
GTX: A Write-Optimized Latch-free Graph Data System with
Transactional Support

Libin Zhou, Yeasir Rayhan, Lu Xing, Walid. G. Aref
Purdue University

{zhou822,yrayhan,xingl,aref}@purdue.edu

ABSTRACT
This paper introduces GTX, a standalone main-memory write-
optimized graph system that specializes in structural and graph
property updates while maintaining concurrent reads and graph
analytics with snapshot isolation-level transactional concurrency.
Recent graph libraries target efficient concurrent read andwrite sup-
port while guaranteeing transactional consistency. However, their
performance suffers for updates with strong temporal locality over
the same vertexes and edges due to vertex-centric lock contentions.
GTX introduces a new delta-chain-centric concurrency-control pro-
tocol that eliminates traditional mutually exclusive latches. GTX re-
solves the conflicts caused by vertex-level locking, and adapts
to real-life workloads while maintaining sequential access to the
graph’s adjacency lists storage. This combination of features has
been demonstrated to provide good performance in graph analyti-
cal queries. GTX’s transactions support fast group commit, novel
write-write conflict prevention, and lazy garbage collection. Based
on extensive experimental and comparative studies, in addition
to maintaining competitive concurrent read and analytical perfor-
mance, GTX demonstrates high throughput over state-of-the-art
techniques when handling concurrent transaction+analytics work-
loads. For write-heavy transactional workloads, GTX performs up
to 11x better than the best-performing state-of-the-art systems
in transaction throughput. At the same time, GTX does not sacri-
fice the performance of read-heavy analytical workloads, and has
competitive performance similar to state-of-the-art systems.

PVLDB Reference Format:
Libin Zhou, Yeasir Rayhan, Lu Xing, Walid. G. Aref. GTX: A
Write-Optimized Latch-free Graph Data System with Transactional
Support
. PVLDB, 18(1): XXX-XXX, 2025.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Jiboxiake/GTX.

1 INTRODUCTION
Managing and querying dynamic graph datasets have become in-
creasingly important in many real-world applications, e.g., in rec-
ommendation systems, fraud detection, threat detection, geo-spatial

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

navigation, e-commerce, knowledge graph applications, and risk
management [8–10, 37, 43, 51, 57, 58, 67]. Graphs continuously
change [12, 36], where graph write operations can reach millions
per second, e.g., as in social networks [1, 4, 18, 51, 56, 59]. Moreover,
applications require transactional atomicity when updating multi-
ple vertices and edges [51]. For instance, in ByteDance services [7],
when a user creates an article, a transaction atomically inserts the 3
edges (user, article), (user, tag), (article, tag). Without transactional
support, updates can lead to data corruption [23]. For example,
they can violate the reciprocal consistency that requires atomically
updating two edges between a pair of vertices [23, 66].

At the same time, dynamic graphs need to support graph analyt-
ics, e.g., [24, 26, 35, 51, 73]. ByteDance [7] detects fraud andmanages
risk via subgraph pattern matching operations that may traverse
multiple hops while the graph is being updated concurrently [51].
Without transactional atomicity, consistency, and isolation, graph
analytical algorithms, originally designed for static graphs, cannot
be run [35], andmay yield incorrect results [23, 26], and security vul-
nerabilities [23, 65]. In fraud detection, a customer may be flagged
wrongly. In computer networks, a suspicious authentication may
pass security checks without being noticed [26]. Also, an access
control system needs to update access permissions of roles and en-
tities atomically [23, 65]. Without transactional guarantees, users
may obtain incorrect permissions, and malicious users can exploit
race conditions to trigger vulnerabilities. Although applications can
build concurrency control protocols to achieve transactional isola-
tion, these solutions are inefficient and complicated [23]. Graph sys-
tems, e.g., [29, 45, 53] cannot run graph analytics concurrently with
updates [35]. Several recent graph data systems, e.g., [26, 35, 73]
support mixed transactions and analytics workloads.

Experiments [35] show that performance of state-of-the-art trans-
actional graph systems [26, 35, 73] suffers significantly given write-
heavy workloads when following real-world update patterns. Many
real-world scenarios exhibit power-law graphs with vertex degrees
following power-law distribution [21, 22, 30, 63, 73], and super-
vertices (hub vertices) [35, 51]) having large fanout. Also, real-world
graph workloads have hotspots and their edge updates have tempo-
ral locality [46]. These update patterns cause not only updates to
the same vertex’s adjacency list to be temporally close to each other,
but also create congestion of large amounts of concurrent updates
at the same vertexes (i.e., hub vertices becoming hotspots [51]).
Vertex-centric locking, and the lack of lock-free synchronization
are believed to cause significant degradation in performance, espe-
cially in terms of transaction throughput [35].

Efforts have been dedicated into developing lock/latch-free data
structures and indices, e.g., [13, 14, 47, 49, 50, 52, 64, 72] that allow
for high concurrency. They rely on atomic hardware primitives,
e.g., fetch_add and compare_and_swap (CAS) to serialize updates,

ar
X

iv
:2

40
5.

01
41

8v
1

 [
cs

.D
B

]
 2

 M
ay

 2
02

4

https://doi.org/XX.XX/XXX.XX
https://github.com/Jiboxiake/GTX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

but, by themselves, these primitives do not support the notion of
transactions, but serve as building blocks to achieve that [49].

This paper studies how atomic primitives and multiversion con-
currency control (𝑀𝑉𝐶𝐶) [71] can be applied to realize a transac-
tional graph data system. We introduce GTX, a latch-free write-
optimized main-memory transactional graph system to support
highly concurrent update transactions and graph analytics.

Latch-free indexes, e.g., Bw-Tree [49], assume that a separate
transaction layer handles the transactional concurrency control.
Thus, Bw-Tree does not prevent write-write conflicts or provide
transaction atomicity and consistency. Extending a latch-free index
to be a standalone system requires designing an efficient transaction
protocol. One could extend Bw-Tree as a key-value store with locks.
However, locks may incur longer blocking, and would reduce the
advantage of using non-blocking atomic operations. Having a lock
per object induces high memory overhead. Alternatively, one can
abort a transaction when it fails to execute a𝐶𝐴𝑆 (hence, a conflict).
However, this would abort all transactions that write concurrently
to the same memory blocks (although not necessarily updating the
same object), and hence reducing concurrency and scalability.

To address these challenges, GTX has a cache-friendly latch-free
𝑀𝑉𝐶𝐶 dynamic graph storage. It is the first to combine pointer-
based and sequential delta-chain storage for efficient edge lookup
and adjacency list scans. It uses vector-based delta-chains indexes
to locate target edges efficiently. GTX’s block allocation protocol
is optimized for power-law edge distributions and hub vertices
that are prominent in real-world graphs [35, 73]. Also, GTX of-
fers an efficient transaction protocol that is well-suited for the
underlying latch-free data structure and dynamic graph workload.
GTX eliminates vertex- and edge-centric locks, and has an adaptive
write-write conflict prevention protocol. GTX adapts to the tempo-
ral locality and hotspots of edge updates by increasing concurrency
for “hot" adjacency lists with higher memory cost, and reducing
concurrency for the “cold" blocks. To exploit the high concurrency
provided by latch-free 𝑀𝑉𝐶𝐶 and adaptive concurrency control,
GTX has a low-latency hybrid group commit protocol and a cache-
friendly latch-free𝑀𝑉𝐶𝐶 garbage collection protocol. GTX is also
efficient in computing resources with a cooperative worker thread
design. Except for a single commit manager thread, GTX has no
other service threads. GTX worker threads perform garbage col-
lection, failed transaction aborts, and commit other transactions’
updates while executing the thread’s own transactions.

Experiments demonstrate that GTX achieves up to 2x higher
transaction throughput in random order power-law graph edge
insertions, and up to 11x higher transaction throughput in real-
world timestamp-ordered power-law graph edge insertions than
the best competitor. For concurrent transaction and graph analytics
workloads, GTX has up to 4.3x higher throughput in edge update
transactions for write-heavyworkloads, and 2.8x higher throughput
for read-write balanced workloads than competitor systems. The
trade-off is that GTX takes between 0.8x to 1.8x longer time to
execute most of the concurrent graph analytics, but still performs
reasonably well for the majority of the workloads.

The contributions of this paper are as follows.We introduce GTX,
a write-optimized transactional graph system with up to 11X better
write transaction throughput over its best competitor system. GTX
has a latch-free graph storage that leverages existing techniques

of latch-free indexes, and is optimized for adjacency list storage of
dynamic graphs. GTX combines pointer-based delta-chains storage
and sequential storage to provide both efficient single edge lookup
and adjacency list scans. GTX has a high-throughput transaction
protocol suited for latch-free storage. For power-law graphswithout
temporal localities and hotspot, GTX transactions achieve up to 2.27
higher read-write transaction throughput than its competitors. GTX
has a delta chains-based adaptive𝑀𝑉𝐶𝐶 , hybrid commit protocol,
and decentralized epoch-based garbage collector. GTX eliminates
the need for vertex- or edge-centric locking commonly used in
graph systems. GTX dynamically adapts to real-world update pat-
terns, temporal localities, and hotspots, where GTX achieves up
to 11x better read-write transaction throughput for these work-
loads. For mixed-workloads of read-write transactions and graph
analytics, GTX achieves up to 4.3x higher read-write transactional
throughput than the second best competitor while maintaining
competitive graph analytics latency.

The rest of this paper proceeds as follows. Section 2 discusses
related work for dynamic and transactional graph data systems.
Section 3 introduces GTX and its components. Section 4 presents
GTX’s storage layer including the delta chains architectures for
handling vertex and edge updates. Section 5 presents GTX’s transac-
tion protocol. Section 6 discusses GTX’s resource management and
garbage collection. Section 7 presents an extensive experimental
study. Finally, Section 8 concludes the paper.

2 RELATEDWORK
Many graph data systems have been introduced over the years for
graph data management and analytics, e.g., [2, 3, 6, 16, 17, 19, 20, 24,
27–29, 31–34, 38, 42, 45, 48, 51, 53, 54, 60–62, 68–70]. Standalone
transactional graph systems execute read-write transactions and
analytics on a dynamic graph concurrently, e.g., [26, 35, 73].

LiveGraph [73], a main-memory graph data system, supports
graph analytics and read-write transactions. LiveGraph’s efficient
analytics is due to the purely sequential adjacency list scan. It uses
𝑀𝑉𝐶𝐶 to store edge versions of the same source vertex consecu-
tively in the same memory block. Read-write transactions acquire
exclusive locks on vertexes to append a new update log to up-
date an edge. Readers do not need locks, and directly scan the
memory block utilizing transaction timestamps to read the visible
edge versions. LiveGraph’s sequential storage of adjacency lists re-
duces random memory access, facilitates prefetching, and improves
cache performance by eliminating cache misses from pointer chas-
ing [26, 35, 73]. LiveGraph’s linear multi-versioned storage lacks
indexes within each edge block, and scans the adjacency list for
single edge lookups and updates (that need to “invalidate" old edge
versions). Also, LiveGraph’s vertex-centric locks block concurrent
transactions from writing to the same vertex’s adjacency list even
if they may be updating different edges.

Teseo [26] stores dynamic large sparse arrays that represent a
graph inside leaf nodes of a “fat" B+-tree to provide both efficient
updates and adjacency list reads. Teseo has a clustered sparse index
on keys of each sparse array segment to support fast point lookup
of vertices and edges, and secondary indexes on vertex locations in
the segments to initiate adjacency list scans. Teseo uses a hybrid
latch that combines conventional and optimistic latches to support
single-writer and multi-reader semantics, and reduces concurrency

2

control overhead in read-intensive workloads. Each read-only or
read-write transaction can acquire a latch either conventionally or
optimistically according to the desired operation and transaction
type. However, when a segment inside a sparse array becomes full,
Teseo requires a service thread to determine a rebalance window of
multiple segments in the sparse array, lock them, and redistribute
entries among these segments. Also, a sparse array resize either
creates a new sparse array as the leaf or splits the leaf into two new
sparse arrays. These operations require locking multiple memory
blocks exclusively. Thus, transactions that do not conflict with nor-
mal operations may conflict in locking neighbor segments that may
cause threads to block and stall. Also, multiple threads may com-
pete in locking segments for rebalancing. GTX handles this issue
by designating one worker thread to conduct garbage collection on
each adjacency list via GTX’s state-based block protection protocol.

Sortledton [35] is a graph data structure that is optimized for
the access patterns popular in graph analytics. It stores sorted
adjacency lists in large memory blocks for better read performance
at the expense of maintaining the sort during updates. Sortledton
uses a concurrent unrolled skiplist [55] to store blocks of edges
(versions) in sorted sets, where each skiplist element is an edge
block. Sortledton supports fast scan and set operations on adjacency
lists while concurrently updating edges. It uses a read-write latch
per vertex, and restricts that transactions need to know their write
sets and acquire all latches in advance. Its transactions reads have
to be completed before starting any writes.

In contrast, GTX has an adaptive concurrency control protocol
with evolving “locking" granularity based on the workload. Latch-
free systems and structures, e.g., [14, 47, 49, 50, 52, 64, 72] focus
mostly on atomic operations, e.g., atomic load,𝐶𝐴𝑆 , and 𝑓 𝑒𝑡𝑐ℎ_𝑎𝑑𝑑
to serialize concurrent operations. GTX shares similar ideas with
the Bw-Tree [49, 64]. GTX uses atomic operations to resolve con-
flicts, and delta-based multi-versioning to provide lock-free reads.
GTX allocates consecutive memory blocks for adjacency lists. It
amortizes the cost of single delta allocations, and ensures that deltas
are stored sequentially to reduce random access.

3 OVERVIEW OF GTX
GTX addresses the problem of managing and querying dynamic
labeled property graphs [40], where edges can contain labels, e.g.,
as in [73]. Graph operations and analytics are executed under read-
write or read-only transactions with snapshot isolation [15, 71].
Transactions support vertex create and update, edge insert, delete
and update, single vertex read, single edge read, and adjacency list
scan. Graph analytics invoke adjacency list scans iteratively with
a read-only transaction. GTX supports graphs with uniform and
power-law edge distribution but is optimized for power-law graphs.
GTX can run read-write transactions and analytics concurrently.

Fuchs et al. [35] have a microbenchmark to evaluate the most
important access patterns in graph workloads. There are major take-
aways from their experiments. (1) Storing neighbors of all vertices
together (sequential vertex access) is beneficial but not necessary.
(2) Sequential vertex access only makes up a small fraction of graph
memory access. (3) Sequential access to a vertex’s adjacency list
enables better performance. (4) A dense vertex identifier domain
has better performance for graph analytics than a sparse domain.

(5) Some graph algorithms access vertices in random order. Thus,
an index to locate the vertex entry is important.

Based on these findings, we make several design decisions. GTX
uses an adjacency list-like structure and stores edges (versions) of
a vertex sequentially in memory blocks. GTX uses a vertex index
for fast access, and an atomic integer on a dense domain to manage
vertices. For atomicity and consistency, graph updates and analytics
workloads are executed as read-write or read-only transactions.

GTX’s graph storage has a vertex index. Each index entry has 2
pointers that point to the head of a vertex delta chain, and the first
edge label block of this vertex, respectively. Edge label block stores
pointers to edge-deltas blocks of different labels. Vertex delta chain is
a linked list of vertex versions while an edge-deltas block stores all
edge-deltas (versions) of the edges of the same source vertex with
the same label. Figures 1a and 1b give GTX’s graph structure, a 2-
level vertex index-based graph storage, and 1 vertex entry from the
2nd level vector with this vertex’s version and edge storage. This
design is inspired by LiveGraph [73]. GTX manages the following
tables that aid its transaction manager and garbage collector: The
group commit array, the block access table, the timestamp table,
and the distributed transaction table. These global tables allocate
one entry per worker thread. Each worker thread has its own local
garbage queue and all worker threads share a hybrid block manager.
4 GTX STORAGE
4.1 Vertex-centric Index
GTX uses a dense vertex domain and provides an efficient vertex
index. Figure 1b illustrates GTX’s vertex-centric storage. Having a
vector-based vertex table is beneficial in graph storage [35]. GTX
has a latch-free two-level vector-based vertex index (Figures 1a 1
and 2). The 1st level stores pointers to the 2nd level in a fixed-size
array. The 2nd level has vertex index vectors that are of the same
size (but can be extended to be of growing sizes). A transaction
atomically fetch_adds a global offset variable, and uses the return
value as the ID of a new vertex, say 𝑣 . The corresponding 2nd
level entry of the vertex index points to 𝑣 and its adjacency list
versions. The initial vertex index has only 1 pointer in its 1st level
and allocates 1 vector. When the vector runs out of entries, the
transaction that creates the first vertex that should reside in the next
vector allocates the next 2nd level vector, and claims the first entry
of this vector. Other concurrent transactions that create vertices
that need to be in the next vector will wait until the corresponding
pointer in the 1st level becomes non-null. This allocation strategy
amortizes the cost of allocating new vectors, and has 𝑂 (1) vertex
lookup. Sortledton [35] has a similar strategy. To accommodate
large numbers of vertices, we manage the reference to the 1st level
array by an atomic pointer.When the 1st level array and all 2nd level
vectors are full, the transactions that need to create new vertices will
allocate a 2X larger 1st level array, copy all pointers to the new array,
and allocates a new vector there. Then, it uses CAS to update the
pointer to reference the new array. FailedCAS indicates that another
transaction has allocated a new array, and thus other transactions
should only reload the pointer. For simplicity we assume that the
1st level array is large and accommodates the 2nd level vectors of
all vertices. Each vertex index entry stores an atomic pointer to the
head of the vertex delta chain. Each vertex version is stored in a
delta that points to the previous version, forming a delta chain. A

3

(a) GTX Highlevel Overview (b) Vertex-centric Storage
Figure 1: GTX Storage (a) An overview of system structure. 1. 1st level array vertex index. 2. 2nd level vector vertex index (entry). 3. Vertex
delta chain. 4. Edge label block. 5. Edge-deltas block. (b) Representation of (a)2-5 for one vertex, its versions (3) and its labeled adjacency list (4,5)

Figure 2: Edge-Deltas Block Layout

transaction uses CAS to install a new vertex version. While using
a pointer-based delta chain is less efficient due to pointer chasing,
randommemory access and competing CAS [64], vertex updates are
less frequent than edge updates [73]. Also, most transactions need
access to only the latest version of a vertex, and will access it with
a single pointer chase. Concurrent updates to the same vertex are
less common. Thus, the negative effects of this design are minimal.
In contrast, vertex delta chains is beneficial. Detecting write-write
conflicts to the same vertex is simple. A failed CAS indicates a
concurrent transaction has updated the vertex delta chain. Hence,
the current transaction aborts.
4.2 Edge Label Block
The 2nd pointer in each vertex index entry points to an edge label
block to guide search in the edge-deltas block of a certain label.
More fields in the label block and label entries are added to support
latch-free operations, delta-chains index and edge-deltas block state
protection. Due to space limitation, we omit details of how to handle
latch-free label blocks. Each edge-deltas block has a delta-chains
index, a version number, and a state variable (Detailed in Section 5).
For simplicity, we assume the graph only contains 1 label.
4.3 Edge-Deltas Block
Figure 2 illustrates an edge-deltas block and its delta-chains index.
GTX’s edge-deltas block has 4 sections. At the lowest address, the
header contains the block’s metadata. Then, a property data storage
section stores each edge-delta’s variable-sized property data that
grows after the header from lower to upper address. Fixed-size edge-
deltas grow from the opposite end of the block. Edge-deltas are

logically linked in different edge-delta chains (Figure 2). Each block
has a delta-chains index whose 𝑖𝑡ℎ entry stores the offset of the
𝑖𝑡ℎ edge-delta chain’s head. The middle section is free space. The
combined_offset combines the addresses of the latest edge-deltas
and property data in a 64-bit integer. Since 64-bit is the largest word
that can be atomically updated by the hardware without a latch,
the combined_offset enables atomically allocating memory for both
the edge-delta and its property in a single operation. Its higher 32
bits store the offset of the property data region and the lower 32
bits store the offset of the edge-deltas region. Each edge-delta takes
1 cache line (64 bytes) to avoid false sharing among concurrent
writers. It captures the operation the edge-delta stands for, and the
creation and invalidation timestamps for multi-versioning. An edge-
delta’s previous_offset is the key of the clustered edge-delta chains
storage, and points to the previous edge-delta on the delta chain. At
an edge-deltas block’s creation time, GTX determines its edge-delta
chain number, where transactions append edge-deltas to different
delta chains using a hash function. Each edge-delta also stores the
offset of the same edge’s previous edge-delta to support efficient
previous version lookup. Given a target edge 𝑒 , a reader transaction
locates 𝑒’s edge-delta chain, and uses edge-deltas’ previous_offset
and previous_version offset to locate 𝑒’s visible version. Finally, GTX
uses a hybrid storage scheme of each edge-delta’s variable-sized
property, where if the property size is small, e.g., ≤ 16 bytes, it is
stored in the cache line-aligned edge-delta to save space and reduce
random memory access, else it is stored at the data region.

Figure 3: Transaction Table Partition of Thread 5

5 EPOCH-BASED TRANSACTION HANDLING
GTX has a fixed number of worker threads that execute transac-
tions and perform garbage collection. Each thread executes its own
transactions while being cooperative, i.e., performing work on be-
half of other transactions. For analytical workloads, GTX supports
using additional OpenMP [5] threads that collectively execute a
single read-only transaction managed by an internal worker thread.

4

GTX supports 𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 [15, 71] based on 𝑀𝑉𝐶𝐶 [71],
and we find this sufficient for most graph workloads. GTX manages
2 global variables for transactions, a global read and a global write
epochs. LiveGraph also manages those variables for 𝑀𝑉𝐶𝐶 [73].
To commit transactions, GTX uses a hybrid group commit [39] pro-
tocol. At creation, a transaction 𝑡 fetches the global read epoch, and
uses its value as 𝑡 ’s local read timestamp. 𝑡 does not know its write
timestamp: the time 𝑡 ’s updates logically get committed atomically
until 𝑡 commits via the group commit manager.

We use the following 3 latch-free fix-sized arrays for GTX’s
transactions to store objects that can be updated atomically.
1. The Distributed Transaction Table. In GTX, each worker
thread executes transactions, and manages a horizontal partition
of the transaction table. The worker thread maintains 2 attributes
for every transaction, say 𝑡 that it manages: 𝑠𝑡𝑎𝑡𝑢𝑠 and 𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 .
𝑠𝑡𝑎𝑡𝑢𝑠 records 𝑡 ’s current state: 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 , 𝐴𝑏𝑜𝑟𝑡 that are prede-
fined 64-bit integers or a positive integer that represents a commit
timestamp. 𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 records the number of deltas created by 𝑡 . Fig-
ure 3 illustrates the transaction table partition for Worker Thread 5.
Thread 5 has created 17 transactions and the table contains its 15-
17𝑡ℎ transactions’ information. Before a worker thread𝑤 executes
a read-write transaction,𝑤 generates a 64-bit unsigned transaction
ID from 𝑤 ’s local counter and 𝑤 ’s thread ID. 𝑤 inserts 𝑡 in the
table at an entry determined by the ID with 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 𝑠𝑡𝑎𝑡𝑢𝑠
and 0 𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 . If 𝑡 aborts, its 𝑠𝑡𝑎𝑡𝑢𝑠 is set to 𝐴𝑏𝑜𝑟𝑡 . If 𝑡 commits,
its 𝑠𝑡𝑎𝑡𝑢𝑠 is set by the commit manager to the commit timestamp.
Thus, any integer value other than the pre-defined 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠
and 𝐴𝑏𝑜𝑟𝑡 values reflects 𝑡 ’s commit timestamp. 𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 captures
how many writes (deltas) 𝑡 has made and gets incremented as 𝑡
creates deltas. When𝑤 commits or aborts a delta, it will decrement
the 𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 by 1. Thus, 𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 records how many 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠
deltas 𝑡 has. More detail about 𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 is explained in Sections 5.6,
5.7. Given GTX’s transaction ID structure, a thread can find out the
corresponding transaction table and transaction’s status in constant
time. Each transaction table partition functions as a circular array,
and an entry can be reused if its 𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 is 0.
2. Block Access and 3. Timestamp Tables. These tables capture
information each thread wants the other concurrent threads to
observe. Each thread is assigned an entry in both tables. When
starting a new transaction, say 𝑡 , a thread fetches the global read
epoch, and stores it in 𝑡 ’s timestamp table entry. 𝑡 can read all the
latest versions of the vertices and edges that are created before and
invalidated after 𝑡 ’s read timestamp. The timestamp table ensures
no thread can garbage collect edge or vertex blocks that current
transactions can read. When 𝑡 accesses an edge-deltas block, 𝑡
calculates a block ID from the source vertex and label, and stores
the block ID into 𝑡 ’s entry in the block access table. This way,
concurrent threads can learn that 𝑡 is accessing that block, and
hence the operations that require mutual exclusion on the block
cannot be executed at this time. This design avoids writing to the
shared memory object, and reduces cache invalidation across cores
that using shared/exclusive locks would incur.

5.1 Block Protection Protocol
GTX supports mutual exclusion on edge-deltas blocks. Inspired
by [52], GTX has a block version protection protocol that does not
use shared locks, and enables customized concurrency levels of the

edge-deltas block. Each block has a state variable, and each worker
thread registers block access in the block access table. The Block Pro-
tection protocol has 2 operations: register_access and change_state.
When a transaction 𝑡 accesses an edge-deltas block 𝑏, 𝑡 calls regis-
ter_access(b) to examine 𝑏’s state. If 𝑡 ’s operation is compatible with
𝑏’s state, 𝑡 stores 𝑏’s ID in 𝑡 ’s entry in the block access table. Then,
𝑡 rechecks 𝑏’s state. If it has not changed, 𝑡 executes the operation.
If 𝑏’s state is incompatible with 𝑡 ’s operation, 𝑡 unregisters its block
access to 𝑏 by storing 0 in the table, and retries later. After finishing
the operation, 𝑡 unregisters 𝑡 ’s block access. A worker thread need-
ing to change a block’s state immediately changes the state to the
new value. If the new state does not require mutual exclusion, the
thread proceeds. Else, the thread scans the block access table. If it
finds no other thread accessing the block, it executes the operations
in the new state. Else, it continues scanning the block access table
until 𝑏 is “safe". The correctness of this protocol is guaranteed by
checking the state twice when a thread registers the access. We
define 4 states in GTX, namely, normal, overflow, consolidation,
and installation to manage edge-deltas block concurrency. Most of
the time, edge-deltas blocks are in State normal that allows almost
unlimited concurrent reads and writes. The other 3 states are for
consolidating edge-deltas block (Section 5.9).

Figure 4: Vertex Delta Chain
5.2 Transaction Vertex Operations
GTX supports vertex read, insert, and update. GTX manages a delta
chain for every vertex using atomic operations. Figure 4 overviews
the vertex delta chain structure. When a transaction 𝑡 creates or
updates a vertex 𝑣 , 𝑡 reads the pointer stored at 𝑣 ’s index entry
that points to the head of 𝑣 ’s delta chain. If the pointer is null or is
pointing to a committed vertex delta whose creation timestamp is ≤
𝑡 ’s read timestamp, 𝑡 detects no write-write conflict so far, allocates
a memory block, say 𝑏, as a delta, and fills the metadata and 𝑣 ’s
properties into 𝑏. 𝑡 stores its TID as the creation timestamp of 𝑏 and
the original delta chain head pointer as 𝑏’s previous_version pointer.
Finally, 𝑡 performs 𝐶𝐴𝑆 to update the pointer in the vertex index
to install the new delta chain head. If the current delta chain head
has larger creation timestamp at the initial read or if the 𝐶𝐴𝑆 fails,
𝑡 aborts immediately due to the presence of a write-write conflict.
Vertex deletions are rare [73]. We leave it for future work. To read
a vertex 𝑣 , 𝑡 uses the pointer in the vertex index to locate the delta
chain head. 𝑡 compares 𝑡 ’s read timestampwith each delta’s creation
timestamp until it finds the first delta whose creation timestamp is
smaller than or equal to 𝑡 ’s read timestamp.
5.3 Transaction Edge Updates
Transactions update edges by appending new edge-deltas in the
edge-delta chains within the corresponding edge-deltas blocks. GTX
supports edge inserts, deletes, and property updates, and manages

5

concurrency control at the delta chain level. It guarantees only one
concurrent transaction can update a specific delta chain at a time.
To update an edge 𝑒 (𝑢, 𝑣), a transaction 𝑡 , locates 𝑢’s edge-deltas
block and registers the access. Assuming the state is compatible,
𝑡 identifies the delta chain that 𝑒’s edge-delta belongs to. Then, 𝑡
needs to lock the delta chain. 𝑡 fetches the corresponding delta
chain’s index value (offset), and checks whether the offset’s most
significant bit is 1. The most significant bit of each entry in the delta-
chains index serves as a locking bit for the delta chain. If the bit is 0,
𝑡 checks the current delta chain head according to the offset. If no
such head edge-delta exists or its creation timestamp is less than
or equal to 𝑡 ’s read timestamp, 𝑡 determines no concurrent writes
have taken place. 𝑡 invokes 𝐶𝐴𝑆 to update the index entry to set
the locking bit. If the𝐶𝐴𝑆 succeeds, 𝑡 has locked this delta-chain. If
any previous checks or𝐶𝐴𝑆 fail, 𝑡 detects a write-write conflict and
aborts. Otherwise, 𝑡 checks if 𝑒 already exists before appending an
edge-delta. 𝑡 uses the delta-chains index to lookup if an edge-delta
already exists for 𝑒 , and returns the edge-delta’s offset. If no offset is
found, an update operation for 𝑒 is considered an insert, and a delete
operation can end immediately. Otherwise, 𝑡 caches this offset, and
stores 𝑡 ’s TID as the invalidation timestamp of this previous_version
delta. Next, 𝑡 calculates the memory size needed for the edge-delta
and data storage using the hybrid storage model (Section 4.3), and
allocates space in the block by updating the combined_offset. Then,
𝑡 installs the edge-delta by writing 𝑒’s destination vertex ID, the
delta type, variable-sized property information, previous (version)
offsets, and 𝑡 ’s TID as the creation timestamp in 𝑒’s edge-delta and
writing 𝑒’s property in the corresponding address. An insert (resp.
update, delete) edge-delta is created for edge insert (resp. property
update, delete). Finally, 𝑡 records the block ID, the block version
number, and the edge and delta-chain 𝑡 have updated.

5.4 Adjacency List Scan
GTX supports sequential adjacency list scan on a consistent snap-
shot based on Transaction 𝑡 ’s read timestamp. After locating the
edge-deltas block, say 𝑏, and registering the access, 𝑡 uses 𝑏’s cre-
ation time to determine the block version to read. If𝑏’s creation time
is greater than 𝑡 ’s read timestamp, 𝑡 will use 𝑏’s previous pointer to
find the visible block version. Block versioning and creation time
are further studied in Section 5.9. After locating the visible version,
𝑡 loads the combined_offset to locate the latest edge-delta. 𝑡 scans
from there until exhausting all edge-deltas in the current block. 𝑡
reads all deltas whose creation timestamp is less than or equal to
𝑡 ’s read timestamp and is not invalidated or is invalidated in the
future. 𝑡 also reads all deltas created by but not invalidated by itself.
When reading an edge property, 𝑡 loads the property either in place
or using the edge-delta’s data_offset and data_size fields.

5.5 Transaction Edge Lookup
The delta-chains index supports fetching a single edge.When Trans-
action 𝑡 needs Edge 𝑒 (𝑢, 𝑣), 𝑡 calculates/finds 𝑒’s edge-delta chain.
Then, 𝑡 searches the delta-chains index to get the edge-delta chain
head that 𝑒 belongs to. 𝑡 examines the head edge-delta, and uses
each edge-delta’s previous_offset to locate the previous deltas in the
edge-delta chain instead of performing a scan. 𝑡 searches until it
finds a visible edge-delta for 𝑒 , or until the current delta chain is
exhausted. If 𝑡 finds 𝑒’s insert or update edge-delta, 𝑡 returns 𝑒’s

corresponding version. If a delete edge-delta or no edge-delta is
found, 𝑡 reports that 𝑒 does not exist.

5.6 Lazy Update
GTX uses Lazy Update to reduce latency of transaction commits,
and enforce Snapshot Isolation [15, 71]. A transaction 𝑡 may access
an edge-deltas block but encounters another transaction, say 𝑞,
with private In_Progress edge-deltas. As the next section shows,
GTX’s group-commit manager commits transactions by updating
their status in the transaction table to a commit timestamp without
updating the transactions’ deltas. Using the transaction table, 𝑡
checks on𝑞’s status, and updates the delta’s creation timestamp (and
previous version’s invalidation timestamp) to𝑞’s commit timestamp
if 𝑞 has committed. Then, 𝑡 subtracts 1 from 𝑞’s 𝑜𝑝_𝑐𝑜𝑢𝑛𝑡 entry.

5.7 Hybrid Transaction Commit and Abort
GTX has a hybrid group-commit protocol combining Lazy Updates
and group commits to support fast transaction commit while main-
taining Snapshot Isolation consistency [15, 71]. It manages a global
commit array. A committing transaction 𝑡 makes its edge-deltas
the heads of their delta chains, and unlocks those edge-delta chains
by updating the associated delta-chains index entries. Thus, future
transactions can lookup 𝑡 ’s edge-deltas using the delta-chains index.
Then, 𝑡 writes its transaction table entry in its worker thread’s com-
mit array entry. The commit manager fetch_adds 1 to the global
write epoch, uses the return value as the group commit times-
tamp, and scans the commit array. For each filled entry, the commit
manager writes the group commit timestamp as the status of 𝑡 ’s
transaction table entry, and nullifies this commit array entry. 𝑡
has committed at this timestamp. After the commit manager scans
the whole table, it increases the global read epoch by 1, atomi-
cally committing all transaction updates in this commit group. 𝑡
eagerly updates and commits its deltas’ timestamps while concur-
rent transactions can lazily update these deltas, making up the
hybrid commit protocol. Correctness-wise, transactions starting
after the commit manager increases the global read epoch see deltas
of the just-committed transactions. Performance-wise, it allows a
new read-write transaction to logically commit without updating
all its deltas, and the new read global epoch to start immediately.
This allows the commit manager to start a new commit group of
transactions without waiting for the previous group to commit all
its deltas. This decreases the amount of synchronization between
the commit manager and the commit group, and reduces latency.
Also, concurrent transactions cooperate (Lazy Update) to reduce
the workload of heavy-write transactions.
Transaction Abort: When a read-write transaction 𝑡 aborts, 𝑡
iterates through its modified edge-deltas blocks, registers access,
and eagerly aborts all of 𝑡 ’s deltas by writing𝐴𝑏𝑜𝑟𝑡 to their creation
timestamp and unsets any “locking" bits the delta chains have.

5.8 Transaction Examples
Let 𝑡𝑠 , 𝑡𝑠𝑐 , 𝑡𝑠𝑟 , 𝑡𝑠𝑐𝑟 , and 𝑡𝑠𝑖 be timestamp, commit_timestamp, read_
-timestamp, creation_timestamp, and invalidation_timestamp, re-
spectively. Figure 5 illustrates how Transactions𝑇1-𝑇3 insert, delete,
and update edges. To illustrate, assume that transactions execute
sequentially. The edge-deltas block for Vertex 1 stores Edges (1, 4),
(1, 3), and (1, 5) using 3 edge-deltas and 2 delta-chains.

6

Figure 5: Transaction Examples

Example 1: 𝑇1 inserts Edge (1, 10) with 32-byte property data. 𝑇1
calculates Edge (1, 10)’s Delta-chain 0 as 10 mod 2 = 0, where 2 is
the number of delta-chains, locks the delta-chain, and uses the delta-
chains index entry’s Offset 64 to locate the edge-delta chain, and to
search for a previous version (if exists). Then, it allocates space in
both the delta region and the data region by atomically updating
combined_offset. It writes the insert edge-delta and its property into
the allocated region. The new edge-delta has previous_offset=64 and
previous_version=0 as it points to the previous edge-delta on the
delta-chain, and Edge (1, 10) has no previous version. The delta-
chains index stores the new edge-delta, and the commit manager
commits𝑇1 at 𝑡𝑠𝑐 = 10. The edge-delta’s 𝑡𝑠𝑐𝑟 is updated to 10. Then,
𝑇2 deletes Edge (1, 4). 𝑇2 locks the delta chain, finds the previous
version of (1, 4) at Offset 64 using the delta-chains index, and allo-
cates the space for its edge-delta by updating combined_offset. 𝑇2
does not allocate space in the data region due to the delete. Instead,
it creates a delete edge-delta, and stores Offset 64 as the new delta’s
previous version. 𝑇2 commits by updating the delta-chains index
and registering with the commit manager to commit at 𝑡𝑠𝑐 = 12.
The new edge-delta’s 𝑡𝑠𝑐𝑟 and the previous version edge-delta’s 𝑡𝑠𝑖
are both updated to 12. Finally, 𝑇3 updates Edge (1, 5) with a new
8 bytes property. The previous version is recorded as in deletion,
but the new version’s property takes 8 bytes. 𝑇3 directly stores this
property within the edge-delta. 𝑇3 creates an update edge-delta for
(1, 5) and commits. The delta-chains index, the new edge-delta’s
𝑡𝑠𝑐𝑟 , and the previous version’s 𝑡𝑠𝑖 get updated similarly.
Example 2: Figure 5 illustrates how transactions read edges, and
scan adjacency lists. 𝑇4 with 𝑡𝑠𝑟 = 20 tries to read Edge (1, 3). 𝑇4
calculates that Edge (1, 3) is in Delta-chain 1, and reads the index
entry with Offset 384. 𝑇4 starts the search at Delta (1, 5) created
at Time 14, and uses each edge-delta’s previous_offset to get the
previous edge-delta in the delta-chain.𝑇4 locates Edge-delta (1, 3) of
𝑡𝑠𝑐𝑟 = 5 at Offset 128. Since𝑇4’s 𝑡𝑠𝑟 > 5, it reads the edge-delta, and
returns the edge’s property data. 𝑇5 with 𝑡𝑠𝑟 = 7 tries to read Edge
(1, 5). It uses the delta-chains index to locate the head of the delta-
chain, and finds Edge-delta (1, 5) with 𝑡𝑠𝑐𝑟 = 14. Although𝑇5 wants
to read Edge (1, 5), its 𝑡𝑠𝑟 is smaller than the current edge-delta’s
𝑡𝑠𝑐𝑟 = 14. Thus, 𝑇5 uses this edge-delta’s previous_version_offset
to locate the previous version of Edge (1, 5), and finds the visible
version of Edge (1, 5) with 𝑡𝑠𝑐𝑟 = 6 and 𝑡𝑠𝑖 = 14. 𝑇5 reads Weight
32.6 instead of 40.1.𝑇6 and𝑇7 with 𝑡𝑠𝑟 = 14 and 𝑡𝑠𝑟 = 7, respectively,

try to read Edge (1, 4). 𝑇6 and 𝑇7 use the delta-chains index to
locate the first edge-delta at Offset 320, and finds a delete edge-
delta for (1, 4) with 𝑡𝑠𝑐𝑟 = 12. 𝑇7 determines that this edge-delta
represents a future version of Edge (1, 4), and continues the search
via previous_version_offset to find the insert edge-delta for (1, 4)
with 𝑡𝑠𝑐𝑟 = 5 and 𝑡𝑠𝑖 = 12 that is visible to 𝑇7. It reads this edge-
delta’s associated data. 𝑇6 sees the delete edge-delta for Edge (1, 4),
determines it has been deleted, and returns. Finally,𝑇8 with 𝑡𝑠𝑟 = 15
scans the adjacency list. It determines the start offset 384 of the
scan using combined_offset. 𝑇8 scans all edge-deltas until end of
block, and compares its 𝑡𝑠𝑟 with 𝑡𝑠𝑐𝑟 and 𝑡𝑠𝑖 of each edge-delta. It
reads Edges (1, 5) with 𝑡𝑠_𝑐𝑟 = 14, (1, 10), and (1, 3).

5.9 Consolidation of an Edge-Deltas Block
An edge-deltas block may overflow due to many edge-delta allo-
cations. Consolidation refers to (1) Recycling the memory used by
invalidated edge-deltas in an overflowing block, and (2) Allocating a
new block according to workload history. To support better concur-
rency during consolidation, GTX uses the block protection protocol
in Section 5.1. Each edge-deltas block is associated with a state
variable that can be atomically read and updated. A normal state
constitutes the majority of the lifetime of each delta block, where
in this state, transactions’ reads and writes can proceed normally.

An edge-deltas block, say 𝑏, enters the overflow state when
a transaction requests to allocate more memory than what 𝑏 has.
Due to the atomic 𝑓 𝑒𝑡𝑐ℎ_𝑎𝑑𝑑 , only one transaction 𝑡 causes 𝑏 to
overflow. 𝑡 becomes the consolidation worker, and changes 𝑏’s
state to overflow, and waits till all current threads exit 𝑏. State
Overflow prevents other threads from accessing 𝑏. 𝑡 restores 𝑏’s
combined_offset to the value before the overflow. Then, 𝑡 changes
𝑏’s state to consolidation. State Consolidation allows concur-
rent readers to access 𝑏 while 𝑡 is identifying the latest versions
of 𝑏’s edges. 𝑡 scans 𝑏, performs Lazy Updates, records the last
committed delta for each edge, and records all 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 edge-
deltas and their transactions. 𝑡 allocates a new block 𝑏′ according
to the total size of latest committed and 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 edge-deltas
in 𝑏. 𝑏′ stores a previous pointer to 𝑏, has creation time equal to
the largest edge-delta invalidation time in 𝑏, and creates a new
delta-chains index with an updated size. Then, 𝑡 inserts the latest
versions of all un-deleted edge-deltas into 𝑏’, and updates the new
delta-chains index accordingly. After the installation of the latest
edge-deltas, 𝑡 changes 𝑏’s state to installation to synchronize the

7

𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 edge-deltas. A block 𝑏’s installation state synchro-
nizes 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 transactions that have deltas in𝑏, and ensures the
correctness of the transaction protocol. 𝑡 checks those 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠
transactions. Committing transactions need to update delta-chains
indexes (Section 5.7), and consolidation may create a delta-chains
index of a different size. To avoid creating inconsistency across edge-
deltas chains, State installation stops transactions from updating
the edge-delta chains. 𝑡 can only proceed after all transactions that
update 𝑏’s delta-chains index have committed or aborted. 𝑡 uses
the 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 edge-deltas observed during the analysis to deter-
mine which edge-delta chains may be updated, and checks these
delta-chain heads until all their transactions terminate. 𝑡 copies the
newly committed edge-deltas to 𝑏′, and updates the delta chains
and the index entries. 𝑏′ may have a different delta-chains layout.
Thus, a committed delta may be added into a different delta-chain
than the corresponding one that it was assigned to in 𝑏. For the
In_Progress edge-deltas, the consolidation worker copies them to 𝑏′
without updating the delta-chains index. No “lock" bit is set for the
new block’s index. After all these deltas are installed in 𝑏′, 𝑡 updates
the block pointer and the delta-chains index, increases the block
version by 1, and changes to the state normal in the block label
entry. 𝑡 marks 𝑏 safe for garbage collection at 𝑏′’s create timestamp.
Example 3: Figure 6 gives an example block consolidation. Assume
that Vertex 1’s edge-deltas block of size 512 bytes is full with a
64-bytes header, 6 edge-deltas, and 64 bytes of property data. It has
combined_offset = (64«32 + 384). Two concurrent transactions 𝑇1
and 𝑇2 are updating edges. Later, 𝑇1 will commit and 𝑇2 will abort.
Another transaction 𝑡 wants to delete an edge by creating a delete
edge-delta with no associated data. It invokes the delta allocation
protocol and updates the combined offset as (64 << 32 + 448).
Since 448 + 64 = 512 is greater than the total available space, a
consolidation is triggered (Block Overflow). 𝑡 becomes the consoli-
dation worker and changes the block state to overflow. It restores
combined_offset to the non-overflow value (64 << 32 + 384) (Block
State Restoration). Next, 𝑡 changes the state to consolidation, and
scans the edge-deltas block to find all latest committed versions
of edges, i,e., Edges (1, 3), (1, 5), and (1, 4) with 𝑡𝑠𝑐𝑟 = 5, 𝑡𝑠𝑐𝑟 = 6,
and 𝑡𝑠𝑐𝑟 = 10, respectively, and records 𝑇1 and 𝑇2 as 𝐼𝑛_𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 . 𝑡
allocates a new edge-deltas block and a new delta-chains index ac-
cording to edge-delta sizes, and copies the latest version edge-deltas
there (Block Consolidation). 𝑡 changes the state to installation
and checks In_Progress transactions. 𝑡 finds that 𝑇1 has committed
at 𝑡𝑠𝑐𝑟 = 18 and𝑇2 has aborted. 𝑡 copies the newest version of (1, 5)
to the new block, and updates the delta-chains index entry (Block
Installation). Finally, 𝑡 updates the block pointer and delta-chains
index to point to the new block and index, and changes the state
back to normal (New Block Version). By now, 𝑡 has finished the
consolidation, and continues executing its transaction’s work.

5.10 State-aware Transaction Operations
Transaction operations need to be modified to accommodate block
versioning. The number of edge-delta chains of a block may change
after consolidation. Thus, we need to revise the delta-chain-level
locking between transactions. GTX introduces a version number
for each edge-deltas block that increases by 1 per consolidation.
Transaction 𝑡 locally records which edge-delta chains (and edges)
𝑡 has modified per edge-deltas block 𝑏. When 𝑡 accesses 𝑏 again,

either for a read, write, or commit, 𝑡 checks if the block version
has changed. If so, 𝑡 relocks its edge-deltas chains to avoid causing
write-write conflicts. 𝑡 uses its updated-edges records to calculate
the edge-delta chains that it needs to relock and tries to lock them
(Section 5.3). If no concurrent transactions have locked or updated
those edge-delta chains, 𝑡 locks them, finds where its edge-deltas
reside, and continues its normal operations, else 𝑡 aborts.

6 RESOURCE MANAGEMENT
Memory Allocation. GTX adapts a hybrid memory allocator from
LiveGraph [73] to balance concurrent memory allocation and space
utilization. GTX allocates a large chunk of memory at system start
via𝑚𝑚𝑎𝑝 , and divides memory into blocks of varying power-of-2
sizes (as in Buddy systems [44]). Each worker thread locally man-
ages a pool of memory blocks smaller than a user-defined threshold.
It can allocate memory blocks from this pool without synchronizing
with the other threads. Larger memory blocks are managed by a
memory manager that handles requests to allocate large memory
blocks. Due to the power-law nature of real-world graphs, most
vertices are not hub vertices, i.e., do not have many edges. Thus,
most of the vertex delta and edge-deltas block’s memory allocations
only require smaller blocks from threads’ private pools. Even when
threads need to allocate a larger block, it is unlikely that multiple
threads request that concurrently. Thus, GTX’s memory allocation
protocol is mostly contention-less, yet at times requires the memory
manager to allocate large memory blocks.
Garbage Collection. GTX recycles the delta blocks no longer
visible to transactions. GTX is cooperative and does not have a
garbage collector thread. Instead, worker threads register memory
blocks as candidates for garbage collection and periodically recycle
the “safe" blocks. When a transaction commits or Lazy Updates a
vertex delta, in effect it invalidates the vertex’s previous version.
GTX embeds a local priority queue per worker thread, and the
worker thread registers the previous vertex delta block with its
invalidation time in the local queue. The same operation takes
place when a consolidation worker consolidates an edge-deltas
block. It registers the old block invalidated at the new block’s create
time. After executing a certain amount of transactions, a worker
thread𝑤 scans the timestamp table and finds the “safe" timestamp,
the minimum timestamp in the table. 𝑤 continuously checks its
local garbage queue, dequeues an entry, and recycles the associated
memory block until the queue is empty or the current queue head’s
timestamp becomes too large. If a recycled block 𝑏 is small,𝑤 stores
𝑏 in its local pool, else 𝑏 is sent back to the memory manager. It
ensures that small blocks are allocated contention-free while large
blocks return to the global pool for reuse by other threads.

7 EVALUATION
The focus of this study is on supporting high throughput read-write
transactions while supporting concurrent graph analytics.
Experiment Setup. Experiments run on a dual-socket machine
with Intel(R) Xeon(R) Platinum 8368@ 2.40GHz processors with 156
CPUs. It has 2 NUMA nodes and each node has 38 cores and 96GB
RAM. We compile all systems with GCC 11.4.0 and O3 optimization
flag and evaluate them over a single NUMA node with best effort,
i.e., the evaluated system allocates memory locally, and uses remote
memory only if its memory exceeds a single NUMA node. One

8

Figure 6: Consolidation Example

exception is for insert experiments of graph500-26 and Twitter
with over 1 billion edges. This machine’s memory is not enough
to evaluate all the systems. Thus, for these datasets, we evaluate
all systems in a setup with Intel(R) Xeon(R) Platinum 8168 CPU
@ 2.70GHz processors that has 24 cores and 387GB DRAM per
NUMA node. To minimize NUMA effects, we run those experiments
in a single NUMA node with up to 20 worker threads to avoid
contention. We disable disk logging. We use the same evaluation
software based on 𝐿𝐷𝐵𝐶 Graphalytics benchmark [11, 41] as used
in Teseo [26] and Sortledton [35], and add additional experiments.
Experiments include few instances for uniform graphs but the main
focus is on power-law graphs as many real-world graphs exhibit
such patterns [21, 22, 30, 63].

Figure 7: Bars Color Code in Experimental Results.
7.1 Insert Performance
Testing includes inserting uniform and power-law real-world and
synthetic graphs with edges shuffled or according to timestamp
order. We simulate undirected edge inserts by inserting 2 directed
edges in a transaction. They execute “checked" operations so that
every edge insert involves a read to check if the edge exists. Thus,
each transaction internally executes 2 edge lookups and 2 edge
writes atomically. Thus, having efficient edge reads can improve
transactions’ write performance. Figure 7 gives the color codes we
use in displaying results. Refer to Figure 8 for results.
Random-order Inserts. In this study, the evaluated systems insert
edges from uniform and power-law real-world and synthetic graphs.
The results include graph500-24, 26, uniform-24, dota-league and
twitter. graph500-26 and twitter have over 1 billion edges. Thus, we
evaluate them on the machine with larger DRAM up to 20 worker
threads. We evaluate other power-law and uniform graph datasets
but their results are similar to the ones presented, and are omitted
for brevity. GTX has over 10x better throughput over LiveGraph
and around 1.34x to 2x better throughput over the second-best Sor-
tledton. We attribute GTX’s performance to GTX’s low-overhead
concurrency control and its adaptive delta-chains index. GTX has
only an exclusive lock that is embedded in the index with minimal
overhead. GTX adjusts the number of delta-chains of each edge-
deltas block as edge updates arrive, and enables concurrent writes to
the same vertex. While Teseo can reduce the conflict in updating the

hub vertices by storing their neighborhoods into multiple segments,
its sparse array segment-based storage has drawbacks - More dis-
cussion on this issue below. LiveGraph’s performance suffers due
to vertex-centric locking and the absence of edge indexes. For each
edge check, a LiveGraph transaction scans the edge block to check if
the edge exists which is costly. For uniform graphs, Sortledton out-
performs GTX for low parallelism degrees, but GTX’s performance
catches up as the number of concurrent worker threads increases.
Since the graph is uniform, each vertex has about the same number
of edges. Concurrent transactions are not likely updating the same
adjacency lists. Thus, GTX’s delta-chains index becomes under-
utilized, and the drawbacks of vertex-centric locking are mitigated
because transactions are less likely to conflict in this case.
Timestamp-ordered Inserts. In this experiment, we insert edges
based on their real-world create timestamps. Real-life power-law
graphs not only have hub vertices (dataset edit-wiki has vertices
with millions of adjacent edges), but also have hotpots. Transac-
tional graph systems have significant performance degradation
when inserting edges in timestamp order [35]. Thus, we run the ex-
periments in both random and timestamp order. Refer to Figures 8’s
yahoo and edit-wiki. As baseline, first, we evaluate inserting edges
in random order. For yahoo-songs , GTX has the best scalability with
up to 70% better throughput over the second best system (Sortledton)
at higher parallelism degree. For the edit-wiki workload, GTX overall
ranks the second among the evaluated systems and performs the
best with medium parallelism degree (1.2x better than the second
best). GTX does not scale well here at high worker thread numbers
because its adaptive delta-chains adjustment heuristic does not
catch up well with large neighborhoods. GTX could have used a
more aggressive heuristic to increase delta chain numbers eagerly
when consolidations take place, so more concurrent writers would
be allowed per edge-deltas block. However, this would increase
the size of allocated blocks and memory used by indexes, and may
incur wasted spaces for low-fanout vertices. We plan to explore
more sophisticated heuristics in future work. In contrast, when
inserting in the real timestamp order, GTX performs the best over
all competitor systems. The second-best Sortledton’s throughput
degrades to less than 11% of its random order insertion through-
put. In contrast, GTX’s throughput only drops by around 30%. In
the yahoo-songs workload, GTX has up to 11x better throughput
than Sortledton and in edit-wiki workload, GTX has up to 9x better

9

Figure 8: Insertion Throughput

throughput. GTX achieves high performance in timestamp-ordered
workload due to its better write concurrency provided by adaptive
delta-chains. Sortledton’s and LiveGraph’s worker threads block on
concurrent updates during a hotspot. Ideally, Teseo should mitigate
the high conflict when concurrently updating hub vertices by stor-
ing large neighborhoods in multiple segments. However, its sparse
array segment rebalance exclusively locks multiple adjacent seg-
ments but segments of the same neighborhood are always adjacent.
Thus, concurrent rebalance threads may conflict when locking the
same adjacent segment in their rebalance window, or conflict with
other concurrent transactions. Teseo’s segment locking may incur
false positives among low-degree vertices by locking vertices in
the same segment that the transaction does not intend to update.
LiveGraph, Sortledton, and Teseo suffer from temporal localities
in edge update hotspot and power-law distributions. In contrast,
GTX allows concurrent transactions to update the same vertex and
adjusts the vertex’s concurrency level adaptively. This experiment
demonstrates that GTX is the only transactional graph system that
can handle these real-life workloads efficiently.

7.2 Concurrent Updates and Analytics
We study how systems support concurrent update transactions and
graph analytics simultaneously. We adopt the graph update exper-
iments from Teseo [26] and Sortledton [35], but have additional
workloads. We generate log files based on the edges of the power-
law graph graph500-24 using graphlog [25]. The source graph has
around 260 million edges with 2.6 billion edge update logs. The first
10% of the edge logs are purely edge inserts that build the original
graph. The next 90% of the logs are edge inserts and deletes. If a
vertex has high fanout in the source graph, it has proportionally
more edge update logs. The experiment ensures that the graph size
during the experiment stays about the same as the initial size. As
in the previous experiments, all systems execute check operations,
edge inserts (deletes) only happen after checking the edge existence.
We try to use one NUMA node. If one NUMA node’s memory is
not enough, we allocate in a remote node. LiveGraph’s memory
usage has been overly large, and could only process 20% of the
logs. Also, we have evaluated each system’s transaction throughput

when running only updates. The results are mostly similar to the
transaction throughput results of this experiment and are omitted
for brevity (One exception is Teseo’s throughput increase due to
its in-place updates and became the second best behind GTX). We
design the mixed-workload experiment as follows: We allocate a
fixed number of 50 thread resources, and control the read/write
ratio by assigning the threads either as write or OpenMP [5] read
threads, e.g., 25 write and 25 read threads form a 50% write work-
load. Write threads continuously run update transactions while
read threads run graph analytics. We could not report the results of
Teseo as it ran into deadlocks (the same problem is reported in Sor-
tledton’s evaluation [35]). Sortledton has segmentation fault errors
for only a few of the workloads. but we are still able to produce
some results. For analytics, we evaluated 1-hop (1-HN) and 2-hop
neighbors (2-HN) that find 1-hop and 1-2 hop neighbors of a set of
vertices, and concurrent breadth first search (BFS), PageRank (PR),
and single source shortest paths (SSSP) from Graphalytics [11, 41].
Similar experiments can be found in [35] but they use only BFS and
PR under certain threads configurations. The results below use the
same color code in Figure 7.
Normal Update Distribution. We generate edge update logs and
place them randomly in the edge log stream. Write threads run
transactions executing edge logs, and concurrent graph analytics
start at 10% of the update workload (after the source graph is loaded).
The results are in Figures 9 and 10. Sortledton crashed for several
workloads as discussed above. We redo those workloads many
times and record the results for the successful runs, but this was
not always possible. For 1-HN, PR, and SSSP, when the workload is
read-heavy, e.g., 30% write, GTX’s concurrent analytics can take at
most 2x longer time than the best performing Sortledton. GTX and
Sortledton also have similar transaction throughput under those
workloads. As the workload becomes more write-heavy, GTX’s
graph analytics performance catches up, and it has the highest
transaction throughput. Under write-heavy workloads, e.g., 90%
write, GTX has 1.3x to 1.48x higher transaction throughput than
the second best competitor Sortledton, and performs the best and
second best in SSSP and PR, respectively. Also, it has slightly worse

10

Figure 9: Concurrent Updates and Analytics: Transaction Throughput

Figure 10: Concurrent Updates and Analytics: Graph Analytics Latency

performance in 1-HN than the other systems. However, GTX has
better write throughput when executing BFS, but Sortledton has
significantly BFS lower latency under all workloads. GTX is 1.12x
to 1.52x faster than Sortledton in 2-HN under all workloads while
achieving better transaction throughput for most of the workloads
(0.96x to 1.28x). LiveGraph exhibits strong performance for graph
analytics (around 0.77x to 1.51x faster than GTX), but its transaction
throughput is significantly lower than the other 2 systems (GTX
has 4x to 9x higher transaction throughput than LiveGraph).
Temporal Locality and Hotspot Update Distribution. We gen-
erate another set of edge logs, and create temporal localities and
hotspots to mimic real-world scenarios. Transactions are more
likely updating the same vertex’s adjacency list concurrently. This
experiment has the same setting as the previous mixed-workload ex-
periment except for having different edge logs. We evaluate perfor-
mance under concurrent reads and writes, and temporal localities.
Sortledton’s segmentation error persists for this hotspots workload.
Thus, we only report available results in Figures 11 and 12.

GTX, Sortledton, and LiveGraph graph analytics performance
are not affected much by update hotspots. However, Sortledton and
LiveGraph transaction throughputs have up to 64.3% and 41.2% drop
in throughput, respectively, for workloads with temporal localities
and hotspots in update patterns. Only GTX maintains its high
transaction throughput and stays competitive in graph analytics.
Performance Analysis. GTX has the best transaction throughput
while maintaining competitive performance for graph analytics
across different workloads. We attribute this to the following rea-
sons. GTX supports delta-based MVCC that prevents read transac-
tions from conflicting with write transactions. Thus, the side effects
of concurrent updates are mitigated for graph analytics, and vice
versa. It outperforms vertex-centric locking and adapts to work-
load temporal localities and hotspots. GTX is the only system that
can maintain high transaction throughput across all experiments.
Also, it stores and manages edge-delta chains of each adjacency
list sequentially in a memory block. This preserves cache locality,

eliminates pointer chasing, reduces random memory access and
cache misses, and facilitates prefetch. Previous works [26, 35, 73]
show that sequential adjacency list storage is beneficial to adja-
cency list scan; the backbone for graph analytics. GTX implements
graph algorithms (e.g., BFS, PR, and SSSP) directly accessing edge
delta blocks, and is compiled within the system. It saves the cost of
using adjacency list iterators and associated functional calls. Our
experiment (not shown due to space) shows that using an itera-
tor is around 1.15x slower in graph analytics. Finally, GTX has
several techniques in reducing the overhead of concurrent read-
write transactions and graph analytics. Distributing the transaction
table over worker threads enables latch-free 𝑂 (1) access to trans-
action status for Lazy Updates, and the Block Access Table allows
each reader and writer thread to register block-level access in its
own cache line-aligned entry without invalidating caches of other
worker threads or modifying a shared lock. This greatly handles
concurrency control overheads.

Sortledton exhibits different results across experiments. Sortled-
ton has the second best transaction throughput. However, its perfor-
mance degrades for workloadswith temporal localities and hotspots.
For analytics, it has the best performance in BFS. Sortledton uses
exclusive lightweight latches for each adjacency list. BFS touches
only a smaller portion of the graph. Thus, update and read trans-
actions are less likely to conflict, bypassing the negative locking
effects. BFS requires each vertex’s neighborhood size to initialize
the algorithm. GTX and LiveGraph scan the vertex adjacency list to
calculate this value. This dominates the graph analytics latency. Sor-
tledton supports vertex neighborhood size versioning that allows
transactions to get each vertex’s neighborhood size efficiently, thus
supporting efficient BFS. PR and SSSP require finding each vertex’s
neighborhood size, but they need to scan vertices’ adjacency list
multiple times. The algorithm’s execution phase dominates graph
analytics, and thus Sortledton’s advantages drop. As read threads
scan the graph heavily, they are more likely to conflict with write

11

Figure 11: Concurrent Update with Hotspot and Temporal Localities and Analytics: Transaction Throughput

Figure 12: Concurrent Update with Hotspot and Temporal Localities and Analytics: Graph Analytics Latency

Figure 13: Memory Consumption

transactions, and hinder the performance. 1-HN and 2-HN only re-
quires adjacency list scans. In 2-HN, each vertex’s 1-hop neighbors
are not known a priori, causing Sortledton to have large locking
overhead, and hence has similar or worse performance.

LiveGraph shows strong disparity between its transaction through-
put and graph analytics. Its transaction throughput is several times
worse than both GTX and Sortledton but its graph analytics perform
better. LiveGraph uses a similar-styled 𝑀𝑉𝐶𝐶 as GTX’s but only
optimizes for sequential adjacency list scans [73]. It provides the
same level of guarantees that each vertex’s adjacency list is stored
sequentially in memory and that transaction reads and writes never
conflict. Moreover, LiveGraph has smaller edge log entries com-
pared to GTX’s edge-deltas. The compact sequential adjacency list
storage enables good read performance. But LiveGraph suffers from
its simple vertex-centric locking and lack of edge lookup indexes
(Section 7.1), thus having the worst transaction throughput.
7.3 Memory Consumption
GTX uses 64-byte edge-deltas, so it uses more memory to load and
store a graph. For insert experiments, GTX uses around 2x to 3x
more memory than Sortledton, 0.9x to 2.1x more than Teseo and
1.2x to 1.9x more memory than LiveGraph (Figures omitted for
brevity). However, for workload with updates, concurrent analytics,
and hotspots, GTX does not incur big memory overhead than stor-
ing a static graph (pure inserts), and memory consumption stays

stable across workloads (Figure 13). For these workloads, GTX is
efficient in memory allocation and garbage collection. LiveGraph
uses more memory if the workload involves updates and analytics,
while Sortledton’s memory usage increases at most 6x in workloads
with temporal localities and hotspots. GTX has the lowest memory
consumption for these experiments.

8 CONCLUSIONS
GTX is a latch-free write-optimized transactional graph system that
supports concurrent read-write transactions and graph analytics.
It adopts an adjacency list format and a delta chain-based storage
with delta-chains index. Its concurrency control combines both the
traditional linked list-based delta store [49] and append-only delta
updates [64, 73] to enable high update throughput, low-latency
single edge lookup, and sequential adjacency list scan. GTX has
high read and write concurrency using transactions,𝑀𝑉𝐶𝐶 , delta
updates, and Lazy Update hybrid commit under snapshot isolation.
Extensive evaluation of GTX against state-of-the-art transactional
graph systems shows that GTX has better performance for checked-
write workloads, and is several times better in handling real-world
write workload with temporal localities. GTX performs well un-
der mixed workloads when the workload is at least 50% writes,
in which case, GTX has better update throughput while its graph
analytics latency stays competitive. For write-heavy workloads,
e.g., 90%, GTX can outperform its competitors in graph analytics
while significantly exceeds them in write throughput. In conclu-
sion, GTX demonstrates that using latch-free techniques, avoiding
vertex-centric locking, maintaining adjacency list-level edge in-
dexes, and sequential adjacency list storage, and being adaptive to
the workload can enable high transaction throughput and better
read-write concurrency in transactional graph systems.

9 ACKNOWLEDGEMENTS
Walid G. Aref acknowledges the support of the National Science
Foundation under Grant Number IIS-1910216.

12

REFERENCES
[1] [n.d.]. China’s Singles’ Day shopping spree sees robust sales. http://www.xinhuanet.

com/english/2019-11/11/c_138546429.htm
[2] [n.d.]. JanusGraph. https://janusgraph.org/
[3] [n.d.]. Neofj. https://neo4j.com/
[4] [n.d.]. New Tweets per second record, and how! https://blog.twitter.com/

engineering/en_us/a/2013/new-tweets-per-second-record-and-how
[5] [n.d.]. OpenMP. https://www.openmp.org/
[6] [n.d.]. OrientDB. https://orientdb.org/
[7] 2023. ByteDance. https://www.bytedance.com/en/
[8] 2024. Get Started with SAP HANAGraph. https://developers.sap.com/group.hana-

aa-graph-overview.html
[9] 2024. OQGRAPH Overview. https://mariadb.com/kb/en/oqgraph-overview/
[10] 2024. Oracle Big Data Spatial and Graph. https://www.oracle.com/database/

technologies/bigdata-spatialandgraph.html
[11] Wing Lung Ngai Stijn Heldens Arnau Prat-Pérez Thomas Manhardto Hassan

ChafioMihai Capotă Narayanan SundaramMichael Anderson Ilie Gabriel Tănase
Yinglong Xia Lifeng Nai Alexandru Iosup, Tim Hegeman and Peter Boncz. 2017.
LDBC Graphalytics Benchmark specification, v0.9.0.

[12] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: A Database Benchmark Based on the Facebook
Social Graph (SIGMOD ’13). https://doi.org/10.1145/2463676.2465296

[13] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.
Bztree: A High-Performance Latch-Free Range Index for Non-Volatile Memory.
Proc. VLDB Endow. 11, 5 (2018). https://doi.org/10.1145/3164135.3164147

[14] Greg Barnes. 1993. A Method for Implementing Lock-Free Shared-Data Struc-
tures. In Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms
and Architectures (Velen, Germany) (SPAA ’93). Association for Computing Ma-
chinery, New York, NY, USA, 261–270. https://doi.org/10.1145/165231.165265

[15] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A critique of ANSI SQL isolation levels. SIGMOD Rec. 24, 2 (may
1995), 1–10. https://doi.org/10.1145/568271.223785

[16] Maciej Besta, Robert Gerstenberger, Marc Fischer, Michał Podstawski, Jürgen
Müller, Nils Blach, Berke Egeli, George Mitenkov, Wojciech Chlapek, Marek
Michalewicz, and Torsten Hoefler. 2023. The Graph Database Interface: Scaling
Online Transactional and Analytical GraphWorkloads to Hundreds of Thousands
of Cores. arXiv:2305.11162 [cs.DB]

[17] Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michał Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2023. Demysti-
fying Graph Databases: Analysis and Taxonomy of Data Organization, System
Designs, and Graph Queries. ACM Comput. Surv. 56, 2, Article 31 (sep 2023),
40 pages. https://doi.org/10.1145/3604932

[18] Kai Zeng Bolin Ding and Wenyuan Yu. 2020. Alibaba Sponsor Talk at VLDB.
[19] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro, Wonhee

Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman, Richendra Khanna,
John Pao, Matthew Renzelmann, Alex Shamis, Timothy Tan, and Shuheng Zheng.
2020. A1: A Distributed In-Memory Graph Database. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (SIGMOD ’20).
329–344. https://doi.org/10.1145/3318464.3386135

[20] Hongzhi Chen, Changji Li, Chenguang Zheng, Chenghuan Huang, Juncheng
Fang, James Cheng, and Jian Zhang. 2022. G-Tran: A High Performance Dis-
tributed Graph Database with a Decentralized Architecture. Proc. VLDB Endow.
15, 11 (jul 2022), 2545–2558. https://doi.org/10.14778/3551793.3551813

[21] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen.
2019. PowerLyra: Differentiated Graph Computation and Partitioning on Skewed
Graphs. ACM Trans. Parallel Comput. (2019). https://doi.org/10.1145/3298989

[22] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Jason
Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan
Bronson, Natacha Crooks, and Ion Stoica. 2022. TAOBench: an end-to-end
benchmark for social network workloads. Proc. VLDB Endow. 15, 9 (2022). https:
//doi.org/10.14778/3538598.3538616

[23] Audrey Cheng, Jack Waudby, Hugo Firth, Natacha Crooks, and Ion Stoica. [n.d.].
Mammoths Are Slow: The Overlooked Transactions of Graph Data. ([n. d.]).

[24] Miaomiao Cheng, Jiujian Chen, Cheng Zhao, Cheng Chen, Yongmin Hu, Xiao-
liang Cong, Liang Qin, Hexiang Lin, Ronghua Li, Guoren Wang, Shuai Zhang,
and Lei Zhang. 2023. ByteGAP: A Non-continuous Distributed Graph Computing
System using Persistent Memory (CEUR Workshop Proceedings). CEUR-WS.org.
https://ceur-ws.org/Vol-3462/ADMS7.pdf

[25] Dean De Leo. [n.d.]. graphlog. https://github.com/whatsthecraic/graphlog
[26] DeanDe Leo and Peter Boncz. 2021. Teseo and the Analysis of Structural Dynamic

Graphs. 14, 6 (feb 2021), 1053–1066. https://doi.org/10.14778/3447689.3447708
[27] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-Latency Graph

Streaming Using Compressed Purely-Functional Trees. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2019). https://doi.org/10.1145/3314221.3314598

[28] Ayush Dubey, Greg D. Hill, Robert Escriva, and Emin Gün Sirer. 2016. Weaver:
A High-Performance, Transactional Graph Database Based on Refinable Times-
tamps. Proc. VLDB Endow. 9, 11 (jul 2016), 852–863. https://doi.org/10.14778/
2983200.2983202

[29] David Ediger, Rob McColl, Jason Riedy, and David A. Bader. 2012. STINGER:
High performance data structure for streaming graphs. In 2012 IEEE Conference
on High Performance Extreme Computing. 1–5. https://doi.org/10.1109/HPEC.
2012.6408680

[30] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On Power-
Law Relationships of the Internet Topology (SIGCOMM ’99). https://doi.org/10.
1145/316188.316229

[31] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,
Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin, Wenyuan Yu, Jingren
Zhou, Diwen Zhu, and Rong Zhu. 2021. GraphScope: a unified engine for big
graph processing. 14, 12 (jul 2021), 2879–2892. https://doi.org/10.14778/3476311.
3476369

[32] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao
Han, and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for
Evolving Graphs to Support Sub-Millisecond Per-Update Analysis at Millions
Ops/s (SIGMOD ’21). https://doi.org/10.1145/3448016.3457263

[33] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoğlu. 2023.
KÙZU Graph Database Management System. CIDR.

[34] Soukaina Firmli, Vasileios Trigonakis, Jean-Pierre Lozi, Iraklis Psaroudakis,
AlexanderWeld, Chiadmi Dalila, SungpackHong, andHassan Chafi. 2020. CSR++:
A Fast, Scalable, Update-Friendly Graph Data Structure. https://doi.org/10.4230/
LIPIcs.OPODIS.2020.17

[35] Per Fuchs, Domagoj Margan, and Jana Giceva. 2022. Sortledton: A Univer-
sal, Transactional Graph Data Structure. Proc. VLDB Endow. 15, 6 (feb 2022),
1173–1186. https://doi.org/10.14778/3514061.3514065

[36] Sanchit Garg, Trinabh Gupta, Niklas Carlsson, and Anirban Mahanti. 2009. Evo-
lution of an Online Social Aggregation Network: An Empirical Study. In Proceed-
ings of the 9th ACM SIGCOMM Conference on Internet Measurement (IMC ’09).
https://doi.org/10.1145/1644893.1644931

[37] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva Gurumurthy, Volodymyr
Zhabiuk, Quannan Li, and Jimmy Lin. 2014. Real-Time Twitter Recommen-
dation: Online Motif Detection in Large Dynamic Graphs. Proc. VLDB Endow. 7,
13 (aug 2014). https://doi.org/10.14778/2733004.2733010

[38] Mohamed S. Hassan, Tatiana Kuznetsova, Hyun Chai Jeong, Walid G. Aref, and
Mohammad Sadoghi. 2018. Extending In-Memory Relational Database Engines
with Native Graph Support. In International Conference on Extending Database
Technology. https://api.semanticscholar.org/CorpusID:11389988

[39] Pat Helland, Harald Sammer, Jim Lyon, Richard Carr, Phil Garrett, and Andreas
Reuter. 1987. Group Commit Timers and High Volume Transaction Systems.
301–329. https://doi.org/10.1007/3-540-51085-0_52

[40] Jim Webber Ian Robinson and Emil Eifrem. 2015. Graph Databases: New Oppor-
tunities for Connected Data (2nd ed.). O’Reilly Media, Inc.

[41] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-
Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă, Narayanan Sundaram,
Michael Anderson, Ilie Gabriel Tănase, Yinglong Xia, Lifeng Nai, and Peter
Boncz. 2016. LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis
on Parallel and Distributed Platforms. 9, 13 (2016), 12. https://doi.org/10.14778/
3007263.3007270

[42] Muhammad Attahir Jibril, Hani Al-Sayeh, Alexander Baumstark, and Kai-Uwe
Sattler. 2023. Fast and Efficient Update Handling for Graph H2TAP. In Proceedings
26th International Conference on Extending Database Technology, EDBT 2023,
Ioannina, Greece, March 28-31, 2023. OpenProceedings.org, 723–736. https:
//doi.org/10.48786/edbt.2023.60

[43] Alexander D. Kent, Lorie M. Liebrock, and Joshua C. Neil. 2015. Authentication
graphs: Analyzing user behavior within an enterprise network. Computers &
Security 48 (2015), 150–166. https://doi.org/10.1016/j.cose.2014.09.001

[44] Kenneth C. Knowlton. 1965. A Fast Storage Allocator. Commun. ACM 8, 10 (oct
1965), 623–624. https://doi.org/10.1145/365628.365655

[45] Pradeep Kumar and H. Howie Huang. 2020. GraphOne: A Data Store for Real-
Time Analytics on Evolving Graphs. ACM Trans. Storage 15, 4 (2020). https:
//doi.org/10.1145/3364180

[46] Jérôme Kunegis. [n.d.]. The KONECT Project. http://konect.cc/
[47] Geof Langdale. [n.d.]. Lock-Free Programming. https://www.cs.cmu.edu/~410-

s05/lectures/L31_LockFree.pdf
[48] Jure Leskovec and Rok Sosič. 2016. SNAP: A General-Purpose Network Analysis

and Graph-Mining Library. ACM Trans. Intell. Syst. Technol. 8, 1 (2016). https:
//doi.org/10.1145/2898361

[49] Justin Levandoski, David Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for New Hardware Platforms. In 2013 IEEE 29th International Confer-
ence on Data Engineering (ICDE) (2013 ieee 29th international conference on
data engineering (icde) ed.). IEEE. https://www.microsoft.com/en-us/research/
publication/the-bw-tree-a-b-tree-for-new-hardware/

13

http://www.xinhuanet.com/english/2019-11/11/c_138546429.htm
http://www.xinhuanet.com/english/2019-11/11/c_138546429.htm
https://janusgraph.org/
https://neo4j.com/
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how
https://www.openmp.org/
https://orientdb.org/
https://www.bytedance.com/en/
https://developers.sap.com/group.hana-aa-graph-overview.html
https://developers.sap.com/group.hana-aa-graph-overview.html
https://mariadb.com/kb/en/oqgraph-overview/
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://www.oracle.com/database/technologies/bigdata-spatialandgraph.html
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1145/165231.165265
https://doi.org/10.1145/568271.223785
https://arxiv.org/abs/2305.11162
https://doi.org/10.1145/3604932
https://doi.org/10.1145/3318464.3386135
https://doi.org/10.14778/3551793.3551813
https://doi.org/10.1145/3298989
https://doi.org/10.14778/3538598.3538616
https://doi.org/10.14778/3538598.3538616
https://ceur-ws.org/Vol-3462/ADMS7.pdf
https://github.com/whatsthecraic/graphlog
https://doi.org/10.14778/3447689.3447708
https://doi.org/10.1145/3314221.3314598
https://doi.org/10.14778/2983200.2983202
https://doi.org/10.14778/2983200.2983202
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1145/316188.316229
https://doi.org/10.1145/316188.316229
https://doi.org/10.14778/3476311.3476369
https://doi.org/10.14778/3476311.3476369
https://doi.org/10.1145/3448016.3457263
https://doi.org/10.4230/LIPIcs.OPODIS.2020.17
https://doi.org/10.4230/LIPIcs.OPODIS.2020.17
https://doi.org/10.14778/3514061.3514065
https://doi.org/10.1145/1644893.1644931
https://doi.org/10.14778/2733004.2733010
https://api.semanticscholar.org/CorpusID:11389988
https://doi.org/10.1007/3-540-51085-0_52
https://doi.org/10.14778/3007263.3007270
https://doi.org/10.14778/3007263.3007270
https://doi.org/10.48786/edbt.2023.60
https://doi.org/10.48786/edbt.2023.60
https://doi.org/10.1016/j.cose.2014.09.001
https://doi.org/10.1145/365628.365655
https://doi.org/10.1145/3364180
https://doi.org/10.1145/3364180
http://konect.cc/
https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://www.cs.cmu.edu/~410-s05/lectures/L31_LockFree.pdf
https://doi.org/10.1145/2898361
https://doi.org/10.1145/2898361
https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/
https://www.microsoft.com/en-us/research/publication/the-bw-tree-a-b-tree-for-new-hardware/

[50] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui
Wang. 2015. High Performance Transactions in Deuteronomy. In Conference on
Innovative Data Systems Research (CIDR 2015). https://www.microsoft.com/en-
us/research/publication/high-performance-transactions-in-deuteronomy/

[51] Changji Li, Hongzhi Chen, Shuai Zhang, Yingqian Hu, Chao Chen, Zhenjie
Zhang, Meng Li, Xiangchen Li, Dongqing Han, Xiaohui Chen, Xudong Wang,
Huiming Zhu, Xuwei Fu, Tingwei Wu, Hongfei Tan, Hengtian Ding, Mengjin
Liu, Kangcheng Wang, Ting Ye, Lei Li, Xin Li, Yu Wang, Chenguang Zheng, Hao
Yang, and James Cheng. 2022. ByteGraph: A High-Performance Distributed
Graph Database in ByteDance. Proc. VLDB Endow. 15, 12 (2022). https://doi.org/
10.14778/3554821.3554824

[52] Tianyu Li, Badrish Chandramouli, and Samuel Madden. 2022. Performant Almost-
Latch-Free Data Structures Using Epoch Protection. In Data Management on
New Hardware (Philadelphia, PA, USA) (DaMoN’22). Association for Computing
Machinery, New York, NY, USA, Article 1, 10 pages. https://doi.org/10.1145/
3533737.3535091

[53] Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer. 2015.
LLAMA: Efficient graph analytics using Large Multiversioned Arrays. In 2015
IEEE 31st International Conference on Data Engineering. 363–374. https://doi.org/
10.1109/ICDE.2015.7113298

[54] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021. Terrace:
A Hierarchical Graph Container for Skewed Dynamic Graphs (SIGMOD ’21).
https://doi.org/10.1145/3448016.3457313

[55] K. Platz, N. Mittal, and S. Venkatesan. 2019. Concurrent Unrolled Skiplist. In 2019
IEEE 39th International Conference on Distributed Computing Systems (ICDCS).
https://doi.org/10.1109/ICDCS.2019.00157

[56] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-Time Constrained Cycle Detection in Large Dynamic
Graphs. 11, 12 (2018). https://doi.org/10.14778/3229863.3229874

[57] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer
Özsu. 2017. The Ubiquity of Large Graphs and Surprising Challenges of Graph
Processing. Proc. VLDB Endow. 11, 4 (2017). https://doi.org/10.1145/3186728.
3164139

[58] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy
Lin. 2016. GraphJet: Real-Time Content Recommendations at Twitter. Proc. VLDB
Endow. 9, 13 (2016). https://doi.org/10.14778/3007263.3007267

[59] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy
Lin. 2016. GraphJet: Real-Time Content Recommendations at Twitter. Proc. VLDB
Endow. 9, 13 (2016). https://doi.org/10.14778/3007263.3007267

[60] Sijie Shen, Rong Chen, Haibo Chen, and Binyu Zang. 2021. Retrofitting High
Availability Mechanism to Tame Hybrid Transaction/Analytical Processing. In
15th USENIX Symposium on Operating Systems Design and Implementation (OSDI
21). USENIX Association, 219–238. https://www.usenix.org/conference/osdi21/
presentation/shen

[61] Sijie Shen, Zihang Yao, Lin Shi, Lei Wang, Longbin Lai, Qian Tao, Li Su, Rong
Chen, Wenyuan Yu, Haibo Chen, Binyu Zang, and Jingren Zhou. 2023. Bridging
the Gap between Relational OLTP and Graph-based OLAP. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23). USENIX Association. https:
//www.usenix.org/conference/atc23/presentation/shen

[62] Jifan Shi, BiaoWang, and Yun Xu. 2024. Spruce: a Fast yet Space-saving Structure
for Dynamic Graph Storage. Proc. ACM Manag. Data 2, 1, Article 27 (mar 2024),
26 pages. https://doi.org/10.1145/3639282

[63] Kimmo Soramäki, Morten L. Bech, Jeffrey Arnold, Robert J. Glass, and Walter E.
Beyeler. 2007. The topology of interbank payment flows. Physica A: Statistical
Mechanics and its Applications (2007). https://doi.org/10.1016/j.physa.2006.11.093

[64] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,
Michael Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes More
Than Just Buzz Words (SIGMOD ’18). Association for Computing Machinery,
New York, NY, USA, 473–488. https://doi.org/10.1145/3183713.3196895

[65] Todd Warszawski and Peter Bailis. 2017. ACIDRain: Concurrency-Related At-
tacks on Database-Backed Web Applications. In Proceedings of the 2017 ACM
International Conference on Management of Data (Chicago, Illinois, USA) (SIG-
MOD ’17). Association for Computing Machinery, New York, NY, USA, 5–20.
https://doi.org/10.1145/3035918.3064037

[66] Jack Waudby, Paul Ezhilchelvan, Jim Webber, and Isi Mitrani. 2020. Preserving
reciprocal consistency in distributed graph databases. In Proceedings of the 7th
Workshop on Principles and Practice of Consistency for Distributed Data (PaPoC ’20).
Association for Computing Machinery. https://doi.org/10.1145/3380787.3393675

[67] Victor Junqiu Wei, Raymond Chi-Wing Wong, and Cheng Long. 2020.
Architecture-Intact Oracle for Fastest Path and Time Queries on Dynamic Spatial
Networks (SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA. https://doi.org/10.1145/3318464.3389718

[68] Brian Wheatman and Randal Burns. 2021. Streaming Sparse Graphs using
Efficient Dynamic Sets. In 2021 IEEE International Conference on Big Data (Big
Data). 284–294. https://doi.org/10.1109/BigData52589.2021.9671836

[69] Brian Wheatman and Helen Xu. 2018. Packed Compressed Sparse Row: A Dy-
namic Graph Representation. In 2018 IEEE High Performance extreme Computing
Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.2018.8547566

[70] Daniel ten Wolde, Gábor Szárnyas, and Peter Boncz. 2023. DuckPGQ: Bringing
SQL/PGQ to DuckDB. Proc. VLDB Endow. 16, 12 (aug 2023), 4034–4037. https:
//doi.org/10.14778/3611540.3611614

[71] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An
Empirical Evaluation of In-Memory Multi-Version Concurrency Control. Proc.
VLDB Endow. 10, 7 (2017). https://doi.org/10.14778/3067421.3067427

[72] K. Zhou, G. Tan, andW. Zhou. 2018. Quadboost: A Scalable Concurrent Quadtree.
IEEE Transactions on Parallel & Distributed Systems 29, 03 (2018). https:
//doi.org/10.1109/TPDS.2017.2762298

[73] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu, Lei Xie,
Ashraf Aboulnaga, and Wenguang Chen. 2020. LiveGraph: A Transactional
Graph Storage System with Purely Sequential Adjacency List Scans. 13, 7 (mar
2020), 1020–1034. https://doi.org/10.14778/3384345.3384351

14

https://www.microsoft.com/en-us/research/publication/high-performance-transactions-in-deuteronomy/
https://www.microsoft.com/en-us/research/publication/high-performance-transactions-in-deuteronomy/
https://doi.org/10.14778/3554821.3554824
https://doi.org/10.14778/3554821.3554824
https://doi.org/10.1145/3533737.3535091
https://doi.org/10.1145/3533737.3535091
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1145/3448016.3457313
https://doi.org/10.1109/ICDCS.2019.00157
https://doi.org/10.14778/3229863.3229874
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.14778/3007263.3007267
https://doi.org/10.14778/3007263.3007267
https://www.usenix.org/conference/osdi21/presentation/shen
https://www.usenix.org/conference/osdi21/presentation/shen
https://www.usenix.org/conference/atc23/presentation/shen
https://www.usenix.org/conference/atc23/presentation/shen
https://doi.org/10.1145/3639282
https://doi.org/10.1016/j.physa.2006.11.093
https://doi.org/10.1145/3183713.3196895
https://doi.org/10.1145/3035918.3064037
https://doi.org/10.1145/3380787.3393675
https://doi.org/10.1145/3318464.3389718
https://doi.org/10.1109/BigData52589.2021.9671836
https://doi.org/10.1109/HPEC.2018.8547566
https://doi.org/10.14778/3611540.3611614
https://doi.org/10.14778/3611540.3611614
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.1109/TPDS.2017.2762298
https://doi.org/10.1109/TPDS.2017.2762298
https://doi.org/10.14778/3384345.3384351

	Abstract
	1 Introduction
	2 Related Work
	3 Overview of GTX
	4 GTX Storage
	4.1 Vertex-centric Index
	4.2 Edge Label Block
	4.3 Edge-Deltas Block

	5 Epoch-based Transaction Handling
	5.1 Block Protection Protocol
	5.2 Transaction Vertex Operations
	5.3 Transaction Edge Updates
	5.4 Adjacency List Scan
	5.5 Transaction Edge Lookup
	5.6 Lazy Update
	5.7 Hybrid Transaction Commit and Abort
	5.8 Transaction Examples
	5.9 Consolidation of an Edge-Deltas Block
	5.10 State-aware Transaction Operations

	6 Resource Management
	7 Evaluation
	7.1 Insert Performance
	7.2 Concurrent Updates and Analytics
	7.3 Memory Consumption

	8 Conclusions
	9 Acknowledgements
	References

