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Abstract

We present a new random walk for uniformly sampling high-dimensional convex bodies.
It achieves state-of-the-art runtime complexity with stronger guarantees on the output than
previously known, namely in Rényi divergence (which implies TV, W2, KL, χ2). The proof
departs from known approaches for polytime algorithms for the problem — we utilize a stochastic
diffusion perspective to show contraction to the target distribution with the rate of convergence
determined by functional isoperimetric constants of the stationary density.

1 Introduction
Generating random samples from a high-dimensional convex body is a basic algorithmic problem
with myriad connections and applications. The core of the celebrated result of [DFK91], giving a
randomized polynomial-time algorithm for computing the volume of a convex body, was the first
polynomial-time algorithm for uniformly sampling convex bodies. In the decades since, the study
of sampling has led to a long series of improvements in its algorithmic complexity [LS90; LS93;
KLS97; LV06; CV18], often based on uncovering new mathematical/geometric structure, establishing
connections to other fields (e.g., functional analysis, matrix concentration) and developing new tools
for proving isoperimetric inequalities and analyzing Markov chains. With the proliferation of data
and the increasing importance of machine learning, sampling has also become an essential algorithmic
tool, with applications needing samplers in very high dimension, e.g., scientific computing [CV16;
Har+17; Koo+22], systems biology [LNP12; Thi+13], differential privacy [MT07; Mir17] and
machine learning [Bin+19; Sta20].

Samplers for convex bodies are based on Markov chains (see Appendix A for a summary). Their
analysis is based on bounding the conductance of the associated Markov chain, which in turn bounds
the mixing rate. Analyzing the conductance requires combining delicate geometric arguments with
(Cheeger) isoperimetric inequalities for convex bodies. An archetypal example of the latter is the
following: for any measurable partition S1, S2, S3 of a convex body K ⊂ Rd, we have

vol(S3) ≥ d(S1, S2)
CK

min{vol(S1), vol(S2)} ,

where d(·, ·) is the (minimum) Euclidean distance, and CK is an isoperimetric constant of the
uniform distribution over K. (The KLS conjecture posits that CK = O(1) for any convex body K in
isotropic position, i.e., under the normalization that a random point from K has identity covariance).
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The coefficient C2
K is bounded by the Poincaré constant of the uniform distribution over K (and

they are in fact asymptotically equal). The classical proof of conductance uses geometric properties
of the random walk at hand to reduce the analysis to a suitable isoperimetric inequality (see e.g.,
[LS93; Vem05]). The end result is a guarantee on the number of steps after which the total variation
distance (TV distance) between the current distribution and the target is bounded by a desired error
parameter. This framework has been widely used and effective in analyzing an array of candidate
samplers, e.g., Ball walk [KLS97], Hit-and-Run [Lov99; LV06], Riemannian Hamiltonian Monte Carlo
[LV18] etc.

One successful approach, studied intensively over the past decade, is based on diffusion. The
basic idea is to first analyze a continuous-time diffusion process, typically modeled by a stochastic
differential equation (SDE), and then show that a suitable time-discretization of the process,
sometimes together with a Metropolis filter, converges to the desired distribution efficiently. A
major success along this line is the Unadjusted Langevin Algorithm and its variants [Bes+95; DT12;
Dal17; DMM19; VW19]. These algorithms have strong guarantees for sampling “nice” distributions,
such as ones that are strongly log-concave, or more generally distributions satisfying isoperimetric
inequalities, while also obeying some smoothness conditions. The analysis of these algorithms is
markedly different from the conductance approach, and typically yields guarantees in stronger
metrics such as the KL-divergence.

Our starting point is the following question:

Can diffusion-based approaches be used for the problem of sampling convex bodies?

Despite remarkable progress, thus far, constrained sampling problems have evaded the diffusion
approach, except as a high-level analogy (e.g., the Ball walk can be viewed as a discretization of
Brownian motion, but this alone does not suggest a route for analysis) or with significantly worse
convergence rates (e.g., [Bro+17; BEL18]).

Our main finding is a simple diffusion-based algorithm that can be mapped to a stochastic
process (and, importantly, to a pair of forward and backward processes), such that the rate of
convergence is bounded directly by an appropriate functional inequality for the target distribution.
As a consequence, for the first time, we obtain clean end-to-end guarantees in the Rényi divergence
(which implies guarantees in other well known quantities such as W2,TV,KL, χ2 etc.), while giving
state-of-the-art runtime complexity for sampling convex bodies (e.g., Ball walk or Speedy walk [LS93;
KLS97]). Besides being a stronger guarantee on the output, Rényi divergence is of particular interest
for differential privacy [Mir17]. Perhaps most interesting is that our proof approach is completely
different from prior work on convex body sampling. In summary,

• The guarantees hold for the q-Rényi divergences while matching the rates of previous work
(prior work only had guarantees in the TV distance).

• The analysis is simple, modular, and easily extendable to several other settings.

1.1 Diffusion for uniform sampling

We propose the following In-and-Out1 sampler for uniformly sampling from K. Each iteration consists
of two steps, one that might leave the body and the second accepted only if it is (back) in the body.

1This name reflects the “geometry” of how the iterates are moving. As we elaborate in Remark 1, the name
‘proximal sampler’ may be more familiar to those from an optimization background.
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Figure 1.1: Description of uniform samplers: (i) Ball walk: proposes a uniform random point z from
Bδ(x1), but z /∈ K so it stays at x1 = x2. (ii) Speedy walk: moves to x2 drawn uniformly at random
from K ∩ Bδ(x1). (iii) In-and-Out: first moves to y2 obtained by taking a Gaussian step from x1,
and then to x2 obtained by sampling the truncated Gaussian N (y2, hId)|K.

Algorithm 1 In-and-Out
Input: initial point x0 ∼ π0, convex body K ⊂ Rd, iterations T , threshold N , and h > 0.
Output: xT +1.

1: for i = 0, . . . , T do
2: Sample yi+1 ∼ N (xi, hId).
3: Repeat: Sample xi+1 ∼ N (yi+1, hId) until xi+1 ∈ K or #attemptsi ≥ N (declare Failure).
4: end for

It might be illuminating for the reader to compare this algorithm to the well-studied Ball walk
(Algorithm 2); each proposed step is a uniform random point in a fixed-radius ball around the
current point, and is accepted only if the proposed point is in the body K. In contrast, each iteration
of In-and-Out is a two-step process, where the first step (Line 2) ignores the boundary of the body,
and the second step (Line 3) is accepted only if a proposal xi+1 is a feasible point in K. We will
presently elaborate on the benefits of this variation.

Each successful iteration of the algorithm, i.e., one that is not declared “Failure”, can be called
a proper step. We will see that the number of proper steps is directly bounded by isoperimetric
constants (such as Poincaré and log-Sobolev) of the target distribution. In fact, this holds quite
generally without assuming the convexity of K. The implementation of an iteration is based on
rejection sampling (Line 3), and our analysis of the efficiency of this step relies crucially on the
convexity of K. This is reminiscent of the Speedy walk in the literature on convex body sampling
(Algorithm 3), which is used as a tool to analyze proper steps of the Ball walk. We refer the reader
to Appendix B for a brief survey on these and related walks.

This simple algorithm can be interpreted as a composition of “flows” in the space of measures.
This view will allow us to use tools from stochastic analysis. In particular, we shall demonstrate
how to interpret the two steps of one iteration of In-and-Out as alternating forward and backward
heat flows.

We begin by defining an augmented probability measure on Rd × Rd by

π(x, y) ∝ exp
(
− 1

2h∥x− y∥
2)
1K(x) .
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Forward flow Backward flow

SDE dZt = dBt dZ←t = ∇ log(πXPh−t)(Z←t ) dt+ dBt

Fokker-Planck ∂tµt = 1
2∆µt ∂tµ

←
t = −div

(
µ←t ∇ log(πXPh−t)

)
+ 1

2∆µ←t

Table 1: The Fokker-Planck equations for the forward and backward heat flow describe how the
laws of Zt and Z←t in (FH) and (BH) evolve over time. See Section 3.2 for details.

We denote by πX , πX|Y (·|y) the marginal distribution of its first component (resp. conditional
distribution given the second component), and similarly denote by πY , πY |X(·|x) for the second
component. In particular, the marginal in the first component πX is the uniform distribution over
K. Sampling from such a joint distribution to obtain the marginal on X (say), can be more efficient
than directly working only with πX . This idea was utilized in Gaussian Cooling [CV18] and later as
the restricted Gaussian Oracle (RGO) [LST21; Che+22].

Under this notation, Algorithm 1 corresponds to a Gibbs sampling scheme from the two marginals
of π(x, y). To be precise, Line 2 and Line 3 correspond to sampling from

yi+1 ∼ πY |X(·|xi) = N (xi, hId) and xi+1 ∼ πX|Y (·|yi+1) = N (yi+1, hId)|K .

We implement the latter step through rejection sampling; if the number of trials in Line 3 hits the
threshold N , then we halt and declare failure of the algorithm. It is well known that such a Gibbs
sampling procedure will ensure the desired stationarity of π(x, y).
Stochastic perspective: forward and backward heat flows. Our algorithm can be viewed
through the lens of stochastic analysis, due to an improved analysis for the proximal sampling
[Che+22]. This view provides an interpolation in continuous-time, which is simple and powerful. To
make this concrete, we borrow an exposition from [Che24, Chapter 8.3]. Let us denote the successive
laws of xi and yi by µX

i and µY
i , respectively. Recall that the first step of sampling from πY |X(·|xi)

(Line 2) yields µY
i+1 =

∫
πY |X=x dµX

i (x). This is the result of evolving a probability measure under
(forward) heat flow of µX

i for some time h, given precisely by the following stochastic differential
equation: for Z0 ∼ µX

i ,
dZt = dBt (FH)

where Bt is the standard Brownian process. We write law(Zt) = µX
i Pt. In particular, Zh = Z0 + ζ ∼

µX
i ∗ N (0, hId) = µY

i+1 for ζ ∼ N (0, hId). When µX
i = πX , the first step of Algorithm 1 gives

πY (y) = [πX ∗ N (0, hId)](y) = 1
vol(K) (2πh)d/2

∫
K

exp
(
− 1

2h∥y − x∥
2)

dx . (1.1)

The second step of sampling from πX|Y (·|yi+1) can be represented by µX
i+1 =

∫
πX|Y =y dµY

i+1(y)
(Line 3). The continuous-time process corresponding to this step might not be obvious. However,
let us consider (FH) with Z0 ∼ πX . Then, Zh ∼ πY , so the joint distribution of (Z0, Zh) is simply π.
This implies that (Z0|Zh = y) ∼ πX|Y =y. Imagine there is an SDE reversing the forward heat flow
in a sense that if we are initialized deterministically at Zh ∼ δy at time 0, then the law of the SDE
at time h would be law(Z0|Zh = y) = πX|Y =y. Then, this SDE would serve as a continuous-time
interpolation of the second step.

Such a time reversal SDE is indeed possible! The following SDE on (Z←t )t∈[0,h] initialized at
Z←0 ∼ πY = πXPh ensures Zh−t ∼ law(Z←t ) = πXPh−t:

dZ←t = ∇ log(πXPh−t)(Z←t ) dt+ dBt for t ∈ [0, h] . (BH)
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Although this is designed to reverse (FH) initialized by Z0 ∼ πX (so Zh = Z←0 ∼ πY ), its
construction also ensures that if Z←0 ∼ δy, a point mass, then Z←h ∼ law(Z0|Zh = y) = πX|Y =y. Thus,
if we initialize (BH) with Z←0 ∼ µY

i+1, then the law of Z←h corresponds to
∫
πX|Y =y dµY

i+1(y) = µX
i+1.

Remark 1. We note that In-and-Out is exactly the proximal sampling scheme [LST21; Che+22;
FYC23] for uniform distributions. The proximal sampler with a target density proportional to
exp(−V (x)) considers an augmented distribution π(x, y) ∝ exp(−V (x) − 1

2h∥x − y∥
2) and then

repeats the following two steps: (1) yi+1 ∼ πY |X=xi = N (xi, hId) and then (2) xi+1 ∼ πX|Y =yi+1 .

1.2 Results

Our model of computation is the classical general model for convex bodies [GLS88]. We assume
vol(K) > 0 throughout this paper. Below, Br(x) denotes the d-dimensional ball of radius r centered
at x.

Definition 1 (Convex body oracle). A well-defined membership oracle for a convex body K ⊂ Rd

is given by a point x0 ∈ K, a number D > 0, with the guarantee that B1(x0) ⊆ K ⊆ BD(x0), and
an oracle that correctly answers YES or NO to any query of the form “x ∈ K?”

Definition 2 (Warmness). A distribution µ is M -warm with respect to another distribution π, i.e.,
for every x in the support of π, we have dµ(x) ≤M dπ(x).

We now summarize our main result which is further elaborated in Section 3.4 (Theorem 27).
Below, πK is the uniform distribution over K, and Rq is the Rényi-divergence of order q (see
Definition 6).

Theorem 3. For any given η, ε ∈ (0, 1), q ≥ 1, and any convex body K given by a well-defined
membership oracle, there exist choices of parameters h,N such that In-and-Out, starting from an
M -warm distribution, with probability at least 1− η, returns X ∼ µ such that Rq(µ ∥ πK) ≤ ε. The
number of proper steps is Õ(qd2Λ log M

ηε ), and the expected total number of membership queries is
Õ(qMd2Λ log5(1/ηε)), where Λ is the largest eigenvalue of the covariance of πK.

We note that for X ∼ πK,

∥Cov(πK)∥op ≤ tr(Cov(πK)) = E
[
∥X − E[X]∥2

]
≤ D2 .

The above guarantee in the Rényi divergence immediately providesW2,TV,KL, and χ2 guarantees
as special cases. Previous guarantees for uniformly sampling convex bodies were only in the TV-
distance. For two distributions µ and π, we have

1. KL(µ∥π) = limq→1 Rq(µ∥π) ≤ Rq(µ∥π) ≤ Rq′(µ∥π) ≤ R∞(µ∥π) = log sup dµ
dπ for 1 < q ≤ q′.

2. 2 ∥µ− π∥2TV ≤ KL(µ ∥ π) ≤ log(χ2(µ ∥ π) + 1) = R2(µ ∥ π).

3. W2
2 (µ, π) ≤ 2CLSI(π) KL(µ ∥ π) (Talagrand’s T2-inequality) and CLSI(πK) ≲ D2.

4. W2
2 (µ, π) ≤ 2CPI(π)χ2(µ ∥ π) [Liu20] and CPI(πK) ≲ ∥Cov(πK)∥op log d.

The query complexity is better if the convex body is (near-)isotropic, i.e., the uniform distribution
over the body has (near-)identity covariance. This relies on recent estimates of the worst-case
Poincaré constant for isotropic log-concave distributions [KLS95; Kla23].
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Corollary 4. Assume that πK is isotropic. Under the same setting as above, In-and-Out succeeds
with probability 1− η, returning X ∼ µ such that Rq(µ ∥ πK) ≤ ε. The number of proper steps is
Õ(qd2 log M

ηε ), and the expected total number of membership queries is Õ(qMd2 log5(1/ηε)).

Our analysis will in fact show that the bound on the number of proper steps holds for general non-
convex bodies and any feasible start in K. This is deduced under an M -warm start in Corollaries 28
and 29. We remark that such a bound for non-convex uniform sampling is not known for the
Ball walk or the Speedy walk.

Theorem 5. For any given ε ∈ (0, 1) and set K ⊂ BD(0) with vol(K) > 0, In-and-Out with variance
h and M -warm initial distribution achieves Rq(µX

m ∥πX) ≤ ε after the following number of iterations:

m = min
{
O

(
qh−1CPI(πX) log M

ε

)
for q ≥ 2 ,

O
(
qh−1CLSI(πX) log log M

ε

)
for q ≥ 1 .

We have two different convergence results above under (LSI-I) and (PI). Under (LSI-I) we have
a doubly-logarithmic dependence on the warmness parameter M . On the other hand, using (PI),
which is weaker than (LSI-I) (in general, CPI ≤ CLSI), the dependence on M is logarithmic. We
discuss our results further in Section 1.3.

Outline of analysis. We summarize our proof strategy below, which consists of two steps: (i)
The current distribution should converge to the uniform distribution, (ii) within each iteration of
the algorithm, the failure probability and the expected number of rejections should be small enough.

• We need to demonstrate that the corresponding Markov chain is rapidly mixing. Here, we
use the heat flow perspective to derive mixing rates under any suitable divergence measure
(such as KL, χ2, or Rq), extending known results for the unconstrained setting [Che+22]. As a
result, the mixing analysis reduces to a suitable functional inequality of the target distribution
alone.

• We show that the number of rejections in Line 3 over the entire execution of the algorithm
is bounded with high probability. To do this, we apply a detailed argument involving local
conductance and the convexity of K, which relies on techniques from [BNN06]. For this step,
we show that with the appropriate choice of variance h = Θ̃(d−2) and threshold N = Θ̃(Tη−1),
the entire algorithm succeeds with probability 1− η. The expected number of rejections is
polylogarithmic.

While each individual component resembles pre-existing work in the literature, in their synthesis
we will demonstrate how to interleave past developments in theoretical computer science, optimal
transport, and functional analysis. The combination of these in this domain yields elegant and
surprisingly simple proofs, as well as stronger results.

1.3 Discussion

Here we make a few remarks, contrasting our results with known ones.

No need to be lazy. Previous uniform samplers like the Ball walk are made lazy (i.e., with
probability 1/2, the Markov chain does nothing), to ensure convergence to the target stationary
distribution. However, our algorithm does not need this, since we directly show that our sampler
contracts towards a uniform distribution.

6



Unified framework. We remark that these two different bounds also place the previously known
mixing guarantees for Ball walk,Speedy walk in a unified framework. Existing tight guarantees for
Speedy walk are in TV distance and based on the log-Sobolev constant, assuming an oracle for
implementing each step [LV17]. The known convergence guarantees of Ball walk (see Appendix B
for details), namely the mixing time of Õ(Md2D2 log 1

ε ) for TV distance, are for the composite
algorithm [Speedy walk+rejection sampling]. Here Speedy walk records only the accepted steps of
Ball walk, so its stationary distribution differs slightly from the uniform distribution (and can be
corrected with a post-processing step). On the other hand, In-and-Out actually converges to πK
without any adjustments and achieves stronger Rényi divergence bounds in the same asymptotic
complexity. Our analysis shows that the mixing guarantee is determined by isoperimetric constants
of the target (Poincaré or log-Sobolev).

Effective step size. The Ball walk’s largest possible step size is of order 1/
√
d (see Appendix B)

to keep the rejection probability bounded by a constant. This bound could also be viewed as an
“effective” step size of In-and-Out. This follows from the fact that the ℓ2-norm of the Gaussian
N (0, hI) is concentrated around

√
hd, and we will set the variance h of In-and-Out to Õ(1/d2), so

we have
√
hd ≈ 1/

√
d.

What has really changed? In-and-Out has clear similarities to both Ball walk and Speedy walk.
What then are the changes that allow us to use continuous-time interpolation? One step of Ball walk
is [random step (y ∈ Bδ(x)) + Metropolis-filter (accept if y ∈ K)]. This filtering is an abrupt discrete
step, and it is unclear how to control contraction. It could be replaced by a step of Speedy walk
(x ∼ Unif(Bδ(y) ∩ K)). Then, each iteration of In-and-Out can be viewed as a Gaussian version of a
Ball walk′s proposal + Speedy walk algorithm.

How can we compare In-and-Out with Speedy walk? Iterating speedy steps leads to a biased
distribution (one that is proportional to the local conductance). As clarified in Remark 2, one step of
(a Gaussian version of) Speedy walk can be understood as a step of backward heat flow. Therefore,
if one can control the isoperimetric constants of the biased distribution along the trajectory of the
backward flow, then contraction of Speedy walk toward the biased distribution will follow from the
simultaneous backward analysis.

2 Preliminaries
Unless otherwise specified, we will use ∥ · ∥ for the 2-norm on Rd, and operator norm on Rd×d.
We write a = O(b), a ≲ b to mean that a ≤ cb for some universal constant c > 0. Similarly,
a ≳ b, a = Ω(b) for a ≥ cb, while a = Θ(b) means that a ≲ b, b ≲ a simultaneously. We will also use
a = Õ(b) to denote a = O(bpolylog(b)). Lastly, we will use measure and density interchangeably
when there is no confusion.

To quantify the convergence rate, we introduce some common divergences between distributions.

Definition 6 (Distance and divergence). For two measures µ, ν on Rd, the total variation distance
between them is defined by

∥µ− ν∥TV := sup
B∈F
|µ(B)− ν(B)| ,

where F is the collection of all measurable subsets of Rd . The 2-Wasserstein distance is given by

W2
2 (µ, ν) := inf

γ∈Γ(µ,ν)
E(X,Y )∼γ [∥X − Y ∥2] ,

7



where Γ is the set of all couplings between µ, ν. Next, we define the f -divergence of µ towards ν with
µ≪ ν (i.e., µ is absolutely continuous with respect to ν) as, for some convex function f : R+ → R
with f(1) = 0 and f ′(∞) =∞,

Df (µ ∥ ν) :=
∫
f

(dµ
dν

)
dν .

The KL-divergence arises when taking f(x) = x log x, the χq-divergence when taking f(x) = xq − 1,
and the q-Rényi divergence is given by

Rq(µ ∥ ν) := 1
q − 1 log

(
χq(µ ∥ ν) + 1

)
.

We recall two important functional inequalities of a distribution. We use ν to denote a probability
measure over Rd.

Definition 7. We say that ν satisfies a Poincaré inequality (PI) with parameter CPI(ν) if for all
smooth functions f : Rd → R,

Varνf ≤ CPI(ν)Eν [∥∇f∥2] , (PI)

where Varνf := Eν |f − Eνf |2.

The Poincaré inequality is implied by the log-Sobolev inequality.

Definition 8. We say that ν satisfies a log-Sobolev inequality (LSI) with parameter CLSI(ν) if for
all smooth functions f : Rd → R,

Entν(f2) ≤ 2CLSI(ν)Eν [∥∇f∥2] , (LSI-I)

where Entν(f2) := Eν [f2 log f2]− Eν [f2] log(Eν [f2]). Equivalently, for any probability measure µ
over Rd with µ≪ ν,

KL(µ ∥ ν) ≤ CLSI(ν)
2 FI(µ ∥ ν) , (LSI-II)

where FI(µ ∥ ν) := Eµ[∥∇ log dµ
dν ∥

2] is the Fisher information of µ with respect to ν.

We recall the data-processing inequality for Rényi divergence and f -divergence.

Lemma 9 (Data-processing inequality). For measures µ, ν, Markov kernel P , f-divergence Df ,
and q ≥ 1, it holds that

Df (µP ∥ νP ) ≤ Df (µ ∥ ν) , and Rq(µP ∥ νP ) ≤ Rq(µ ∥ ν) .

The aforementioned functional inequalities allow us to show exponential contraction of various
divergences, through the following helpful inequality.

Lemma 10 (Grönwall). Suppose that u, g : [0, T ]→ R are two continuous functions, with u being
differentiable on [0, T ] and satisfying

u′(t) ≤ g(t)u(t) for all t ∈ [0, T ] .

Then,
u(t) ≤ exp

(∫ t

0
g(s) ds

)
u(0) for all t ∈ [0, T ] .

8



3 Analysis
We begin this section by proving some introductory lemmas, which will streamline our later
exposition.

We first record two fundamental lemmas, which introduce the mathematical formalism for our
analysis. The first is the existence of forward and backward heat flows (Lemma 22), which will
interpolate each line in Algorithm 1. These flow equations describe how the laws of Zt and Z←t in
(FH) and (BH) evolve respectively over time.

Lemma 11. The forward heat flow equation with initial distribution µ0 is given by

∂tµt = 1
2∆µt ,

and its backward heat flow equation is given by

∂tµ
←
t = −div

(
µ←t ∇ log(πXPh−t)

)
+ 1

2∆µ←t with µ←0 = µh .

These admit (weak) solutions on [0, h] for any initial distribution µ0 with dµ0
dπX ≤M <∞.

One successful iteration of In-and-Out is exactly the same as the composition of running the
forward heat flow and then backward heat flow, both for time h. Its validity is justified in Section 1.1,
and we give its proof below.

Lemma 12. Let µX
k be the law of the k-th iterate xk of In-and-Out. If (FH) is initialized with

law(Z0) = µX
k , then law(Zh) = µY

k+1. If (BH) is initialized with law(Z←0 ) = µY
k+1, then law(Z←h ) =

µX
k+1.

Proof. We explicitly show that the forward and backward heat flows indeed interpolate the two
discrete steps given in Algorithm 1. For the forward part, we have Zh = Z0 + ζ for ζ ∼ N (0, hId), so

law(Zh) = law(Z0) ∗ N (0, hId) = µX
k ∗ N (0, hId) = µY

k+1 .

Regarding the backward part, it is known from [Che+22, Lemma 14] that the construction of the
time-reversal SDE ensures that (Z←h , Z←0 ) and (Z0, Zh) have the same joint distribution, when
Z0 ∼ πX (and so Zh ∼ πY ). Hence, law(Z←h |Z←0 = y) = law(Z0|Zh = y) = πX|Y =y, where the last
equality follows from (Z0, Zh) ∼ π. Since we initialize (BH) with Z←0 = y ∼ µY

k+1, we have

law(Z←h ) =
∫

law(Z←h |Z←0 = y)µY
k+1(dy) =

∫
πX|Y (·|y)µY

k+1(dy) = µX
k+1 ,

where the last follows from the definition of Line 3.

Our analysis of these objects consists of two parts: (1) demonstrating the mixing of In-and-Out,
i.e., how many outer iterations are needed to be sufficiently close to the uniform distribution, and
(2) quantifying the failure probability and wasted steps in Line 3.

For (1), we collect in Section 3.1 some important implications of functional inequalities, e.g. the
Poincaré and log-Sobolev inequalities, for the uniform distribution. Then in Section 3.2, we exploit
the flow perspective of the algorithm to obtain the mixing guarantees. To this end, we revisit the
proofs for the contraction results of forward and backward heat flows, and then extend them to our
constrained setting:

9



Theorem 13 (Adapted for uniform distributions, [Che+22]). Let µX
k be the law of the k-th output of

In-and-Out with initial distribution µX
0 . Let CLSI be the (LSI-I) constant of the uniform distribution

πX over K. Then, for any q ≥ 1,

Rq(µX
k ∥ πX) ≤ Rq(µX

0 ∥ πX)
(1 + h/CLSI)2k/q

.

For CPI the (PI) constant of πX and any q ≥ 2,

Rq(µX
k ∥ πX) ≤

Rq(µX
0 ∥ πX)− 2k log(1+h/CPI)

q if k ≤ q
2 log(1+h/CPI)

(
Rq(µX

0 ∥ πX)− 1
)
,

(1 + h/CPI)−2(k−k0)/q if k ≥ k0 := ⌈ q
2 log(1+h/CPI)

(
Rq(µX

0 ∥ πX)− 1
)
⌉ .

This reduces the problem of obtaining a mixing guarantee to that of demonstrating a functional
inequality on the target distribution. For this, it is not strictly necessary that K be convex.

On the other hand, convexity of K is crucial for the proof of (2). We show in Section 3.3 that
the failure probability remains under control by taking a suitable variance h and threshold N . We
then show that the expected number of trials per iteration is of order logN , not N :

Lemma 14 (Per-iteration guarantees). Let K be any convex body in Rd presented by a well-defined
membership oracle, πX the uniform distribution over K, and µ an M-warm initial distribution
with respect to πX . For any given m ∈ N and η ∈ (0, 1), set Z = 9mM

η (≥ 9), h = log log Z
2d2 log Z

and
N = Z(logZ)4 = Õ(mM

η ). Then, the failure probability of one iteration of In-and-Out is at most
η/m. Moreover, the expected number of membership queries needed per iteration is O

(
M(log mM

η )4)
.

3.1 Functional inequalities

The contraction of an outer loop of our algorithm is controlled by isoperimetry of the uniform
distribution πX , which is described precisely by a functional inequality. The most natural ones
to consider in this setting are the Poincaré inequality (PI) and log-Sobolev inequality (LSI-I). In
Appendix C, we provide a more detailed discussion of how these are related to other important
notions of isoperimetry, such as the Cheeger and log-Cheeger inequalities.

Below, we use µ, ν to denote two arbitrary probability measures over Rd. The relationship
between a Poincaré inequality and the χ2-divergence is derived by substituting f = dν

dµ into (PI).

Lemma 15. Assume that ν satisfies (PI) with parameter CPI(ν). For any probability measure µ
over Rd with µ≪ ν, it holds that

χ2(µ ∥ ν) ≤ CPI(ν)
2 Eν

[∥∥∇dµ
dν

∥∥2]
.

The Poincaré inequality implies functional inequalities for the Rényi divergence.

Lemma 16 ([VW19, Lemma 9]). Assume that ν satisfies (PI) with parameter CPI(ν). For any
q ≥ 2 and probability measure µ over Rd, it holds that

1− exp(−Rq(µ ∥ ν)) ≤ q CPI(ν)
4 RFq(µ ∥ ν) ,

where RFq(µ ∥ ν) := q Eν
[(dµ

dν

)q∥∇ log dµ
dν ∥

2]
/Eν

[(dµ
dν

)q]
is the Rényi Fisher information of order q

of µ with respect to ν.
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The log-Sobolev inequality paired with the KL-divergence (LSI-II) can be understood as a special
case of the following inequality2 paired with the q-Rényi divergence for q ≥ 1.

Lemma 17 ([VW19, Lemma 5]). Assume that ν satisfies (LSI-II) with parameter CLSI(ν). For any
q ≥ 1 and probability measure µ over Rd, it holds that

Rq(µ ∥ ν) ≤ q CLSI(ν)
2 RFq(µ ∥ ν) .

Note that limq→1 Rq = KL and RF1 = FI.

We have collected below the functional inequalities used to establish the mixing of our algorithm
(see Appendix C for a detailed presentation).

Lemma 18. Let K ⊂ Rd be a convex body with diameter D, and π be the uniform distribution over
K. Then, CPI(π) ≲ ∥Cov(π)∥op log d and CLSI(π) ≲ D2. If π is isotropic, then CPI(π) ≲ log d and
CLSI(π) ≲ D.

3.2 Contraction and mixing

We start by analyzing how many outer iterations of In-and-Out are required to be ε-close to πX ,
the uniform distribution over K. The contraction of Algorithm 1 comes from analyzing Lines 2
and 3 through the perspective of heat flows (see Section 1.1). To exploit this view, we first revisit
the previous contraction analysis in [Che+22], which is carried out for distributions with smooth
densities. Although the uniform distribution is not even continuous, we prove a technical lemma
(Lemma 22) that enables us to extend previously known results to the uniform distribution. Lastly,
combining the previous results with our technical lemma, we obtain clean contraction results of
Algorithm 1 toward the uniform distribution πX in Theorem 23.
Part I: Contraction analysis for smooth distributions. In this part, we review the contraction
results for heat flow and its time-reversal [Che+22], which are intimately connected with our
algorithm. We also provide key technical ingredients needed for its proof, such as the computations
for measures evolving under simultaneous forward/backward heat flows. We refer interested readers
to Appendix D for additional details. Only in Part I, we assume that ν denotes a probability
measure with smooth density.

Forward heat flow. We begin by introducing the “heat flow” equation (or also known as the
Fokker-Planck equation), which describes the evolution of the law of Zt under (FH),

∂tµt = 1
2 ∆µt = 1

2 div(µt∇ logµt) . (FP-FH)

It is well known that one can realize this equation in discrete time through a Gaussian transition
density, in the sense that, for µh (the solution at time h > 0 to (FP-FH) with initial condition µ0),
and for any smooth function f : Rd → R,

Eµh
[f(x)] = Eµ0 [Phf(x)] ,

where Phf(x) = EN (x,hId)[f ].3 By this we can formally identify µh = µ0Ph, and also write µh for
the law of Zh, where {Zh}h≥0 solves (FH).

2Such inequalities are often called Polyak-Łojasiewicz inequalities, which say for f : Rd → R, and all y ∈ Rd that
f(y) ≤ c ∥∇f(y)∥2 for some constant c, if min f(x) = 0.

3{Ph}h≥0 is often called the heat semigroup.

11



Backward heat flow. Although there are many ways to define a “reversal” of Ph, we will use
the notion of adjoint introduced by [KP21], which is the most immediately useful.

Given some initial measure ν and some time horizon h, the adjoint corresponds to reversing (FH)
for times in [0, h] when the initial distribution under consideration is Z0 ∼ ν. For other measures,
it must be interpreted more carefully, and is given by the following partial differential equation
starting from some measure µ←0 (see (D.1) and its derivation):

∂tµ
←
t = −div

(
µ←t ∇ log(νPh−t)

)
+ 1

2∆µ←t for t ∈ [0, h] . (FP-BH)

Write µ←t = µ←0 Q
ν,h
t , where {Qν,h

t }t∈[0,h] is a family of transition densities. Write P0,h for the
joint distribution of the (Z0, Zh)-marginals of (FH), when Z0 ∼ ν, and P0|h for the conditional.
Note that Ph|0(·|x) = N (x, hId). It is also known that (FP-BH) gives a time-reversal of the heat
equation at the SDE level, in the sense that we can interpret δxQ

ν,h
h = P0|h(·|Zh = x). Thus

µ←0 Q
ν,h
h =

∫
P0|h(·|Zh = x)µ←0 (dx), and νPhQ

ν,h
t = νPh−t for all t ∈ [0, h].

The ultimate purpose of this machinery is to affirm our earlier description of the Gibbs sampling
procedure as alternating forward and backward heat flows. Indeed, notice that, if µX

i is the law of
the iterate at some iteration i, then µX

i Ph is precisely µY
i+1 under our scheme, while (µX

i Ph)QπX ,h
h

is µX
i+1, assuming QπX ,h

h is well defined for non-smooth measures πX . Thus, while Algorithm 1 is
implemented via discrete steps, it can be exactly analyzed through arguments in continuous time.
We shall see the benefits of this shortly.

Instead of considering the change in metrics along the evolution of µPt with respect to “fixed”
ν, it will be useful to consider the simultaneous evolution of µPt, νPt (and similarly µQt, (νPh)Qt).
This type of computation was carried out for specific metrics in earlier work [VW19; Che+22]. The
following is a more generalized form of one appearing in [Yua+23, Lemma 2]. In the lemma below,
we consider an arbitrary diffusion equation with corresponding Fokker-Planck equation:

dXt = bt(Xt) dt+ dBt and ∂tµt = −∇ · (btµt) + 1
2∆µt (3.1)

where bt : Rd → Rd is smooth, Xt ∈ Rd, and µt = Law(Xt) if X0 ∼ µ0.

Lemma 19 (Decay along forward/backward heat flows). Let (µt)t≥0, (νt)t≥0 denote the laws of the
solutions to (3.1) starting at µ0, ν0 respectively. Then, for any differentiable function g,

∂tg
(
Df (µt ∥ νt)

)
= −1

2 g
′(Df (µt ∥ νt)

)
× Eµt

〈
∇

(
f ′ ◦ µt

νt

)
,∇ log µt

νt

〉
.

Proof. The case where g ̸= id is an application of the chain rule, so it suffices to take g = id and
simply differentiate an f -divergence.

For brevity, we drop the variable x of functions involved, and proceed as follows:

∂tDf (µt ∥ νt) =
∫ {(

f ◦ µt

νt

)
∂tνt +

(
f ′ ◦ µt

νt

)(µt

νt

)′
νt

}
dx

=
∫ {

∂tνt

((
f ◦ µt

νt

)
−

(
f ′ ◦ µt

νt

)µt

νt

)
+

(
f ′ ◦ µt

νt

)
∂tµt

}
dx

=
(i)

∫ [
−∇ · (btνt) + 1

2∆νt
]((

f ◦ µt

νt

)
−

(
f ′ ◦ µt

νt

)µt

νt

)
dx

+
∫ [
−∇ · (btµt) + 1

2∆µt
](
f ′ ◦ µt

νt

)
dx ,
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where in (i) we substitute the F-P equation from (3.1). Integrating by parts (i.e.,
∫
f div(G) =

−
∫
⟨∇f,G⟩ for a real-valued function f and vector-valued function G), we have that∫ [

−∇ · (btνt)
](
f ◦ µt

νt

)
dx =

∫ 〈
btνt,

(
f ′ ◦ µt

νt

)
∇µt

νt

〉
dx . (3.2)

On the other hand, we have that

−
∫ [
−∇ · (btνt)

](
f ′ ◦ µt

νt

)µt

νt
dx = −

∫ 〈
btνt,

µt

νt
∇

(
f ′ ◦ µt

νt

)
+

(
f ′ ◦ µt

νt

)
∇µt

νt

〉
dx .

The second term cancels with the RHS of (3.2). We have a similar cancellation for the 1
2∆νt term:∫ 1

2∆νt
(
f ◦ µt

νt

)
dx = −

∫ 1
2

〈
∇νt,

(
f ′ ◦ µt

νt

)
∇µt

νt

〉
dx ,

and
−

∫ 1
2∆νt

(
f ′ ◦ µt

νt

)µt

νt
dx =

∫ 1
2

〈
∇νt,

µt

νt
∇

(
f ′ ◦ µt

νt

)
+

(
f ′ ◦ µt

νt

)
∇µt

νt

〉
dx .

Combining these, we are left with∫ [
−∇ · (btνt) + 1

2∆νt
]((

f ◦ µt

νt

)
−

(
f ′ ◦ µt

νt

)µt

νt

)
dx = −

∫ 〈
btνt −

1
2∇νt,∇

(
f ′ ◦ µt

νt

)µt

νt

〉
dx

= −
∫ 〈

btµt −
1
2µt∇ log νt,∇

(
f ′ ◦ µt

νt

)〉
dx .

Finally, we note that∫ [
−∇ · (btµt) + 1

2∆µt
](
f ′ ◦ µt

νt

)
dx =

∫ 〈
btµt −

1
2∇µt,∇

(
f ′ ◦ µt

νt

)〉
dx

=
∫ 〈

btµt −
1
2µt∇ logµt,∇

(
f ′ ◦ µt

νt

)〉
dx .

Putting it all together, noticing that the drift terms cancel, we are left with

∂tDf (µt ∥ νt) = −
∫ 1

2
〈
µt∇ log µt

νt
,∇

(
f ′ ◦ µt

νt

)〉
dx = −1

2Eµt

〈
∇ log µt

νt
,∇

(
f ′ ◦ µt

νt

)〉
,

which completes the proof.

To recover the decay result for the q-Rényi divergence, one can substitute g(x) = 1
q−1 log x and

f(x) = xq − 1. For the χ2-divergence, instead substitute g(x) = x and f(x) = x2 − 1. From this,
we can obtain a single step of decay for the Rényi and χ2-divergences under different functional
inequalities.

Before proceeding, we need a standard lemma on functional inequalities under (FH).

Lemma 20 (Functional inequalities under Gaussian convolutions, [Cha04, Corollary 13]). The
following inequality holds for any π with finite log-Sobolev and Poincaré constants,

CPI(πPt) ≤ CPI(π) + t , and CLSI(πPt) ≤ CLSI(π) + t .

Combining the previous two lemmas, we can establish contraction between µPhQh and ν after
one forward/backward iteration.
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Theorem 21 ([Che+22, Theorem 3 and 4]). Assume ν, a measure with smooth density, satisfies
(LSI-I) with constant CLSI. For any q ≥ 1 and initial distribution µ with a smooth density, denoting
again Qh := Qν,h

h ,

Rq(µPhQh ∥ ν) ≤ Rq(µ ∥ ν)
(1 + h/CLSI)2/q

.

If ν satisfies (PI) with constant CPI, then it follows that

χ2(µPhQh ∥ ν) ≤ χ2(µ ∥ ν)
(1 + h/CPI)2 .

Moreover, for all q ≥ 2,

Rq(µPhQh ∥ ν) ≤

Rq(µ ∥ ν)− 2 log(1+h/CPI)
q if Rq(µ ∥ ν) ≥ 1 ,

Rq(µ∥ν)
(1+h/CPI)2 if Rq(µ ∥ ν) ≤ 1 .

Proof. Since the SDE in (3.1) captures the forward heat flow (FH), we set µ0 and ν0 in Lemma 19
to µ and ν, respectively, obtaining contraction along the forward heat flow as follows: Substituting
the q-Rényi into Lemma 19, we have, from the definition of the Rényi divergence as Rq(µ ∥ ν) :=

1
q−1 log(Df (µ ∥ ν) + 1), with f(x) = xq − 1 and g(x) = 1

q−1 log(x+ 1),

∂tRq(µPt ∥ νPt) = −q2
EµPt

[〈
∇

(
µPt

νPt

)q−1
,∇ log µPt

νPt

〉]
(q − 1)EνPt

[(
µPt

νPt

)q] =
(i)
−q2

EµPt

[(
µPt

νPt

)q−2
⟨∇µPt

νPt
,∇ log µPt

νPt
⟩
]

EνPt

[(
µPt

νPt

)q]
=
(ii)
−q2

EνPt

[(
µPt

νPt

)q
∥∇ log µPt

νPt
∥2

]
EνPt

[(
µPt

νPt

)q] = −1
2 RFq(µPt ∥ νPt) ,

where in (i), we use again that ∇
[
f ′

(µt

νt

)µt

νt

]
= ∇

(
f ′ ◦ µt

νt

)
· µt

νt
+ f ′

(µt

νt

)
∇µt

νt
, and (ii) uses that

∇µPt

νPt
= µPt

νPt
∇ log µPt

νPt
, and the last equality recalls the definition of the Rényi Fisher information.

This yields

∂tRq(µPt ∥ νPt) = −1
2RFq(µPt ∥ νPt) ≤

(i)
−1
q

Rq(µPt ∥ νPt)
CLSI(νPt)

≤
(ii)
−1
q

Rq(µPt ∥ νPt)
CLSI + t

,

where we used Lemma 17 in (i) and Lemma 20 in (ii). Applying Grönwall’s inequality (Lemma 10),

Rq(µPh ∥ νPh) ≤ exp
(
−1
q

∫ h

0

1
CLSI + t

dt
)
Rq(µ ∥ ν) ≤ Rq(µ ∥ ν)

(1 + h/CLSI)1/q
.

Since the SDE (3.1) also captures the backward equation (BH), we set µ0 and ν0 in Lemma 19
to µPh and ν̃ := νPh respectively, obtaining contraction along the backward heat flow:

∂tRq(µPhQt ∥ ν̃Qt) = −1
2 RFq(µPhQt ∥ ν̃Qt) ≤ −

1
q

Rq(µPhQt ∥ ν̃Qt)
CLSI(ν̃Qt)

≤
(i)
−1
q

Rq(µPhQt ∥ ν̃Qt)
CLSI + h− t

,

where (i) follows from that ν̃Qt = νPhQt = νPh−t and CLSI(ν̃Qt) ≤ CLSI + h− t due to Lemma 20.
Applying Lemma 10 again yields

Rq(µPhQh ∥ ν) ≤ Rq(µPh ∥ ν̃)
(1 + h/CLSI)1/q

.
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Composing these two inequalities leads to the decay rate claimed in the theorem.
The result in the χ2-divergence can be derived entirely analogously. For instance, the decay

from the forward part can be shown as follows:

∂tχ
2(µPt ∥ νPt) = −1

2 EνPt

[∥∥∥∇µPt

νPt

∥∥∥2]
≤
(i)
−χ

2(µPt ∥ νPt)
CPI(νPt)

≤ −χ
2(µPt ∥ νPt)
CPI + t

,

where (i) follows from Lemma 15. Applying Grönwall’s inequality then gives

χ2(µPh ∥ νPh) ≤ exp
(
−

∫ h

0

1
CPI + t

dt
)
χ2(µ ∥ ν) ≤ χ2(µ ∥ ν)

1 + h/CPI
.

The decay along the backward heat flow in χ2 is entirely analogous to the Rényi case. Then we
combine two contraction results from the forward and backward flows, completing the proof.

The result in the Rq under (PI) can be shown in a similar manner. Only difference is that in
forward and backward computations, one should use the functional inequality in Lemma 16 and the
following standard inequalities:

1− exp
(
−Rq(µ ∥ ν)

)
≥

{1
2 if Rq(µ ∥ ν) ≥ 1 ,
1
2Rq(µ ∥ ν) if Rq(µ ∥ ν) ≤ 1 .

Part II: Extension to constrained distributions. We now prove a technical lemma that
extends the contraction results to constrained distributions. This lemma guarantees the existence of
weak solutions to two stochastic processes that describe the evolution of distributions involved in
Line 2 and 3 in In-and-Out, in addition to lower-semicontinuity of f -divergence. We shall prove it
for any measure that is absolutely continuous with respect to πX , since this imposes no additional
technical hurdles.

Lemma 22. Let ν be a measure, absolutely continuous with respect to the uniform measure πX .
The forward and backward heat flow equations given by

∂tµt = 1
2∆µt ,

∂tµ
←
t = −div

(
µ←t ∇ log(νPh−t)

)
+ 1

2∆µ←t with µ←0 = µh ,

admit solutions on (0, h], and the weak limit limt→h µ
←
t = µ←h exists for any initial measure µ0 with

bounded support. Moreover, for any f -divergence with f lower semi-continuous,

Df (µ←h ∥ ν) ≤ lim
t↓0

Df (µ←h−t ∥ νt) .

Proof. The existence of weak solutions for the forward equation is well-known, since µ0 can be
weakly approximated by measures with continuous density, for which the heat equation admits a
unique solution for all time. In particular, the weak solution is C∞ for t > 0.

The reverse SDE is more subtle, since ∇ log νPt will in general cease to be Lipschitz as t→ 0.
On the other hand, for any h > 0, we can write explicitly

µh(x) = 1
(2πh)d/2

∫
exp

(
−∥x− y∥

2

2h
)

dµ0(y) .
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If one considers the system started at µ̃0 = µϵ = νPϵ and solve the forward-backward Fokker-Planck
equations on times [0, h− ϵ], then µ̃h−ϵ = µh = µ←0 = µ̃←0 and

µ←h−ϵ(x) = µ̃←h−ϵ(x) =
∫ exp

(
−∥x−y∥2

2(h−ϵ)
)
νPϵ(x)∫

exp
(
−∥z−y∥2

2(h−ϵ)
)
νPϵ(z) dz

dµh(y) .

This follows from that if we consider system started at time ϵ > 0, with initial distribution µϵ, then
we obtain the above through the Bayesian perspective on the forward and reverse heat semigroups,
elaborated in Appendix D.

We now show that the following integral is indeed integrable, so µ̃←h is well-defined:

µ̃←h (x) :=
∫ exp

(
−∥x−y∥2

2h

)
ν(x)∫

exp
(
−∥z−y∥2

2h

)
ν(z) dz

dµh(y) .

For fixed x and ϵ < h/2,∫
exp

(
−∥z − y∥

2

2(h− ϵ)
)
ν(z) dz ≳ exp

(
−(∥y − x0∥+D)2

2(h− ϵ)
)
,

as the support of ν is constrained to K ⊂ BD(x0). Since µ0 has bounded support, µh(y) ≲ exp(−∥y∥
2

a )
for some constant a > 0. Thus,

exp
(
−∥x−y∥2

2(h−ϵ)
)
µh(y)∫

exp
(
−∥z−y∥2

2(h−ϵ)
)
νPϵ(z) dz

≲
exp

(
−∥x−y∥2

2(h−ϵ)
)
µh(y)

exp(− (∥y−x0∥+D)2

2(h−ϵ) )
≲ exp

(⟨2(x− x0), y⟩+ 2D∥y − x0∥
h

− ∥y∥
2

a

)
,

and the last bound is integrable in y.
We then show the pointwise convergence of µ̃←h−ϵ to µ̃←h as ϵ→ 0. Note that νPϵ → ν, as ν has

a bounded support. Also, the denominator is independent of ϵ due to

1
(2π(h− ϵ))d/2

∫
exp

(
−∥z − y∥

2

2(h− ϵ)
)
νPϵ(z) dz = N (0, (h− ϵ)I) ∗ νPϵ = ν ∗ N (0, hI) .

Hence, for ϵ ≤ d−1,

exp
(
−∥x−y∥2

2(h−ϵ)
)

∫
exp

(
−∥z−y∥2

2(h−ϵ)
)
νPϵ(z) dz

≤
( h

h− ϵ

)d/2 exp
(
−∥x−y∥2

2h

)∫
exp

(
−∥z−y∥2

2h

)
ν(z) dz

≲
exp

(
−∥x−y∥2

2h

)∫
exp

(
−∥z−y∥2

2h

)
ν(z) dz

.

As shown above, the last bound is integrable with respect to µh, so the dominated convergence
theorem implies

lim
ϵ→0

∫ exp
(
−∥x−y∥2

2(h−ϵ)
)

∫
exp

(
−∥z−y∥2

2(h−ϵ)
)
νPϵ(z) dz

dµh(y) =
∫ exp

(
−∥x−y∥2

2h

)∫
exp

(
−∥z−y∥2

2h

)
ν(z) dz

dµh(y) ,

Thus, the pointwise convergence follows. Note that if we take ν(x) = πX(x) = 1K(x)
vol(K) , then µ̃←h is

the distribution of the backwards step of our algorithm. In particular, this corresponds to first
sampling x ∼ µh, then y ∼ Qν,h

h (·|x), which is precisely the law of µ←h given by (FP-BH).
As for the second statement, it follows from Scheffé’s lemma [Bil95, Theorem 16.12] that the

pointwise convergence of µ←h−ε → µ←h leads to its TV-convergence, which in turn implies the weak
convergence. It follows from lower semicontinuity of Df [AFP00, Theorem 2.34] that the weak
convergence ensures Df (µ←h ∥ ν) ≤ limt↓0Df (µ←h−t ∥ ν←h−t).
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In the sequel, we will only consider ν = πX . Since the Rényi divergence is a continuous
function of the χq divergence (see Definition 6), which itself is an f -divergence, it enjoys the same
lower-semicontinuity properties. Using this lower-semicontinuity together with the decay results in
Theorem 21, we can easily derive the contraction results of In-and-Out in Rq and χq for any q ≥ 1.
We remark that this result does not require convexity of K.

Theorem 23. Let µX
k be the law of the k-th output of In-and-Out with initial distribution µX

0 . Let
CLSI be the (LSI-I) constant of the uniform distribution πX over K. Then, for any q ≥ 1,

Rq(µX
k ∥ πX) ≤ Rq(µX

0 ∥ πX)
(1 + h/CLSI)2k/q

.

For CPI the (PI) constant of πX ,

χ2(µX
k ∥ πX) ≤ χ2(µX

0 ∥ πX)
(1 + h/CPI)2k

.

Furthermore, for any q ≥ 2,

Rq(µX
k ∥ πX) ≤

Rq(µX
0 ∥ πX)− 2k log(1+h/CPI)

q if k ≤ q
2 log(1+h/CPI)

(
Rq(µX

0 ∥ πX)− 1
)
,

(1 + h/CPI)−2(k−k0)/q if k ≥ k0 := ⌈ q
2 log(1+h/CPI)

(
Rq(µX

0 ∥ πX)− 1
)
⌉ .

Proof. Let us set µ0 = µX
0 and π0 = πX . Then, µh = µ←0 = µY

1 , πh = π←0 = πY , and µ←h = µX
1 ,

π←h = πX . For small ϵ > 0, as µϵ = (µX
0 )ϵ = µX

0 ∗ N (0, ϵId) is C∞-smooth, we can now invoke the
decay results with step size h−ϵ in Theorem 21. Thus, for contraction constants Cϵ = (1+ h−ϵ

CLSI+ϵ)−2/q

and Cϵ = (1 + h−ϵ
CPI+ϵ)−2 respectively when Φ = Rq and Φ = χ2,

Φ(µ←h−ϵ ∥ πϵ) ≤ Cϵ · Φ(µϵ ∥ πϵ) ≤ Cϵ · Φ(µ0 ∥ π0) ,

where we used the data-processing inequality for the last inequality. By the second result of
Lemma 22, sending ϵ→ 0 leads to

Φ(µX
1 ∥ πX) = Φ(µ←h ∥ π0) ≤ C · Φ(µ0 ∥ π0) = C · Φ(µX

0 ∥ πX) .

Repeating this argument k times completes the proof.

3.3 Failure probability and wasted steps

We begin by defining a suitable version of local conductance [KLS97].

Definition 24 (Local conductance). The local conductance ℓ on Rd is defined by

ℓ(x) def=
∫
K exp(− 1

2h∥x− y∥
2) dy∫

Rd exp(− 1
2h∥x− y∥2) dy

=
∫
K exp(− 1

2h∥x− y∥
2) dy

(2πh)d/2 .

The local conductance at y quantifies the success probability of the proposal at y in Line 3.
Then the expected number of trials until the first success of Line 3 is 1/ℓ(y). Revisiting (1.1), we
can notice πY (y) = ℓ(y)/ vol(K).
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Naïve analysis for expected number of trials. Starting from πX , when we just naïvely sample
from πY |X(·|x) for all x without imposing any failure condition, the expected number of trials for
one iteration is that for the probability density px of N (x, hId),∫

K

∫
Rd

1
ℓ(y) px(dy)πX(dx) =

∫
Rd

1
ℓ(y) π

Y (dy) =
∫
Rd

1
ℓ(y)

ℓ(y)
vol(K) dy =∞ .

This suggests that one should consider the algorithm as having “failed” if the number of trials
exceeds some threshold.

Refined analysis under a failure condition. Going forward, we assume an M -warm start as
in previous work for uniform sampling algorithms. By induction we have dµX

i

dπX ≤M for all i.

Lemma 25 (Propagation of warm-start). From an M -warm start, we have dµX
i /dπX ≤M for all i.

Proof. Assume that µX
i satisfies the M -warm start. Then, for any measurable S and the transition

kernel Tx of Algorithm 1 at x,

µX
i+1(S) =

∫
K
Tx(S) dµX

i (x) ≤M
∫
K
Tx(S) dπX(x) = MπX(S) ,

where the last equality follows from the stationarity of π. Hence, dµX
i+1/dπX ≤M .

We now establish a lemma that comes in handy when analyzing the failure probability of the
algorithm. In essence, this lemma bounds the probability that taking a Gaussian step from πX in
Line 2 gets δ-distance away from K. Let us denote the δ-blowup of K by Kδ := {x ∈ Rd : d(x,K) ≤ δ}.

Lemma 26. πY (Kc
δ) ≤ ec2

1 exp(−t2/8c2
1) for δ = t/d and variance h = c2

1/d
2, where c1 is some

constant and t ≥ 2c1(c1 + 1).

Proof. For y ∈ ∂Kδ, we can take the supporting half-space H at projK(y) containing K, due to
convexity of K. Then,

πY (Kc
δ) = 1

vol(K)

∫
Kc

δ

∫
K

exp
(
− 1

2h∥y − x∥
2)

(2πh)d/2 dx dy ≤ 1
vol(K)

∫
Kc

δ

∫
H

exp
(
− 1

2h∥y − x∥
2)

(2πh)d/2 dx dy

= 1
vol(K)

∫
Kc

δ

∫ ∞
d(y,K)

exp
(
− 1

2hz
2)

√
2πh

dz dy . (3.3)

Let us denote the tail probability of the 1-dimensional Gaussian with variance h by

T(s) := PZ∼N (0,h)(Z ≥ s) = 1√
2πh

∫ ∞
s

exp
(
− 1

2hz
2)

dz .

By the co-area formula and integration by parts,∫
Kc

δ

∫ ∞
d(y,K)

exp
(
− 1

2hz
2)

√
2πh

dzdy =
∫ ∞

δ
T(s) vol(∂Ks) ds

=
[
T(s)

∫ s

0
vol(∂Kz) dz︸ ︷︷ ︸
=:F

]∞
δ

+
∫ ∞

δ

1√
2πh

exp
(
− s

2

2h
) ∫ s

0
vol(∂Kz) dz ds . (3.4)
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Recall that T(s) ≤ 1
2 exp(−1

2(sh−1/2)2) for s ≥ δ = t/d due to a standard tail bound on a Gaussian
distribution. This tail bound, combined with∫ s

0
vol(∂Kz) dz = vol(Ks)− vol(K) ≤ vol

(
(1 + s)K

)
− vol(K) =

(
(1 + s)d − 1

)
vol(K) ,

ensures that F vanishes at s =∞. Hence, bounding the first term in (3.4) by 0 results in∫
Kc

δ

∫ ∞
d(y,K)

exp
(
− 1

2hz
2)

√
2πh

dz dy ≤ 1√
2πh

∫ ∞
δ

exp
(
− s

2

2h
)(

(1 + s)d︸ ︷︷ ︸
≤exp(sd)

−1
)

vol(K) ds

≤ vol(K)√
2πh

exp(hd2/2)
∫ ∞

δ
exp

(
− 1

2h (s− hd)2
)

ds

≤
(i)

vol(K) exp(hd2/2) exp
(
−1

2 (δh−1/2 − dh1/2)2)
≤
(ii)

vol(K) exp(c2
1/2) exp

(
− t2

8c2
1

)
,

where in (i) we used the tail bound of a Gaussian, and (ii) follows from that in the regime of
h = c2

1d
−2, we have δh−1/2 − dh1/2 − 1 ≥ t/c1 − (c1 + 1) ≥ t/2c1 for t ≥ 2c1(c1 + 1). Putting the last

bound into (3.3) completes the proof of the claim.

Now we choose a suitable threshold N for bounding the failure probability. Following (3.3) in
the proof, one can notice that for y ∈ Kc

δ, δ = Ω(1/d), and h = Θ(d−2),

ℓ(y) ≤
∫ ∞

d(y,K)

exp
(
− 1

2hz
2)

√
2πh

dz = PZ∼N (0,h)(Z ≥ δ) ≤ exp(−Ω(t2)) .

Thus, the expected number of trials from Kc
δ for the rejection sampling in Line 3 is ℓ(y)−1 ≥

exp(Ω(t2)). Intuitively, one can ignore whatever happens in Kc
δ, since Kδ takes up most of measure

of πY . As the number of trials from Kc
δ is at least exp(Ω(t2)) in expectation, the most straightforward

way to ignore algorithmic behaviors from Kc
δ is simply to set the threshold to N = Õ(exp(t2)). Even

though the threshold is N , the expected number of trials is much lower.
Lemma 14 bounds the failure probability and expected number of trials per iteration.

Proof of Lemma 14. For µh := µ∗N (0, hId), the failure probability is Eµh
[(1−ℓ)N ]. Since dµ/dπX ≤

M implies dµh/d(πX)h = dµh/dπY ≤M , it follows that

Eµh
[(1− ℓ)N ] ≤M EπY [(1− ℓ)N ] .

Then,∫
Rd

(1− ℓ)N dπY︸ ︷︷ ︸
=:A

=
∫
Kc

δ

A +
∫
Kδ∩[ℓ≥N−1 log(3mM/η)]

A +
∫
Kδ∩[ℓ<N−1 log(3mM/η)]

A

≤ πY (Kc
δ) +

∫
[ℓ≥N−1 log(3mM/η)]

exp(−ℓN) dπY +
∫
Kδ∩[ℓ<N−1 log(3mM/η)]

ℓ(y)
vol(K) dy

≤ ec2
1 exp(− t2

8c2
1
) + η

3mM + log(3mM/η)
N

vol(Kδ)
vol(K)

≤ ec2
1 exp(− t2

8c2
1
) + η

3mM + et

N
log 3mM

η
,
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where we used vol(Kδ) ⊂ vol
(
(1 + δ)K

)
= (1 + δ)d vol(K) ≤ et vol(K). Taking c2

1 = log log Z
2 log Z ,

t =
√

8 log logZ, and N = Z(logZ)4, we can bound the last line by η
mM . Therefore,

Eµh
[(1− ℓ(·))N ] ≤M EπY [(1− ℓ(·))N ] ≤ η

m
.

We now bound the expected number of trials per iteration. Let X be the minimum of the
threshold N and the number of trials until the first success. Then the expected number of trials per
step is bounded by MEπY [X] due to dµh/dπY ≤M . Thus,∫

Rd

(1
ℓ
∧N

)
dπY ≤

∫
Kδ

1
ℓ

dπY +NπY (Kc
δ) = vol(Kδ)

vol(K) +NπY (Kc
δ)

≤ et +N exp(−Ω(t2)) ≤ (logZ)3 + 3(logZ)4 = O
((

log mM
η

)4)
.

Therefore, the expected number of trials per step is O
(
M(log mM

η )4)
, and the claim follows since

each trial uses one query to the membership oracle of K.

3.4 Putting it together

We can now show that In-and-Out subsumes previous results on uniform sampling from convex bodies
(such as Ball walk and Speedy walk), providing detailed versions of the main results in Section 1.2.

We first establish that the query complexity of In-and-Out matches that of the Ball walk under
stronger divergences. Recall that 2∥ · ∥2TV ≤ KL ≤ log(1 + χ2) ≤ χ2.

Theorem 27. For any given η, ε ∈ (0, 1), q ≥ 1, m ∈ N defined below and any convex body K given
by a well-defined membership oracle, consider In-and-Out (Algorithm 1) with an M-warm initial
distribution µX

0 , h = (2d2 log 9mM
η )−1, and N = Õ(mM

η ). For πX the uniform distribution over K,

• It achieves Rq(µX
m ∥ πX) ≤ ε after m = Õ(qd2∥Cov(πX)∥op log M

ηε ) iterations. With probability
1−η, the algorithm iterates this many times without failure, using Õ(qMd2∥Cov(πX)∥op(log 1

ηε)5)
expected number of membership queries in total.

• For isotropic πX , with probability 1 − η, the algorithm achieves Rq(µX
m ∥ πX) ≤ ε with

m = Õ(qd2 log M
ηε ) iterations, using Õ(qMd2(log 1

ηε)5) membership queries in expectation.

Proof. We just put together Lemma 14 and Theorem 23. For target accuracy ε > 0, we use
the Rq-decay under (PI) for q ≥ 2 in Theorem 23. The M -warm start assumption guarantees
Rq(µX

0 ∥ πX) ≲ logM . Due to CPI(πX) = O(∥Cov(πX)∥op log d) (Lemma 18), In-and-Out can
achieve Rq(µX

m ∥ πX) ≤ ε after m = Õ(qd2∥Cov(πX)∥op log M
ηε ) iterations. Since each iteration has

η/m-failure probability by Lemma 14, the union bound ensures that the total failure probability is at
most η throughout m iterations. Lastly, each iteration requires Õ(M(log 1

ηε)4) membership queries
in expectation by Lemma 14. Therefore, In-and-Out uses Õ(qMd2 min(D2, ∥Cov(πX)∥op)(log 1

ηε)5)
expected number of membership queries over m iterations. Since Rq is non-decreasing in q, we can
obtain the desired bound on Rq for q ∈ [1, 2).

For isotropic πX , we have Cov(πX) = Id, so the claim immediately follows from CPI(πX) =
O(log d) (see Lemma 18).

We now show that the number of proper steps is bounded as claimed for general non-convex
bodies and any feasible start in K. We first establish this result under an M -warm start (Theorem 5).
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Proof of Theorem 5. By the Rényi-decay under (LSI-I) in Theorem 23, In-and-Out can achieve
ε-distance to πX after O

(
qh−1CLSI(πX) log Rq(µX

1 ∥π
X)

ε

)
iterations for q ≥ 1.

For q ≥ 2, we use the decay result under (PI). In this case, In-and-Out decays under two different
rates depending on the value of Rq(· ∥ πX). It first needs O(qh−1CPI(πX)Rq(µX

0 ∥ πX)) iterations
until Rq(· ∥ πX) reaches 1. Then, In-and-Out additionally needs O(qh−1CPI(πX) log 1

ε ) iterations,
and thus it needs O(qh−1CPI(πX)

(
Rq(µX

0 ∥ πX) + log 1
ε

)
) iterations in total. By substituting

Rq(µX
0 ∥ πX) ≲ logM , we complete the proof.

Next, we show that In-and-Out mixes from any start.

Corollary 28. For any given ε ∈ (0, 1) and set K ⊂ BD(0), In-and-Out with variance h and any
feasible start x0 ∈ K achieves Rq(µX

m ∥ πX) ≤ ε after m = Õ(qh−1CLSI(πX) log d+D2/h
ε ) iterations.

Proof. We first bound the warmness of µX
1 w.r.t. πX when µX

0 = δx0 . One can readily check that

µX
1 (x) = 1K(x) ·

∫ exp
(
− 1

2h∥y − x∥
2)

exp
(
− 1

2h∥y − x0∥2
)

(2πh)d/2 ∫
K exp

(
− 1

2h∥y − x∥2
)

dx
dy .

By Young’s inequality, ∥y − x∥2 ≤ (∥y∥+D)2 ≤ 3
2∥y∥

2 + 3D2 for x ∈ K. Hence,∫ exp
(
− 1

2h∥y − x∥
2)

exp
(
− 1

2h∥y − x0∥2
)∫

K exp
(
− 1

2h∥y − x∥2
)

dx
dy

≤exp(2h−1D2)
vol(K)

∫
exp

(
− 1

2h
(
∥y − x∥2 + ∥y − x0∥2 −

3
2∥y∥

2))
dy

=exp(2h−1D2)
vol(K)

∫
exp

(
− 1

2h
(1
2∥y − 2(x+ x0)∥2 + (∥x∥2 + ∥x0∥2 − 2∥x+ x0∥2)

))
dy

≤exp(5h−1D2)
vol(K)

∫
exp

(
− 1

4h∥y − 2(x+ x0)∥2
)

dy

=exp(5h−1D2)
vol(K) (4πh)d/2 .

Therefore, M = ess sup µX
1

πX ≤ 2d/2 exp(5h−1D2). By Theorem 5 under (LSI-I), In-and-Out needs
Õ(qh−1CLSI(πX) log d+D2/h

ε ) iterations.

We then obtain the following corollary for a convex body K.

Corollary 29. For any given ε ∈ (0, 1) and convex body K ⊂ BD(0), In-and-Out with variance h
and an M -warm initial distribution achieves Rq(µX

m ∥πX) ≤ ε after m = Õ(qh−1D2 log 1
ε ) iterations.

If πX is isotropic, then In-and-Out only needs Õ(qh−1D log d+d2/h
ε ) iterations.

Proof. For convex K, it follows from Lemma 18 that CLSI(πX) = O(D2) and CLSI(πX) = O(D) for
isotropic K. The rest of the proof can be completed in a similar way.

For h = Θ̃(d−2), In-and-Out requires Õ(qd2D2) iterations and in particular Õ(qd2D) iteration
for isotropic uniform distributions. These results match those of Speedy walk [KLM06; LV17] (see
Theorem 31).
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A Related work
Sampling from constrained log-concave distributions is a fundamental task arising in many fields.
Uniform sampling with convex constraints is its simplest manifestation, which was first studied
as a core subroutine for a randomized volume-computation algorithm [DFK91]. Since then, this
fundamental problem has been studied for over three decades [LS90; LS93; KLS97; LV03; LV06;
BEL18; Bro+17]. We review these algorithms, grouping them under three categories — geometric
random walks, structured samplers, and diffusion-type samplers. Below, K is convex.

Geometric random walk. We discuss two geometric random walks – Ball walk [LS93; KLS97]
and Hit-and-Run [Smi84; Lov99].

Ball walk is a simple metropolized random walk; it draws y uniformly at random from a ball of
radius δ centered at a current point x, and moves to y if y ∈ K and stays at x otherwise. In the
literature, Ball walk actually refers to a composite algorithm consisting of [Speedy walk+ rejection
sampling], where Speedy walk records only the accepted steps of Ball walk (see Appendix B for
details). The step size δ should be set to O(d−1/2) to avoid stepping outside of K. [KLS97] showed
that Ball walk needs Õ(Md2D2 log 1

ε ) membership queries to be ε-close to πK in TV, where D is
the diameter of K, and the warmness parameter M measures the closeness of the initial distribution
to the target uniform distribution πK.

Hit-and-Run is another zeroth-order algorithm that needs no step size; it picks a uniform random
line ℓ passing a current point, and move to a uniform random point on ℓ∩K. [LV06] shows that, if we
define the second moment as R2 := EX∼πK [∥X −E[X]∥2], then Hit-and-Run requires O(d2R2 log M

ε )
queries. Notably, this algorithm has a poly-logarithmic dependence on M as opposed to Ball walk.

Both algorithm are affected by skewed shape of K (i.e., large D or R), so these samplers are
combined with pre-processing step called rounding. This procedure finds a linear transformation that
makes the geometry of K less skewed and so more amenable to sampling. In literature, there exists
a randomized algorithm [Jia+21] that rounds K and generates a good warm start (i.e., M = O(1)),
with Ball walk used as a core subroutine. This algorithm takes up Õ(d3) queries in total, and in
such position with the good warm start, Ball walk only needs Õ(d2 log 1

ε ) queries to sample from πK.

Structured samplers. The aforementioned samplers based on geometric random walks require
only access to the membership oracle of the convex body without any additional structural assump-
tions. The alternate paradigm of geometry-aware sampling attempts to exploit the structure of
convex constraints, with the aim of expediting the convergence of the resultant sampling schemes.
One common assumption is to make available a self-concordant barrier function ϕ which has regu-
larity on its high-order derivatives and blows up when approaching the boundary ∂K. The Hessian
of ϕ encodes the local geometry of the constraint, and the samplers often work directly with ∇2ϕ.

The first canonical example of such a zeroth-order sampler is Dikin walk used when K is given
by m linear constraints [KN12]; it draws a uniform sample from an ellipsoid (characterized by ∇2ϕ)
of fixed radius around a current point, and is often combined with a Metropolis adjustment. [KN12]
shows that Dikin walk mixes in O(md log M

ε ) steps, although each iteration is slightly more expensive
than one membership query. This algorithm requires no rounding, but still needs a good warm-start,
which can be achieved by an annealing-type algorithm using Õ(md) iterations of Dikin walk [KV23].

Riemannian Hamiltonian Monte Carlo is a structured sampler that exploits the first-order informa-
tion of the potential (i.e., ∇ log(1/π)) [GC11]; its proposal is given as the solution to the Hamilton’s
ODE equation, followed by the Metropolis-filter. In the linear-constraint setting above, this sampler
requires O(md2/3 log M

ε ) many iterations to achieve ε-close distance to πK [LV18]. This sampler is
further analyzed for practical ODE solvers [Koo+23] and for more sophisticated self-concordant
barriers [GKV23].
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Similarly, Mirror Langevin [Zha+20; Jia21; AC21; Li+22] is a class of algorithms which converts
the constrained problem into an unconstrained one obtained by considering the pushforward of the
constrained space by ∇ϕ. The algorithm can also be metropolized [SWW23]. The best known rates
for this algorithm are Õ(d log 1

ε ) under some strong assumptions on ϕ.

Diffusion-type samplers. Samplers based on discretizations of Itô diffusions, stochastic pro-
cesses which rapidly mix to π in continuous time, have long been used for sampling without
constraints [Bes+95; DT12; Dal17; Che24]. While the underlying stochastic processes generalize
easily to constrained settings, the discretization analysis relies crucially on the smoothness of the
target distribution. This is clearly impossible to achieve in the constrained setting, and so some
techniques are required to circumvent this difficulty. These algorithms, however, generalize easily to
the more general problem of sampling from distributions of the form π̃X ∝ e−f1K, by naturally
incorporating first order information from f .

The first approach for adapting diffusion-based samplers [BEL15; BEL18; Leh23] iterates a
two-step procedure. First, a random step is taken, with xk+1/2 ∼ N (xk, 2hId) for some appropriately
chosen step h,4 and then project it to K, i.e., xk+1 = projK(xk+1/2). The complexity is given in
terms of queries to a projection oracle, each call to which can be implemented with a polynomial
number of membership oracle queries; a total of Õ(d2D3

ε4 ) queries are needed to be ε-close in W2 to
πX . Another approach, which uses an algorithmically designed “soft” penalty instead of a projection,
was proposed in [GHZ22], and achieves a rate estimate of Õ(d/ε10).

A second approach, suggested by [Bro+17], considers a different proximal scheme, which performs
a “soft projection” onto K, by taking steps like N ((1 − hλ−1)xk + hprojK(xk), 2hId). It is called
Moreau-Yosida regularized Langevin, named after an analogous regularization scheme for constrained
optimization. This scheme also relies on access to a projection oracle for K, and quantifies their
query complexity accordingly. Their final rate estimate is Õ(d5

ε6 ) to be ε-close in TV distance to πX .
Observing the prior work integrating diffusion-based sampling with convex constraints, the

dependence on the key parameters d, ε, while polynomial, are many orders worse than the rates for
zeroth-order samplers such as Ball walk,Hit-and-Run. In contrast, our analysis not only recovers but
in some sense surpasses the known rates for Ball walk,Hit-and-Run, while harmonizing well with the
continuous-time perspective of diffusions.

Proximal schemes for sampling. The Gibbs sampling scheme used in this paper was inspired by
the restricted Gaussian oracle introduced in [LST21] (in turn inspired by Gaussian Cooling [CV18]),
which alternately iterates between a pure Gaussian step, and a “proximal” step (which we elaborate
in our exposition). This scheme was given novel interpretations by [Che+22], which showed that it
interpolates the forward and backward heat flows, in the sense defined by [KP21]. The backward
heat flow itself is intimately related to stochastic localization schemes, invented and popularized
in [Eld13; Che21].

This formulation proved surprisingly powerful, allowing many existing rates in unconstrained
sampling to be recovered from a relatively simple analysis. This was further extended by [FYC23] to
achieve the current state-of-the-art rate in unconstrained sampling. Finally, [Gop+23] suggest that
this could be applied to tackle some constrained problems. However, the assumptions in this final
mentioned work are not compatible with the uniform sampling problem on general convex bodies.

4A gradient step can be added in the more general case, for sampling from π̃X
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B Ball walk and Speedy walk
We restate the previously known guarantees for uniform sampling by Ball walk and Speedy walk.
Below, let Br(x) denote the d-dimensional ball of radius r centered at x.

Algorithm 2 Ball walk
Input: initial distribution π0, convex body K ⊂ Rd, iterations T , step size δ > 0.

1: Sample x0 ∼ π0.
2: for i = 1, . . . , T do
3: Sample y ∼ Unif(Bδ(xi−1)).
4: If y ∈ K, then xi ← y. Else, xi ← xi−1.
5: end for

Ball walk is particularly simple; draw a uniform random point from Bδ around the current point,
and go there if the drawn point is inside of K and stay at the current point otherwise. Its stationary
distribution can be easily seen to be π ∝ 1K, the uniform distribution over K.

In the literature, there are two approaches to analyzing the convergence rate of this sampler: (i)
a direct analysis via the s-conductance of Ball walk and (ii) an indirect approach which first passes
through Speedy walk.
Direct analysis. The following TV-guarantee is obtained by lower bounding the s-conductance
of Ball walk, which requires a one-step coupling argument and the Cheeger inequality for π. We
refer interested readers to [Vem05, Section 5].

Theorem 30 (Convergence of Ball walk). For any ε ∈ (0, 1) and convex body K ⊂ Rd presented by a
well-defined membership oracle, let πt be the distribution after t steps of Ball walk with an M -warm
initial distribution π0. Then, Ball walk with step size δ = Θ( ε

M
√

d
) achieves ∥πt − π∥TV ≤ ε for

t ≳ d2D2 M2

ε2 log M
ε . If π is isotropic, then Ball walk only needs O(d2 log dM2

ε2 log M
ε ) iterations.

The mixing time of Ball walk under this approach has a polynomial dependence on 1/ε, rather
than a polylogarithmic dependence.
Indirect analysis through Speedy walk. [KLS97] introduced Speedy walk, which could be viewed
as a version of Ball walk and converges to a speedy distribution (see Proposition 1), which is slightly
biased from π. Then, Speedy walk is used together with another algorithmic component (rejection
sampling) [KLS97, Algorithm 4.15] that converts the speedy distribution to the uniform distribution.
In the literature, Ball walk often refers to ‘Speedy walk combined with the conversion step’, rather
than a direct implementation of Algorithm 2. Strictly speaking, a mixing guarantee of this combined
algorithm should not be referred to as a provable guarantee of Ball walk.

Algorithm 3 Speedy walk
Input: initial distribution π0, convex body K ⊂ Rd, iterations T , step size δ > 0.

1: Sample x0 ∼ π0.
2: for i = 1, . . . , T do
3: Sample xi ∼ Unif(K ∩Bδ(xi−1)).
4: end for

As opposed to Ball walk, Speedy walk always takes some step at each iteration. However, the
problem of sampling from xi ∼ Unif(K ∩Bδ(xi−1)) in Line 3 is not straightforward. This step
admits the following implementation based on rejection sampling, via a procedure denoted by (∗):
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• Propose y ∼ Unif(Bδ(xi−1)).

• Set xi+1 ← y if y ∈ K. Otherwise, repeat the proposal.

Each actual step (indexed by i) in Speedy walk is called a proper step, and rejected steps during
(∗) are called improper steps. For example, if x1, x1, x2, x3, x3, x3, x4, . . . are the positions produced
by Ball walk, then only proper steps x1, x2, x3, x4, . . . are recorded by Speedy walk.

To describe the theoretical guarantees of Speedy walk, we define the local conductance ℓ(x) at
x ∈ K, which measures the success probability of the rejection sampling scheme in (∗):

ℓ(x) := vol(K ∩Bδ(x))
vol(Bδ(x)) ,

and define the average conductance:

λ := Eπ[ℓ] = 1
vol(K)

∫
K
ℓ(x) dx .

Proposition 1 ([KLS97]). The stationary distribution ν of Speedy walk has density

ν(x) = ℓ(x)1K(x)∫
K ℓ(x) dx .

The speedy distribution ν is indeed different from the uniform distribution π, and this discrepancy
is quantified in terms of the average conductance.

Proposition 2 ([KLS97, Page 22]). ∥ν − π∥TV ≤ 1−λ
λ .

One can relate the step size δ to the average conductance.

Proposition 3 (Bound on average conductance, [KLS97, Corollary 4.5]). λ ≥ 1− δ
√

d
2 .

The best known result for Speedy walk’s mixing is due to [KLM06] devising the blocking conduc-
tance and using the log-Cheeger inequality. When ν is isotropic (i.e., it has covariance proportional
to the identity matrix), [LV17] improves the mixing bound via the log-Cheeger constant.

Theorem 31 (Mixing of Speedy walk). For any ε ∈ (0, 1) and convex body K ⊂ Rd presented by a
well-defined membership oracle, let νt be the distribution after t proper steps of Speedy walk started
at any feasible point x0 ∈ K. Then, Speedy walk with step size δ = Θ(d−1/2) achieves ∥νt−ν∥TV ≤ ε
for t ≳ (D2 + log(D

√
d)) d2 log 1

ε . From an M -warm start, the expected number of improper steps
during t iterations is Õ(tM). When ν is isotropic, Speedy walk needs O(d2D log 1

ε log logD) proper
steps to achieve ε-TV distance to ν.

Then, [KLS97] uses the following post-processing step to obtain an approximately uniform
distribution on K, with a provable guarantee.

A: Call Speedy walk to obtain a sample X ∼ νt until 2d
2d−1 X ∈ K. If so, return X̄ = 2d

2d−1 X.

Proposition 4 ([KLS97, Theorem 4.16]). Under the same setting above, assume ∥νt− ν∥TV ≤ ε for
step size δ ≤ (8d log d

ε )−1/2 and fixed t ∈ N. For ν̄ = law(X̄) given by A, it holds that ∥ν̄−π∥TV ≤ ε,
and the expected number of calls on the conversion algorithm is at most 2.

Combining the previous two results, we conclude that the total expected number of membership
queries to obtain a sample ε-close to π in TV is Õ(Md2D2 log 1

ε ), which now has a poly-logarithmic
dependence on 1/ε.
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Remark 2 (Backward heat flow analysis of Speedy walk). Consider a Gaussian version of Speedy walk,
whose one-step corresponds to xi+1 ∼ N (xi, hId)|K, and this transition kernel exactly matches
integrating (BH) for time h. Thus, νQπX ,h

h = ν due to the stationarity of ν under Speedy walk,
where QπX ,h

h is the transition kernel defined by the backward heat flow for time h that reverses
πX ∗ N (0, hId) to πX . Hence, if we can control the LSI/PI constants of ν along the backward
heat-flow’s trajectory, then we could directly analyze Speedy walk by emulating computations in
Lemma 21.

C Functional inequalities
We provide full details on functional inequalities omitted in Section 3.1. We use µ and µLC to denote
a probability measure and log-concave probability measure over Rd, respectively.

Cheeger and PI constants. The Cheeger isoperimetric constant CCh(µ) measures how large
surface area a measurable subset with larger volume has, defined by

CCh(µ) := inf
S⊂Rd

µ+(S)
min(µ(S), µ(Sc)) ,

where the infimum is taken over all measurable subsets S, and µ+(S) is the Minkowski content of S
under µ defined as, for Sε := {x ∈ X : d(x, S) < ε},

µ+(S) := lim inf
ε→0

µ(Sε)− µ(S)
ε

.

[Che70] established CPI(µ) ≲ C−2
Ch (µ)5, and then [KLS95] showed that for covariance matrix

Σµ := Eµ[(· − EµX)(· − EµX)T],

CCh(µLC) ≳ 1
(EµLC [∥X − EµLCX∥2])1/2 = 1

(tr(ΣµLC))1/2 . (C.1)

This immediately leads to CPI(π) ≲ (Eπ[∥X − EπX∥2])1/2 ≤ D2 for the uniform distribution π over
a convex body K with diameter D > 0.

Kannan et al. proposed the KLS conjecture in the same paper, which says that for the spectral
norm ∥ · ∥2,

CCh(µLS) ≳ 1
∥ΣµLS∥

1/2
2

.

While the original result in [KLS95] ensures CCh ≳ d−1/2 for an isotropic log-concave distribution
(due to Σ = Id), this conjecture indeed claims CCh ≳ 1 for such case. Following a line of work [LV17;
Che21; KL22; Kla23], the current bound is

CCh(µLS) ≳ (log d)−1/2

∥ΣµLS∥
1/2
2

,

which implies that CPI(π) ≲ log d when π is isotropic for convex K.
5The opposite direction CPI(µLC) ≳ C−2

Ch (µLC) also holds for log-concave distributions due to [Mil09], while
CPI(µ) ≳ C−2

Ch (µ)/d for general distributions due to [Led94].
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Log-Cheeger and LSI constants. Just as the Cheeger and PI constants are related above, there
are known connections between LSI and log-Cheeger constants. The log-Cheeger constant ClogCh(µ)
of a distribution µ ∈ P(Rd) is defined as

ClogCh(µ) := inf
S⊂Rd:µ(S)≤ 1

2

µ+(S)
µ(S)

√
log 1

µ(S)

.

[Led94] established that CLSI(µ) ≲ C−2
logCh(µ)6, and [KLM06] showed that any log-concave

distributions with support of diameter D > 0 satisfy ClogCh(µLS) ≳ D−1. Later in 2016, [LV17]
improved this to ClogCh(µLS) ≳ D−1/2 under isotropy. Therefore, for convex K, it follows that
CLSI(π) ≲ D2 and that CLSI(π) ≲ D if π is isotropic.

D The Wasserstein geometry
We present additional technical background on the Wasserstein geometry and Markov semigroup
theory. Interested readers can refer to [Vil09; AGS05; Che24] for standard references on Wasserstein
spaces and applications to sampling.
Wasserstein gradient. Let P2,ac(Rd) be the space of probability measures admitting densities on
Rd with finite second moment. Although there are many ways to metrize P2,ac(Rd), the geometry
induced by the Wasserstein-2 distance W2 is a particularly useful structure for analysis.

Under the W2-geometry, one can define a “gradient” of a functional defined over P2,ac(Rd).
Specifically, for a functional F : P2,ac(Rd)→ R∪{∞}, the Wasserstein gradient of F at µ ∈ P2,ac(Rd)
is defined as ∇W2F(µ) = ∇(δF)(µ) ∈ L2(µ), where ∇ is the standard gradient and δF is the first
variation of F7. Equipped with this W2-gradient, one can define the Wasserstein gradient flow of F
that describes the evolution of a measure {µt}t≥0, from some initial measure µ0, as follows:

∂tµt = div
(
µt∇W2F(µt)

)
.

More generally, we can identify the Wasserstein “velocity” for some measure µt as vt if the time
derivative of µt can be written in the form

∂tµt = −div(µtvt) .

Under this identification, the time derivative of a functional F on P2,ac(Rd) with smooth Wasserstein
gradient under these dynamics can be written as

∂tF(µt) = Eµt⟨∇W2F(µt), vt⟩ ,

when vt ∈ {∇ψ : ψ ∈ C∞c (Rd)}L
2(µt), where {·}L

2(µt) denotes the closure of a set with respect to
L2(µt). This is the appropriate notion of tangent space in this geometry.

For instance, when we take the functional to be the entropy of the measure, H(µ) := 1
2

∫
µ logµ,

one can verify ∇W2H(µ) = 1
2∇ logµ. The heat flow equation can be written as ∂tµt = 1

2∆µt =
1
2 div(∇µt) = 1

2 div(µt∇ logµt), which indicates that the velocity of measures µt under the heat flow
is vt = −1

2∇ logµt. Hence, we can notice that ∇W2H(µt) = −vt, and thus recover the heat flow as
the Wasserstein gradient flow of the entropy of the measure.

6The opposite direction holds under dimension-scaling due to [Led94]: CLSI(µ) ≳ C−2
logCh(µ)/d.

7The first variation can be defined, for any measures ν0, ν1 ∈ P2,ac(Rd), as limt↓0
F((1−t)ν0+tν1)−F(ν0)

t
=

⟨δF(ν0), ν1 − ν0⟩. This definition is unique up to an additive constant, which is irrelevant as we are only con-
cerned with its gradient.
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Fokker-Planck equation and time-reversal of SDE. Consider a stochastic differential equation
(Xt) given by

dXt = −at(Xt) dt+ dBt with X0 ∼ µ0 . (D.1)

It is well known that measures µt described by

∂tµt = div(µtat) + 1
2∆µt , (D.2)

correspond to law(Xt). In this context, (D.2) is referred to as the Fokker-Planck equation corre-
sponding to (D.1).

From this equation, one can deduce the Fokker-Planck equation of the time reversal µ←t := µT−t:

∂tµ
←
t = −div(µ←t aT−t)−

1
2∆µ←t = −div

(
µ←t (aT−t +∇ logµT−t)

)
+ 1

2∆µ←t

In particular, this describes the evolution of law(Xt) of the stochastic differential equation:

dXt =
(
aT−t(Xt) +∇ logµT−t(Xt)

)
dt+ dBt with X0 ∼ µ←0 = µT . (D.3)

While the law of this process will give µ←T = µ0 at time T , it is also true that it will give µ0|T (·|z) if
one starts (D.3) at X0 = z. This is a subtle fact, whose justification requires the introduction of a
tool called Doob’s h-transform. The presentation of this subject is beyond the scope of this paper,
and we refer interested readers to [KP21] as a reference to its application in this context.
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