DIMENSION-FREE ESTIMATES FOR POSITIVITY-PRESERVING RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS WITH CERTAIN POTENTIALS

MACIEJ KUCHARSKI

ABSTRACT. We study the $L^{\infty}(\mathbb{R}^d)$ boundedness for Riesz transforms of the form $V^a(-\frac{1}{2}\Delta + V)^{-a}$, where a > 0 and V is a non-negative potential with power growth acting independently on each coordinate. We factorize the semigroup e^{-tL} into one-dimensional factors, estimate them separately and combine the results to estimate the original semigroup. Similar results with additional assumption $a \leq 1$ are obtained on $L^1(\mathbb{R}^d)$.

1. INTRODUCTION

In this paper we consider the Schrödinger operator L on \mathbb{R}^d given by

$$L = -\frac{1}{2}\Delta + V,$$

with V being a non-negative potential, and the associated Riesz transform

$$R_V^a f(x) = V(x)^a L^{-a} f(x) = \frac{V(x)^a}{\Gamma(a)} \int_0^\infty e^{-tL} f(x) t^{a-1} dt, \quad a > 0.$$
(1.1)

Such Riesz transforms related to Schrödinger operators have been studied by numerous authors, see [1, 2, 3, 4, 13, 14]. For general $V \in L^2_{\text{loc}}$ Sikora proved in [13, Theorem 1] that $R_V^{1/2}$ is bounded on L^p for 1 (in fact the result applies not only to Riesz $transforms on <math>\mathbb{R}^d$ but also on more general doubling spaces), it is also well known that R_V^1 is bounded on L^1 with norm estimated by 1, see for example [5], [8, Lemma 6] and [2, Theorem 4.3]. When the potential V belongs to the reverse Hölder class B_q for some $q \geq \frac{d}{2}$, then it is known, see [12, Theorem 5.10], that R_V^1 is bounded on L^1 . There are also two results regarding polynomial potentials, namely Dziubański [3, Theorem 4.5] proved that R_V^a , a > 0, is bounded on L^1 and L^∞ if V is a polynomial and then Urban and Zienkiewicz proved in [14, Theorem 1.1] that R_V^1 is bounded on L^∞ independently of the dimension for V being a polynomial satisfying a certain condition of C. Fefferman. Recently it has been proved in [10] that R_V^a is bounded on L^p with $0 \leq a \leq 1/p$ and $1 for general <math>V \in L^1_{\text{loc}}$ and that R_V^a , a > 0, is bounded on L^1 and L^∞ if the potential V has polynomial or exponential growth.

²⁰²⁰ Mathematics Subject Classification. 47D08, 42B20, 42B37.

Key words and phrases. Riesz transform, Schrödinger operator, L^∞ boundedness, dimension-free estimates.

The author was supported by the National Science Centre (NCN), Poland, research project Preludium Bis 2019/35/O/ST1/00083.

Obtaining dimension-free bounds for the Riesz transforms related to Schrödinger operators seems to be a significantly harder task. The only available results are the aforementioned paper by Urban and Zienkiewicz [14], the well-known bound for R_V^1 for general potentials and a result regarding a particular case of $R_V^{1/2}$ with $V(x) = |x|^2$, see [6, 11, 9]. Our goal is to extend these dimension-free results and get L^{∞} bounds for R_V^a with a > 0and L^1 bounds for R_V^a with $a \leq 1$ when the potential V is of the form

$$V(x) = V_1(x) + \dots + V_d(x),$$
 (1.2)

where each V_i acts only on the *i*-th coordinate of the argument x and has polynomial growth with the exponent not greater than 2, i.e. there are absolute constants m and M such that

$$m|x_i|^{\alpha} \leqslant V_i(x) \leqslant M|x_i|^{\alpha} \tag{1.3}$$

for some $0 < \alpha \leq 2$. This holds for example if $V_i(x) = x_i^2$ and $V(x) = |x|^2$, which results in the operator $L = -\frac{1}{2}\Delta + |x|^2$ called the harmonic oscillator. The reason why we can only handle $\alpha \leq 2$ is related to the distribution of the Brownian motion, which arises in the Feynman–Kac formula (2.3), and is visible in (3.10).

By the definition (1.1) of R_V^a and the positivity-preserving property of the semigroup e^{-tL} obtaining the L^{∞} bounds for R_V^a amounts to estimating the value of $R_V^a(1)(x)$ independently of x and d, which in turn hints that the main part of the proof is estimating the semigroup applied to the constant function 1, i.e. $e^{-tL}(1)$. The particular structure of V (1.2) lets us write

$$L = \sum_{i=1}^{d} L_i, \quad \text{where } L_i = -\frac{1}{2} \frac{\partial^2}{\partial x_i^2} + V_i, \qquad (1.4)$$

and, as a consequence, factorize the semigroup e^{-tL} in the following way

$$e^{-tL} = \prod_{i=1}^{d} e^{-tL_i}$$
 and hence $e^{-tL}(\mathbb{1})(x) = \prod_{i=1}^{d} e^{-tL_i}(\mathbb{1})(x).$ (1.5)

This is the key property allowing us to get estimates that does not depend on the dimension d.

The main result of the paper is the following theorem.

Theorem 1.1. Fix $0 < \alpha \leq 2$ and let V given by (1.2) satisfy (1.3). For a > 0 let the Riesz transform \mathbb{R}^a_V be defined as in (1.1). Then there is a constant C > 0 depending on m, M, and α and independent of the dimension d such that

$$\|R_V^a f\|_{L^{\infty}(\mathbb{R}^d)} \leqslant C \|f\|_{L^{\infty}(\mathbb{R}^d)}, \quad f \in L^{\infty}(\mathbb{R}^d)$$

As a by-product of our considerations we also obtain L^1 estimates for R_V^a , but only for a limited range of a. The reason for this is that we need to use concavity of the function x^a .

Theorem 1.2. Fix $0 < \alpha \leq 2$ and let V given by (1.2) satisfy (1.3). For $0 < a \leq 1$ let the Riesz transform R_V^a be defined as in (1.1). Then there is a constant C > 0 depending on m, M, and α and independent of the dimension d such that

$$||R_V^a f||_{L^1(\mathbb{R}^d)} \leq C ||f||_{L^1(\mathbb{R}^d)}, \quad f \in L^1(\mathbb{R}^d).$$

Remark. For technical reasons we will assume that $d \ge 3$. The case of d = 1, 2 follows from previous results, e.g. [10].

1.1. Structure and methods. The main part of the proof is contained in Section 3 where we prove that the one-dimensional semigroups e^{-tL_i} decay exponentially in t and V(x) for small values of t, i.e. we have

$$e^{-tL_i}(\mathbb{1})(x) \leqslant e^{-c_N tV_i(x)}$$
 for $t \leqslant N$.

It is noteworthy that the constant in front of the exponential in the above estimate is 1, which means that we can multiply one-dimensional bounds to estimate the full semigroup e^{-tL} without constants growing with the dimension. The proof is divided into three cases depending on the value of $|x_i|$ and $tV_i(x)$ but in all of them the main ingredient is the Feynman–Kac formula (2.3).

In Section 4 we use results from Section 3 and a similar result [10, Lemma 4.1] giving an exponential decay of the semigroup for large values of t, namely

$$e^{-tL_i}(1)(x) \leqslant e^{-ct}$$
 for $t \ge N_i$

to estimate the L^{∞} norm of R_V^a .

Finally in Section 5 we estimate the L^1 norm of the Riesz transform. We use duality between L^{∞} and L^1 which reduces estimating the L^1 norm of the operator $R_V^a = V^a L^{-a}$ to estimating the L^{∞} norm of the adjoint operator

$$(L^{-a}V^{a})f(x) = \frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-tL} (V^{a}f)(x) t^{a-1} dt.$$

Again, using the positivity-preserving property of the semigroup e^{-tL} reduces the task to estimating $e^{-tL}(V^a)$. In this case, although the factorization (1.5) of the semigroup as an operator still applies, it does not behave well when the semigroup is applied to V^a instead of the constant function, so we use the following formula

$$e^{-tL}(V) = \sum_{i=1}^{d} e^{-tL}(V_i) = \sum_{i=1}^{d} e^{-tL^i}(1) e^{-tL_i}(V_i), \text{ where } L^i = L - L_i.$$

1.2. Notation. We conclude the introduction by establishing some useful notation used throughout the paper.

- (1) We abbreviate $L^p(\mathbb{R}^d)$ to L^p and $\|\cdot\|_{L^p}$ to $\|\cdot\|_p$. For a linear operator T acting on L^p we denote its norm by $\|T\|_{p \to p}$.
- (2) By 1 we denote the constant function 1 and by $\mathbb{1}_X$ we denote the characteristic function of the set X.
- (3) The space of smooth compactly supported functions on \mathbb{R}^d is denoted by C_c^{∞} .
- (4) For two quantities A and B we write $A \leq B$ if $A \leq CB$ for some constant C > 0 which may depend on m, M and α and is independent of the dimension d. If $A \leq B$ and $B \leq A$, then we write $A \approx B$.
- (5) For $x \in \mathbb{R}^d$ we denote its components by x_1, \ldots, x_d , i.e. $x = (x_1, \ldots, x_d)$.
- (6) For a random variable X defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $A \subseteq \mathbb{R}$ we denote $\mathbb{P}(X \in A) := \mathbb{P}(\{\omega \in \Omega : X(\omega) \in A\}).$

2. Definitions

We begin by defining the semigroup e^{-tL} and then we proceed to defining the Riesz transform R_V^a . By the result of Kato [7, p. 137] the operator $L = -\frac{1}{2}\Delta + V$ is essentially self-adjoint on C_c^{∞} and hence it has a non-negative self-adjoint extension. This in turn means that L generates a strongly continuous semigroup of contractions on L^2 which can be expressed using the Feynman–Kac formula

$$e^{-tL}f(x) = \mathbb{E}_x \left[e^{-\int_0^t V(X_s) \, ds} f(X_t) \right], \quad f \in L^2,$$
 (2.1)

where the expectation \mathbb{E}_x is taken with respect to the Wiener measure of the standard *d*-dimensional Brownian motion $\{X_s\}_{s>0}$ starting at $x \in \mathbb{R}^d$; here $X_s = (X_s^1, \ldots, X_s^d)$. Since the right-hand makes sense also for $f \in L^\infty$, we use the Feynman–Kac formula to define e^{-tL} acting on L^∞ as

$$e^{-tL}f(x) \coloneqq \mathbb{E}_x\left[e^{-\int_0^t V(X_s)\,ds}f(X_t)\right], \quad f \in L^\infty.$$
(2.2)

Similarly, using the fact that V, and hence L, act on each coordinate separately, see (1.2) and (1.4), we define one-dimensional semigroups e^{-tL_i} , $i = 1, \ldots, d$, as follows

$$e^{-tL_i}f(x) \coloneqq \mathbb{E}_{x_i}\left[e^{-\int_0^t V_i(X_s)\,ds}f_{x^i}(X_t^i)\right], \quad f \in L^\infty,\tag{2.3}$$

where

 $f_{x^i}(y) = f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_d).$

Here the expectation \mathbb{E}_{x_i} is taken with regards to the Wiener measure of the standard one-dimensional Brownian motion $\{X_s^i\}_{s>0}$ starting at $x_i \in \mathbb{R}$.

As the next lemma shows, this is the definition that suits best our purpose of factorizing the semigroup e^{-tL} into one-dimensional factors e^{-tL_i} .

Lemma 2.1. Fix d and let the d-dimensional semigroup e^{-tL} be given by (2.2) and the one-dimensional semigroup e^{-tL_i} by (2.3). Then for $f \in L^{\infty}$ we have

$$e^{-tL}f(x) = \left(\left(\prod_{i=1}^{d} e^{-tL_i}\right) f \right)(x) \quad and \quad e^{-tL}(\mathbb{1})(x) = \prod_{i=1}^{d} \left(e^{-tL_i}(\mathbb{1})(x)\right).$$
(2.4)

Proof. We will prove by induction that for k = 1, ..., d we have

$$\left(\left(\prod_{i=1}^{k} e^{-tL_{i}}\right) f\right)(x) = \mathbb{E}_{(x_{1},\dots,x_{k})}\left[e^{-\int_{0}^{t} \sum_{i=1}^{k} V_{i}(X_{s}) \, ds} f(X_{t}^{1},\dots,X_{t}^{k},x_{k+1},\dots,x_{d})\right],$$
(2.5)

which justifies the first formula in (2.4) if we take k = d.

The case k = 1 is clear from the definition (2.3) of e^{-tL_1} . Now suppose that (2.5) holds. Then

$$\left(\left(\prod_{i=1}^{k+1} e^{-tL_i} \right) f \right)(x) = \mathbb{E}_{x_{k+1}} \left[e^{-\int_0^t V_{k+1}(X_s) \, ds} \left(\left(\prod_{i=1}^k e^{-tL_i} \right) f \right)_{x^{k+1}} (X_t^{k+1}) \right]$$

= $\mathbb{E}_{x_{k+1}} \left[e^{-\int_0^t V_{k+1}(X_s) \, ds} \mathbb{E}_{(x_1,\dots,x_k)} \left[e^{-\int_0^t \sum_{i=1}^k V_i(X_s) \, ds} f(X_t^1,\dots,X_t^k,X_t^{k+1},x_{k+2},\dots,x_d) \right] \right]$
= $\mathbb{E}_{(x_1,\dots,x_{k+1})} \left[e^{-\int_0^t \sum_{i=1}^{k+1} V_i(X_s) \, ds} f(X_t^1,\dots,X_t^{k+1},x_{k+2},\dots,x_d) \right].$

Note that we can use the same Brownian motion in the inner and in the outer expected value since its coordinates are independent of each other and $V_i(X_s)$ depends only on X_s^i .

The second formula in (2.4) follows from the definitions of e^{-tL} and e^{-tL_i} and the fact that the coordinates of *d*-dimensional Brownian motion are independent.

Now we take a > 0 and a non-negative function $f \in L^{\infty}$ and define the Riesz transform

$$R_V^a f(x) = \frac{V(x)^a}{\Gamma(a)} \int_0^\infty e^{-tL} f(x) t^{a-1} dt,$$
(2.6)

where $e^{-tL}f(x)$ is defined as in (2.2). Lastly, we use the positivity-preserving property of the semigroup e^{-tL} , which means that $e^{-tL}f \ge 0$ whenever $f \ge 0$, to rewrite the main theorem in a simpler form. Namely, we have

$$|e^{-tL}f(x)| \le e^{-tL} (||f||_{\infty} \mathbb{1}) (x) = ||f||_{\infty} e^{-tL} (\mathbb{1})(x), \quad f \in L^{\infty},$$

which means that the Riesz transform R_V^a is bounded on L^∞ if

$$||R_V^a(1)|| < \infty$$

with its norm being

$$\|R_V^a\|_{\infty\to\infty} = \|R_V^a(\mathbb{1})\|_{\infty}.$$

Thus, Theorem 1.1 can be rewritten as

Theorem 2.2. Fix $0 < \alpha \leq 2$ and let V given by (1.2) satisfy (1.3). For a > 0 let the Riesz transform \mathbb{R}^a_V be defined as in (2.6). Then there is a constant C > 0 depending on m, M, and α and independent of the dimension d such that

$$\left\|R_V^a(\mathbb{1})\right\|_{\infty} \leqslant C.$$

3. One-dimensional estimates

In this section we prove the aforementioned exponential decay of the one-dimensional semigroup which we will then combine to estimate the semigroup e^{-tL} .

Lemma 3.1. For every N > 0 there is a constant $c_N > 0$ such that

$$e^{-tL_i}(\mathbb{1})(x) \leqslant e^{-c_N t V_i(x)} \tag{3.1}$$

for all $x \in \mathbb{R}^d$ and $0 \leq t \leq N$. Moreover, if $|x_i| \leq 4$, then

$$e^{-tL_i}(1)(x) \leq e^{-c_N\left(t^{\frac{\alpha}{2}+1}+tV_i(x)\right)}, \quad t \leq N.$$
 (3.2)

Proof. First we will show that (3.1) is satisfied for $0 \le t \le t_0$ for some t_0 and then we will extend the estimate to all $0 \le t \le N$.

We begin with the case $|x_i| \leq 4$. We will make use of the inequality

$$e^{-x} \leq 1 - x + \frac{x^2}{2}, \qquad x \ge 0.$$
 (3.3)

The Feynman–Kac formula (2.3) together with (3.3) give

$$e^{-tL_i}(\mathbb{1})(x) \leqslant 1 - \mathbb{E}_{x_i}\left[\int_0^t V_i(X_s) \, ds\right] + \frac{1}{2}\mathbb{E}_{x_i}\left[\left(\int_0^t V_i(X_s) \, ds\right)^2\right]. \tag{3.4}$$

We need to estimate the first and the second expected value in the expression above. In order to do this we will use the fact that for any $a, b \ge 0$ and $\alpha > 0$ we have

$$(a+b)^{\alpha} \approx a^{\alpha} + b^{\alpha}, \tag{3.5}$$

and an estimate for the moments of normal distribution

$$\mathbb{E} \left| X_s^i \right|^{\alpha} \approx s^{\alpha/2}. \tag{3.6}$$

Let us begin by estimating $\mathbb{E}_{x_i} V_i(X_s)$ from below and assume without loss of generality that $x_i \ge 0$.

$$\mathbb{E}_{x_i} V_i(X_s) \gtrsim \mathbb{E}_0 \left| X_s^i + x_i \right|^{\alpha} \ge \mathbb{E}_0 \left[\mathbb{1}_{\{X_s^i \ge 0\}} (X_s^i + x_i)^{\alpha} \right] \approx s^{\alpha/2} + x_i^{\alpha}$$

Integrating this gives

$$\mathbb{E}_{x_i}\left[\int_0^t V_i(X_s) \, ds\right] \gtrsim t^{\frac{\alpha}{2}+1} + tx_i^{\alpha}.$$

Now we estimate the last term in (3.4) using Cauchy–Schwarz inequality.

$$\mathbb{E}_{x_i}\left[\left(\int_0^t V_i(X_s)\,ds\right)^2\right] \lesssim t\int_0^t \mathbb{E}_0\left[\left|X_s^i + x_i\right|^{2\alpha}\right]ds \lesssim t\int_0^t \mathbb{E}_0\left[\left|X_s^i\right|^{2\alpha} + x_i^{2\alpha}\right]ds$$
$$\approx t\int_0^t s^\alpha + x_i^{2\alpha}ds \approx t^{\alpha+2} + t^2 x_i^{2\alpha} \lesssim \left(t^{\frac{\alpha}{2}+1} + tx_i^\alpha\right)^2.$$

Plugging this into (3.4), recalling that $|x_i| \leq 4$, and choosing t_0 sufficiently small yields

$$e^{-tL_{i}}(\mathbb{1})(x) \leq 1 - c_{1}\left(t^{\frac{\alpha}{2}+1} + tx_{i}^{\alpha}\right) + c_{2}\left(t^{\frac{\alpha}{2}+1} + tx_{i}^{\alpha}\right) \leq 1 - c\left(t^{\frac{\alpha}{2}+1} + tx_{i}^{\alpha}\right) \leq e^{-c\left(t^{\frac{\alpha}{2}+1} + tx_{i}^{\alpha}\right)}$$

which implies (3.1) and (3.2) for $t \leq t_0$.

The second case is when $|x_i| > 4$ and $tV_i(x) \leq 2A \log 5$, where $A = \frac{2^{\alpha}M}{m}$ with m and M as in (1.3). We will roughly show that then we have

$$\frac{d}{dt}e^{-tL_i}(\mathbb{1})(x) = -e^{-tL_i}(V_i)(x) \leqslant -cV_i(x).$$
(3.7)

However since the equality may not hold, we replace V_i with $V_i^n(x) = \min(V_i(x), n)$ for any n > 0, establish (3.7) for V_i^n , then we prove (3.1) for V_i^n and finally we deduce (3.1) for V_i .

Recall that V_i satisfies $m|x_i|^{\alpha} \leq V_i(x) \leq M|x_i|^{\alpha}$ and take $x_i, y_i \in \mathbb{R}$ such that $|x_i - y_i| \leq \frac{|x_i|}{2}$. Then $\frac{|x_i|}{2} \leq |y_i| \leq 2|x_i|$ so that we have

$$V_i(y) \leqslant M |y_i|^{\alpha} \leqslant 2^{\alpha} M |x_i|^{\alpha} \leqslant \frac{2^{\alpha} M}{m} V_i(x) = A V_i(x)$$

and

$$V_i(y) \ge m|y_i|^{\alpha} \ge m\frac{|x_i|^{\alpha}}{2^{\alpha}} \ge \frac{m}{2^{\alpha}M}V_i(x) = \frac{1}{A}V_i(x)$$

We also calculate the probability that $\sup_{0 \le s \le t} |X_s^i - x_i| \ge \frac{|x_i|}{2}$ using the reflection principle to get

$$\mathbb{P}\left(\sup_{0\leqslant s\leqslant t} \left|X_s^i - x_i\right| \geqslant \frac{|x_i|}{2}\right) \leqslant 4e^{-\frac{|x_i|^2}{8t}}.$$
(3.8)

Now, for n > 0, we define $V_i^n(x) = \min(V_i(x), n)$ and $L_i^n = -\frac{1}{2} \frac{\partial^2}{\partial x_i^2} + V_i^n$ and use the Feynman–Kac formula and (3.8) to get

$$e^{-tL_{i}^{n}}(V_{i}^{n})(x) = \mathbb{E}_{x_{i}}\left[e^{-\int_{0}^{t}V_{i}^{n}(X_{s})\,ds}V_{i}^{n}(X_{t})\right] \ge \mathbb{E}_{x_{i}}\left[e^{-\int_{0}^{t}V_{i}(X_{s})\,ds}V_{i}^{n}(X_{t})\right]$$
$$\geqslant \mathbb{P}\left(\forall_{0\leqslant s\leqslant t} \frac{V_{i}^{n}(x)}{A} \leqslant V_{i}^{n}(X_{s}) \text{ and } V_{i}(X_{s}) \leqslant AV_{i}(x)\right) \frac{V_{i}^{n}(x)}{A}e^{-AtV_{i}(x)}$$
$$\geqslant \mathbb{P}\left(\forall_{0\leqslant s\leqslant t} \frac{V_{i}(x)}{A} \leqslant V_{i}(X_{s}) \leqslant AV_{i}(x)\right) \frac{V_{i}^{n}(x)}{A}e^{-AtV_{i}(x)}$$
$$\geqslant \frac{V_{i}^{n}(x)}{A}\left(1-8e^{-\frac{|x_{i}|^{2}}{8t}}\right)e^{-2A^{2}\log 5}$$
$$\geqslant \frac{V_{i}^{n}(x)}{A}\left(1-8e^{-\frac{4^{2}}{8t_{0}}}\right)e^{-2A^{2}\log 5} \geqslant cV_{i}^{n}(x)$$

if t_0 is sufficiently small, which proves that

$$\frac{d}{dt}e^{-tL_i^n}(1)(x) = -e^{-tL_i^n}(V_i^n)(x) \le -cV_i^n(x).$$
(3.9)

Differentiation is allowed here by the Leibniz integral rule. Now we show that this implies a version of (3.1) with V_i^n . Consider the function

$$f(t) = e^{-tL_i^n}(1)(x) e^{ctV_i^n(x)}$$

If we differentiate it and use (3.9), we get

$$f'(t) = \frac{d}{dt} e^{-tL_i^n}(1)(x) e^{ctV_i^n(x)} + cV_i^n(x) e^{-tL_i^n}(1)(x) e^{ctV_i^n(x)}$$
$$\leqslant -cV_i^n(x) e^{ctV_i^n(x)} + cV_i^n(x) e^{ctV_i^n(x)} = 0.$$

Since f(0) = 1, we conclude that

$$e^{-tL_i^n}(\mathbb{1})(x) \leqslant e^{-ctV_i^n(x)}.$$

Now we take the limit as n goes to infinity on both sides of the inequality. The left-hand side becomes

$$\lim_{n \to \infty} e^{-tL_i^n}(\mathbb{1})(x) = \lim_{n \to \infty} \mathbb{E}_{x_i} \left[e^{-\int_0^t V_i^n(X_s) \, ds} \right] = \mathbb{E}_{x_i} \left[e^{-\int_0^t V_i(X_s) \, ds} \right] = e^{-tL_i}(\mathbb{1})(x).$$

Passing with the limit under the integral sign is allowed since the integrand is dominated by the constant function 1 which is integrable. On the right-hand side we get

$$\lim_{n \to \infty} e^{-ctV_i^n(x)} = e^{-ctV_i(x)}$$

so altogether we get (3.1).

The last case to consider is $|x_i| > 4$ and $tV_i(x) > 2A \log 5$. We choose sufficiently small t_0 and use (3.8) to obtain

$$e^{-tL_{i}}(\mathbb{1})(x) \leq e^{-\frac{tV_{i}(x)}{A}} \mathbb{P}\left(\forall_{0 \leq s \leq t} \ \frac{V_{i}(x)}{A} \leq V_{i}(X_{s})\right) + 1 \cdot \mathbb{P}\left(\exists_{0 \leq s \leq t} \ \frac{V_{i}(x)}{A} > V_{i}(X_{s})\right) \\ \leq e^{-\frac{tV_{i}(x)}{A}} + 4e^{-\frac{|x_{i}|^{2}}{8t}} \leq 5e^{-\frac{tV_{i}(x)}{A}} \leq e^{-\frac{tV_{i}(x)}{2A}},$$
(3.10)

which is (3.1). In the second-to-last inequality we used the assumption $\alpha \leq 2$.

Recall that we have just proved that

$$e^{-tL_i}(1)(x) \leqslant e^{-ctV_i(x)}$$

is satisfied for $t \leq t_0$ and $x \in \mathbb{R}^d$. If $N \leq t_0$, then the proof is finished, so suppose that $N > t_0$ and take $t \in [t_0, N]$. Then we have

$$e^{-tL_i}(1)(x) \leqslant e^{-t_0 L_i}(1)(x) \leqslant e^{-ct_0 V_i(x)} = e^{-c\frac{t_0}{t}tV_i(x)} \leqslant e^{-c\frac{t_0}{N}tV_i(x)} = e^{-c_N tV_i(x)}.$$

The inequality (3.2) can be extended to $t \in [0, N]$ in a very similar way. Suppose that N > t and take $t \in [t_0, N]$. Then

$$e^{-tL_{i}}(\mathbb{1})(x) \leqslant e^{-c\left(t_{0}^{\frac{\alpha}{2}+1}+t_{0}V_{i}(x)\right)} \leqslant e^{-c\left(\left(\frac{t_{0}}{N}\right)^{\frac{\alpha}{2}+1}t^{\frac{\alpha}{2}+1}+\frac{t_{0}}{N}tV_{i}(x)\right)} = e^{-c_{N}\left(t^{\frac{\alpha}{2}+1}+tV_{i}(x)\right)}.$$

nis finishes the proof.

This finishes the proof.

4. L^{∞} dimension-free estimates — proof of Theorem 2.2

In this section we prove Theorem 2.2 using one-dimensional estimates from Lemma 3.1. The other relevant result is [10, Lemma 4.1], which guarantees that there exist universal constants C > 0 and $\delta' > 0$ such that

$$e^{-tL_i}(\mathbb{1})(x) \leqslant C e^{-\delta' t}$$

for all $i = 1, \ldots, d$ and $x \in \mathbb{R}^d$. This in turn means, thanks to (2.4), that we have

$$e^{-tL}(1)(x) \leqslant e^{-d\delta t} \tag{4.1}$$

for $x \in \mathbb{R}^d$ and $t \ge N$, where N > 0 and $\delta > 0$ are universal constants.

First we estimate the upper part of the integral in (2.6), i.e. the integral from N to ∞ , dividing the calculations into two cases depending on the value of a. If a < 1, then

$$V(x)^{a} \int_{N}^{\infty} e^{-tL}(1)(x) t^{a-1} dt \leq V(x)^{a} e^{-\frac{N}{2}L}(1)(x) \int_{N}^{\infty} e^{-\frac{t}{2}\delta d} t^{a-1} dt$$
$$\lesssim \frac{N^{a-1}}{\delta d} V(x)^{a} e^{-\frac{N}{2}L}(1)(x) \lesssim \frac{1}{d} \sum_{i=1}^{d} V_{i}(x)^{a} e^{-\frac{N}{2}L_{i}}(1)(x).$$

In the last inequality we used the fact that

$$(x_1 + \dots + x_d)^a \leqslant x_1^a + \dots x_d^a$$

for $a \leq 1$ and $x_i \geq 0$.

If, on the other hand, $a \ge 1$, then

$$V(x)^{a} \int_{N}^{\infty} e^{-tL}(1)(x) t^{a-1} dt \leq V(x)^{a} e^{-\frac{N}{2}L}(1)(x) \int_{N}^{\infty} e^{-\frac{t}{2}\delta d} t^{a-1} dt$$
$$\lesssim \frac{1}{(\delta d)^{a}} V(x)^{a} e^{-\frac{N}{2}L}(1)(x) \lesssim \frac{1}{d} \sum_{i=1}^{d} V_{i}(x)^{a} e^{-\frac{N}{2}L_{i}}(1)(x).$$

Here in the last inequality we used that fact that

$$(x_1 + \dots + x_d)^a \leq d^{a-1} (x_1^a + \dots + x_d^a)$$

for $a \ge 1$ and $x_i \ge 0$, which follows from Jensen's inequality or Hölder's inequality. Thus, we have reduced our problem to the one-dimensional case of estimating $V_i^a e^{-\frac{N}{2}L_i}(\mathbb{1})$ which can be done by invoking (3.1), namely

$$V_i(x)^a e^{-\frac{N}{2}L_i}(1)(x) \leqslant V_i(x)^a e^{-\frac{N}{2}c_N V_i(x)} \leqslant \left(\frac{2a}{Nc_N e}\right)^a$$
 (4.2)

Then we handle the lower part of the integral in (2.6). We estimate $e^{-tL}(1)(x)$ for $t \leq N$ independently of x and d by using (3.1) and the factorization property (2.4), which gives

$$e^{-tL}(1)(x) \leqslant e^{-c_N tV(x)},$$

and then integrate

$$V(x)^{a} \int_{0}^{N} e^{-tL}(1)(x) t^{a-1} dt \leq V(x)^{a} \int_{0}^{\infty} e^{-c_{N}tV(x)} t^{a-1} dt \leq c_{N}^{-a}.$$

This completes the proof of Theorem 2.2.

5. L^1 dimension-free estimates

In this section we will again use the one-dimensional estimates for the semigroups e^{-tL_i} to prove dimension-free estimates of the L^1 norm of R_V^a for $0 < a \leq 1$. The idea is to estimate the L^{∞} norm of the adjoint operator formally given by

$$(L^{-a}V^{a})f(x) = \frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-tL} (V^{a}f)(x) t^{a-1} dt$$

As before, the positivity-preserving property of e^{-tL} lets us reduce the task to estimating the L^{∞} norm of

$$L^{-a}(V^{a})(x) = \frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-tL}(V^{a})(x) t^{a-1} dt.$$
(5.1)

However, since V^a may be unbounded, it is not clear if the integral above is a measurable function of x. The issue was addressed in detail in [10, Section 5]. Briefly, we define

$$L^{-a}(V^{a})(x) \coloneqq \lim_{N \to \infty} \frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-tL} (V^{a} \mathbb{1}_{|V| < N})(x) t^{a-1} e^{-t/N} dt$$
(5.2)

and we see that each integral is finite and measurable by [10, Lemma 3.1], hence the limit is also measurable. Later it will turn out that the integral in (5.1) is finite, which lets us handle (5.1) instead of using (5.2). As in the L^{∞} case this lets us reformulate Theorem 1.2 in the following way

Theorem 5.1. Fix $0 < \alpha \leq 2$ and let V given by (1.2) satisfy (1.3). For $0 < a \leq 1$ let the Riesz transform R_V^a be defined as in (2.6). Then there is a constant C > 0 depending on m, M, and α and independent of the dimension d such that

$$\left\|L^{-a}(V^a)\right\|_{\infty} \leqslant C.$$

Before we move to the proof, we need two general results regarding the semigroup e^{-tL} . The first one is a factorization property for $e^{-tL}(V)$

$$e^{-tL}(V) = \sum_{i=1}^{d} e^{-tL}(V_i) = \sum_{i=1}^{d} e^{-tL^i}(1) e^{-tL_i}(V_i), \text{ where } L^i = L - L_i.$$
(5.3)

$$e^{-tL_{i}}(V_{i}^{a})(x) = \mathbb{E}_{x_{i}} \left[e^{-\int_{0}^{t} V_{i}(X_{s}) \, ds} \, V_{i}(X_{t})^{a} \right] \\ \lesssim \mathbb{E}_{0} \left[e^{-\int_{0}^{t} V_{i}(X_{s}+x) \, ds} \, V_{i}(X_{t})^{a} \right] + \mathbb{E}_{0} \left[e^{-\int_{0}^{t} V_{i}(X_{s}+x) \, ds} \, V_{i}(x)^{a} \right] \\ \lesssim \mathbb{E}_{0} \left[V_{i}(X_{t})^{a} \right] + V_{i}(x)^{a} \, \mathbb{E}_{x_{i}} \left[e^{-\int_{0}^{t} V_{i}(X_{s}) \, ds} \right] \\ \lesssim t^{\frac{a\alpha}{2}} + V_{i}(x)^{a} \, e^{-tL_{i}}(1)(x), \tag{5.4}$$

valid for t > 0 and $x \in \mathbb{R}^d$. Here we used estimate (1.3) for V and (3.5). Now we are in position to prove Theorem 5.1

Proof of Theorem 5.1. We begin with the upper part of the integral in (5.1), i.e. the integral from N to ∞ . Using subadditivity of the function x^a for $a \leq 1$, factorization (5.3) and (4.1) we obtain

$$\begin{split} \int_{N}^{\infty} e^{-tL}(V^{a})(x) t^{a-1} dt &\leq \int_{N}^{\infty} \sum_{i=1}^{d} e^{-tL}(V^{a}_{i})(x) t^{a-1} dt \\ &\leq \int_{N}^{\infty} \sum_{i=1}^{d} e^{-tL^{i}}(1)(x) e^{-tL_{i}}(V^{a}_{i})(x) t^{a-1} dt \\ &\leq \int_{N}^{\infty} \sum_{i=1}^{d} e^{-t\delta(d-1)} e^{-tL_{i}}(V^{a}_{i})(x) t^{a-1} dt \\ &\leq N^{a-1} \sum_{i=1}^{d} \int_{N}^{\infty} \|e^{-tL_{i}}(V^{a}_{i})\|_{\infty} e^{-t\delta(d-1)} dt \\ &\lesssim \sum_{i=1}^{d} \|e^{-NL_{i}}(V^{a}_{i})\|_{\infty} \int_{N}^{\infty} e^{-t\delta(d-1)} dt \\ &\lesssim \frac{1}{d-1} \sum_{i=1}^{d} \|e^{-NL_{i}}(V^{a}_{i})\|_{\infty}. \end{split}$$

Then we use (5.4) and (3.1) and we estimate the resulting function similarly to (4.2).

To deal with the lower part we use the inequality

$$e^{-tL}(V^a) \leqslant e^{-tL}(V)^a, \quad a \leqslant 1,$$

which follows from Hölder's inequality. We use this and (5.3) to get

$$\int_0^N e^{-tL}(V^a)(x) t^{a-1} dt \leqslant \int_0^N \left(\sum_{i=1}^d e^{-tL^i}(1)(x) e^{-tL_i}(V_i)(x) \right)^a t^{a-1} dt.$$

Then we use (5.4) and obtain

$$\begin{split} \int_0^N e^{-tL}(V^a)(x) \, t^{a-1} \, dt &\lesssim \int_0^N \left(\sum_{i=1}^d e^{-tL^i}(\mathbbm{1})(x) \, \left(t^{\frac{\alpha}{2}} + V_i(x) \, e^{-tL_i}(\mathbbm{1})(x) \right) \right)^a \, t^{a-1} \, dt \\ &= \int_0^N \left(V(x) e^{-tL}(\mathbbm{1})(x) + t^{\frac{\alpha}{2}} \sum_{i=1}^d e^{-tL^i}(\mathbbm{1})(x) \right)^a \, t^{a-1} \, dt \\ &\leqslant \int_0^N V(x)^a e^{-tL}(\mathbbm{1})(x)^a \, t^{a-1} \, dt + \int_0^N t^{\frac{\alpha\alpha}{2}} \left(\sum_{i=1}^d e^{-tL^i}(\mathbbm{1})(x) \right)^a \, t^{a-1} \, dt \end{split}$$

To the first integral we apply (3.1) and factorization (2.4), which lets us estimate the first integral by a constant independent of x and the dimension d. To estimate the second integral we fix $x = (x_1, \ldots, x_d)$ and divide its coordinates x_j into those whose absolute value is greater than 4 and all others. Say that there are k coordinates greater than 4 and d - k not greater than 4. Then we consider three cases.

First we assume that k = 0 and apply (3.2) and (2.4) to get

$$\int_0^N t^{\frac{a\alpha}{2}} \left(\sum_{i=1}^d e^{-tL^i}(\mathbb{1})(x) \right)^a t^{a-1} dt \leq \int_0^N d^a e^{-a(d-1)c_N t^{\frac{\alpha}{2}+1}} t^{\frac{a\alpha}{2}} t^{a-1} dt \lesssim \frac{d^a}{d^a} = 1.$$

In the last inequality we used

$$\int_0^\infty e^{-At^\beta} t^\gamma dt = \frac{\Gamma\left(\frac{\gamma+1}{\beta}\right)}{\beta A^{\frac{\gamma+1}{\beta}}},\tag{5.5}$$

with $A = a(d-1)c_N$, $\beta = \frac{\alpha}{2} + 1$ and $\gamma = \frac{a\alpha}{2} + a - 1$. Then if k = d, we apply (3.1) and (2.4) and use the fact $V_i(x) \ge m \cdot 4^{\alpha}$ which gives

$$\begin{split} \int_{0}^{N} t^{\frac{a\alpha}{2}} \left(\sum_{i=1}^{d} e^{-tL^{i}}(\mathbb{1})(x) \right)^{a} t^{a-1} dt &\leq \int_{0}^{N} d^{a} e^{-4^{\alpha} mac_{N} t(d-1)} t^{\frac{a\alpha}{2}} t^{a-1} dt \\ &\lesssim \int_{0}^{N} d^{a} e^{-4^{\alpha} mac_{N} t d} t^{a-1} dt \lesssim 1. \end{split}$$

The third case is when 0 < k < d in which the estimate is a mixture of the estimates for k = 0 and k = d. Observe that each (d-1)-element subsequence of (x_1, \ldots, x_d) has at least k-1 elements greater than 4 and at least d-k-1 elements not greater than 4. By (3.1) and (3.2) this means that

$$\int_0^N t^{\frac{a\alpha}{2}} \left(\sum_{i=1}^d e^{-tL^i}(\mathbb{1})(x) \right)^a t^{a-1} dt \leq \int_0^N d^a e^{-4^\alpha mac_N t(k-1)} e^{-ac_N (d-k-1)t^{\frac{\alpha}{2}+1}} t^{\frac{a\alpha}{2}} t^{a-1} dt.$$

Then we use Hölder's inequality with $p = \frac{d-2}{k-1}$ $(p = \infty \text{ if } k = 1)$ and $q = \frac{d-2}{d-k-1}$ $(q = \infty \text{ if } k = d-1)$ to the functions $e^{-4^{\alpha}mac_N t(k-1)}$ and $e^{-ac_N(d-k-1)t^{\frac{\alpha}{2}+1}t^{\frac{\alpha\alpha}{2}}}$ with respect to

the measure $t^{a-1} dt$ which yields

$$d^{a} \int_{0}^{N} e^{-4^{\alpha} mac_{N}t(k-1)} \cdot e^{-ac_{N}(d-k-1)t^{\frac{\alpha}{2}+1}} t^{\frac{a\alpha}{2}} \cdot t^{a-1} dt$$

$$\lesssim d^{a} \left(\int_{0}^{N} e^{-4^{\alpha} mac_{N}t(d-2)} t^{a-1} dt \right)^{1/p} \left(\int_{0}^{N} e^{-ac_{N}(d-2)t^{\frac{\alpha}{2}+1}} t^{\frac{a\alpha}{2}} t^{a-1} dt \right)^{1/q}$$

$$\lesssim d^{a} \left(\frac{1}{d^{a}} \right)^{1/p} \left(\frac{1}{d^{a}} \right)^{1/q} = 1.$$

Again, in the last inequality we used (5.5).

References

- J. Assaad and E. M. Ouhabaz. Riesz transforms of Schrödinger operators on manifolds. J. Geom. Anal., 22(4):1108-1136, 2012. https://link.springer.com/article/10.1007/s12220-011-9231v.
- [2] P. Auscher and B. Ben Ali. Maximal inequalities and Riesz transform estimates on L^p spaces for Schrödinger operators with nonnegative potentials. Ann. Inst. Fourier, 57(6):1975-2013, 2007. https://aif.centre-mersenne.org/item/AIF_2007_57_6_1975_0/.
- J. Dziubański. A note on Schrödinger operators with polynomial potentials. Coll. Math., 78(1):149-161, 1998. https://www.impan.pl/en/publishing-house/journals-and-series/ colloquium-mathematicum/all/78/1/110482/a-note-on-schrodinger-operators-withpolynomial-potentials.
- [4] J. Dziubański and P. Głowacki. Sobolev spaces related to Schrödinger operators with polynomial potentials. *Math. Z.*, 262:881-894, 2009. https://link.springer.com/article/10.1007/s00209-008-0404-8.
- [5] T. Gallouët and J.-M. Morel. Resolution of a semilinear equation in L¹. Proc. Roy. Soc. Edinburgh Sect. A, 96(3-4):275-288, 1984. https://www.cambridge.org/core/journals/proceedings-ofthe-royal-society-of-edinburgh-section-a-mathematics/article/abs/resolution-of-asemilinear-equation-in-11/C1CDD1FFCCC022109548DA3408AAB8EE.
- [6] E. Harboure, L. de Rosa, C. Segovia, and J. L. Torrea. L^p-dimension free boundedness for Riesz transforms associated to Hermite functions. Math. Ann., 328:653-682, 2004. https://link. springer.com/article/10.1007/s00208-003-0501-2.
- [7] T. Kato. Schrödinger operators with singular potentials. Israel J. Math., 13:135–148, 1972. https://link.springer.com/article/10.1007/BF02760233.
- [8] T. Kato. L^p-theory of Schrödinger operators with a singular potential. North-Holland Mathematics Studies, 122:63-78, 1986. https://www.sciencedirect.com/science/article/abs/pii/ S0304020808719492.
- [9] M. Kucharski. Dimension-free estimates for Riesz transforms related to the harmonic oscillator. Coll. Math., 165:139-161, 2021. https://www.impan.pl/en/publishing-house/journals-andseries/colloquium-mathematicum/all/165/1/114001/dimension-free-estimates-for-riesztransforms-related-to-the-harmonic-oscillator.
- [10] M. Kucharski and B. Wróbel. On L^p estimates for positivity-preserving Riesz transforms related to Schrödinger operators. Ann. Inst. Fourier, 2024. https://arxiv.org/abs/2203.15530.
- F. Lust-Piquard. Dimension free estimates for Riesz transforms associated to the harmonic oscillator on Rⁿ. Potential Anal., 24:47-62, 2006. https://link.springer.com/article/10.1007/s11118-005-4389-1.
- [12] Z. Shen. L^p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier, 45(2):513-546, 1995. https://aif.centre-mersenne.org/item/AIF_1995_45_2_513_0/.
- [13] A. Sikora. Riesz transforms, Gaussian bounds and the method of wave equation. Math. Z., 247:643– 662, 2004. https://link.springer.com/article/10.1007/s00209-003-0639-3.

DIM-FREE ESTIMATES FOR RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS13

[14] R. Urban and J. Zienkiewicz. Dimension free estimates for Riesz transforms of some Schrödinger operators. Israel J. Math., 173:157–176, 2009. https://link.springer.com/article/10.1007/ s11856-009-0086-x.

Maciej Kucharski, Instytut Matematyczny, Uniwersytet Wrocławski, Plac Grunwaldzki 2, 50-384 Wrocław, Poland

Email address: mkuchar@math.uni.wroc.pl