determines the target community𝑄 based on the given

query vertex and then performs Breadth First Search (BFS) from𝑄 in

the social network𝐺 . For each vertex we encounter (during the BFS

traversal), baseline obtains its 𝑟 -hop subgraph and checks whether

this subgraph satisfies the structure and keyword constraints. Next,

we obtain candidate communities 𝑆 from the 𝑟 -hop subgraph and

calculate their influence scores 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑆,𝑄 . If a candidate com-

munity 𝑆 has an influence score greater than the best score we have

seen so far, we will let 𝑆 be the best-so-far RICS answer. Finally,

after all vertices have been traversed, baseline returns the candidate
community 𝑆 we have obtained with the maximum influence on the

target community 𝑄 . Note that, since the time cost of the baseline
10

Algorithm 6: Online R2ICS Processing
Input: i) a set, 𝐿𝑞 , of query keywords, ii) a query center vertex, 𝑣𝑞 , iii) the

maximum radius, 𝑟 , of the target community𝑄 , iv) the maximum

number, 𝑁 , of users in the R
2
ICS community, and v) the index I over

social networks𝐺

Output: an R
2
ICS community answer 𝑆

// initialization phase

1 hash all keywords in the query keyword set 𝐿𝑞 into a query bit vector 𝐿𝑞 .𝐵𝑉

2 obtain the target community𝑄 = 𝑟 -ℎ𝑜𝑝 (𝑣𝑞 ,𝐺)
3 𝑆 = 𝑑𝑢𝑚𝑚𝑦, 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡 = ∅,𝑉𝑐𝑎𝑛𝑑 = ∅;
// index traversal phase

4 initialize a minimum heap H accepting index entries in the form (N, 𝑘𝑒𝑦)
5 insert all entries N in the root of index I into heap H
6 while H is not empty do
7 (N, 𝑘𝑒𝑦) = H.𝑝𝑜𝑝 ()
8 if N is a leaf node then
9 for each vertex 𝑣𝑖 ∈ N do
10 if 𝑣𝑖 cannot be pruned by Lemma 4.1 then
11 if |𝑉 (𝑆) | < 𝑁 then
12 if 𝑣𝑖 is closer to 𝑣𝑞 than all vertices 𝑣𝑠 ∈ 𝑆 then
13 compute the influence score 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 =

calculate_influence(𝑣𝑖 ,𝑄)
14 add 𝑣𝑖 to 𝑆

15 add 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 to 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡

16 else
17 add 𝑣𝑖 to𝑉𝑐𝑎𝑛𝑑

18 else
19 add 𝑣𝑖 to𝑉𝑐𝑎𝑛𝑑

20 else
// N is a non-leaf node

21 for each entry N𝑖 ∈ N do
22 if N𝑖 cannot be pruned by Lemma 6.1 then
23 insert (N𝑖 , 𝑘𝑒𝑦) into heap H

// candidate vertex refinement phase

24 sort candidate vertices in𝑉𝑐𝑎𝑛𝑑 in descending order of influence score upper

bounds

25 𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 = min(𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡)
26 for each candidate vertex 𝑣𝑖 ∈ 𝑉𝑐𝑎𝑛𝑑 do
27 if |𝑉 (𝑆) | = 𝑁 then
28 if 𝑣𝑖 cannot be pruned by Lemma 7.1 then
29 compute the influence score

𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 = calculate_influence(𝑣𝑖 ,𝑄)
30 if 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 >𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 then
31 replace one vertex in 𝑆 (having the smallest

vertex-to-community influence,𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 , in

𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡) with 𝑣𝑖
32 update 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡 , upon the replacement of vertex 𝑣𝑖
33 update𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 = min(𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡)
34 else
35 terminate the loop

36 else
37 compute the influence score

𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 = calculate_influence(𝑣𝑖 ,𝑄)
38 add 𝑣𝑖 to 𝑆

39 add 𝑖𝑛𝑓 _𝑠𝑐𝑜𝑟𝑒𝑣𝑖 ,𝑄 to 𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡

40 update𝑚𝑖𝑛_𝑖𝑛𝑓 _𝑠𝑜_𝑓 𝑎𝑟 = min(𝑣2𝐶_𝑖𝑛𝑓 _𝑠𝑒𝑡)

41 return 𝑆

method is extremely high, we evaluate this method by sampling

0.1% vertices from the data graph 𝐺 without replacement. There-

fore, the total time can be estimated by 𝑡 · |𝑉 (𝐺) |, where 𝑡 denotes
the average time of each sample.

For R
2
ICS, we compare our approach (R

2
ICS, Algorithm 6) with

R
2
ICS_WoP and Optimal methods. Here, R

2
ICS_WoP is our R

2
ICS

Table 2: Statistics of the tested real-world graph data sets.

Social Networks |𝑉 (𝐺) | |𝐸 (𝐺) |
Facebook[25] 4,039 88,234

Amazon[26] 334,863 925,872

DBLP[27] 317,080 1,049,866

Table 3: Parameter settings.
Parameters Values
support, 𝑘 , of truss structure 3, 4, 5
radius 𝑟 1, 2, 3
size, |𝐿𝑞 | , of query keywords set 2, 3, 5, 8, 10
size, |𝑣𝑖 .𝐿 | , of keywords per vertex 1, 2, 3, 4, 5
keyword domain size |Σ | 10, 20, 50, 80
the number, 𝑑 , of pivots 3, 5, 8, 10
the maximum size, 𝑁 , of seed community 5, 10, 15, 20
the size, |𝑉 (𝐺) | , of data graph𝐺 10K, 25K, 50K, 100K, 250K

Facebook
Amazon

DBLP Uni Gau Zipf

data sets

100

101

102

103

104

105

w
al

l c
lo

ck
 ti

m
e

(s
ec

) RICS
baseline

Figure 3: The RICS performance on real/synthetic graphs.

approach without the pruning strategy in Section 7, whereas Op-
timal computes the influence score of each vertex on the target

community in the original graph and selects a combination of 𝑁

vertices with the highest influence score as the query result.

Measure: To evaluate the efficiency of our RICS / R
2
ICS approaches,

we randomly select 50 query nodes from each graph data set, and

take the average of the wall clock time over 50 runs, which is the

time cost of online retrieving RICS or R
2
ICS query results via the

index (Algorithms 5 and 6).

Parameter Settings: Table 3 depicts parameter settings, where

default values are in bold. Each time, we vary the value of one

parameter while setting other parameters to their default values.

We ran all the experiments on the PC with Intel(R) Core(TM) i9-

10900K CPU 3.70GHz and 32 GB memory. All algorithms were

implemented in Python and executed with Python 3.8 interpreter.

8.2 Performance Evaluation
The RICS Performance on Real/Synthetic Graphs: Figure 3
illustrates the performance of our RICS approach on both real and

synthetic graphs, compared with the baseline method, where all

parameters are set by their default values in Table 3, except for

the dense Facebook dataset with the maximum seed community

size 𝑁 = 700. Experimental results show that the wall clock time
of our RICS approach outperforms baseline by almost three orders

of magnitude, which confirms the effectiveness of our proposed

pruning strategies and indexing mechanisms and the efficiency of

our RICS approach.

11

3 4 5
k

0

2

4

6

8

10

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

Uni
Gau
Zipf

(a) edge support threshold, 𝑘

1 2 3
r

0

5

10

15

20

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

Uni
Gau
Zipf

(b) radius, 𝑟

2 3 5 8 10
|Lq|

0

5

10

15

20

25

30

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

Uni
Gau
Zipf

(c) # of query keywords, |𝐿𝑞 |

1 2 3 4 5
|vi. L|

0

5

10

15

20

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

Uni
Gau
Zipf

(d) # of keywords per vertex, |𝑣𝑖 .𝐿 |

10 20 30 40 50 60 70 80
| |

0
5

10
15
20
25
30
35

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

Uni
Gau
Zipf

(e) keyword domain size, |Σ |

3 4 5 6 7 8 9 10
d

4

6

8

10

12

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

Uni
Gau
Zipf

(f) # of pivots, 𝑑

5 10 15 20
N

2
4
6
8

10
12
14
16

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

Uni
Gau
Zipf

(g) maximum seed community size, 𝑁

10K 25K 50K 100K 250K
|V(G)|

0

10

20

30

40

50

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

Uni
Gau
Zipf

(h) graph size, |𝑉 (𝐺) |

Figure 4: The robustness evaluation of the RICS query performance.

To evaluate the robustness of our RICS approach, in subsequent

experiments, we will test the effect of each parameter in Table 3 on

the query performance over synthetic graphs.

Effect of Truss Support Parameter 𝑘 : Figure 4(a) shows the RICS
query performance for different 𝑘 values, where 𝑘 = 3, 4, and 5, and

the rest of parameters are set to default values. From this figure, we

can find that for larger 𝑘 values, the query time cost decreases over

all three synthetic graphs. This is because larger 𝑘 leads to fewer

candidate communities satisfying the 𝑘-truss constraints, which in

turn incurs lower wall clock time.

Effect of Radius 𝑟 : Figure 4(b) illustrates the wall clock time of our

RICS approach, by varying 𝑟 from 1 to 3, where other parameters

are set to their default values. When the radius 𝑟 increases, the

numbers of vertices included in the target and seed communities

also increase, leading to higher filtering and refinement costs. Nev-

ertheless, the wall clock time remains low (i.e., 3.54 ∼ 17.44 𝑠𝑒𝑐) for

all the synthetic graphs.

Effect of the Size, |𝐿𝑞 |, of the Query Keyword Set: Figure 4(c)
presents the RICS query performance, where |𝐿𝑞 | = 2, 3, 5, 8, and 10,

and other parameters are by default. Intuitively, as |𝐿𝑞 | increases,
more candidate seed communities satisfy the keyword require-

ments. Thus, we will have a higher threshold of the influence score,

which results in higher pruning power and, in turn, lower time

cost, as confirmed by the figure. However, more candidate seed

communities require more refinement costs, and wall clock times

increase. In summary, the wall clock time remains low for different

|𝐿𝑞 | values (i.e., 4.86 ∼ 29.56 𝑠𝑒𝑐).

Effect of the Size, |𝑣𝑖 .𝐿 |, of Keywords per vertex: Figure 4(d)
reports the efficiency of our RICS approach, by varying |𝑣𝑖 .𝐿 | from
1 to 5, where default values are used for other parameters. With the

increase of |𝑣𝑖 .𝐿 |, more vertices are likely to be included in candidate

seed communities, which leads to a higher influence threshold and

higher pruning power (or lower query cost). Meanwhile, larger

|𝑣𝑖 .𝐿 | will incurs higher filtering/refinement costs. Therefore, the

two factors mentioned above show that the wall clock time first

decreases and then increases for larger |𝑣𝑖 .𝐿 |. The wall clock times

with different |𝑣𝑖 .𝐿 | values are 4.88 ∼ 13.73 𝑠𝑒𝑐 .

Effect of Keyword Domain Size |Σ|: Figure 4(e) illustrates the
RICS query performance with different keyword domain sizes |Σ| =
10, 20, 50, and 80, where other parameters are set to default values.

From this figure, we can find that, since larger Σ will improve the

pruning power of keyword pruning, the community computational

cost decreases. On the other hand, fewer candidate communities

also lead to lower impact thresholds and lower pruning power. Thus,

for all three synthetic graphs, the wall clock time decreases and

then increases as Σ increases. Nevertheless, the wall clock times

remain low (i.e., 4.92 ∼ 30.75 𝑠𝑒𝑐).

Effect of the Number, 𝑑 , of Pivots: Figure 4(f) shows the RICS
query performance for various numbers of pivots, where 𝑑 = 3,

4, 5, 6, and 8, and default values are used for other parameters.

When 𝑑 increases, the distance lower bounds from candidate com-

munities 𝑆 to target community 𝑄 are tighter, which incurs better

searching order of candidate communities and achieves higher in-

fluence threshold earlier (or lower query costs). However, more

pivots will also lead to higher computation costs for distances with

lower bounds. Therefore, in the figure, for larger 𝑑 values, the wall

clock time first decreases and then increases. Nonetheless, the wall

clock times remain low (i.e., 4.92 ∼ 9.97 𝑠𝑒𝑐).

Effect of the Maximum Size, 𝑁 , of Seed Communities: Fig-
ure 4(g) evaluates the performance of our RICS approach, where

the maximum size, 𝑁 , of seed communities varies from 5 to 20,

and other parameters are by default. The smaller 𝑁 is, while we

have fewer candidate communities, the computational cost of the

𝑘-truss subgraph with maximum influence performed to obtain

these candidate communities is greatly increased. Therefore, in the

figure, when 𝑁 increases, the wall clock time decreases for all the

12

Facebook
Amazon

DBLP Uni Gau Zipf

data sets

100
101
102
103
104
105
106
107
108
109

1010

w
al

l c
lo

ck
 ti

m
e

(s
ec

) R2ICS

R2ICS_WoP
Optimal

Figure 5: The R2ICS performance on real/synthetic graphs.

Facebook
Amazon

DBLP Uni Gau Zipf

data sets

10 2
10 1
100
101
102
103
104
105
106

of

 p
ru

ne
d

co
m

m
un

iti
es

keyword pruning
keyword + support pruning
keyword + support + influence score pruning

(a) pruning power

Facebook
Amazon

DBLP Uni Gau Zipf

data sets

10 1

100

101

102

103

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

keyword pruning
keyword + support pruning
keyword + support + influence score pruning

(b) time cost

Figure 6: The ablation study of the RICS performance.

three synthetic graphs. Nevertheless, the time costs remain low

(i.e., 4.30 ∼ 14.62 𝑠𝑒𝑐) for different 𝑁 values.

Effect of the Size, |𝑉 (𝐺) |, of the Data Graph𝐺 : Figure 4(h) tests
the scalability of our RICS approach, where graph size |𝑉 (𝐺) | = 10𝐾 ,
25𝐾 , 50𝐾 , 100𝐾 , and 250𝐾 , and the rest of parameters are set by their

default values. From the figure, we can see that, with the increase of

the graph size |𝑉 (𝐺) |, the number of candidate seed communities

also increases, which leads to higher pruning/refinement costs and

more wall clock times. Nonetheless, even when |𝑉 (𝐺) | = 250𝐾 (i.e.,

250𝐾 vertices in graph 𝐺), the time costs are less than 46.10 𝑠𝑒𝑐

for all the three synthetic graphs, which confirms the efficiency

and scalability of our proposed RICS approach on large-scale social

networks.

The R2ICS Performance on Real/Synthetic Graphs: Figure 5
illustrates the performance of our R

2
ICS approach on both real

and synthetic graphs, compared with the R
2
ICS_WoP and Optimal

methods, where all parameters are set by their default values in

Table 3. From the figure, since R
2
ICS uses Lemma 7.1 as an influence

upper bound pruning strategy, it is unnecessary to specifically

compute candidate vertices with a very small influence upper bound

on the query target community. And, we can see the wall clock
time of R

2
ICS approach outperforms R

2
ICS_WoP by about one

order of magnitude and outperforms Optimal by about two orders

of magnitude. Moreover, every vertex is fully considered in our

refinement process, and the accuracy of our method is 100% as in

Optimal. These results confirm our overall method’s effectiveness

and our R
2
ICS’s efficiency on real and synthetic graphs.

8.3 Ablation Study
To evaluate the effectiveness of our proposed pruning strategies,

we conduct an ablation study over real/synthetic graphs, where

all parameters are set to their default values. As shown in Figure

6(a) and 6(b), we tested different combinations by adding one more

The vertex of seed community The vertex of target community The influence score between two vertices

Figure 7: A case study of RICS with different community
structures over DBLP dataset.

pruning strategy each time: (1) keyword pruning only, (2) keyword +
support pruning, and (3) keyword + support + influence score pruning.
Figure 6(a) shows the number of pruned candidate communities for

different pruning combinations, and Figure 6(b) shows the query

time cost with different pruning combinations. From these figures,

we can find that as more pruning strategies are used, the num-

ber of pruned communities increases by 1-3 orders of magnitude,

and the wall clock time also decreases by 1 order of magnitude

accordingly. Especially, the third influence score pruning strategy

can significantly prune more candidate communities and reduce

the query cost. On the other hand, due to the high density of the

Facebook dataset, the number of pruned candidate communities for

keyword and support pruning is zero. For Gaussian, since most of

the vertices have the same keywords around the center vertex, the

pruning power of the keyword pruning is zero.

8.4 Case Study
To evaluate the usefulness of our RICS results, we conduct a case

study to compare the influences of the seed community obtained

by our RICS approach with that by 𝑘-core [29] over 𝐷𝐵𝐿𝑃 . Figure 7

shows the visualization of influence propagation between the seed

community and the target community, where blue triangles are the

vertices of the seed community, red stars are the vertices of the

target community, and shades of edge color reflect influence scores.

With the same target community, the left part of Figure 7 is the result

of our RICS approach (4-truss), and the right part is the result of the

𝑘-core method (4-core). From this figure, we can find that although

the 4-core community has more vertices, our RICS seed community

has an influence score of 15.74, significantly greater than the 4.72

of the 4-core community. This confirms the usefulness of our RICS

problem to obtain seed communities with high influences for real-

world applications such as online advertising/marketing.

9 RELATEDWORK
In this section, we briefly discuss research closely related to our

work, specifically community search, community detection, and

influence maximization.

Community Search (CS): The community search (CS) over social

networks usually search for connected subgraphs containing a

specific query vertex or a set of query vertices [30–32]. Some works

[33–37] typically adopt cohesive subgraph models to measure the

cohesiveness of subgraphs as a way to obtain a community from

a query vertex 𝑞, such as 𝑘-core [34, 35], 𝑘-truss [21, 36], 𝑘-clique

[37, 38] and 𝑘-edge connectivity components [39, 40]. In [33, 34],

13

theminimum degreewas used tomeasure the cohesion of the𝑘-core

communities. In contrast, our RICS problem is more challenging in

searching for densely structured communities and ensuring the high

influence of communities with the constraint of query keywords.

On the other hand, most studies on community search are searching

from a certain user (forward search [32]), while our work focuses

on reverse search starting from a certain community, which is more

broadly considered and closer to real life.

Community Detection (CD): The community detection (CD) aims

to detect all communities in a given social network. The foundation

of many detection algorithms lies in graph partitioning [41, 42]

and clustering [43–45]. The Kernighan-Lin algorithm [41] is one

of the earliest techniques used for graph partitioning, which di-

vides the nodes of the graph into smaller components with specific

attributes while minimizing the number of cut edges. Newman’s

maximum likelihood algorithm [42], on the other hand, reduces

the community detection problem to searching among a set of can-

didate solutions, each of which is a solution to the minimum cut

graph partitioning. For the clustering method, Blondel et al. [45]

presents a hierarchical clustering approach to address the CD prob-

lem, while Clauset et al. [44] notice modularity optimization and

propose a greedy modularity optimization strategy to solve the CD

problem. Different from CD, our RICS problem requires not just

detecting communities but also finding the seed community that

has the most influence on the target community.

Influence Maximization (IM): The influence maximization (IM)

problem has been studied for a long time, which identifies a set of

users as seed vertices with the maximum impact on other users

within a given social network. Two influence propagation models

proposed by Kempe et al. [46], the Independent Cascade (IC) model

and the Linear Threshold (LT) model, have been widely used as in-

fluence propagation models for addressing influence maximization

problems [20, 47–49]. Chen et al. [20] introduces theDegreeDiscount
heuristic algorithm for LT, presenting a scalable influence maxi-

mization algorithm. [47] proposed the PMIA heuristic algorithm

for the IC model. However, such IM problems typically ignore the

constraints among seed vertices, whereas our RICS problem pays

attention to identifying seed communities that can influence the

given target user group.

10 CONCLUSION
This paper proposed a novel RICS problem, which returns a seed

community with the maximum influence on a user-specified target

community. Unlike existing works, the RICS problem considers the

influence of seed community on a specific user group/community

rather than arbitrary users in social networks. To solve the RICS

problem, we designed effective pruning strategies to filter out false

alarms of candidate seed communities, and constructed an index

to facilitate our proposed efficient RICS query processing algo-

rithm. We also formulated and tackled a variant of RICS (i.e., R
2
ICS)

by proposing an online query algorithm with effective vertex-to-

community influence score pruning. Extensive experiments on

real/synthetic social networks validated the efficiency and effec-

tiveness of our RICS and R
2
ICS approaches.

14

REFERENCES
[1] Sijing Tu and Stefan Neumann. A viral marketing-based model for opinion

dynamics in online social networks. In Proceedings of the Web Conference, pages
1570–1578, 2022.

[2] Pejman Ebrahimi, Marjan Basirat, Ali Yousefi, Md Nekmahmud, Abbas Gho-

lampour, and Maria Fekete-Farkas. Social networks marketing and consumer

purchase behavior: the combination of sem and unsupervised machine learning

approaches. Big Data and Cognitive Computing, 6(2):35, 2022.
[3] Niranjan Rai and Xiang Lian. Top-𝑘 community similarity search over large-scale

road networks. IEEE Transactions on Knowledge and Data Engineering (TKDE),
35(10):10710–10721, 2023.

[4] Reza Molaei, Kheirollah Rahsepar Fard, and Asgarali Bouyer. Time and cost-

effective online advertising in social internet of things using influence maximiza-

tion problem. Wirel. Networks, 30(2):695–710, 2024.
[5] Sanjay Kumar, Abhishek Mallik, Anavi Khetarpal, and BS Panda. Influence

maximization in social networks using graph embedding and graph neural

network. Information Sciences, 607:1617–1636, 2022.
[6] Neelakandan Subramani, Sathishkumar Veerappampalayam Easwaramoorthy,

Prakash Mohan, Malliga Subramanian, and Velmurugan Sambath. A gradient

boosted decision tree-based influencer prediction in social network analysis. Big
Data and Cognitive Computing, 7(1):6, 2023.

[7] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. Influential community search

in large networks. Proceedings of the VLDB Endowment, 8(5):509–520, 2015.
[8] Ruidong Yan, Deying Li, Weili Wu, Ding-Zhu Du, and Yongcai Wang. Minimizing

influence of rumors by blockers on social networks: Algorithms and analysis.

IEEE Trans. Netw. Sci. Eng., 7(3):1067–1078, 2020.
[9] Yingli Zhou, Yixiang Fang, Wensheng Luo, and Yunming Ye. Influential commu-

nity search over large heterogeneous information networks. Proceedings of the
VLDB Endowment, 16(8):2047–2060, 2023.

[10] Md Saiful Islam, Mohammed Eunus Ali, Yong-Bin Kang, Timos Sellis, Farhana M

Choudhury, and Shamik Roy. Keyword aware influential community search in

large attributed graphs. Information Systems, 104:101914, 2022.
[11] Yanping Wu, Jun Zhao, Renjie Sun, Chen Chen, and Xiaoyang Wang. Efficient

personalized influential community search in large networks. Data Science and
Engineering, 6(3):310–322, 2021.

[12] Ahmed Al-Baghdadi and Xiang Lian. Topic-based community search over spatial-

social networks. Proceedings of the VLDB Endowment, 13(12):2104–2117, 2020.
[13] Dengshi Li, Lu Zeng, Ruimin Hu, Xiaocong Liang, and Yilong Zang. Itc:

Influential-truss community search. In 2022 International Joint Conference on
Neural Networks (IJCNN), pages 01–08, 2022.

[14] Jian Xu, Xiaoyi Fu, Yiming Wu, Ming Luo, Ming Xu, and Ning Zheng. Personal-

ized top-n influential community search over large social networks. World Wide
Web (WWW), 23:2153–2184, 2020.

[15] Quan Fang, Jitao Sang, Changsheng Xu, and Yong Rui. Topic-sensitive influencer

mining in interest-based social media networks via hypergraph learning. IEEE
Transactions on Multimedia, 16(3):796–812, 2014.

[16] Simon M Firestone, Michael P Ward, Robert M Christley, and Navneet K Dhand.

The importance of location in contact networks: Describing early epidemic

spread using spatial social network analysis. Preventive Veterinary Medicine,
102(3):185–195, 2011.

[17] Huiyu Min, Jiuxin Cao, Tangfei Yuan, and Bo Liu. Topic based time-sensitive

influence maximization in online social networks. World Wide Web (WWW),
23:1831–1859, 2020.

[18] Khurshed Ali, Chih-Yu Wang, and Yi-Shin Chen. Leveraging transfer learning in

reinforcement learning to tackle competitive influence maximization. Knowledge
and Information Systems, 64(8):2059–2090, 2022.

[19] Wei Chen, YajunWang, and Siyu Yang. Efficient influence maximization in social

networks. In Proceedings of the International Conference on Knowledge Discovery
and Data Mining, pages 199–208, 2009.

[20] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In Proceedings of the
International Conference on Knowledge Discovery and Data Mining (SIGKDD),
pages 1029–1038, 2010.

[21] Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis.

National Security Agency Technical Report, 16(3.1), 2008.
[22] Xin Huang and Laks VS Lakshmanan. Attribute-driven community search.

Proceedings of the VLDB Endowment, 10(9):949–960, 2017.
[23] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–
392, 1998.

[24] David A. Plaisted. Heuristic matching for graphs satisfying the triangle inequality.

J. Algorithms, 5(2):163–179, 1984.
[25] Jure Leskovec and Julian Mcauley. In Learning to discover social circles in ego

networks, pages 548–556, 2012.
[26] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities

based on ground-truth. In Proceedings of the ACM SIGKDD Workshop on Mining
Data Semantics, pages 1–8, 2012.

[27] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph clustering based on struc-

tural/attribute similarities. Proceedings of the VLDB Endowment, 2(1):718–729,
2009.

[28] Mark EJ Newman and Duncan J Watts. Renormalization group analysis of the

small-world network model. Physics Letters A, 263(4-6):341–346, 1999.
[29] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. Persistent

community search in temporal networks. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 797–808, 2018.

[30] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. A survey of community search over big graphs. The VLDB
Journal, 29:353–392, 2020.

[31] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. Effective

and efficient community search over large heterogeneous information networks.

Proceedings of the VLDB Endowment, 13(6):854–867, 2020.
[32] Mauro Sozio and Aristides Gionis. The community-search problem and how to

plan a successful cocktail party. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining, pages 939–948, 2010.

[33] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. Local search of

communities in large graphs. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 991–1002, 2014.

[34] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. Distance-generalized core

decomposition. In proceedings of the International Conference on Management of
Data (SIGMOD), pages 1006–1023, 2019.

[35] Vladimir Batagelj and Matjaz Zaversnik. An o (m) algorithm for cores decompo-

sition of networks. arXiv preprint cs/0310049, 2003.
[36] Yikai Zhang and Jeffrey Xu Yu. Unboundedness and efficiency of truss main-

tenance in evolving graphs. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 1024–1041, 2019.

[37] Wanyun Cui, Yanghua Xiao, HaixunWang, Yiqi Lu, andWeiWang. Online search

of overlapping communities. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 277–288, 2013.

[38] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. Index-based

densest clique percolation community search in networks. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 30(5):922–935, 2017.

[39] Lijun Chang, Xuemin Lin, Lu Qin, Jeffrey Xu Yu, and Wenjie Zhang. Index-

based optimal algorithms for computing steiner components with maximum

connectivity. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 459–474, 2015.

[40] Jiafeng Hu, Xiaowei Wu, Reynold Cheng, Siqiang Luo, and Yixiang Fang. On

minimal steiner maximum-connected subgraph queries. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 29(11):2455–2469, 2017.

[41] BrianWKernighan and Shen Lin. An efficient heuristic procedure for partitioning

graphs. The Bell system technical journal, 49(2):291–307, 1970.
[42] Mark EJ Newman. Community detection and graph partitioning. Europhysics

Letters, 103(2):28003, 2013.
[43] Michelle Girvan and Mark EJ Newman. Community structure in social and

biological networks. Proceedings of the National Academy of Sciences (PNAS),
99(12):7821–7826, 2002.

[44] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community

structure in very large networks. Physical Review E, 70(6):066111, 2004.
[45] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[46] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence

through a social network. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining (SIGKDD), pages 137–146, 2003.

[47] Chi Wang, Wei Chen, and Yajun Wang. Scalable influence maximization for

independent cascade model in large-scale social networks. Data Mining and
Knowledge Discovery, 25:545–576, 2012.

[48] Shuo Chen, Ju Fan, Guoliang Li, Jianhua Feng, Kian-lee Tan, and Jinhui Tang.

Online topic-aware influence maximization. Proceedings of the VLDB Endowment,
8(6):666–677, 2015.

[49] Yuchen Li, Dongxiang Zhang, and Kian-Lee Tan. Real-time targeted influence

maximization for online advertisements. Proc. VLDB Endow., 8(10):1070–1081,
2015.

15

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Social Networks
	2.2 Community
	2.3 The Problem Definition of Reverse Influential Community Search Over Social Networks

	3 The RICS Framework
	4 Pruning strategies
	4.1 Keyword Pruning
	4.2 Support Pruning
	4.3 Influence Score Pruning

	5 Offline pre-computation
	5.1 Offline Pre-Computed Data
	5.2 Indexing Mechanism

	6 Online RICS Computation
	6.1 Index Pruning
	6.2 The RICS Algorithm

	7 Online Computation for R2ICS
	8 Experimental evaluation
	8.1 Experimental Settings
	8.2 Performance Evaluation
	8.3 Ablation Study
	8.4 Case Study

	9 Related work
	10 Conclusion
	References

