# DIMENSION-FREE ESTIMATES FOR POSITIVITY-PRESERVING RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS WITH CERTAIN POTENTIALS 

MACIEJ KUCHARSKI


#### Abstract

We study the $L^{\infty}\left(\mathbb{R}^{d}\right)$ boundedness for Riesz transforms of the form $V^{a}\left(-\frac{1}{2} \Delta+V\right)^{-a}$, where $a>0$ and $V$ is a non-negative potential with power growth acting independently on each coordinate. We factorize the semigroup $e^{-t L}$ into onedimensional factors, estimate them separately and combine the results to estimate the original semigroup. Similar results with additional assumption $a \leqslant 1$ are obtained on $L^{1}\left(\mathbb{R}^{d}\right)$.


## 1. Introduction

In this paper we consider the Schrödinger operator $L$ on $\mathbb{R}^{d}$ given by

$$
L=-\frac{1}{2} \Delta+V,
$$

with $V$ being a non-negative potential, and the associated Riesz transform

$$
\begin{equation*}
R_{V}^{a} f(x)=V(x)^{a} L^{-a} f(x)=\frac{V(x)^{a}}{\Gamma(a)} \int_{0}^{\infty} e^{-t L} f(x) t^{a-1} d t, \quad a>0 \tag{1.1}
\end{equation*}
$$

Such Riesz transforms related to Schrödinger operators have been studied by numerous authors, see [1, 2, 3, 4, 13, 14, For general $V \in L_{\text {loc }}^{2}$ Sikora proved in [13, Theorem 1] that $R_{V}^{1 / 2}$ is bounded on $L^{p}$ for $1<p \leqslant 2$ (in fact the result applies not only to Riesz transforms on $\mathbb{R}^{d}$ but also on more general doubling spaces), it is also well known that $R_{V}^{1}$ is bounded on $L^{1}$ with norm estimated by 1 , see for example [5], [8, Lemma 6] and [2, Theorem 4.3]. When the potential $V$ belongs to the reverse Hölder class $B_{q}$ for some $q \geqslant \frac{d}{2}$, then it is known, see [12, Theorem 5.10], that $R_{V}^{1}$ is bounded on $L^{1}$. There are also two results regarding polynomial potentials, namely Dziubański [3, Theorem 4.5] proved that $R_{V}^{a}, a>0$, is bounded on $L^{1}$ and $L^{\infty}$ if $V$ is a polynomial and then Urban and Zienkiewicz proved in [14, Theorem 1.1] that $R_{V}^{1}$ is bounded on $L^{\infty}$ independently of the dimension for $V$ being a polynomial satisfying a certain condition of C. Fefferman. Recently it has been proved in [10] that $R_{V}^{a}$ is bounded on $L^{p}$ with $0 \leqslant a \leqslant 1 / p$ and $1<p \leqslant 2$ for general $V \in L_{\text {loc }}^{1}$ and that $R_{V}^{a}, a>0$, is bounded on $L^{1}$ and $L^{\infty}$ if the potential $V$ has polynomial or exponential growth.

[^0]Obtaining dimension-free bounds for the Riesz transforms related to Schrödinger operators seems to be a significantly harder task. The only available results are the aforementioned paper by Urban and Zienkiewicz [14], the well-known bound for $R_{V}^{1}$ for general potentials and a result regarding a particular case of $R_{V}^{1 / 2}$ with $V(x)=|x|^{2}$, see [6, 11, 9]. Our goal is to extend these dimension-free results and get $L^{\infty}$ bounds for $R_{V}^{a}$ with $a>0$ and $L^{1}$ bounds for $R_{V}^{a}$ with $a \leqslant 1$ when the potential $V$ is of the form

$$
\begin{equation*}
V(x)=V_{1}(x)+\cdots+V_{d}(x) \tag{1.2}
\end{equation*}
$$

where each $V_{i}$ acts only on the $i$-th coordinate of the argument $x$ and has polynomial growth with the exponent not greater than 2, i.e. there are absolute constants $m$ and $M$ such that

$$
\begin{equation*}
m\left|x_{i}\right|^{\alpha} \leqslant V_{i}(x) \leqslant M\left|x_{i}\right|^{\alpha} \tag{1.3}
\end{equation*}
$$

for some $0<\alpha \leqslant 2$. This holds for example if $V_{i}(x)=x_{i}^{2}$ and $V(x)=|x|^{2}$, which results in the operator $L=-\frac{1}{2} \Delta+|x|^{2}$ called the harmonic oscillator. The reason why we can only handle $\alpha \leqslant 2$ is related to the distribution of the Brownian motion, which arises in the Feynman-Kac formula (2.3), and is visible in (3.10).

By the definition (1.1) of $R_{V}^{a}$ and the positivity-preserving property of the semigroup $e^{-t L}$ obtaining the $L^{\infty}$ bounds for $R_{V}^{a}$ amounts to estimating the value of $R_{V}^{a}(\mathbb{1})(x)$ independently of $x$ and $d$, which in turn hints that the main part of the proof is estimating the semigroup applied to the constant function 1, i.e. $e^{-t L}(\mathbb{1})$. The particular structure of $V$ (1.2) lets us write

$$
\begin{equation*}
L=\sum_{i=1}^{d} L_{i}, \quad \text { where } L_{i}=-\frac{1}{2} \frac{\partial^{2}}{\partial x_{i}^{2}}+V_{i} \tag{1.4}
\end{equation*}
$$

and, as a consequence, factorize the semigroup $e^{-t L}$ in the following way

$$
\begin{equation*}
e^{-t L}=\prod_{i=1}^{d} e^{-t L_{i}} \quad \text { and hence } \quad e^{-t L}(\mathbb{1})(x)=\prod_{i=1}^{d} e^{-t L_{i}}(\mathbb{1})(x) \tag{1.5}
\end{equation*}
$$

This is the key property allowing us to get estimates that does not depend on the dimension $d$.

The main result of the paper is the following theorem.
Theorem 1.1. Fix $0<\alpha \leqslant 2$ and let $V$ given by (1.2) satisfy (1.3). For $a>0$ let the Riesz transform $R_{V}^{a}$ be defined as in (1.1). Then there is a constant $C>0$ depending on $m, M$, and $\alpha$ and independent of the dimension $d$ such that

$$
\left\|R_{V}^{a} f\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leqslant C\|f\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}, \quad f \in L^{\infty}\left(\mathbb{R}^{d}\right)
$$

As a by-product of our considerations we also obtain $L^{1}$ estimates for $R_{V}^{a}$, but only for a limited range of $a$. The reason for this is that we need to use concavity of the function $x^{a}$.

Theorem 1.2. Fix $0<\alpha \leqslant 2$ and let $V$ given by (1.2) satisfy (1.3). For $0<a \leqslant 1$ let the Riesz transform $R_{V}^{a}$ be defined as in (1.1). Then there is a constant $C>0$ depending on $m, M$, and $\alpha$ and independent of the dimension $d$ such that

$$
\left\|R_{V}^{a} f\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leqslant C\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)}, \quad f \in L^{1}\left(\mathbb{R}^{d}\right)
$$

Remark. For technical reasons we will assume that $d \geqslant 3$. The case of $d=1,2$ follows from previous results, e.g. [10].
1.1. Structure and methods. The main part of the proof is contained in Section 3 where we prove that the one-dimensional semigroups $e^{-t L_{i}}$ decay exponentially in $t$ and $V(x)$ for small values of $t$, i.e. we have

$$
e^{-t L_{i}}(\mathbb{1})(x) \leqslant e^{-c_{N} t V_{i}(x)} \quad \text { for } t \leqslant N
$$

It is noteworthy that the constant in front of the exponential in the above estimate is 1 , which means that we can multiply one-dimensional bounds to estimate the full semigroup $e^{-t L}$ without constants growing with the dimension. The proof is divided into three cases depending on the value of $\left|x_{i}\right|$ and $t V_{i}(x)$ but in all of them the main ingredient is the Feynman-Kac formula (2.3).

In Section 4 we use results from Section 3 and a similar result [10, Lemma 4.1] giving an exponential decay of the semigroup for large values of $t$, namely

$$
e^{-t L_{i}}(\mathbb{1})(x) \leqslant e^{-c t} \quad \text { for } t \geqslant N
$$

to estimate the $L^{\infty}$ norm of $R_{V}^{a}$.
Finally in Section 5 we estimate the $L^{1}$ norm of the Riesz transform. We use duality between $L^{\infty}$ and $L^{1}$ which reduces estimating the $L^{1}$ norm of the operator $R_{V}^{a}=V^{a} L^{-a}$ to estimating the $L^{\infty}$ norm of the adjoint operator

$$
\left(L^{-a} V^{a}\right) f(x)=\frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-t L}\left(V^{a} f\right)(x) t^{a-1} d t
$$

Again, using the positivity-preserving property of the semigroup $e^{-t L}$ reduces the task to estimating $e^{-t L}\left(V^{a}\right)$. In this case, although the factorization (1.5) of the semigroup as an operator still applies, it does not behave well when the semigroup is applied to $V^{a}$ instead of the constant function, so we use the following formula

$$
e^{-t L}(V)=\sum_{i=1}^{d} e^{-t L}\left(V_{i}\right)=\sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1}) e^{-t L_{i}}\left(V_{i}\right), \quad \text { where } L^{i}=L-L_{i}
$$

1.2. Notation. We conclude the introduction by establishing some useful notation used throughout the paper.
(1) We abbreviate $L^{p}\left(\mathbb{R}^{d}\right)$ to $L^{p}$ and $\|\cdot\|_{L^{p}}$ to $\|\cdot\|_{p}$. For a linear operator $T$ acting on $L^{p}$ we denote its norm by $\|T\|_{p \rightarrow p}$.
(2) By $\mathbb{1}$ we denote the constant function 1 and by $\mathbb{1}_{X}$ we denote the characteristic function of the set $X$.
(3) The space of smooth compactly supported functions on $\mathbb{R}^{d}$ is denoted by $C_{c}^{\infty}$.
(4) For two quantities $A$ and $B$ we write $A \lesssim B$ if $A \leqslant C B$ for some constant $C>0$ which may depend on $m, M$ and $\alpha$ and is independent of the dimension $d$. If $A \lesssim B$ and $B \lesssim A$, then we write $A \approx B$.
(5) For $x \in \mathbb{R}^{d}$ we denote its components by $x_{1}, \ldots, x_{d}$, i.e. $x=\left(x_{1}, \ldots, x_{d}\right)$.
(6) For a random variable $X$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and $A \subseteq \mathbb{R}$ we denote $\mathbb{P}(X \in A):=\mathbb{P}(\{\omega \in \Omega: X(\omega) \in A\})$.

## 2. Definitions

We begin by defining the semigroup $e^{-t L}$ and then we proceed to defining the Riesz transform $R_{V}^{a}$. By the result of Kato [7, p. 137] the operator $L=-\frac{1}{2} \Delta+V$ is essentially self-adjoint on $C_{c}^{\infty}$ and hence it has a non-negative self-adjoint extension. This in turn means that $L$ generates a strongly continuous semigroup of contractions on $L^{2}$ which can be expressed using the Feynman-Kac formula

$$
\begin{equation*}
e^{-t L} f(x)=\mathbb{E}_{x}\left[e^{-\int_{0}^{t} V\left(X_{s}\right) d s} f\left(X_{t}\right)\right], \quad f \in L^{2}, \tag{2.1}
\end{equation*}
$$

where the expectation $\mathbb{E}_{x}$ is taken with respect to the Wiener measure of the standard $d$-dimensional Brownian motion $\left\{X_{s}\right\}_{s>0}$ starting at $x \in \mathbb{R}^{d}$; here $X_{s}=\left(X_{s}^{1}, \ldots, X_{s}^{d}\right)$. Since the right-hand makes sense also for $f \in L^{\infty}$, we use the Feynman-Kac formula to define $e^{-t L}$ acting on $L^{\infty}$ as

$$
\begin{equation*}
e^{-t L} f(x):=\mathbb{E}_{x}\left[e^{-\int_{0}^{t} V\left(X_{s}\right) d s} f\left(X_{t}\right)\right], \quad f \in L^{\infty} . \tag{2.2}
\end{equation*}
$$

Similarly, using the fact that $V$, and hence $L$, act on each coordinate separately, see (1.2) and (1.4), we define one-dimensional semigroups $e^{-t L_{i}}, i=1, \ldots, d$, as follows

$$
\begin{equation*}
e^{-t L_{i}} f(x):=\mathbb{E}_{x_{i}}\left[e^{-\int_{0}^{t} V_{i}\left(X_{s}\right) d s} f_{x^{i}}\left(X_{t}^{i}\right)\right], \quad f \in L^{\infty}, \tag{2.3}
\end{equation*}
$$

where

$$
f_{x^{i}}(y)=f\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{d}\right) .
$$

Here the expectation $\mathbb{E}_{x_{i}}$ is taken with regards to the Wiener measure of the standard one-dimensional Brownian motion $\left\{X_{s}^{i}\right\}_{s>0}$ starting at $x_{i} \in \mathbb{R}$.

As the next lemma shows, this is the definition that suits best our purpose of factorizing the semigroup $e^{-t L}$ into one-dimensional factors $e^{-t L_{i}}$.

Lemma 2.1. Fix $d$ and let the $d$-dimensional semigroup $e^{-t L}$ be given by (2.2) and the one-dimensional semigroup $e^{-t L_{i}}$ by (2.3). Then for $f \in L^{\infty}$ we have

$$
\begin{equation*}
e^{-t L} f(x)=\left(\left(\prod_{i=1}^{d} e^{-t L_{i}}\right) f\right)(x) \quad \text { and } \quad e^{-t L}(\mathbb{1})(x)=\prod_{i=1}^{d}\left(e^{-t L_{i}}(\mathbb{1})(x)\right) \text {. } \tag{2.4}
\end{equation*}
$$

Proof. We will prove by induction that for $k=1, \ldots, d$ we have

$$
\begin{equation*}
\left(\left(\prod_{i=1}^{k} e^{-t L_{i}}\right) f\right)(x)=\mathbb{E}_{\left(x_{1}, \ldots, x_{k}\right)}\left[e^{-\int_{0}^{t} \sum_{i=1}^{k} V_{i}\left(X_{s}\right) d s} f\left(X_{t}^{1}, \ldots, X_{t}^{k}, x_{k+1}, \ldots, x_{d}\right)\right], \tag{2.5}
\end{equation*}
$$

which justifies the first formula in (2.4) if we take $k=d$.
The case $k=1$ is clear from the definition (2.3) of $e^{-t L_{1}}$. Now suppose that (2.5) holds. Then

$$
\begin{aligned}
& \left(\left(\prod_{i=1}^{k+1} e^{-t L_{i}}\right) f\right)(x)=\mathbb{E}_{x_{k+1}}\left[e^{-\int_{0}^{t} V_{k+1}\left(X_{s}\right) d s}\left(\left(\prod_{i=1}^{k} e^{-t L_{i}}\right) f\right)_{x^{k+1}}\left(X_{t}^{k+1}\right)\right] \\
& =\mathbb{E}_{x_{k+1}}\left[e^{-\int_{0}^{t} V_{k+1}\left(X_{s}\right) d s} \mathbb{E}_{\left(x_{1}, \ldots, x_{k}\right)}\left[e^{-\int_{0}^{t} \sum_{i=1}^{k} V_{i}\left(X_{s}\right) d s} f\left(X_{t}^{1}, \ldots, X_{t}^{k}, X_{t}^{k+1}, x_{k+2}, \ldots, x_{d}\right)\right]\right] \\
& =\mathbb{E}_{\left(x_{1}, \ldots, x_{k+1}\right)}\left[e^{-\int_{0}^{t} \sum_{i=1}^{k+1} V_{i}\left(X_{s}\right) d s} f\left(X_{t}^{1}, \ldots, X_{t}^{k+1}, x_{k+2}, \ldots, x_{d}\right)\right] .
\end{aligned}
$$

Note that we can use the same Brownian motion in the inner and in the outer expected value since its coordinates are independent of each other and $V_{i}\left(X_{s}\right)$ depends only on $X_{s}^{i}$.

The second formula in (2.4) follows from the definitions of $e^{-t L}$ and $e^{-t L_{i}}$ and the fact that the coordinates of $d$-dimensional Brownian motion are independent.

Now we take $a>0$ and a non-negative function $f \in L^{\infty}$ and define the Riesz transform

$$
\begin{equation*}
R_{V}^{a} f(x)=\frac{V(x)^{a}}{\Gamma(a)} \int_{0}^{\infty} e^{-t L} f(x) t^{a-1} d t \tag{2.6}
\end{equation*}
$$

where $e^{-t L} f(x)$ is defined as in (2.2). Lastly, we use the positivity-preserving property of the semigroup $e^{-t L}$, which means that $e^{-t L} f \geqslant 0$ whenever $f \geqslant 0$, to rewrite the main theorem in a simpler form. Namely, we have

$$
\left|e^{-t L} f(x)\right| \leqslant e^{-t L}\left(\|f\|_{\infty} \mathbb{1}\right)(x)=\|f\|_{\infty} e^{-t L}(\mathbb{1})(x), \quad f \in L^{\infty}
$$

which means that the Riesz transform $R_{V}^{a}$ is bounded on $L^{\infty}$ if

$$
\left\|R_{V}^{a}(\mathbb{1})\right\|<\infty
$$

with its norm being

$$
\left\|R_{V}^{a}\right\|_{\infty \rightarrow \infty}=\left\|R_{V}^{a}(\mathbb{1})\right\|_{\infty} .
$$

Thus, Theorem 1.1 can be rewritten as
Theorem 2.2. Fix $0<\alpha \leqslant 2$ and let $V$ given by (1.2) satisfy (1.3). For $a>0$ let the Riesz transform $R_{V}^{a}$ be defined as in (2.6). Then there is a constant $C>0$ depending on $m, M$, and $\alpha$ and independent of the dimension $d$ such that

$$
\left\|R_{V}^{a}(\mathbb{1})\right\|_{\infty} \leqslant C .
$$

## 3. One-dimensional estimates

In this section we prove the aforementioned exponential decay of the one-dimensional semigroup which we will then combine to estimate the semigroup $e^{-t L}$.

Lemma 3.1. For every $N>0$ there is a constant $c_{N}>0$ such that

$$
\begin{equation*}
e^{-t L_{i}}(\mathbb{1})(x) \leqslant e^{-c_{N} t V_{i}(x)} \tag{3.1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{d}$ and $0 \leqslant t \leqslant N$. Moreover, if $\left|x_{i}\right| \leqslant 4$, then

$$
\begin{equation*}
e^{-t L_{i}}(\mathbb{1})(x) \leqslant e^{-c_{N}\left(t^{\frac{\alpha}{2}+1}+t V_{i}(x)\right)}, \quad t \leqslant N . \tag{3.2}
\end{equation*}
$$

Proof. First we will show that (3.1) is satisfied for $0 \leqslant t \leqslant t_{0}$ for some $t_{0}$ and then we will extend the estimate to all $0 \leqslant t \leqslant N$.

We begin with the case $\left|x_{i}\right| \leqslant 4$. We will make use of the inequality

$$
\begin{equation*}
e^{-x} \leqslant 1-x+\frac{x^{2}}{2}, \quad x \geqslant 0 \tag{3.3}
\end{equation*}
$$

The Feynman-Kac formula (2.3) together with (3.3) give

$$
\begin{equation*}
e^{-t L_{i}}(\mathbb{1})(x) \leqslant 1-\mathbb{E}_{x_{i}}\left[\int_{0}^{t} V_{i}\left(X_{s}\right) d s\right]+\frac{1}{2} \mathbb{E}_{x_{i}}\left[\left(\int_{0}^{t} V_{i}\left(X_{s}\right) d s\right)^{2}\right] \tag{3.4}
\end{equation*}
$$

We need to estimate the first and the second expected value in the expression above. In order to do this we will use the fact that for any $a, b \geqslant 0$ and $\alpha>0$ we have

$$
\begin{equation*}
(a+b)^{\alpha} \approx a^{\alpha}+b^{\alpha}, \tag{3.5}
\end{equation*}
$$

and an estimate for the moments of normal distribution

$$
\begin{equation*}
\mathbb{E}\left|X_{s}^{i}\right|^{\alpha} \approx s^{\alpha / 2} \tag{3.6}
\end{equation*}
$$

Let us begin by estimating $\mathbb{E}_{x_{i}} V_{i}\left(X_{s}\right)$ from below and assume without loss of generality that $x_{i} \geqslant 0$.

$$
\mathbb{E}_{x_{i}} V_{i}\left(X_{s}\right) \gtrsim \mathbb{E}_{0}\left|X_{s}^{i}+x_{i}\right|^{\alpha} \geqslant \mathbb{E}_{0}\left[\mathbb{1}_{\left\{X_{s}^{i} \geqslant 0\right\}}\left(X_{s}^{i}+x_{i}\right)^{\alpha}\right] \approx s^{\alpha / 2}+x_{i}^{\alpha}
$$

Integrating this gives

$$
\mathbb{E}_{x_{i}}\left[\int_{0}^{t} V_{i}\left(X_{s}\right) d s\right] \gtrsim t^{\frac{\alpha}{2}+1}+t x_{i}^{\alpha} .
$$

Now we estimate the last term in (3.4) using Cauchy-Schwarz inequality.

$$
\begin{aligned}
\mathbb{E}_{x_{i}}\left[\left(\int_{0}^{t} V_{i}\left(X_{s}\right) d s\right)^{2}\right] & \lesssim t \int_{0}^{t} \mathbb{E}_{0}\left[\left|X_{s}^{i}+x_{i}\right|^{2 \alpha}\right] d s \lesssim t \int_{0}^{t} \mathbb{E}_{0}\left[\left|X_{s}^{i}\right|^{2 \alpha}+x_{i}^{2 \alpha}\right] d s \\
& \approx t \int_{0}^{t} s^{\alpha}+x_{i}^{2 \alpha} d s \approx t^{\alpha+2}+t^{2} x_{i}^{2 \alpha} \lesssim\left(t^{\frac{\alpha}{2}+1}+t x_{i}^{\alpha}\right)^{2}
\end{aligned}
$$

Plugging this into (3.4), recalling that $\left|x_{i}\right| \leqslant 4$, and choosing $t_{0}$ sufficiently small yields

$$
\begin{aligned}
e^{-t L_{i}}(\mathbb{1})(x) & \leqslant 1-c_{1}\left(t^{\frac{\alpha}{2}+1}+t x_{i}^{\alpha}\right)+c_{2}\left(t^{\frac{\alpha}{2}+1}+t x_{i}^{\alpha}\right)^{2} \\
& \leqslant 1-c\left(t^{\frac{\alpha}{2}+1}+t x_{i}^{\alpha}\right) \leqslant e^{-c\left(t^{\frac{\alpha}{2}+1}+t x_{i}^{\alpha}\right)}
\end{aligned}
$$

which implies (3.1) and (3.2) for $t \leqslant t_{0}$.
The second case is when $\left|x_{i}\right|>4$ and $t V_{i}(x) \leqslant 2 A \log 5$, where $A=\frac{2^{\alpha} M}{m}$ with $m$ and $M$ as in (1.3). We will roughly show that then we have

$$
\begin{equation*}
\frac{d}{d t} e^{-t L_{i}}(\mathbb{1})(x)=-e^{-t L_{i}}\left(V_{i}\right)(x) \leqslant-c V_{i}(x) . \tag{3.7}
\end{equation*}
$$

However since the equality may not hold, we replace $V_{i}$ with $V_{i}^{n}(x)=\min \left(V_{i}(x), n\right)$ for any $n>0$, establish (3.7) for $V_{i}^{n}$, then we prove (3.1) for $V_{i}^{n}$ and finally we deduce (3.1) for $V_{i}$.

Recall that $V_{i}$ satisfies $m\left|x_{i}\right|^{\alpha} \leqslant V_{i}(x) \leqslant M\left|x_{i}\right|^{\alpha}$ and take $x_{i}, y_{i} \in \mathbb{R}$ such that $\left|x_{i}-y_{i}\right| \leqslant \frac{\left|x_{i}\right|}{2}$. Then $\frac{\left|x_{i}\right|}{2} \leqslant\left|y_{i}\right| \leqslant 2\left|x_{i}\right|$ so that we have

$$
V_{i}(y) \leqslant M\left|y_{i}\right|^{\alpha} \leqslant 2^{\alpha} M\left|x_{i}\right|^{\alpha} \leqslant \frac{2^{\alpha} M}{m} V_{i}(x)=A V_{i}(x)
$$

and

$$
V_{i}(y) \geqslant m\left|y_{i}\right|^{\alpha} \geqslant m \frac{\left|x_{i}\right|^{\alpha}}{2^{\alpha}} \geqslant \frac{m}{2^{\alpha} M} V_{i}(x)=\frac{1}{A} V_{i}(x)
$$

We also calculate the probability that $\sup _{0 \leqslant s \leqslant t}\left|X_{s}^{i}-x_{i}\right| \geqslant \frac{\left|x_{i}\right|}{2}$ using the reflection principle to get

$$
\begin{equation*}
\mathbb{P}\left(\sup _{0 \leqslant s \leqslant t}\left|X_{s}^{i}-x_{i}\right| \geqslant \frac{\left|x_{i}\right|}{2}\right) \leqslant 4 e^{-\frac{\left|x_{i}\right|^{2}}{8 t}} \tag{3.8}
\end{equation*}
$$

Now, for $n>0$, we define $V_{i}^{n}(x)=\min \left(V_{i}(x), n\right)$ and $L_{i}^{n}=-\frac{1}{2} \frac{\partial^{2}}{\partial x_{i}^{2}}+V_{i}^{n}$ and use the Feynman-Kac formula and (3.8) to get

$$
\begin{aligned}
e^{-t L_{i}^{n}}\left(V_{i}^{n}\right)(x) & =\mathbb{E}_{x_{i}}\left[e^{-\int_{0}^{t} V_{i}^{n}\left(X_{s}\right) d s} V_{i}^{n}\left(X_{t}\right)\right] \geqslant \mathbb{E}_{x_{i}}\left[e^{-\int_{0}^{t} V_{i}\left(X_{s}\right) d s} V_{i}^{n}\left(X_{t}\right)\right] \\
& \geqslant \mathbb{P}\left(\forall_{0 \leqslant s \leqslant t} \frac{V_{i}^{n}(x)}{A} \leqslant V_{i}^{n}\left(X_{s}\right) \text { and } V_{i}\left(X_{s}\right) \leqslant A V_{i}(x)\right) \frac{V_{i}^{n}(x)}{A} e^{-A t V_{i}(x)} \\
& \geqslant \mathbb{P}\left(\forall_{0 \leqslant s \leqslant t} \frac{V_{i}(x)}{A} \leqslant V_{i}\left(X_{s}\right) \leqslant A V_{i}(x)\right) \frac{V_{i}^{n}(x)}{A} e^{-A t V_{i}(x)} \\
& \geqslant \frac{V_{i}^{n}(x)}{A}\left(1-8 e^{-\frac{\left|x_{i}\right|^{2}}{8 t}}\right) e^{-2 A^{2} \log 5} \\
& \geqslant \frac{V_{i}^{n}(x)}{A}\left(1-8 e^{-\frac{4^{2}}{8 t_{0}}}\right) e^{-2 A^{2} \log 5} \geqslant c V_{i}^{n}(x)
\end{aligned}
$$

if $t_{0}$ is sufficiently small, which proves that

$$
\begin{equation*}
\frac{d}{d t} e^{-t L_{i}^{n}}(\mathbb{1})(x)=-e^{-t L_{i}^{n}}\left(V_{i}^{n}\right)(x) \leqslant-c V_{i}^{n}(x) \tag{3.9}
\end{equation*}
$$

Differentiation is allowed here by the Leibniz integral rule. Now we show that this implies a version of (3.1) with $V_{i}^{n}$. Consider the function

$$
f(t)=e^{-t L_{i}^{n}}(\mathbb{1})(x) e^{c t V_{i}^{n}(x)}
$$

If we differentiate it and use (3.9), we get

$$
\begin{aligned}
f^{\prime}(t) & =\frac{d}{d t} e^{-t L_{i}^{n}}(\mathbb{1})(x) e^{c t V_{i}^{n}(x)}+c V_{i}^{n}(x) e^{-t L_{i}^{n}}(\mathbb{1})(x) e^{c t V_{i}^{n}(x)} \\
& \leqslant-c V_{i}^{n}(x) e^{c t V_{i}^{n}(x)}+c V_{i}^{n}(x) e^{c t V_{i}^{n}(x)}=0
\end{aligned}
$$

Since $f(0)=1$, we conclude that

$$
e^{-t L_{i}^{n}}(\mathbb{1})(x) \leqslant e^{-c t V_{i}^{n}(x)}
$$

Now we take the limit as $n$ goes to infinity on both sides of the inequality. The left-hand side becomes

$$
\lim _{n \rightarrow \infty} e^{-t L_{i}^{n}}(\mathbb{1})(x)=\lim _{n \rightarrow \infty} \mathbb{E}_{x_{i}}\left[e^{-\int_{0}^{t} V_{i}^{n}\left(X_{s}\right) d s}\right]=\mathbb{E}_{x_{i}}\left[e^{-\int_{0}^{t} V_{i}\left(X_{s}\right) d s}\right]=e^{-t L_{i}}(\mathbb{1})(x)
$$

Passing with the limit under the integral sign is allowed since the integrand is dominated by the constant function $\mathbb{1}$ which is integrable. On the right-hand side we get

$$
\lim _{n \rightarrow \infty} e^{-c t V_{i}^{n}(x)}=e^{-c t V_{i}(x)}
$$

so altogether we get (3.1).
The last case to consider is $\left|x_{i}\right|>4$ and $t V_{i}(x)>2 A \log 5$. We choose sufficiently small $t_{0}$ and use (3.8) to obtain

$$
\begin{align*}
e^{-t L_{i}}(\mathbb{1})(x) & \leqslant e^{-\frac{t V_{i}(x)}{A}} \mathbb{P}\left(\forall_{0 \leqslant s \leqslant t} \frac{V_{i}(x)}{A} \leqslant V_{i}\left(X_{s}\right)\right)+1 \cdot \mathbb{P}\left(\exists_{0 \leqslant s \leqslant t} \frac{V_{i}(x)}{A}>V_{i}\left(X_{s}\right)\right) \\
& \leqslant e^{-\frac{t V_{i}(x)}{A}}+4 e^{-\frac{\left|x_{i}\right|^{2}}{8 t}} \leqslant 5 e^{-\frac{t V_{i}(x)}{A}} \leqslant e^{-\frac{t V_{i}(x)}{2 A}}, \tag{3.10}
\end{align*}
$$

which is (3.1). In the second-to-last inequality we used the assumption $\alpha \leqslant 2$.

Recall that we have just proved that

$$
e^{-t L_{i}}(\mathbb{1})(x) \leqslant e^{-c t V_{i}(x)}
$$

is satisfied for $t \leqslant t_{0}$ and $x \in \mathbb{R}^{d}$. If $N \leqslant t_{0}$, then the proof is finished, so suppose that $N>t_{0}$ and take $t \in\left[t_{0}, N\right]$. Then we have

$$
e^{-t L_{i}}(\mathbb{1})(x) \leqslant e^{-t_{0} L_{i}}(\mathbb{1})(x) \leqslant e^{-c t_{0} V_{i}(x)}=e^{-c \frac{t_{0}}{t} t V_{i}(x)} \leqslant e^{-c \frac{t_{0}}{N} t V_{i}(x)}=e^{-c_{N} t V_{i}(x)}
$$

The inequality (3.2) can be extended to $t \in[0, N]$ in a very similar way. Suppose that $N>t$ and take $t \in\left[t_{0}, N\right]$. Then

$$
\left.e^{-t L_{i}}(\mathbb{1})(x) \leqslant e^{-c\left(t_{0}^{\frac{\alpha}{2}+1}+t_{0} V_{i}(x)\right.}\right) \leqslant e^{-c\left(\left(\frac{t_{0}}{N}\right)^{\frac{\alpha}{2}+1} t^{\frac{\alpha}{2}+1}+\frac{t_{0}}{N} t V_{i}(x)\right)}=e^{-c_{N}\left(t^{\frac{\alpha}{2}+1}+t V_{i}(x)\right)} .
$$

This finishes the proof.

## 4. $L^{\infty}$ Dimension-free estimates - proof of Theorem 2.2

In this section we prove Theorem 2.2 using one-dimensional estimates from Lemma 3.1, The other relevant result is [10, Lemma 4.1], which guarantees that there exist universal constants $C>0$ and $\delta^{\prime}>0$ such that

$$
e^{-t L_{i}}(\mathbb{1})(x) \leqslant C e^{-\delta^{\prime} t}
$$

for all $i=1, \ldots, d$ and $x \in \mathbb{R}^{d}$. This in turn means, thanks to (2.4), that we have

$$
\begin{equation*}
e^{-t L}(\mathbb{1})(x) \leqslant e^{-d \delta t} \tag{4.1}
\end{equation*}
$$

for $x \in \mathbb{R}^{d}$ and $t \geqslant N$, where $N>0$ and $\delta>0$ are universal constants.
First we estimate the upper part of the integral in (2.6), i.e. the integral from $N$ to $\infty$, dividing the calculations into two cases depending on the value of $a$. If $a<1$, then

$$
\begin{aligned}
V(x)^{a} \int_{N}^{\infty} & e^{-t L}(\mathbb{1})(x) t^{a-1} d t \leqslant V(x)^{a} e^{-\frac{N}{2} L}(\mathbb{1})(x) \int_{N}^{\infty} e^{-\frac{t}{2} \delta d} t^{a-1} d t \\
& \lesssim \frac{N^{a-1}}{\delta d} V(x)^{a} e^{-\frac{N}{2} L}(\mathbb{1})(x) \lesssim \frac{1}{d} \sum_{i=1}^{d} V_{i}(x)^{a} e^{-\frac{N}{2} L_{i}}(\mathbb{1})(x)
\end{aligned}
$$

In the last inequality we used the fact that

$$
\left(x_{1}+\cdots+x_{d}\right)^{a} \leqslant x_{1}^{a}+\ldots x_{d}^{a}
$$

for $a \leqslant 1$ and $x_{i} \geqslant 0$.
If, on the other hand, $a \geqslant 1$, then

$$
\begin{aligned}
& V(x)^{a} \int_{N}^{\infty} e^{-t L}(\mathbb{1})(x) t^{a-1} d t \leqslant V(x)^{a} e^{-\frac{N}{2} L}(\mathbb{1})(x) \int_{N}^{\infty} e^{-\frac{t}{2} \delta d} t^{a-1} d t \\
& \lesssim \frac{1}{(\delta d)^{a}} V(x)^{a} e^{-\frac{N}{2} L}(\mathbb{1})(x) \lesssim \frac{1}{d} \sum_{i=1}^{d} V_{i}(x)^{a} e^{-\frac{N}{2} L_{i}}(\mathbb{1})(x)
\end{aligned}
$$

Here in the last inequality we used that fact that

$$
\left(x_{1}+\cdots+x_{d}\right)^{a} \leqslant d^{a-1}\left(x_{1}^{a}+\cdots+x_{d}^{a}\right)
$$

for $a \geqslant 1$ and $x_{i} \geqslant 0$, which follows from Jensen's inequality or Hölder's inequality. Thus, we have reduced our problem to the one-dimensional case of estimating $V_{i}^{a} e^{-\frac{N}{2} L_{i}}(\mathbb{1})$ which can be done by invoking (3.1), namely

$$
\begin{equation*}
V_{i}(x)^{a} e^{-\frac{N}{2} L_{i}}(\mathbb{1})(x) \leqslant V_{i}(x)^{a} e^{-\frac{N}{2} c_{N} V_{i}(x)} \leqslant\left(\frac{2 a}{N c_{N} e}\right)^{a} \tag{4.2}
\end{equation*}
$$

Then we handle the lower part of the integral in (2.6). We estimate $e^{-t L}(\mathbb{1})(x)$ for $t \leqslant N$ independently of $x$ and $d$ by using (3.1) and the factorization property (2.4), which gives

$$
e^{-t L}(\mathbb{1})(x) \leqslant e^{-c_{N} t V(x)},
$$

and then integrate

$$
V(x)^{a} \int_{0}^{N} e^{-t L}(\mathbb{1})(x) t^{a-1} d t \leqslant V(x)^{a} \int_{0}^{\infty} e^{-c_{N} t V(x)} t^{a-1} d t \lesssim c_{N}^{-a} .
$$

This completes the proof of Theorem 2.2,

## 5. $L^{1}$ DIMENSION-FREE ESTIMATES

In this section we will again use the one-dimensional estimates for the semigroups $e^{-t L_{i}}$ to prove dimension-free estimates of the $L^{1}$ norm of $R_{V}^{a}$ for $0<a \leqslant 1$. The idea is to estimate the $L^{\infty}$ norm of the adjoint operator formally given by

$$
\left(L^{-a} V^{a}\right) f(x)=\frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-t L}\left(V^{a} f\right)(x) t^{a-1} d t
$$

As before, the positivity-preserving property of $e^{-t L}$ lets us reduce the task to estimating the $L^{\infty}$ norm of

$$
\begin{equation*}
L^{-a}\left(V^{a}\right)(x)=\frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-t L}\left(V^{a}\right)(x) t^{a-1} d t \tag{5.1}
\end{equation*}
$$

However, since $V^{a}$ may be unbounded, it is not clear if the integral above is a measurable function of $x$. The issue was addressed in detail in [10, Section 5]. Briefly, we define

$$
\begin{equation*}
L^{-a}\left(V^{a}\right)(x):=\lim _{N \rightarrow \infty} \frac{1}{\Gamma(a)} \int_{0}^{\infty} e^{-t L}\left(V^{a} \mathbb{1}_{|V|<N}\right)(x) t^{a-1} e^{-t / N} d t \tag{5.2}
\end{equation*}
$$

and we see that each integral is finite and measurable by [10 Lemma 3.1], hence the limit is also measurable. Later it will turn out that the integral in (5.1) is finite, which lets us handle (5.1) instead of using (5.2). As in the $L^{\infty}$ case this lets us reformulate Theorem 1.2 in the following way

Theorem 5.1. Fix $0<\alpha \leqslant 2$ and let $V$ given by (1.2) satisfy (1.3). For $0<a \leqslant 1$ let the Riesz transform $R_{V}^{a}$ be defined as in (2.6). Then there is a constant $C>0$ depending on $m, M$, and $\alpha$ and independent of the dimension $d$ such that

$$
\left\|L^{-a}\left(V^{a}\right)\right\|_{\infty} \leqslant C
$$

Before we move to the proof, we need two general results regarding the semigroup $e^{-t L}$. The first one is a factorization property for $e^{-t L}(V)$

$$
\begin{equation*}
e^{-t L}(V)=\sum_{i=1}^{d} e^{-t L}\left(V_{i}\right)=\sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1}) e^{-t L_{i}}\left(V_{i}\right), \quad \text { where } L^{i}=L-L_{i} . \tag{5.3}
\end{equation*}
$$

The second one is an estimate for $e^{-t L_{i}}\left(V_{i}^{a}\right)$

$$
\begin{align*}
e^{-t L_{i}}\left(V_{i}^{a}\right)(x) & =\mathbb{E}_{x_{i}}\left[e^{-\int_{0}^{t} V_{i}\left(X_{s}\right) d s} V_{i}\left(X_{t}\right)^{a}\right] \\
& \lesssim \mathbb{E}_{0}\left[e^{-\int_{0}^{t} V_{i}\left(X_{s}+x\right) d s} V_{i}\left(X_{t}\right)^{a}\right]+\mathbb{E}_{0}\left[e^{-\int_{0}^{t} V_{i}\left(X_{s}+x\right) d s} V_{i}(x)^{a}\right] \\
& \lesssim \mathbb{E}_{0}\left[V_{i}\left(X_{t}\right)^{a}\right]+V_{i}(x)^{a} \mathbb{E}_{x_{i}}\left[e^{-\int_{0}^{t} V_{i}\left(X_{s}\right) d s}\right] \\
& \lesssim t^{\frac{a \alpha}{2}}+V_{i}(x)^{a} e^{-t L_{i}}(\mathbb{1})(x), \tag{5.4}
\end{align*}
$$

valid for $t>0$ and $x \in \mathbb{R}^{d}$. Here we used estimate (1.3) for $V$ and (3.5). Now we are in position to prove Theorem 5.1

Proof of Theorem 5.1. We begin with the upper part of the integral in (5.1), i.e. the integral from $N$ to $\infty$. Using subadditivity of the function $x^{a}$ for $a \leqslant 1$, factorization (5.3) and (4.1) we obtain

$$
\begin{aligned}
\int_{N}^{\infty} e^{-t L}\left(V^{a}\right)(x) t^{a-1} d t & \leqslant \int_{N}^{\infty} \sum_{i=1}^{d} e^{-t L}\left(V_{i}^{a}\right)(x) t^{a-1} d t \\
& \leqslant \int_{N}^{\infty} \sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1})(x) e^{-t L_{i}}\left(V_{i}^{a}\right)(x) t^{a-1} d t \\
& \leqslant \int_{N}^{\infty} \sum_{i=1}^{d} e^{-t \delta(d-1)} e^{-t L_{i}}\left(V_{i}^{a}\right)(x) t^{a-1} d t \\
& \leqslant N^{a-1} \sum_{i=1}^{d} \int_{N}^{\infty}\left\|e^{-t L_{i}}\left(V_{i}^{a}\right)\right\|_{\infty} e^{-t \delta(d-1)} d t \\
& \lesssim \sum_{i=1}^{d}\left\|e^{-N L_{i}}\left(V_{i}^{a}\right)\right\|_{\infty} \int_{N}^{\infty} e^{-t \delta(d-1)} d t \\
& \lesssim \frac{1}{d-1} \sum_{i=1}^{d}\left\|e^{-N L_{i}}\left(V_{i}^{a}\right)\right\|_{\infty}
\end{aligned}
$$

Then we use (5.4) and (3.1) and we estimate the resulting function similarly to (4.2).
To deal with the lower part we use the inequality

$$
e^{-t L}\left(V^{a}\right) \leqslant e^{-t L}(V)^{a}, \quad a \leqslant 1
$$

which follows from Hölder's inequality. We use this and (5.3) to get

$$
\int_{0}^{N} e^{-t L}\left(V^{a}\right)(x) t^{a-1} d t \leqslant \int_{0}^{N}\left(\sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1})(x) e^{-t L_{i}}\left(V_{i}\right)(x)\right)^{a} t^{a-1} d t
$$

Then we use (5.4) and obtain

$$
\begin{aligned}
& \int_{0}^{N} e^{-t L}\left(V^{a}\right)(x) t^{a-1} d t \\
& \lesssim \int_{0}^{N}\left(\sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1})(x)\left(t^{\frac{\alpha}{2}}+V_{i}(x) e^{-t L_{i}}(\mathbb{1})(x)\right)\right)^{a} t^{a-1} d t \\
&=\int_{0}^{N}\left(V(x) e^{-t L}(\mathbb{1})(x)+t^{\frac{\alpha}{2}} \sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1})(x)\right)^{a} t^{a-1} d t \\
& \leqslant \int_{0}^{N} V(x)^{a} e^{-t L}(\mathbb{1})(x)^{a} t^{a-1} d t+\int_{0}^{N} t^{\frac{a \alpha}{2}}\left(\sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1})(x)\right)^{a} t^{a-1} d t .
\end{aligned}
$$

To the first integral we apply (3.1) and factorization (2.4), which lets us estimate the first integral by a constant independent of $x$ and the dimension $d$. To estimate the second integral we fix $x=\left(x_{1}, \ldots, x_{d}\right)$ and divide its coordinates $x_{j}$ into those whose absolute value is greater than 4 and all others. Say that there are $k$ coordinates greater than 4 and $d-k$ not greater than 4 . Then we consider three cases.

First we assume that $k=0$ and apply (3.2) and (2.4) to get

$$
\int_{0}^{N} t^{\frac{a \alpha}{2}}\left(\sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1})(x)\right)^{a} t^{a-1} d t \leqslant \int_{0}^{N} d^{a} e^{-a(d-1) c_{N} t^{\frac{\alpha}{2}+1}} t^{\frac{a \alpha}{2}} t^{a-1} d t \lesssim \frac{d^{a}}{d^{a}}=1
$$

In the last inequality we used

$$
\begin{equation*}
\int_{0}^{\infty} e^{-A t^{\beta}} t^{\gamma} d t=\frac{\Gamma\left(\frac{\gamma+1}{\beta}\right)}{\beta A^{\frac{\gamma+1}{\beta}}} \tag{5.5}
\end{equation*}
$$

with $A=a(d-1) c_{N}, \beta=\frac{\alpha}{2}+1$ and $\gamma=\frac{a \alpha}{2}+a-1$.
Then if $k=d$, we apply (3.1) and (2.4) and use the fact $V_{i}(x) \geqslant m \cdot 4^{\alpha}$ which gives

$$
\begin{aligned}
\int_{0}^{N} t^{\frac{a \alpha}{2}}\left(\sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1})(x)\right)^{a} t^{a-1} d t & \leqslant \int_{0}^{N} d^{a} e^{-4^{\alpha} \operatorname{mac}_{N} t(d-1)} t^{\frac{a \alpha}{2}} t^{a-1} d t \\
& \lesssim \int_{0}^{N} d^{a} e^{-4^{\alpha} \operatorname{mac}_{N} t d} t^{a-1} d t \lesssim 1
\end{aligned}
$$

The third case is when $0<k<d$ in which the estimate is a mixture of the estimates for $k=0$ and $k=d$. Observe that each $(d-1)$-element subsequence of $\left(x_{1}, \ldots, x_{d}\right)$ has at least $k-1$ elements greater than 4 and at least $d-k-1$ elements not greater than 4 . By (3.1) and (3.2) this means that
$\int_{0}^{N} t^{\frac{a \alpha}{2}}\left(\sum_{i=1}^{d} e^{-t L^{i}}(\mathbb{1})(x)\right)^{a} t^{a-1} d t \leqslant \int_{0}^{N} d^{a} e^{-4^{\alpha} \operatorname{mac}_{N} t(k-1)} e^{-a c_{N}(d-k-1) t^{\frac{\alpha}{2}+1}} t^{\frac{a \alpha}{2}} t^{a-1} d t$.
Then we use Hölder's inequality with $p=\frac{d-2}{k-1}(p=\infty$ if $k=1)$ and $q=\frac{d-2}{d-k-1}(q=\infty$ if $k=d-1$ ) to the functions $e^{-4^{\alpha} \operatorname{mac}_{N} t(k-1)}$ and $e^{-a c_{N}(d-k-1) t^{\frac{\alpha}{2}+1}} t^{\frac{a \alpha}{2}}$ with respect to
the measure $t^{a-1} d t$ which yields

$$
\begin{aligned}
& d^{a} \int_{0}^{N} e^{-4^{\alpha} \operatorname{mac}_{N} t(k-1)} \cdot e^{-a c_{N}(d-k-1) t^{\frac{\alpha}{2}+1}} t^{\frac{a \alpha}{2}} \cdot t^{a-1} d t \\
& \quad \lesssim d^{a}\left(\int_{0}^{N} e^{-4^{\alpha} \operatorname{mac}_{N} t(d-2)} t^{a-1} d t\right)^{1 / p}\left(\int_{0}^{N} e^{-a c_{N}(d-2) t^{\frac{\alpha}{2}+1}} t^{\frac{a \alpha}{2}} t^{a-1} d t\right)^{1 / q} \\
& \quad \lesssim d^{a}\left(\frac{1}{d^{a}}\right)^{1 / p}\left(\frac{1}{d^{a}}\right)^{1 / q}=1
\end{aligned}
$$

Again, in the last inequality we used (5.5).

## References

[1] J. Assaad and E. M. Ouhabaz. Riesz transforms of Schrödinger operators on manifolds. J. Geom. Anal., 22(4):1108-1136, 2012. https://link.springer.com/article/10.1007/s12220-011-9231y.
[2] P. Auscher and B. Ben Ali. Maximal inequalities and Riesz transform estimates on $L^{p}$ spaces for Schrödinger operators with nonnegative potentials. Ann. Inst. Fourier, 57(6):1975-2013, 2007. https://aif.centre-mersenne.org/item/AIF_2007__57_6_1975_0/
[3] J. Dziubański. A note on Schrödinger operators with polynomial potentials. Coll. Math., 78(1):149-161, 1998. https://www.impan.pl/en/publishing-house/journals-and-series/ colloquium-mathematicum/all/78/1/110482/a-note-on-schrodinger-operators-with-polynomial-potentials
[4] J. Dziubański and P. Głowacki. Sobolev spaces related to Schrödinger operators with polynomial potentials. Math. Z., 262:881-894, 2009. https://link.springer.com/article/10.1007/s00209-008-0404-8
[5] T. Gallouët and J.-M. Morel. Resolution of a semilinear equation in L ${ }^{1}$. Proc. Roy. Soc. Edinburgh Sect. A, 96(3-4):275-288, 1984. https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/resolution-of-a-semilinear-equation-in-l1/C1CDD1FFCCC022109548DA3408AAB8EE
[6] E. Harboure, L. de Rosa, C. Segovia, and J. L. Torrea. $L^{p}$-dimension free boundedness for Riesz transforms associated to Hermite functions. Math. Ann., 328:653-682, 2004. https://link. springer.com/article/10.1007/s00208-003-0501-2
[7] T. Kato. Schrödinger operators with singular potentials. Israel J. Math., 13:135-148, 1972. https:// link.springer.com/article/10.1007/BF02760233.
[8] T. Kato. L ${ }^{p}$-theory of Schrödinger operators with a singular potential. North-Holland Mathematics Studies, 122:63-78, 1986. https://www.sciencedirect.com/science/article/abs/pii/ S0304020808719492
[9] M. Kucharski. Dimension-free estimates for Riesz transforms related to the harmonic oscillator. Coll. Math., 165:139-161, 2021. https://www.impan.pl/en/publishing-house/journals-and-series/colloquium-mathematicum/all/165/1/114001/dimension-free-estimates-for-riesz-transforms-related-to-the-harmonic-oscillator
[10] M. Kucharski and B. Wróbel. On $L^{p}$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators. Ann. Inst. Fourier, 2024. https://arxiv.org/abs/2203.15530.
[11] F. Lust-Piquard. Dimension free estimates for Riesz transforms associated to the harmonic oscillator on $R^{n}$. Potential Anal., 24:47-62, 2006. https://link.springer.com/article/10.1007/s11118-005-4389-1
[12] Z. Shen. $L^{p}$ estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier, 45(2):513-546, 1995. https://aif.centre-mersenne.org/item/AIF_1995__45_2_513_0/.
[13] A. Sikora. Riesz transforms, Gaussian bounds and the method of wave equation. Math. Z., 247:643662, 2004. https://link.springer.com/article/10.1007/s00209-003-0639-3
[14] R. Urban and J. Zienkiewicz. Dimension free estimates for Riesz transforms of some Schrödinger operators. Israel J. Math., 173:157-176, 2009. https://link.springer.com/article/10.1007/ s11856-009-0086-x

Maciej Kucharski, Instytut Matematyczny, Uniwersytet Wroceawski, Plac Grunwaldzki
2, 50-384 Wroceaw, Poland
Email address: mkuchar@math.uni.wroc.pl


[^0]:    2020 Mathematics Subject Classification. 47D08, 42B20, 42B37.
    Key words and phrases. Riesz transform, Schrödinger operator, $L^{\infty}$ boundedness, dimension-free estimates.

    The author was supported by the National Science Centre (NCN), Poland, research project Preludium Bis 2019/35/O/ST1/00083.

